Search Results

Search found 158 results on 7 pages for 'shuffle'.

Page 7/7 | < Previous Page | 3 4 5 6 7 

  • How to detect a timeout when using asynchronous Socket.BeginReceive?

    - by James Hugard
    Writing an asynchronous Ping using Raw Sockets in F#, to enable parallel requests using as few threads as possible. Not using "System.Net.NetworkInformation.Ping", because it appears to allocate one thread per request. Am also interested in using F# async workflows. The synchronous version below correctly times out when the target host does not exist/respond, but the asynchronous version hangs. Both work when the host does respond. Not sure if this is a .NET issue, or an F# one... Any ideas? (note: the process must run as Admin to allow Raw Socket access) This throws a timeout: let result = Ping.Ping ( IPAddress.Parse( "192.168.33.22" ), 1000 ) However, this hangs: let result = Ping.AsyncPing ( IPAddress.Parse( "192.168.33.22" ), 1000 ) |> Async.RunSynchronously Here's the code... module Ping open System open System.Net open System.Net.Sockets open System.Threading //---- ICMP Packet Classes type IcmpMessage (t : byte) = let mutable m_type = t let mutable m_code = 0uy let mutable m_checksum = 0us member this.Type with get() = m_type member this.Code with get() = m_code member this.Checksum = m_checksum abstract Bytes : byte array default this.Bytes with get() = [| m_type m_code byte(m_checksum) byte(m_checksum >>> 8) |] member this.GetChecksum() = let mutable sum = 0ul let bytes = this.Bytes let mutable i = 0 // Sum up uint16s while i < bytes.Length - 1 do sum <- sum + uint32(BitConverter.ToUInt16( bytes, i )) i <- i + 2 // Add in last byte, if an odd size buffer if i <> bytes.Length then sum <- sum + uint32(bytes.[i]) // Shuffle the bits sum <- (sum >>> 16) + (sum &&& 0xFFFFul) sum <- sum + (sum >>> 16) sum <- ~~~sum uint16(sum) member this.UpdateChecksum() = m_checksum <- this.GetChecksum() type InformationMessage (t : byte) = inherit IcmpMessage(t) let mutable m_identifier = 0us let mutable m_sequenceNumber = 0us member this.Identifier = m_identifier member this.SequenceNumber = m_sequenceNumber override this.Bytes with get() = Array.append (base.Bytes) [| byte(m_identifier) byte(m_identifier >>> 8) byte(m_sequenceNumber) byte(m_sequenceNumber >>> 8) |] type EchoMessage() = inherit InformationMessage( 8uy ) let mutable m_data = Array.create 32 32uy do base.UpdateChecksum() member this.Data with get() = m_data and set(d) = m_data <- d this.UpdateChecksum() override this.Bytes with get() = Array.append (base.Bytes) (this.Data) //---- Synchronous Ping let Ping (host : IPAddress, timeout : int ) = let mutable ep = new IPEndPoint( host, 0 ) let socket = new Socket( AddressFamily.InterNetwork, SocketType.Raw, ProtocolType.Icmp ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.SendTimeout, timeout ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout, timeout ) let packet = EchoMessage() let mutable buffer = packet.Bytes try if socket.SendTo( buffer, ep ) <= 0 then raise (SocketException()) buffer <- Array.create (buffer.Length + 20) 0uy let mutable epr = ep :> EndPoint if socket.ReceiveFrom( buffer, &epr ) <= 0 then raise (SocketException()) finally socket.Close() buffer //---- Entensions to the F# Async class to allow up to 5 paramters (not just 3) type Async with static member FromBeginEnd(arg1,arg2,arg3,arg4,beginAction,endAction,?cancelAction): Async<'T> = Async.FromBeginEnd((fun (iar,state) -> beginAction(arg1,arg2,arg3,arg4,iar,state)), endAction, ?cancelAction=cancelAction) static member FromBeginEnd(arg1,arg2,arg3,arg4,arg5,beginAction,endAction,?cancelAction): Async<'T> = Async.FromBeginEnd((fun (iar,state) -> beginAction(arg1,arg2,arg3,arg4,arg5,iar,state)), endAction, ?cancelAction=cancelAction) //---- Extensions to the Socket class to provide async SendTo and ReceiveFrom type System.Net.Sockets.Socket with member this.AsyncSendTo( buffer, offset, size, socketFlags, remoteEP ) = Async.FromBeginEnd( buffer, offset, size, socketFlags, remoteEP, this.BeginSendTo, this.EndSendTo ) member this.AsyncReceiveFrom( buffer, offset, size, socketFlags, remoteEP ) = Async.FromBeginEnd( buffer, offset, size, socketFlags, remoteEP, this.BeginReceiveFrom, (fun asyncResult -> this.EndReceiveFrom(asyncResult, remoteEP) ) ) //---- Asynchronous Ping let AsyncPing (host : IPAddress, timeout : int ) = async { let ep = IPEndPoint( host, 0 ) use socket = new Socket( AddressFamily.InterNetwork, SocketType.Raw, ProtocolType.Icmp ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.SendTimeout, timeout ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout, timeout ) let packet = EchoMessage() let outbuffer = packet.Bytes try let! result = socket.AsyncSendTo( outbuffer, 0, outbuffer.Length, SocketFlags.None, ep ) if result <= 0 then raise (SocketException()) let epr = ref (ep :> EndPoint) let inbuffer = Array.create (outbuffer.Length + 256) 0uy let! result = socket.AsyncReceiveFrom( inbuffer, 0, inbuffer.Length, SocketFlags.None, epr ) if result <= 0 then raise (SocketException()) return inbuffer finally socket.Close() }

    Read the article

  • NSArray in NSArray do not return the image I want

    - by Tibi
    Hi there, I've got a code snippet here that I can't make working. NSUInteger i; //NSMutableArray *textures = [[NSMutableArray alloc] initWithCapacity:kNumTextures]; //NSMutableArray *texturesHighlighted = [[NSMutableArray alloc] initWithCapacity:kNumTextures]; NSMutableArray *textures= [[NSMutableArray alloc] init]; for (i = 1; i <= kNumTextures; i++) { NSString *imageName = [NSString stringWithFormat:@"texture%d.png", i]; NSString *imageNameHighlighted = [NSString stringWithFormat:@"texture%d_select.png", i]; UIImage *image = [UIImage imageNamed:imageName]; UIImage *imageHighlighted = [UIImage imageNamed:imageNameHighlighted]; //NSArray *pics = [[NSArray alloc] initWithObjects:(UIImage)image,(UIImage)imageHighlighted,nil]; NSArray *pics = [NSArray arrayWithObjects:image,imageHighlighted,nil]; [textures addObject:pics]; [pics release]; } //select randomly the position of the picture that will be represented twice on the board NSInteger randomTexture = arc4random()%([textures count]+1); //extract image corresponding to the randomly selected index //remove corresponding pictures from textures array NSArray *coupleTexture = [textures objectAtIndex:randomTexture]; [textures removeObjectAtIndex:randomTexture]; //create the image array containing 1 couple + all other pictures NSMutableArray *texturesBoard = [[NSMutableArray alloc] initWithCapacity:kNumPotatoes]; [texturesBoard addObject:coupleTexture]; [texturesBoard addObject:coupleTexture]; [coupleTexture release]; NSArray *pics = [[NSArray alloc] init]; for (pics in textures) { [texturesBoard addObject:pics]; } [pics release]; //shuffle the textures //[texturesBoard shuffledMutableArray]; //Array with masks NSMutableArray *masks= [[NSMutableArray alloc] init]; for (i = 1; i <= kNumMasks; i++) { NSString *maskName = [NSString stringWithFormat:@"mask%d.png", i]; UIImage *mask = [UIImage imageNamed:maskName]; //NSArray *pics = [[NSArray alloc] initWithObjects:mask,nil]; [masks addObject:mask]; //[pics release]; [maskName release]; [mask release]; } //Now mask all images in texturesBoard NSMutableArray *list = [[NSMutableArray alloc] init]; for (i = 0; i <= kNumMasks-1; i++) { //take on image couple from textures NSArray *imgArray = [texturesBoard objectAtIndex:i]; UIImage *mask = [masks objectAtIndex:i]; //mask it with the mask un the array at corresponding index UIImage *img1 =(UIImage *) [imgArray objectAtIndex:0]; UIImage *img2 =(UIImage *) [imgArray objectAtIndex:1]; UIImage *picsMasked = [self maskImage:(UIImage *)img1 withMask:(UIImage *)mask]; UIImage *picsHighlightedMasked = [self maskImage:(UIImage *)img2 withMask:(UIImage *)mask]; //Init image with highlighted status TapDetectingImageView *imageView = [[TapDetectingImageView alloc] initWithImage:picsMasked imageHighlighted:picsHighlightedMasked]; [list addObject:imageView]; } The problem here is that : img1 and img2, are not images but rather NSArray with multiple entries. Ican't figure why... dos any fresh spirit here could provide me with some clue to fix. maaany thanks.

    Read the article

  • Why does BeginReceiveFrom never time out?

    - by James Hugard
    I am writing an asynchronous Ping using Raw Sockets in F#, to enable parallel requests using as few threads as possible ("System.Net.NetworkInformation.Ping" appears to use one thread per request, but have not tested this... also am interested in using F# async workflows). The synchronous version below correctly times out when the target host does not exist/respond, but the asynchronous version hangs. Both work when the host does respond... Any ideas? (note: the process must run as Admin for this code to work) This throws a timeout: let result = Ping.Ping ( IPAddress.Parse( "192.168.33.22" ), 1000 ) However, this hangs: let result = Ping.PingAsync ( IPAddress.Parse( "192.168.33.22" ), 1000 ) |> Async.RunSynchronously Here's the code... module Ping open System open System.Net open System.Net.Sockets open System.Threading //---- ICMP Packet Classes type IcmpMessage (t : byte) = let mutable m_type = t let mutable m_code = 0uy let mutable m_checksum = 0us member this.Type with get() = m_type member this.Code with get() = m_code member this.Checksum = m_checksum abstract Bytes : byte array default this.Bytes with get() = [| m_type m_code byte(m_checksum) byte(m_checksum >>> 8) |] member this.GetChecksum() = let mutable sum = 0ul let bytes = this.Bytes let mutable i = 0 // Sum up uint16s while i < bytes.Length - 1 do sum <- sum + uint32(BitConverter.ToUInt16( bytes, i )) i <- i + 2 // Add in last byte, if an odd size buffer if i <> bytes.Length then sum <- sum + uint32(bytes.[i]) // Shuffle the bits sum <- (sum >>> 16) + (sum &&& 0xFFFFul) sum <- sum + (sum >>> 16) sum <- ~~~sum uint16(sum) member this.UpdateChecksum() = m_checksum <- this.GetChecksum() type InformationMessage (t : byte) = inherit IcmpMessage(t) let mutable m_identifier = 0us let mutable m_sequenceNumber = 0us member this.Identifier = m_identifier member this.SequenceNumber = m_sequenceNumber override this.Bytes with get() = Array.append (base.Bytes) [| byte(m_identifier) byte(m_identifier >>> 8) byte(m_sequenceNumber) byte(m_sequenceNumber >>> 8) |] type EchoMessage() = inherit InformationMessage( 8uy ) let mutable m_data = Array.create 32 32uy do base.UpdateChecksum() member this.Data with get() = m_data and set(d) = m_data <- d this.UpdateChecksum() override this.Bytes with get() = Array.append (base.Bytes) (this.Data) //---- Synchronous Ping let Ping (host : IPAddress, timeout : int ) = let mutable ep = new IPEndPoint( host, 0 ) let socket = new Socket( AddressFamily.InterNetwork, SocketType.Raw, ProtocolType.Icmp ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.SendTimeout, timeout ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout, timeout ) let packet = EchoMessage() let mutable buffer = packet.Bytes try if socket.SendTo( buffer, ep ) <= 0 then raise (SocketException()) buffer <- Array.create (buffer.Length + 20) 0uy let mutable epr = ep :> EndPoint if socket.ReceiveFrom( buffer, &epr ) <= 0 then raise (SocketException()) finally socket.Close() buffer //---- Entensions to the F# Async class to allow up to 5 paramters (not just 3) type Async with static member FromBeginEnd(arg1,arg2,arg3,arg4,beginAction,endAction,?cancelAction): Async<'T> = Async.FromBeginEnd((fun (iar,state) -> beginAction(arg1,arg2,arg3,arg4,iar,state)), endAction, ?cancelAction=cancelAction) static member FromBeginEnd(arg1,arg2,arg3,arg4,arg5,beginAction,endAction,?cancelAction): Async<'T> = Async.FromBeginEnd((fun (iar,state) -> beginAction(arg1,arg2,arg3,arg4,arg5,iar,state)), endAction, ?cancelAction=cancelAction) //---- Extensions to the Socket class to provide async SendTo and ReceiveFrom type System.Net.Sockets.Socket with member this.AsyncSendTo( buffer, offset, size, socketFlags, remoteEP ) = Async.FromBeginEnd( buffer, offset, size, socketFlags, remoteEP, this.BeginSendTo, this.EndSendTo ) member this.AsyncReceiveFrom( buffer, offset, size, socketFlags, remoteEP ) = Async.FromBeginEnd( buffer, offset, size, socketFlags, remoteEP, this.BeginReceiveFrom, (fun asyncResult -> this.EndReceiveFrom(asyncResult, remoteEP) ) ) //---- Asynchronous Ping let PingAsync (host : IPAddress, timeout : int ) = async { let ep = IPEndPoint( host, 0 ) use socket = new Socket( AddressFamily.InterNetwork, SocketType.Raw, ProtocolType.Icmp ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.SendTimeout, timeout ) socket.SetSocketOption( SocketOptionLevel.Socket, SocketOptionName.ReceiveTimeout, timeout ) let packet = EchoMessage() let outbuffer = packet.Bytes try let! result = socket.AsyncSendTo( outbuffer, 0, outbuffer.Length, SocketFlags.None, ep ) if result <= 0 then raise (SocketException()) let epr = ref (ep :> EndPoint) let inbuffer = Array.create (outbuffer.Length + 256) 0uy let! result = socket.AsyncReceiveFrom( inbuffer, 0, inbuffer.Length, SocketFlags.None, epr ) if result <= 0 then raise (SocketException()) return inbuffer finally socket.Close() }

    Read the article

  • 3-way quicksort, question

    - by peiska
    I am trying to understand the 3-way radix Quicksort, and i dont understand why the the CUTOFF variable there? and the insertion method? public class Quick3string { private static final int CUTOFF = 15; // cutoff to insertion sort // sort the array a[] of strings public static void sort(String[] a) { // StdRandom.shuffle(a); sort(a, 0, a.length-1, 0); assert isSorted(a); } // return the dth character of s, -1 if d = length of s private static int charAt(String s, int d) { assert d >= 0 && d <= s.length(); if (d == s.length()) return -1; return s.charAt(d); } // 3-way string quicksort a[lo..hi] starting at dth character private static void sort(String[] a, int lo, int hi, int d) { // cutoff to insertion sort for small subarrays if (hi <= lo + CUTOFF) { insertion(a, lo, hi, d); return; } int lt = lo, gt = hi; int v = charAt(a[lo], d); int i = lo + 1; while (i <= gt) { int t = charAt(a[i], d); if (t < v) exch(a, lt++, i++); else if (t > v) exch(a, i, gt--); else i++; } // a[lo..lt-1] < v = a[lt..gt] < a[gt+1..hi]. sort(a, lo, lt-1, d); if (v >= 0) sort(a, lt, gt, d+1); sort(a, gt+1, hi, d); } // sort from a[lo] to a[hi], starting at the dth character private static void insertion(String[] a, int lo, int hi, int d) { for (int i = lo; i <= hi; i++) for (int j = i; j > lo && less(a[j], a[j-1], d); j--) exch(a, j, j-1); } // exchange a[i] and a[j] private static void exch(String[] a, int i, int j) { String temp = a[i]; a[i] = a[j]; a[j] = temp; } // is v less than w, starting at character d private static boolean less(String v, String w, int d) { assert v.substring(0, d).equals(w.substring(0, d)); return v.substring(d).compareTo(w.substring(d)) < 0; } // is the array sorted private static boolean isSorted(String[] a) { for (int i = 1; i < a.length; i++) if (a[i].compareTo(a[i-1]) < 0) return false; return true; } public static void main(String[] args) { // read in the strings from standard input String[] a = StdIn.readAll().split("\\s+"); int N = a.length; // sort the strings sort(a); // print the results for (int i = 0; i < N; i++) StdOut.println(a[i]); } } from http://www.cs.princeton.edu/algs4/51radix/Quick3string.java.html

    Read the article

  • The Product Owner

    - by Robert May
    In a previous post, I outlined the rules of Scrum.  This post details one of those rules. Picking a most important part of Scrum is difficult.  All of the rules are required, but if there were one rule that is “more” required that every other rule, its having a good Product Owner.  Simply put, the Product Owner can make or break the project. Duties of the Product Owner A Product Owner has many duties and responsibilities.  I’ll talk about each of these duties in detail below. A Product Owner: Discovers and records stories for the backlog. Prioritizes stories in the Product Backlog, Release Backlog and Iteration Backlog. Determines Release dates and Iteration Dates. Develops story details and helps the team understand those details. Helps QA to develop acceptance tests. Interact with the Customer to make sure that the product is meeting the customer’s needs. Discovers and Records Stories for the Backlog When I do Scrum, I always use User Stories as the means for capturing functionality that’s required in the system.  Some people will use Use Cases, but the same rule applies.  The Product Owner has the ultimate responsibility for figuring out what functionality will be in the system.  Many different mechanisms for capturing this input can be used.  User interviews are great, but all sources should be considered, including talking with Customer Support types.  Often, they hear what users are struggling with the most and are a great source for stories that can make the application easier to use. Care should be taken when soliciting user stories from technical types such as programmers and the people that manage them.  They will almost always give stories that are very technical in nature and may not have a direct benefit for the end user.  Stories are about adding value to the company.  If the stories don’t have direct benefit to the end user, the Product Owner should question whether or not the story should be implemented.  In general, technical stories should be included as tasks in User Stories.  Technical stories are often needed, but the ultimate value to the user is in user based functionality, so technical stories should be considered nothing more than overhead in providing that user functionality. Until the iteration prior to development, stories should be nothing more than short, one line placeholders. An exercise called Story Planning can be used to brainstorm and come up with stories.  I’ll save the description of this activity for another blog post. For more information on User Stories, please read the book User Stories Applied by Mike Cohn. Prioritizes Stories in the Product Backlog, Release Backlog and Iteration Backlog Prioritization of stories is one of the most difficult tasks that a Product Owner must do.  A key concept of Scrum done right is the need to have the team working from a single set of prioritized stories.  If the team does not have a single set of prioritized stories, Scrum will likely fail at your organization.  The Product Owner is the ONLY person who has the responsibility to prioritize that list.  The Product Owner must be very diplomatic and sincerely listen to the people around him so that he can get the priorities correct. Just listening will still not yield the proper priorities.  Care must also be taken to ensure that Return on Investment is also considered.  Ultimately, determining which stories give the most value to the company for the least cost is the most important factor in determining priorities.  Product Owners should be willing to look at cold, hard numbers to determine the order for stories.  Even when many people want a feature, if that features is costly to develop, it may not have as high of a return on investment as features that are cheaper, but not as popular. The act of prioritization often causes conflict in an environment.  Customer Service thinks that feature X is the most important, because it will stop people from calling.  Operations thinks that feature Y is the most important, because it will stop servers from crashing.  Developers think that feature Z is most important because it will make writing software much easier for them.  All of these are useful goals, but the team can have only one list of items, and each item must have a priority that is different from all other stories.  The Product Owner will determine which feature gives the best return on investment and the other features will have to wait their turn, which means that someone will not have their top priority feature implemented first. A weak Product Owner will refuse to do prioritization.  I’ve heard from multiple Product Owners the following phrase, “Well, it’s all got to be done, so what does it matter what order we do it in?”  If your product owner is using this phrase, you need a new Product Owner.  Order is VERY important.  In Scrum, every release is potentially shippable.  If the wrong priority items are developed, then the value added in each release isn’t what it should be.  Additionally, the Product Owner with this mindset doesn’t understand Agile.  A product is NEVER finished, until the company has decided that it is no longer a going concern and they are no longer going to sell the product.  Therefore, prioritization isn’t an event, its something that continues every day.  The logical extension of the phrase “It’s all got to be done” is that you will never ship your product, since a product is never “done.”  Once stories have been prioritized, assigning them to the Release Backlog and the Iteration Backlog becomes relatively simple.  The top priority items are copied into the respective backlogs in order and the task is complete.  The team does have the right to shuffle things around a little in the iteration backlog.  For example, they may determine that working on story C with story A is appropriate because they’re related, even though story B is technically a higher priority than story C.  Or they may decide that story B is too big to complete in the time available after Story A has tasks created, so they’ll work on Story C since it’s smaller.  They can’t, however, go deep into the backlog to pick stories to implement.  The team and the Product Owner should work together to determine what’s best for the company. Prioritization is time consuming, but its one of the most important things a Product Owner does. Determines Release Dates and Iteration Dates Product owners are responsible for determining release dates for a product.  A common misconception that Product Owners have is that every “release” needs to correspond with an actual release to customers.  This is not the case.  In general, releases should be no more than 3 months long.  You  may decide to release the product to the customers, and many companies do release the product to customers, but it may also be an internal release. If a release date is too far away, developers will fall into the trap of not feeling a sense of urgency.  The date is far enough away that they don’t need to give the release their full attention.  Additionally, important tasks, such as performance tuning, regression testing, user documentation, and release preparation, will not happen regularly, making them much more difficult and time consuming to do.  The more frequently you do these tasks, the easier they are to accomplish. The Product Owner will be a key participant in determining whether or not a release should be sent out to the customers.  The determination should be made on whether or not the features contained in the release are valuable enough  and complete enough that the customers will see real value in the release.  Often, some features will take more than three months to get them to a state where they qualify for a release or need additional supporting features to be released.  The product owner has the right to make this determination. In addition to release dates, the Product Owner also will help determine iteration dates.  In general, an iteration length should be chosen and the team should follow that iteration length for an extended period of time.  If the iteration length is changed every iteration, you’re not doing Scrum.  Iteration lengths help the team and company get into a rhythm of developing quality software.  Iterations should be somewhere between 2 and 4 weeks in length.  Any shorter, and significant software will likely not be developed.  Any longer, and the team won’t feel urgency and planning will become very difficult. Iterations may not be extended during the iteration.  Companies where Scrum isn’t really followed will often use this as a strategy to complete all stories.  They don’t want to face the harsh reality of what their true performance is, and looking good is more important than seeking visibility and improving the process and team.  Companies like this typically don’t allow failure.  This is unhealthy.  Failure is part of life and unless we learn from it, we can’t improve.  I would much rather see a team push out stories to the next iteration and then have healthy discussions about why they failed rather than extend the iteration and not deal with the core problems. If iteration length varies, retrospectives become more difficult.  For example, evaluating the performance of the team’s estimation efforts becomes much more difficult if the iteration length varies.  Also, the team must have a velocity measurement.  If the iteration length varies, measuring velocity becomes impossible and upper management no longer will have the ability to evaluate the teams performance.  People external to the team will no longer have the ability to determine when key features are likely to be developed.  Variable iterations cause the entire company to fail and likely cause Scrum to fail at an organization. Develops Story Details and Helps the Team Understand Those Details A key concept in Scrum is that the stories are nothing more than a placeholder for a conversation.  Stories should be nothing more than short, one line statements about the functionality.  The team will then converse with the Product Owner about the details about that story.  The product owner needs to have a very good idea about what the details of the story are and needs to be able to help the team understand those details. Too often, we see this requirement as being translated into the need for comprehensive documentation about the story, including old fashioned requirements documentation.  The team should only develop the documentation that is required and should not develop documentation that is only created because their is a process to do so. In general, what we see that works best is the iteration before a team starts development work on a story, the Product Owner, with other appropriate business analysts, will develop the details of that story.  They’ll figure out what business rules are required, potentially make paper prototypes or other light weight mock-ups, and they seek to understand the story and what is implied.  Note that the time allowed for this task is deliberately short.  The Product Owner only has a single iteration to develop all of the stories for the next iteration. If more than one iteration is used, I’ve found that teams will end up with Big Design Up Front and traditional requirements documents.  This is a waste of time, since the team will need to then have discussions with the Product Owner to figure out what the requirements document says.  Instead of this, skip making the pretty pictures and detailing the nuances of the requirements and build only what is minimally needed by the team to do development.  If something comes up during development, you can address it at that time and figure out what you want to do.  The goal is to keep things as light weight as possible so that everyone can move as quickly as possible. Helps QA to Develop Acceptance Tests In Scrum, no story can be counted until it is accepted by QA.  Because of this, acceptance tests are very important to the team.  In general, acceptance tests need to be developed prior to the iteration or at the very beginning of the iteration so that the team can make sure that the tasks that they develop will fulfill the acceptance criteria. The Product Owner will help the team, including QA, understand what will make the story acceptable.  Note that the Product Owner needs to be careful about specifying that the feature will work “Perfectly” at the end of the iteration.  In general, features are developed a little bit at a time, so only the bit that is being developed should be considered as necessary for acceptance. A weak Product Owner will make statements like “Do it right the first time.”  Not only are these statements damaging to the team (like they would try to do it WRONG the first time . . .), they’re also ignoring the iterative nature of Scrum.  Additionally, a weak product owner will seek to add scope in the acceptance testing.  For example, they will refuse to determine acceptance at the beginning of the iteration, and then, after the team has planned and committed to the iteration, they will expand scope by defining acceptance.  This often causes the team to miss the iteration because scope that wasn’t planned on is included.  There are ways that the team can mitigate this problem.  For example, include extra “Product Owner” time to deal with the uncertainty that you know will be introduced by the Product Owner.  This will slow the perceived velocity of the team and is not ideal, since they’ll be doing more work than they get credit for. Interact with the Customer to Make Sure that the Product is Meeting the Customer’s Needs Once development is complete, what the team has worked on should be put in front of real live people to see if it meets the needs of the customer.  One of the great things about Agile is that if something doesn’t work, we can revisit it in a future iteration!  This frees up the team to make the best decision now and know that if that decision proves to be incorrect, the team can revisit it and change that decision. Features are about adding value to the customer, so if the customer doesn’t find them useful, then having the team make tweaks is valuable.  In general, most software will be 80 to 90 percent “right” after the initial round and only minor tweaks are required.  If proper coding standards are followed, these tweaks are usually minor and easy to accomplish.  Product Owners that are doing a good job will encourage real users to see and use the software, since they know that they are trying to add value to the customer. Poor product owners will think that they know the answers already, that their customers are silly and do stupid things and that they don’t need customer input.  If you have a product owner that is afraid to show the team’s work to real customers, you probably need a different product owner. Up Next, “Who Makes a Good Product Owner.” Followed by, “Messing with the Team.” Technorati Tags: Scrum,Product Owner

    Read the article

  • Red Gate Coder interviews: Robin Hellen

    - by Michael Williamson
    Robin Hellen is a test engineer here at Red Gate, and is also the latest coder I’ve interviewed. We chatted about debugging code, the roles of software engineers and testers, and why Vala is currently his favourite programming language. How did you get started with programming?It started when I was about six. My dad’s a professional programmer, and he gave me and my sister one of his old computers and taught us a bit about programming. It was an old Amiga 500 with a variant of BASIC. I don’t think I ever successfully completed anything! It was just faffing around. I didn’t really get anywhere with it.But then presumably you did get somewhere with it at some point.At some point. The PC emerged as the dominant platform, and I learnt a bit of Visual Basic. I didn’t really do much, just a couple of quick hacky things. A bit of demo animation. Took me a long time to get anywhere with programming, really.When did you feel like you did start to get somewhere?I think it was when I started doing things for someone else, which was my sister’s final year of university project. She called up my dad two days before she was due to submit, saying “We need something to display a graph!”. Dad says, “I’m too busy, go talk to your brother”. So I hacked up this ugly piece of code, sent it off and they won a prize for that project. Apparently, the graph, the bit that I wrote, was the reason they won a prize! That was when I first felt that I’d actually done something that was worthwhile. That was my first real bit of code, and the ugliest code I’ve ever written. It’s basically an array of pre-drawn line elements that I shifted round the screen to draw a very spikey graph.When did you decide that programming might actually be something that you wanted to do as a career?It’s not really a decision I took, I always wanted to do something with computers. And I had to take a gap year for uni, so I was looking for twelve month internships. I applied to Red Gate, and they gave me a job as a tester. And that’s where I really started having to write code well. To a better standard that I had been up to that point.How did you find coming to Red Gate and working with other coders?I thought it was really nice. I learnt so much just from other people around. I think one of the things that’s really great is that people are just willing to help you learn. Instead of “Don’t you know that, you’re so stupid”, it’s “You can just do it this way”.If you could go back to the very start of that internship, is there something that you would tell yourself?Write shorter code. I have a tendency to write massive, many-thousand line files that I break out of right at the end. And then half-way through a project I’m doing something, I think “Where did I write that bit that does that thing?”, and it’s almost impossible to find. I wrote some horrendous code when I started. Just that principle, just keep things short. Even if looks a bit crazy to be jumping around all over the place all of the time, it’s actually a lot more understandable.And how do you hold yourself to that?Generally, if a function’s going off my screen, it’s probably too long. That’s what I tell myself, and within the team here we have code reviews, so the guys I’m with at the moment are pretty good at pulling me up on, “Doesn’t that look like it’s getting a bit long?”. It’s more just the subjective standard of readability than anything.So you’re an advocate of code review?Yes, definitely. Both to spot errors that you might have made, and to improve your knowledge. The person you’re reviewing will say “Oh, you could have done it that way”. That’s how we learn, by talking to others, and also just sharing knowledge of how your project works around the team, or even outside the team. Definitely a very firm advocate of code reviews.Do you think there’s more we could do with them?I don’t know. We’re struggling with how to add them as part of the process without it becoming too cumbersome. We’ve experimented with a few different ways, and we’ve not found anything that just works.To get more into the nitty gritty: how do you like to debug code?The first thing is to do it in my head. I’ll actually think what piece of code is likely to have caused that error, and take a quick look at it, just to see if there’s anything glaringly obvious there. The next thing I’ll probably do is throw in print statements, or throw some exceptions from various points, just to check: is it going through the code path I expect it to? A last resort is to actually debug code using a debugger.Why is the debugger the last resort?Probably because of the environments I learnt programming in. VB and early BASIC didn’t have much of a debugger, the only way to find out what your program was doing was to add print statements. Also, because a lot of the stuff I tend to work with is non-interactive, if it’s something that takes a long time to run, I can throw in the print statements, set a run off, go and do something else, and look at it again later, rather than trying to remember what happened at that point when I was debugging through it. So it also gives me the record of what happens. I hate just sitting there pressing F5, F5, continually. If you’re having to find out what your code is doing at each line, you’ve probably got a very wrong mental model of what your code’s doing, and you can find that out just as easily by inspecting a couple of values through the print statements.If I were on some codebase that you were also working on, what should I do to make it as easy as possible to understand?I’d say short and well-named methods. The one thing I like to do when I’m looking at code is to find out where a value comes from, and the more layers of indirection there are, particularly DI [dependency injection] frameworks, the harder it is to find out where something’s come from. I really hate that. I want to know if the value come from the user here or is a constant here, and if I can’t find that out, that makes code very hard to understand for me.As a tester, where do you think the split should lie between software engineers and testers?I think the split is less on areas of the code you write and more what you’re designing and creating. The developers put a structure on the code, while my major role is to say which tests we should have, whether we should test that, or it’s not worth testing that because it’s a tiny function in code that nobody’s ever actually going to see. So it’s not a split in the code, it’s a split in what you’re thinking about. Saying what code we should write, but alternatively what code we should take out.In your experience, do the software engineers tend to do much testing themselves?They tend to control the lowest layer of tests. And, depending on how the balance of people is in the team, they might write some of the higher levels of test. Or that might go to the testers. I’m the only tester on my team with three other developers, so they’ll be writing quite a lot of the actual test code, with input from me as to whether we should test that functionality, whereas on other teams, where it’s been more equal numbers, the testers have written pretty much all of the high level tests, just because that’s the best use of resource.If you could shuffle resources around however you liked, do you think that the developers should be writing those high-level tests?I think they should be writing them occasionally. It helps when they have an understanding of how testing code works and possibly what assumptions we’ve made in tests, and they can say “actually, it doesn’t work like that under the hood so you’ve missed this whole area”. It’s one of those agile things that everyone on the team should be at least comfortable doing the various jobs. So if the developers can write test code then I think that’s a very good thing.So you think testers should be able to write production code?Yes, although given most testers skills at coding, I wouldn’t advise it too much! I have written a few things, and I did make a few changes that have actually gone into our production code base. They’re not necessarily running every time but they are there. I think having that mix of skill sets is really useful. In some ways we’re using our own product to test itself, so being able to make those changes where it’s not working saves me a round-trip through the developers. It can be really annoying if the developers have no time to make a change, and I can’t touch the code.If the software engineers are consistently writing tests at all levels, what role do you think the role of a tester is?I think on a team like that, those distinctions aren’t quite so useful. There’ll be two cases. There’s either the case where the developers think they’ve written good tests, but you still need someone with a test engineer mind-set to go through the tests and validate that it’s a useful set, or the correct set for that code. Or they won’t actually be pure developers, they’ll have that mix of test ability in there.I think having slightly more distinct roles is useful. When it starts to blur, then you lose that view of the tests as a whole. The tester job is not to create tests, it’s to validate the quality of the product, and you don’t do that just by writing tests. There’s more things you’ve got to keep in your mind. And I think when you blur the roles, you start to lose that end of the tester.So because you’re working on those features, you lose that holistic view of the whole system?Yeah, and anyone who’s worked on the feature shouldn’t be testing it. You always need to have it tested it by someone who didn’t write it. Otherwise you’re a bit too close and you assume “yes, people will only use it that way”, but the tester will come along and go “how do people use this? How would our most idiotic user use this?”. I might not test that because it might be completely irrelevant. But it’s coming in and trying to have a different set of assumptions.Are you a believer that it should all be automated if possible?Not entirely. So an automated test is always better than a manual test for the long-term, but there’s still nothing that beats a human sitting in front of the application and thinking “What could I do at this point?”. The automated test is very good but they follow that strict path, and they never check anything off the path. The human tester will look at things that they weren’t expecting, whereas the automated test can only ever go “Is that value correct?” in many respects, and it won’t notice that on the other side of the screen you’re showing something completely wrong. And that value might have been checked independently, but you always find a few odd interactions when you’re going through something manually, and you always need to go through something manually to start with anyway, otherwise you won’t know where the important bits to write your automation are.When you’re doing that manual testing, do you think it’s important to do that across the entire product, or just the bits that you’ve touched recently?I think it’s important to do it mostly on the bits you’ve touched, but you can’t ignore the rest of the product. Unless you’re dealing with a very, very self-contained bit, you’re almost always encounter other bits of the product along the way. Most testers I know, even if they are looking at just one path, they’ll keep open and move around a bit anyway, just because they want to find something that’s broken. If we find that your path is right, we’ll go out and hunt something else.How do you think this fits into the idea of continuously deploying, so long as the tests pass?With deploying a website it’s a bit different because you can always pull it back. If you’re deploying an application to customers, when you’ve released it, it’s out there, you can’t pull it back. Someone’s going to keep it, no matter how hard you try there will be a few installations that stay around. So I’d always have at least a human element on that path. With websites, you could probably automate straight out, or at least straight out to an internal environment or a single server in a cloud of fifty that will serve some people. But I don’t think you should release to everyone just on automated tests passing.You’ve already mentioned using BASIC and C# — are there any other languages that you’ve used?I’ve used a few. That’s something that has changed more recently, I’ve become familiar with more languages. Before I started at Red Gate I learnt a bit of C. Then last year, I taught myself Python which I actually really enjoyed using. I’ve also come across another language called Vala, which is sort of a C#-like language. It’s basically a pre-processor for C, but it has very nice syntax. I think that’s currently my favourite language.Any particular reason for trying Vala?I have a completely Linux environment at home, and I’ve been looking for a nice language, and C# just doesn’t cut it because I won’t touch Mono. So, I was looking for something like C# but that was useable in an open source environment, and Vala’s what I found. C#’s got a few features that Vala doesn’t, and Vala’s got a few features where I think “It would be awesome if C# had that”.What are some of the features that it’s missing?Extension methods. And I think that’s the only one that really bugs me. I like to use them when I’m writing C# because it makes some things really easy, especially with libraries that you can’t touch the internals of. It doesn’t have method overloading, which is sometimes annoying.Where it does win over C#?Everything is non-nullable by default, you never have to check that something’s unexpectedly null.Also, Vala has code contracts. This is starting to come in C# 4, but the way it works in Vala is that you specify requirements in short phrases as part of your function signature and they stick to the signature, so that when you inherit it, it has exactly the same code contract as the base one, or when you inherit from an interface, you have to match the signature exactly. Just using those makes you think a bit more about how you’re writing your method, it’s not an afterthought when you’ve got contracts from base classes given to you, you can’t change it. Which I think is a lot nicer than the way C# handles it. When are those actually checked?They’re checked both at compile and run-time. The compile-time checking isn’t very strong yet, it’s quite a new feature in the compiler, and because it compiles down to C, you can write C code and interface with your methods, so you can bypass that compile-time check anyway. So there’s an extra runtime check, and if you violate one of the contracts at runtime, it’s game over for your program, there’s no exception to catch, it’s just goodbye!One thing I dislike about C# is the exceptions. You write a bit of code and fifty exceptions could come from any point in your ten lines, and you can’t mentally model how those exceptions are going to come out, and you can’t even predict them based on the functions you’re calling, because if you’ve accidentally got a derived class there instead of a base class, that can throw a completely different set of exceptions. So I’ve got no way of mentally modelling those, whereas in Vala they’re checked like Java, so you know only these exceptions can come out. You know in advance the error conditions.I think Raymond Chen on Old New Thing says “the only thing you know when you throw an exception is that you’re in an invalid state somewhere in your program, so just kill it and be done with it!”You said you’ve also learnt bits of Python. How did you find that compared to Vala and C#?Very different because of the dynamic typing. I’ve been writing a website for my own use. I’m quite into photography, so I take photos off my camera, post-process them, dump them in a file, and I get a webpage with all my thumbnails. So sort of like Picassa, but written by myself because I wanted something to learn Python with. There are some things that are really nice, I just found it really difficult to cope with the fact that I’m not quite sure what this object type that I’m passed is, I might not ever be sure, so it can randomly blow up on me. But once I train myself to ignore that and just say “well, I’m fairly sure it’s going to be something that looks like this, so I’ll use it like this”, then it’s quite nice.Any particular features that you’ve appreciated?I don’t like any particular feature, it’s just very straightforward to work with. It’s very quick to write something in, particularly as you don’t have to worry that you’ve changed something that affects a different part of the program. If you have, then that part blows up, but I can get this part working right now.If you were doing a big project, would you be willing to do it in Python rather than C# or Vala?I think I might be willing to try something bigger or long term with Python. We’re currently doing an ASP.NET MVC project on C#, and I don’t like the amount of reflection. There’s a lot of magic that pulls values out, and it’s all done under the scenes. It’s almost managed to put a dynamic type system on top of C#, which in many ways destroys the language to me, whereas if you’re already in a dynamic language, having things done dynamically is much more natural. In many ways, you get the worst of both worlds. I think for web projects, I would go with Python again, whereas for anything desktop, command-line or GUI-based, I’d probably go for C# or Vala, depending on what environment I’m in.It’s the fact that you can gain from the strong typing in ways that you can’t so much on the web app. Or, in a web app, you have to use dynamic typing at some point, or you have to write a hell of a lot of boilerplate, and I’d rather use the dynamic typing than write the boilerplate.What do you think separates great programmers from everyone else?Probably design choices. Choosing to write it a piece of code one way or another. For any given program you ask me to write, I could probably do it five thousand ways. A programmer who is capable will see four or five of them, and choose one of the better ones. The excellent programmer will see the largest proportion and manage to pick the best one very quickly without having to think too much about it. I think that’s probably what separates, is the speed at which they can see what’s the best path to write the program in. More Red Gater Coder interviews

    Read the article

  • C++ Deck and Card Class Error with bad alloc

    - by user3702164
    Just started learn to code in school. Our assignment requires us to create a card game with card,deck and hand class. I am having troubles with it now and i keep getting exception: std::bad_alloc at memory location. Here are my codes right now CardType h: #ifndef cardType_h #define cardType_h #include <string> using namespace std; class cardType{ public: void print(); int getValue() const; string getSymbol() const; string getSpecial() const; string getSuit() const; int checkSpecial(int gscore) const; cardType(); cardType(string suit,int value); private: int value; string special; string symbol; string suit; }; #endif CardType cpp: #include "cardType.h" #include <iostream> #include <string> using namespace std; void cardType::print() { cout << getSymbol() << " of " << getSuit() << ", having the value of " << getValue() << "."<< endl <<"This card's special is " << getSpecial() << endl; } int cardType::getValue() const { return value; } string cardType::getSymbol() const { return symbol; } string cardType::getSpecial() const { return special; } string cardType::getSuit() const { return suit; } cardType::cardType(){ value=0; symbol="?"; special='?'; suit='?'; } cardType::cardType(string s, int v){ suit = s; value = v; switch(v){ case 1: // Ace cards have a value of 1 and have no special type symbol="Ace"; special="None"; break; case 2: // 2 cards have a value of 2 and have no special type symbol="2"; special="None"; break; case 3: symbol="3"; // 3 cards have a value of 3 and have no special type special="None"; break; case 4: symbol="4"; // 4 cards have a value of 0 and have a special type "Reverse" which reverses the flow of the game special="Reverse"; value=0; break; case 5: symbol="5"; // 5 cards have a value of 5 and have no special type special="None"; break; case 6: symbol="6"; // 6 cards have a value of 6 and have no special type special="None"; break; case 7: symbol="7"; // 7 cards have a value of 7 and have no special type special="None"; break; case 8: symbol="8"; // 8 cards have a value of 8 and have no special type special="None"; break; case 9: symbol="9"; // 9 cards have a value of 0 and have a special type "Pass" which does not add any value to the game and lets the player skip his turn. special="Pass"; value=0; break; case 10: symbol="10"; // 10 cards have a value of 10 and have a special type "subtract" which instead of adding the 10 value to the total game it is subtracted instead. special="Subtract"; value=10; break; case 11: // Jack cards have a value of 10 and have no special type symbol="Jack"; special="None"; value=10; break; case 12: // Queens cards have a value of 10 and have no special type symbol="Queen"; special="None"; value=10; break; case 13: symbol="King"; // King cards have a value of 0 and have a special type "NinetyNine" which changes the total game score to 99 reguardless what number it was previously special="NinetyNine"; value=0; break; } } int cardType::checkSpecial(int gscore) const{ if(special=="Pass"){ return gscore; } if(special=="Reverse"){ return gscore; } if(special=="Subtract"){ return gscore - value; } if(special=="NinetyNine"){ return 99; } else{ return gscore + value; } } DeckType h: #ifndef deckType_h #define deckType_h #include "cardType.h" #include <string> using namespace std; class deckType { public: void shuffle(); cardType dealCard(); deckType(); private: cardType *deck; int current; }; #endif DeckType cpp: #include <iostream> #include "deckType.h" using namespace std; deckType::deckType() { int index = 0; int current=0; deck = new cardType[52]; string suit[] = {"Hearts","Diamonds","Clubs","Spades"}; int value[] = {1,2,3,4,5,6,7,8,9,10,11,12,13}; for ( int i = 0; i <= 3; i++ ) { for ( int j = 1; j <= 13; j++ ) { deck[index] = cardType(suit[i],value[j]); index++; } } } cardType deckType::dealCard() { return deck[current]; current++; } Main cpp : #include "deckType.h" #include <iostream> using namespace std; int main() { deckType gamedeck; cout << "1" <<endl; cardType currentCard; cout << "2" <<endl; currentCard = gamedeck.dealCard(); cout << "3" <<endl; return 0; } I keep getting bad_alloc at the currentCard = gamedeck.dealCard(); I really do not know what i have done wrong.

    Read the article

  • Agile Development

    - by James Oloo Onyango
    Alot of literature has and is being written about agile developement and its surrounding philosophies. In my quest to find the best way to express the importance of agile methodologies, i have found Robert C. Martin's "A Satire Of Two Companies" to be both the most concise and thorough! Enjoy the read! Rufus Inc Project Kick Off Your name is Bob. The date is January 3, 2001, and your head still aches from the recent millennial revelry. You are sitting in a conference room with several managers and a group of your peers. You are a project team leader. Your boss is there, and he has brought along all of his team leaders. His boss called the meeting. "We have a new project to develop," says your boss's boss. Call him BB. The points in his hair are so long that they scrape the ceiling. Your boss's points are just starting to grow, but he eagerly awaits the day when he can leave Brylcream stains on the acoustic tiles. BB describes the essence of the new market they have identified and the product they want to develop to exploit this market. "We must have this new project up and working by fourth quarter October 1," BB demands. "Nothing is of higher priority, so we are cancelling your current project." The reaction in the room is stunned silence. Months of work are simply going to be thrown away. Slowly, a murmur of objection begins to circulate around the conference table.   His points give off an evil green glow as BB meets the eyes of everyone in the room. One by one, that insidious stare reduces each attendee to quivering lumps of protoplasm. It is clear that he will brook no discussion on this matter. Once silence has been restored, BB says, "We need to begin immediately. How long will it take you to do the analysis?" You raise your hand. Your boss tries to stop you, but his spitwad misses you and you are unaware of his efforts.   "Sir, we can't tell you how long the analysis will take until we have some requirements." "The requirements document won't be ready for 3 or 4 weeks," BB says, his points vibrating with frustration. "So, pretend that you have the requirements in front of you now. How long will you require for analysis?" No one breathes. Everyone looks around to see whether anyone has some idea. "If analysis goes beyond April 1, we have a problem. Can you finish the analysis by then?" Your boss visibly gathers his courage: "We'll find a way, sir!" His points grow 3 mm, and your headache increases by two Tylenol. "Good." BB smiles. "Now, how long will it take to do the design?" "Sir," you say. Your boss visibly pales. He is clearly worried that his 3 mms are at risk. "Without an analysis, it will not be possible to tell you how long design will take." BB's expression shifts beyond austere.   "PRETEND you have the analysis already!" he says, while fixing you with his vacant, beady little eyes. "How long will it take you to do the design?" Two Tylenol are not going to cut it. Your boss, in a desperate attempt to save his new growth, babbles: "Well, sir, with only six months left to complete the project, design had better take no longer than 3 months."   "I'm glad you agree, Smithers!" BB says, beaming. Your boss relaxes. He knows his points are secure. After a while, he starts lightly humming the Brylcream jingle. BB continues, "So, analysis will be complete by April 1, design will be complete by July 1, and that gives you 3 months to implement the project. This meeting is an example of how well our new consensus and empowerment policies are working. Now, get out there and start working. I'll expect to see TQM plans and QIT assignments on my desk by next week. Oh, and don't forget that your crossfunctional team meetings and reports will be needed for next month's quality audit." "Forget the Tylenol," you think to yourself as you return to your cubicle. "I need bourbon."   Visibly excited, your boss comes over to you and says, "Gosh, what a great meeting. I think we're really going to do some world shaking with this project." You nod in agreement, too disgusted to do anything else. "Oh," your boss continues, "I almost forgot." He hands you a 30-page document. "Remember that the SEI is coming to do an evaluation next week. This is the evaluation guide. You need to read through it, memorize it, and then shred it. It tells you how to answer any questions that the SEI auditors ask you. It also tells you what parts of the building you are allowed to take them to and what parts to avoid. We are determined to be a CMM level 3 organization by June!"   You and your peers start working on the analysis of the new project. This is difficult because you have no requirements. But from the 10-minute introduction given by BB on that fateful morning, you have some idea of what the product is supposed to do.   Corporate process demands that you begin by creating a use case document. You and your team begin enumerating use cases and drawing oval and stick diagrams. Philosophical debates break out among the team members. There is disagreement as to whether certain use cases should be connected with <<extends>> or <<includes>> relationships. Competing models are created, but nobody knows how to evaluate them. The debate continues, effectively paralyzing progress.   After a week, somebody finds the iceberg.com Web site, which recommends disposing entirely of <<extends>> and <<includes>> and replacing them with <<precedes>> and <<uses>>. The documents on this Web site, authored by Don Sengroiux, describes a method known as stalwart-analysis, which claims to be a step-by-step method for translating use cases into design diagrams. More competing use case models are created using this new scheme, but again, people can't agree on how to evaluate them. The thrashing continues. More and more, the use case meetings are driven by emotion rather than by reason. If it weren't for the fact that you don't have requirements, you'd be pretty upset by the lack of progress you are making. The requirements document arrives on February 15. And then again on February 20, 25, and every week thereafter. Each new version contradicts the previous one. Clearly, the marketing folks who are writing the requirements, empowered though they might be, are not finding consensus.   At the same time, several new competing use case templates have been proposed by the various team members. Each template presents its own particularly creative way of delaying progress. The debates rage on. On March 1, Prudence Putrigence, the process proctor, succeeds in integrating all the competing use case forms and templates into a single, all-encompassing form. Just the blank form is 15 pages long. She has managed to include every field that appeared on all the competing templates. She also presents a 159- page document describing how to fill out the use case form. All current use cases must be rewritten according to the new standard.   You marvel to yourself that it now requires 15 pages of fill-in-the-blank and essay questions to answer the question: What should the system do when the user presses Return? The corporate process (authored by L. E. Ott, famed author of "Holistic Analysis: A Progressive Dialectic for Software Engineers") insists that you discover all primary use cases, 87 percent of all secondary use cases, and 36.274 percent of all tertiary use cases before you can complete analysis and enter the design phase. You have no idea what a tertiary use case is. So in an attempt to meet this requirement, you try to get your use case document reviewed by the marketing department, which you hope will know what a tertiary use case is.   Unfortunately, the marketing folks are too busy with sales support to talk to you. Indeed, since the project started, you have not been able to get a single meeting with marketing, which has provided a never-ending stream of changing and contradictory requirements documents.   While one team has been spinning endlessly on the use case document, another team has been working out the domain model. Endless variations of UML documents are pouring out of this team. Every week, the model is reworked.   The team members can't decide whether to use <<interfaces>> or <<types>> in the model. A huge disagreement has been raging on the proper syntax and application of OCL. Others on the team just got back from a 5-day class on catabolism, and have been producing incredibly detailed and arcane diagrams that nobody else can fathom.   On March 27, with one week to go before analysis is to be complete, you have produced a sea of documents and diagrams but are no closer to a cogent analysis of the problem than you were on January 3. **** And then, a miracle happens.   **** On Saturday, April 1, you check your e-mail from home. You see a memo from your boss to BB. It states unequivocally that you are done with the analysis! You phone your boss and complain. "How could you have told BB that we were done with the analysis?" "Have you looked at a calendar lately?" he responds. "It's April 1!" The irony of that date does not escape you. "But we have so much more to think about. So much more to analyze! We haven't even decided whether to use <<extends>> or <<precedes>>!" "Where is your evidence that you are not done?" inquires your boss, impatiently. "Whaaa . . . ." But he cuts you off. "Analysis can go on forever; it has to be stopped at some point. And since this is the date it was scheduled to stop, it has been stopped. Now, on Monday, I want you to gather up all existing analysis materials and put them into a public folder. Release that folder to Prudence so that she can log it in the CM system by Monday afternoon. Then get busy and start designing."   As you hang up the phone, you begin to consider the benefits of keeping a bottle of bourbon in your bottom desk drawer. They threw a party to celebrate the on-time completion of the analysis phase. BB gave a colon-stirring speech on empowerment. And your boss, another 3 mm taller, congratulated his team on the incredible show of unity and teamwork. Finally, the CIO takes the stage to tell everyone that the SEI audit went very well and to thank everyone for studying and shredding the evaluation guides that were passed out. Level 3 now seems assured and will be awarded by June. (Scuttlebutt has it that managers at the level of BB and above are to receive significant bonuses once the SEI awards level 3.)   As the weeks flow by, you and your team work on the design of the system. Of course, you find that the analysis that the design is supposedly based on is flawedno, useless; no, worse than useless. But when you tell your boss that you need to go back and work some more on the analysis to shore up its weaker sections, he simply states, "The analysis phase is over. The only allowable activity is design. Now get back to it."   So, you and your team hack the design as best you can, unsure of whether the requirements have been properly analyzed. Of course, it really doesn't matter much, since the requirements document is still thrashing with weekly revisions, and the marketing department still refuses to meet with you.     The design is a nightmare. Your boss recently misread a book named The Finish Line in which the author, Mark DeThomaso, blithely suggested that design documents should be taken down to code-level detail. "If we are going to be working at that level of detail," you ask, "why don't we simply write the code instead?" "Because then you wouldn't be designing, of course. And the only allowable activity in the design phase is design!" "Besides," he continues, "we have just purchased a companywide license for Dandelion! This tool enables 'Round the Horn Engineering!' You are to transfer all design diagrams into this tool. It will automatically generate our code for us! It will also keep the design diagrams in sync with the code!" Your boss hands you a brightly colored shrinkwrapped box containing the Dandelion distribution. You accept it numbly and shuffle off to your cubicle. Twelve hours, eight crashes, one disk reformatting, and eight shots of 151 later, you finally have the tool installed on your server. You consider the week your team will lose while attending Dandelion training. Then you smile and think, "Any week I'm not here is a good week." Design diagram after design diagram is created by your team. Dandelion makes it very difficult to draw these diagrams. There are dozens and dozens of deeply nested dialog boxes with funny text fields and check boxes that must all be filled in correctly. And then there's the problem of moving classes between packages. At first, these diagram are driven from the use cases. But the requirements are changing so often that the use cases rapidly become meaningless. Debates rage about whether VISITOR or DECORATOR design patterns should be used. One developer refuses to use VISITOR in any form, claiming that it's not a properly object-oriented construct. Someone refuses to use multiple inheritance, since it is the spawn of the devil. Review meetings rapidly degenerate into debates about the meaning of object orientation, the definition of analysis versus design, or when to use aggregation versus association. Midway through the design cycle, the marketing folks announce that they have rethought the focus of the system. Their new requirements document is completely restructured. They have eliminated several major feature areas and replaced them with feature areas that they anticipate customer surveys will show to be more appropriate. You tell your boss that these changes mean that you need to reanalyze and redesign much of the system. But he says, "The analysis phase is system. But he says, "The analysis phase is over. The only allowable activity is design. Now get back to it."   You suggest that it might be better to create a simple prototype to show to the marketing folks and even some potential customers. But your boss says, "The analysis phase is over. The only allowable activity is design. Now get back to it." Hack, hack, hack, hack. You try to create some kind of a design document that might reflect the new requirements documents. However, the revolution of the requirements has not caused them to stop thrashing. Indeed, if anything, the wild oscillations of the requirements document have only increased in frequency and amplitude.   You slog your way through them.   On June 15, the Dandelion database gets corrupted. Apparently, the corruption has been progressive. Small errors in the DB accumulated over the months into bigger and bigger errors. Eventually, the CASE tool just stopped working. Of course, the slowly encroaching corruption is present on all the backups. Calls to the Dandelion technical support line go unanswered for several days. Finally, you receive a brief e-mail from Dandelion, informing you that this is a known problem and that the solution is to purchase the new version, which they promise will be ready some time next quarter, and then reenter all the diagrams by hand.   ****   Then, on July 1 another miracle happens! You are done with the design!   Rather than go to your boss and complain, you stock your middle desk drawer with some vodka.   **** They threw a party to celebrate the on-time completion of the design phase and their graduation to CMM level 3. This time, you find BB's speech so stirring that you have to use the restroom before it begins. New banners and plaques are all over your workplace. They show pictures of eagles and mountain climbers, and they talk about teamwork and empowerment. They read better after a few scotches. That reminds you that you need to clear out your file cabinet to make room for the brandy. You and your team begin to code. But you rapidly discover that the design is lacking in some significant areas. Actually, it's lacking any significance at all. You convene a design session in one of the conference rooms to try to work through some of the nastier problems. But your boss catches you at it and disbands the meeting, saying, "The design phase is over. The only allowable activity is coding. Now get back to it."   ****   The code generated by Dandelion is really hideous. It turns out that you and your team were using association and aggregation the wrong way, after all. All the generated code has to be edited to correct these flaws. Editing this code is extremely difficult because it has been instrumented with ugly comment blocks that have special syntax that Dandelion needs in order to keep the diagrams in sync with the code. If you accidentally alter one of these comments, the diagrams will be regenerated incorrectly. It turns out that "Round the Horn Engineering" requires an awful lot of effort. The more you try to keep the code compatible with Dandelion, the more errors Dandelion generates. In the end, you give up and decide to keep the diagrams up to date manually. A second later, you decide that there's no point in keeping the diagrams up to date at all. Besides, who has time?   Your boss hires a consultant to build tools to count the number of lines of code that are being produced. He puts a big thermometer graph on the wall with the number 1,000,000 on the top. Every day, he extends the red line to show how many lines have been added. Three days after the thermometer appears on the wall, your boss stops you in the hall. "That graph isn't growing quickly enough. We need to have a million lines done by October 1." "We aren't even sh-sh-sure that the proshect will require a m-million linezh," you blather. "We have to have a million lines done by October 1," your boss reiterates. His points have grown again, and the Grecian formula he uses on them creates an aura of authority and competence. "Are you sure your comment blocks are big enough?" Then, in a flash of managerial insight, he says, "I have it! I want you to institute a new policy among the engineers. No line of code is to be longer than 20 characters. Any such line must be split into two or more preferably more. All existing code needs to be reworked to this standard. That'll get our line count up!"   You decide not to tell him that this will require two unscheduled work months. You decide not to tell him anything at all. You decide that intravenous injections of pure ethanol are the only solution. You make the appropriate arrangements. Hack, hack, hack, and hack. You and your team madly code away. By August 1, your boss, frowning at the thermometer on the wall, institutes a mandatory 50-hour workweek.   Hack, hack, hack, and hack. By September 1st, the thermometer is at 1.2 million lines and your boss asks you to write a report describing why you exceeded the coding budget by 20 percent. He institutes mandatory Saturdays and demands that the project be brought back down to a million lines. You start a campaign of remerging lines. Hack, hack, hack, and hack. Tempers are flaring; people are quitting; QA is raining trouble reports down on you. Customers are demanding installation and user manuals; salespeople are demanding advance demonstrations for special customers; the requirements document is still thrashing, the marketing folks are complaining that the product isn't anything like they specified, and the liquor store won't accept your credit card anymore. Something has to give.    On September 15, BB calls a meeting. As he enters the room, his points are emitting clouds of steam. When he speaks, the bass overtones of his carefully manicured voice cause the pit of your stomach to roll over. "The QA manager has told me that this project has less than 50 percent of the required features implemented. He has also informed me that the system crashes all the time, yields wrong results, and is hideously slow. He has also complained that he cannot keep up with the continuous train of daily releases, each more buggy than the last!" He stops for a few seconds, visibly trying to compose himself. "The QA manager estimates that, at this rate of development, we won't be able to ship the product until December!" Actually, you think it's more like March, but you don't say anything. "December!" BB roars with such derision that people duck their heads as though he were pointing an assault rifle at them. "December is absolutely out of the question. Team leaders, I want new estimates on my desk in the morning. I am hereby mandating 65-hour work weeks until this project is complete. And it better be complete by November 1."   As he leaves the conference room, he is heard to mutter: "Empowermentbah!" * * * Your boss is bald; his points are mounted on BB's wall. The fluorescent lights reflecting off his pate momentarily dazzle you. "Do you have anything to drink?" he asks. Having just finished your last bottle of Boone's Farm, you pull a bottle of Thunderbird from your bookshelf and pour it into his coffee mug. "What's it going to take to get this project done? " he asks. "We need to freeze the requirements, analyze them, design them, and then implement them," you say callously. "By November 1?" your boss exclaims incredulously. "No way! Just get back to coding the damned thing." He storms out, scratching his vacant head.   A few days later, you find that your boss has been transferred to the corporate research division. Turnover has skyrocketed. Customers, informed at the last minute that their orders cannot be fulfilled on time, have begun to cancel their orders. Marketing is re-evaluating whether this product aligns with the overall goals of the company. Memos fly, heads roll, policies change, and things are, overall, pretty grim. Finally, by March, after far too many sixty-five hour weeks, a very shaky version of the software is ready. In the field, bug-discovery rates are high, and the technical support staff are at their wits' end, trying to cope with the complaints and demands of the irate customers. Nobody is happy.   In April, BB decides to buy his way out of the problem by licensing a product produced by Rupert Industries and redistributing it. The customers are mollified, the marketing folks are smug, and you are laid off.     Rupert Industries: Project Alpha   Your name is Robert. The date is January 3, 2001. The quiet hours spent with your family this holiday have left you refreshed and ready for work. You are sitting in a conference room with your team of professionals. The manager of the division called the meeting. "We have some ideas for a new project," says the division manager. Call him Russ. He is a high-strung British chap with more energy than a fusion reactor. He is ambitious and driven but understands the value of a team. Russ describes the essence of the new market opportunity the company has identified and introduces you to Jane, the marketing manager, who is responsible for defining the products that will address it. Addressing you, Jane says, "We'd like to start defining our first product offering as soon as possible. When can you and your team meet with me?" You reply, "We'll be done with the current iteration of our project this Friday. We can spare a few hours for you between now and then. After that, we'll take a few people from the team and dedicate them to you. We'll begin hiring their replacements and the new people for your team immediately." "Great," says Russ, "but I want you to understand that it is critical that we have something to exhibit at the trade show coming up this July. If we can't be there with something significant, we'll lose the opportunity."   "I understand," you reply. "I don't yet know what it is that you have in mind, but I'm sure we can have something by July. I just can't tell you what that something will be right now. In any case, you and Jane are going to have complete control over what we developers do, so you can rest assured that by July, you'll have the most important things that can be accomplished in that time ready to exhibit."   Russ nods in satisfaction. He knows how this works. Your team has always kept him advised and allowed him to steer their development. He has the utmost confidence that your team will work on the most important things first and will produce a high-quality product.   * * *   "So, Robert," says Jane at their first meeting, "How does your team feel about being split up?" "We'll miss working with each other," you answer, "but some of us were getting pretty tired of that last project and are looking forward to a change. So, what are you people cooking up?" Jane beams. "You know how much trouble our customers currently have . . ." And she spends a half hour or so describing the problem and possible solution. "OK, wait a second" you respond. "I need to be clear about this." And so you and Jane talk about how this system might work. Some of her ideas aren't fully formed. You suggest possible solutions. She likes some of them. You continue discussing.   During the discussion, as each new topic is addressed, Jane writes user story cards. Each card represents something that the new system has to do. The cards accumulate on the table and are spread out in front of you. Both you and Jane point at them, pick them up, and make notes on them as you discuss the stories. The cards are powerful mnemonic devices that you can use to represent complex ideas that are barely formed.   At the end of the meeting, you say, "OK, I've got a general idea of what you want. I'm going to talk to the team about it. I imagine they'll want to run some experiments with various database structures and presentation formats. Next time we meet, it'll be as a group, and we'll start identifying the most important features of the system."   A week later, your nascent team meets with Jane. They spread the existing user story cards out on the table and begin to get into some of the details of the system. The meeting is very dynamic. Jane presents the stories in the order of their importance. There is much discussion about each one. The developers are concerned about keeping the stories small enough to estimate and test. So they continually ask Jane to split one story into several smaller stories. Jane is concerned that each story have a clear business value and priority, so as she splits them, she makes sure that this stays true.   The stories accumulate on the table. Jane writes them, but the developers make notes on them as needed. Nobody tries to capture everything that is said; the cards are not meant to capture everything but are simply reminders of the conversation.   As the developers become more comfortable with the stories, they begin writing estimates on them. These estimates are crude and budgetary, but they give Jane an idea of what the story will cost.   At the end of the meeting, it is clear that many more stories could be discussed. It is also clear that the most important stories have been addressed and that they represent several months worth of work. Jane closes the meeting by taking the cards with her and promising to have a proposal for the first release in the morning.   * * *   The next morning, you reconvene the meeting. Jane chooses five cards and places them on the table. "According to your estimates, these cards represent about one perfect team-week's worth of work. The last iteration of the previous project managed to get one perfect team-week done in 3 real weeks. If we can get these five stories done in 3 weeks, we'll be able to demonstrate them to Russ. That will make him feel very comfortable about our progress." Jane is pushing it. The sheepish look on her face lets you know that she knows it too. You reply, "Jane, this is a new team, working on a new project. It's a bit presumptuous to expect that our velocity will be the same as the previous team's. However, I met with the team yesterday afternoon, and we all agreed that our initial velocity should, in fact, be set to one perfectweek for every 3 real-weeks. So you've lucked out on this one." "Just remember," you continue, "that the story estimates and the story velocity are very tentative at this point. We'll learn more when we plan the iteration and even more when we implement it."   Jane looks over her glasses at you as if to say "Who's the boss around here, anyway?" and then smiles and says, "Yeah, don't worry. I know the drill by now."Jane then puts 15 more cards on the table. She says, "If we can get all these cards done by the end of March, we can turn the system over to our beta test customers. And we'll get good feedback from them."   You reply, "OK, so we've got our first iteration defined, and we have the stories for the next three iterations after that. These four iterations will make our first release."   "So," says Jane, can you really do these five stories in the next 3 weeks?" "I don't know for sure, Jane," you reply. "Let's break them down into tasks and see what we get."   So Jane, you, and your team spend the next several hours taking each of the five stories that Jane chose for the first iteration and breaking them down into small tasks. The developers quickly realize that some of the tasks can be shared between stories and that other tasks have commonalities that can probably be taken advantage of. It is clear that potential designs are popping into the developers' heads. From time to time, they form little discussion knots and scribble UML diagrams on some cards.   Soon, the whiteboard is filled with the tasks that, once completed, will implement the five stories for this iteration. You start the sign-up process by saying, "OK, let's sign up for these tasks." "I'll take the initial database generation." Says Pete. "That's what I did on the last project, and this doesn't look very different. I estimate it at two of my perfect workdays." "OK, well, then, I'll take the login screen," says Joe. "Aw, darn," says Elaine, the junior member of the team, "I've never done a GUI, and kinda wanted to try that one."   "Ah, the impatience of youth," Joe says sagely, with a wink in your direction. "You can assist me with it, young Jedi." To Jane: "I think it'll take me about three of my perfect workdays."   One by one, the developers sign up for tasks and estimate them in terms of their own perfect workdays. Both you and Jane know that it is best to let the developers volunteer for tasks than to assign the tasks to them. You also know full well that you daren't challenge any of the developers' estimates. You know these people, and you trust them. You know that they are going to do the very best they can.   The developers know that they can't sign up for more perfect workdays than they finished in the last iteration they worked on. Once each developer has filled his or her schedule for the iteration, they stop signing up for tasks.   Eventually, all the developers have stopped signing up for tasks. But, of course, tasks are still left on the board.   "I was worried that that might happen," you say, "OK, there's only one thing to do, Jane. We've got too much to do in this iteration. What stories or tasks can we remove?" Jane sighs. She knows that this is the only option. Working overtime at the beginning of a project is insane, and projects where she's tried it have not fared well.   So Jane starts to remove the least-important functionality. "Well, we really don't need the login screen just yet. We can simply start the system in the logged-in state." "Rats!" cries Elaine. "I really wanted to do that." "Patience, grasshopper." says Joe. "Those who wait for the bees to leave the hive will not have lips too swollen to relish the honey." Elaine looks confused. Everyone looks confused. "So . . .," Jane continues, "I think we can also do away with . . ." And so, bit by bit, the list of tasks shrinks. Developers who lose a task sign up for one of the remaining ones.   The negotiation is not painless. Several times, Jane exhibits obvious frustration and impatience. Once, when tensions are especially high, Elaine volunteers, "I'll work extra hard to make up some of the missing time." You are about to correct her when, fortunately, Joe looks her in the eye and says, "When once you proceed down the dark path, forever will it dominate your destiny."   In the end, an iteration acceptable to Jane is reached. It's not what Jane wanted. Indeed, it is significantly less. But it's something the team feels that can be achieved in the next 3 weeks.   And, after all, it still addresses the most important things that Jane wanted in the iteration. "So, Jane," you say when things had quieted down a bit, "when can we expect acceptance tests from you?" Jane sighs. This is the other side of the coin. For every story the development team implements,   Jane must supply a suite of acceptance tests that prove that it works. And the team needs these long before the end of the iteration, since they will certainly point out differences in the way Jane and the developers imagine the system's behaviour.   "I'll get you some example test scripts today," Jane promises. "I'll add to them every day after that. You'll have the entire suite by the middle of the iteration."   * * *   The iteration begins on Monday morning with a flurry of Class, Responsibilities, Collaborators sessions. By midmorning, all the developers have assembled into pairs and are rapidly coding away. "And now, my young apprentice," Joe says to Elaine, "you shall learn the mysteries of test-first design!"   "Wow, that sounds pretty rad," Elaine replies. "How do you do it?" Joe beams. It's clear that he has been anticipating this moment. "OK, what does the code do right now?" "Huh?" replied Elaine, "It doesn't do anything at all; there is no code."   "So, consider our task; can you think of something the code should do?" "Sure," Elaine said with youthful assurance, "First, it should connect to the database." "And thereupon, what must needs be required to connecteth the database?" "You sure talk weird," laughed Elaine. "I think we'd have to get the database object from some registry and call the Connect() method. "Ah, astute young wizard. Thou perceives correctly that we requireth an object within which we can cacheth the database object." "Is 'cacheth' really a word?" "It is when I say it! So, what test can we write that we know the database registry should pass?" Elaine sighs. She knows she'll just have to play along. "We should be able to create a database object and pass it to the registry in a Store() method. And then we should be able to pull it out of the registry with a Get() method and make sure it's the same object." "Oh, well said, my prepubescent sprite!" "Hay!" "So, now, let's write a test function that proves your case." "But shouldn't we write the database object and registry object first?" "Ah, you've much to learn, my young impatient one. Just write the test first." "But it won't even compile!" "Are you sure? What if it did?" "Uh . . ." "Just write the test, Elaine. Trust me." And so Joe, Elaine, and all the other developers began to code their tasks, one test case at a time. The room in which they worked was abuzz with the conversations between the pairs. The murmur was punctuated by an occasional high five when a pair managed to finish a task or a difficult test case.   As development proceeded, the developers changed partners once or twice a day. Each developer got to see what all the others were doing, and so knowledge of the code spread generally throughout the team.   Whenever a pair finished something significant whether a whole task or simply an important part of a task they integrated what they had with the rest of the system. Thus, the code base grew daily, and integration difficulties were minimized.   The developers communicated with Jane on a daily basis. They'd go to her whenever they had a question about the functionality of the system or the interpretation of an acceptance test case.   Jane, good as her word, supplied the team with a steady stream of acceptance test scripts. The team read these carefully and thereby gained a much better understanding of what Jane expected the system to do. By the beginning of the second week, there was enough functionality to demonstrate to Jane. She watched eagerly as the demonstration passed test case after test case. "This is really cool," Jane said as the demonstration finally ended. "But this doesn't seem like one-third of the tasks. Is your velocity slower than anticipated?"   You grimace. You'd been waiting for a good time to mention this to Jane but now she was forcing the issue. "Yes, unfortunately, we are going more slowly than we had expected. The new application server we are using is turning out to be a pain to configure. Also, it takes forever to reboot, and we have to reboot it whenever we make even the slightest change to its configuration."   Jane eyes you with suspicion. The stress of last Monday's negotiations had still not entirely dissipated. She says, "And what does this mean to our schedule? We can't slip it again, we just can't. Russ will have a fit! He'll haul us all into the woodshed and ream us some new ones."   You look Jane right in the eyes. There's no pleasant way to give someone news like this. So you just blurt out, "Look, if things keep going like they're going, we're not going to be done with everything by next Friday. Now it's possible that we'll figure out a way to go faster. But, frankly, I wouldn't depend on that. You should start thinking about one or two tasks that could be removed from the iteration without ruining the demonstration for Russ. Come hell or high water, we are going to give that demonstration on Friday, and I don't think you want us to choose which tasks to omit."   "Aw forchrisakes!" Jane barely manages to stifle yelling that last word as she stalks away, shaking her head. Not for the first time, you say to yourself, "Nobody ever promised me project management would be easy." You are pretty sure it won't be the last time, either.   Actually, things went a bit better than you had hoped. The team did, in fact, have to drop one task from the iteration, but Jane had chosen wisely, and the demonstration for Russ went without a hitch. Russ was not impressed with the progress, but neither was he dismayed. He simply said, "This is pretty good. But remember, we have to be able to demonstrate this system at the trade show in July, and at this rate, it doesn't look like you'll have all that much to show." Jane, whose attitude had improved dramatically with the completion of the iteration, responded to Russ by saying, "Russ, this team is working hard, and well. When July comes around, I am confident that we'll have something significant to demonstrate. It won't be everything, and some of it may be smoke and mirrors, but we'll have something."   Painful though the last iteration was, it had calibrated your velocity numbers. The next iteration went much better. Not because your team got more done than in the last iteration but simply because the team didn't have to remove any tasks or stories in the middle of the iteration.   By the start of the fourth iteration, a natural rhythm has been established. Jane, you, and the team know exactly what to expect from one another. The team is running hard, but the pace is sustainable. You are confident that the team can keep up this pace for a year or more.   The number of surprises in the schedule diminishes to near zero; however, the number of surprises in the requirements does not. Jane and Russ frequently look over the growing system and make recommendations or changes to the existing functionality. But all parties realize that these changes take time and must be scheduled. So the changes do not cause anyone's expectations to be violated. In March, there is a major demonstration of the system to the board of directors. The system is very limited and is not yet in a form good enough to take to the trade show, but progress is steady, and the board is reasonably impressed.   The second release goes even more smoothly than the first. By now, the team has figured out a way to automate Jane's acceptance test scripts. The team has also refactored the design of the system to the point that it is really easy to add new features and change old ones. The second release was done by the end of June and was taken to the trade show. It had less in it than Jane and Russ would have liked, but it did demonstrate the most important features of the system. Although customers at the trade show noticed that certain features were missing, they were very impressed overall. You, Russ, and Jane all returned from the trade show with smiles on your faces. You all felt as though this project was a winner.   Indeed, many months later, you are contacted by Rufus Inc. That company had been working on a system like this for its internal operations. Rufus has canceled the development of that system after a death-march project and is negotiating to license your technology for its environment.   Indeed, things are looking up!

    Read the article

< Previous Page | 3 4 5 6 7