Search Results

Search found 1816 results on 73 pages for 'equals'.

Page 70/73 | < Previous Page | 66 67 68 69 70 71 72 73  | Next Page >

  • Azure - Part 4 - Table Storage Service in Windows Azure

    - by Shaun
    In Windows Azure platform there are 3 storage we can use to save our data on the cloud. They are the Table, Blob and Queue. Before the Chinese New Year Microsoft announced that Azure SDK 1.1 had been released and it supports a new type of storage – Drive, which allows us to operate NTFS files on the cloud. I will cover it in the coming few posts but now I would like to talk a bit about the Table Storage.   Concept of Table Storage Service The most common development scenario is to retrieve, create, update and remove data from the data storage. In the normal way we communicate with database. When we attempt to move our application over to the cloud the most common requirement should be have a storage service. Windows Azure provides a in-build service that allow us to storage the structured data, which is called Windows Azure Table Storage Service. The data stored in the table service are like the collection of entities. And the entities are similar to rows or records in the tradtional database. An entity should had a partition key, a row key, a timestamp and set of properties. You can treat the partition key as a group name, the row key as a primary key and the timestamp as the identifer for solving the concurrency problem. Different with a table in a database, the table service does not enforce the schema for tables, which means you can have 2 entities in the same table with different property sets. The partition key is being used for the load balance of the Azure OS and the group entity transaction. As you know in the cloud you will never know which machine is hosting your application and your data. It could be moving based on the transaction weight and the number of the requests. If the Azure OS found that there are many requests connect to your Book entities with the partition key equals “Novel” it will move them to another idle machine to increase the performance. So when choosing the partition key for your entities you need to make sure they indecate the category or gourp information so that the Azure OS can perform the load balance as you wish.   Consuming the Table Although the table service looks like a database, you cannot access it through the way you are using now, neither ADO.NET nor ODBC. The table service exposed itself by ADO.NET Data Service protocol, which allows you can consume it through the RESTful style by Http requests. The Azure SDK provides a sets of classes for us to connect it. There are 2 classes we might need: TableServiceContext and TableServiceEntity. The TableServiceContext inherited from the DataServiceContext, which represents the runtime context of the ADO.NET data service. It provides 4 methods mainly used by us: CreateQuery: It will create a IQueryable instance from a given type of entity. AddObject: Add the specified entity into Table Service. UpdateObject: Update an existing entity in the Table Service. DeleteObject: Delete an entity from the Table Service. Beofre you operate the table service you need to provide the valid account information. It’s something like the connect string of the database but with your account name and the account key when you created the storage service on the Windows Azure Development Portal. After getting the CloudStorageAccount you can create the CloudTableClient instance which provides a set of methods for using the table service. A very useful method would be CreateTableIfNotExist. It will create the table container for you if it’s not exsited. And then you can operate the eneities to that table through the methods I mentioned above. Let me explain a bit more through an exmaple. We always like code rather than sentence.   Straightforward Accessing to the Table Here I would like to build a WCF service on the Windows Azure platform, and for now just one requirement: it would allow the client to create an account entity on the table service. The WCF service would have a method named Register and accept an instance of the account which the client wants to create. After perform some validation it will add the entity into the table service. So the first thing I should do is to create a Cloud Application on my VIstial Studio 2010 RC. (The Azure SDK 1.1 only supports VS2008 and VS2010 RC.) The solution should be like this below. Then I added a configuration items for the storage account through the Settings section under the cloud project. (Double click the Services file under Roles folder and navigate to the Setting section.) This setting will be used when to retrieve my storage account information. Since for now I just in the development phase I will select “UseDevelopmentStorage=true”. And then I navigated to the WebRole.cs file under my WCF project. If you have read my previous posts you would know that this file defines the process when the application start, and terminate on the cloud. What I need to do is to when the application start, set the configuration publisher to load my config file with the config name I specified. So the code would be like below. I removed the original service and contract created by the VS template and add my IAccountService contract and its implementation class - AccountService. And I add the service method Register with the parameters: email, password and it will return a boolean value to indicates the result which is very simple. At this moment if I press F5 the application will be established on my local development fabric and I can see my service runs well through the browser. Let’s implement the service method Rigister, add a new entity to the table service. As I said before the entities you want to store in the table service must have 3 properties: partition key, row key and timespan. You can create a class with these 3 properties. The Azure SDK provides us a base class for that named TableServiceEntity in Microsoft.WindowsAzure.StorageClient namespace. So what we need to do is more simply, create a class named Account and let it derived from the TableServiceEntity. And I need to add my own properties: Email, Password, DateCreated and DateDeleted. The DateDeleted is a nullable date time value to indecate whether this entity had been deleted and when. Do you notice that I missed something here? Yes it’s the partition key and row key I didn’t assigned. The TableServiceEntity base class defined 2 constructors one was a parameter-less constructor which will be used to fill values into the properties from the table service when retrieving data. The other was one with 2 parameters: partition key and row key. As I said below the partition key may affect the load balance and the row key must be unique so here I would like to use the email as the parition key and the email plus a Guid as the row key. OK now we finished the entity class we need to store onto the table service. The next step is to create a data access class for us to add it. Azure SDK gives us a base class for it named TableServiceContext as I mentioned below. So let’s create a class for operate the Account entities. The TableServiceContext need the storage account information for its constructor. It’s the combination of the storage service URI that we will create on Windows Azure platform, and the relevant account name and key. The TableServiceContext will use this information to find the related address and verify the account to operate the storage entities. Hence in my AccountDataContext class I need to override this constructor and pass the storage account into it. All entities will be saved in the table storage with one or many tables which we call them “table containers”. Before we operate an entity we need to make sure that the table container had been created on the storage. There’s a method we can use for that: CloudTableClient.CreateTableIfNotExist. So in the constructor I will perform it firstly to make sure all method will be invoked after the table had been created. Notice that I passed the storage account enpoint URI and the credentials to specify where my storage is located and who am I. Another advise is that, make your entity class name as the same as the table name when create the table. It will increase the performance when you operate it over the cloud especially querying. Since the Register WCF method will add a new account into the table service, here I will create a relevant method to add the account entity. Before implement, I should add a reference - System.Data.Services.Client to the project. This reference provides some common method within the ADO.NET Data Service which can be used in the Windows Azure Table Service. I will use its AddObject method to create my account entity. Since the table service are not fully implemented the ADO.NET Data Service, there are some methods in the System.Data.Services.Client that TableServiceContext doesn’t support, such as AddLinks, etc. Then I implemented the serivce method to add the account entity through the AccountDataContext. You can see in the service implmentation I load the storage account information through my configuration file and created the account table entity from the parameters. Then I created the AccountDataContext. If it’s my first time to invoke this method the constructor of the AccountDataContext will create a table container for me. Then I use Add method to add the account entity into the table. Next, let’s create a farely simple client application to test this service. I created a windows console application and added a service reference to my WCF service. The metadata information of the WCF service cannot be retrieved if it’s deployed on the Windows Azure even though the <serviceMetadata httpGetEnabled="true"/> had been set. If we need to get its metadata we can deploy it on the local development service and then changed the endpoint to the address which is on the cloud. In the client side app.config file I specified the endpoint to the local development fabric address. And the just implement the client to let me input an email and a password then invoke the WCF service to add my acocunt. Let’s run my application and see the result. Of course it should return TRUE to me. And in the local SQL Express I can see the data had been saved in the table.   Summary In this post I explained more about the Windows Azure Table Storage Service. I also created a small application for demostration of how to connect and consume it through the ADO.NET Data Service Managed Library provided within the Azure SDK. I only show how to create an eneity in the storage service. In the next post I would like to explain about how to query the entities with conditions thruogh LINQ. I also would like to refactor my AccountDataContext class to make it dyamic for any kinds of entities.   Hope this helps, Shaun   All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 4 – Calling the base method

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors   The plan for calling the base methods from the proxy is to create a private method for each overridden proxy method, this will allow the proxy to use a delegate to simply invoke the private method when required. Quite a few helper classes have been created to make this possible so as usual I would suggest download or viewing the code at http://rapidioc.codeplex.com/. In this post I’m just going to cover the main points for when creating methods. Getting the methods to override The first two notable methods are for getting the methods. private static MethodInfo[] GetMethodsToOverride<TBase>() where TBase : class {     return typeof(TBase).GetMethods().Where(x =>         !methodsToIgnore.Contains(x.Name) &&                              (x.Attributes & MethodAttributes.Final) == 0)         .ToArray(); } private static StringCollection GetMethodsToIgnore() {     return new StringCollection()     {         "ToString",         "GetHashCode",         "Equals",         "GetType"     }; } The GetMethodsToIgnore method string collection contains an array of methods that I don’t want to override. In the GetMethodsToOverride method, you’ll notice a binary AND which is basically saying not to include any methods marked final i.e. not virtual. Creating the MethodInfo for calling the base method This method should hopefully be fairly easy to follow, it’s only function is to create a MethodInfo which points to the correct base method, and with the correct parameters. private static MethodInfo CreateCallBaseMethodInfo<TBase>(MethodInfo method) where TBase : class {     Type[] baseMethodParameterTypes = ParameterHelper.GetParameterTypes(method, method.GetParameters());       return typeof(TBase).GetMethod(        method.Name,        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        baseMethodParameterTypes,        null     ); }   /// <summary> /// Get the parameter types. /// </summary> /// <param name="method">The method.</param> /// <param name="parameters">The parameters.</param> public static Type[] GetParameterTypes(MethodInfo method, ParameterInfo[] parameters) {     Type[] parameterTypesList = Type.EmptyTypes;       if (parameters.Length > 0)     {         parameterTypesList = CreateParametersList(parameters);     }     return parameterTypesList; }   Creating the new private methods for calling the base method The following method outline how I’ve created the private methods for calling the base class method. private static MethodBuilder CreateCallBaseMethodBuilder(TypeBuilder typeBuilder, MethodInfo method) {     string callBaseSuffix = "GetBaseMethod";       if (method.IsGenericMethod || method.IsGenericMethodDefinition)     {                         return MethodHelper.SetUpGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     }     else     {         return MethodHelper.SetupNonGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     } } The CreateCallBaseMethodBuilder is the entry point method for creating the call base method. I’ve added a suffix to the base classes method name to keep it unique. Non Generic Methods Creating a non generic method is fairly simple public static MethodBuilder SetupNonGenericMethod(     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       Type returnType = method.ReturnType;       MethodBuilder methodBuilder = CreateMethodBuilder         (             typeBuilder,             method,             methodName,             methodAttributes,             parameterTypes,             returnType         );       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static MethodBuilder CreateMethodBuilder (     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes,     Type[] parameterTypes,     Type returnType ) { MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, methodAttributes, returnType, parameterTypes); return methodBuilder; } As you can see, you simply have to declare a method builder, get the parameter types, and set the method attributes you want.   Generic Methods Creating generic methods takes a little bit more work. /// <summary> /// Sets up generic method. /// </summary> /// <param name="typeBuilder">The type builder.</param> /// <param name="method">The method.</param> /// <param name="methodName">Name of the method.</param> /// <param name="methodAttributes">The method attributes.</param> public static MethodBuilder SetUpGenericMethod     (         TypeBuilder typeBuilder,         MethodInfo method,         string methodName,         MethodAttributes methodAttributes     ) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName,         methodAttributes);       Type[] genericArguments = method.GetGenericArguments();       GenericTypeParameterBuilder[] genericTypeParameters =         GetGenericTypeParameters(methodBuilder, genericArguments);       ParameterHelper.SetUpParameterConstraints(parameterTypes, genericTypeParameters);       SetUpReturnType(method, methodBuilder, genericTypeParameters);       if (method.IsGenericMethod)     {         methodBuilder.MakeGenericMethod(genericArguments);     }       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static GenericTypeParameterBuilder[] GetGenericTypeParameters     (         MethodBuilder methodBuilder,         Type[] genericArguments     ) {     return methodBuilder.DefineGenericParameters(GenericsHelper.GetArgumentNames(genericArguments)); }   private static void SetUpReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.IsGenericMethodDefinition)     {         SetUpGenericDefinitionReturnType(method, methodBuilder, genericTypeParameters);     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     } }   private static void SetUpGenericDefinitionReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.ReturnType == null)     {         methodBuilder.SetReturnType(typeof(void));     }     else if (method.ReturnType.IsGenericType)     {         methodBuilder.SetReturnType(genericTypeParameters.Where             (x => x.Name == method.ReturnType.Name).First());     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     }             } Ok, there are a few helper methods missing, basically there is way to much code to put in this post, take a look at the code at http://rapidioc.codeplex.com/ to follow it through completely. Basically though, when dealing with generics there is extra work to do in terms of getting the generic argument types setting up any generic parameter constraints setting up the return type setting up the method as a generic All of the information is easy to get via reflection from the MethodInfo.   Emitting the new private method Emitting the new private method is relatively simple as it’s only function is calling the base method and returning a result if the return type is not void. ILGenerator il = privateMethodBuilder.GetILGenerator();   EmitCallBaseMethod(method, callBaseMethod, il);   private static void EmitCallBaseMethod(MethodInfo method, MethodInfo callBaseMethod, ILGenerator il) {     int privateParameterCount = method.GetParameters().Length;       il.Emit(OpCodes.Ldarg_0);       if (privateParameterCount > 0)     {         for (int arg = 0; arg < privateParameterCount; arg++)         {             il.Emit(OpCodes.Ldarg_S, arg + 1);         }     }       il.Emit(OpCodes.Call, callBaseMethod);       il.Emit(OpCodes.Ret); } So in the main method building method, an ILGenerator is created from the method builder. The ILGenerator performs the following actions: Load the class (this) onto the stack using the hidden argument Ldarg_0. Create an argument on the stack for each of the method parameters (starting at 1 because 0 is the hidden argument) Call the base method using the Opcodes.Call code and the MethodInfo we created earlier. Call return on the method   Conclusion Now we have the private methods prepared for calling the base method, we have reached the last of the relatively easy part of the proxy building. Hopefully, it hasn’t been too hard to follow so far, there is a lot of code so I haven’t been able to post it all so please check it out at http://rapidioc.codeplex.com/. The next section should be up fairly soon, it’s going to cover creating the delegates for calling the private methods created in this post.   Kind Regards, Sean.

    Read the article

  • Internationalize WebCenter Portal - Content Presenter

    - by Stefan Krantz
    Lately we have been involved in engagements where internationalization has been holding the project back from success. In this post we are going to explain how to get Content Presenter and its editorials to comply with the current selected locale for the WebCenter Portal session. As you probably know by now WebCenter Portal leverages the Localization support from Java Server Faces (JSF), in this post we will assume that the localization is controlled and enforced by switching the current browsers locale between English and Spanish. There is two main scenarios in internationalization of a content enabled pages, since Content Presenter offers both presentation of information as well as contribution of information, in this post we will look at how to enable seamless integration of correct localized version of the back end content file and how to enable the editor/author to edit the correct localized version of the file based on the current browser locale. Solution Scenario 1 - Localization aware content presentation Due to the amount of steps required to implement the enclosed solution proposal I have decided to share the solution with you in group components for each facet of the solution. If you want to get more details on each step, you can review the enclosed components. This post will guide you through the steps of enabling each component and what it enables/changes in each section of the system. Enable Content Presenter Customization By leveraging a predictable naming convention of the data files used to hold the content for the Content Presenter instance we can easily develop a component that will dynamically switch the name out before presenting the information. The naming convention we have leverage is the industry best practice by having a shared identifier as prefix (ContentABC) and a language enabled suffix (_EN) (_ES). So the assumption is that each file pair in above example should look like following:- English version - (ContentABC_EN)- Spanish version - (ContentABC_ES) Based on above theory we can now easily regardless of the primary version assigned to the content presenter instance switch the language out by using the localization support from JSF. Below java bean (oracle.webcenter.doclib.internal.view.presenter.NLSHelperBean) is enclosed in the customization project available for download at the bottom of the post: 1: public static final String CP_D_DOCNAME_FORMAT = "%s_%s"; 2: public static final int CP_UNIQUE_ID_INDEX = 0; 3: private ContentPresenter presenter = null; 4:   5:   6: public NLSHelperBean() { 7: super(); 8: } 9:   10: /** 11: * This method updates the configuration for the pageFlowScope to have the correct datafile 12: * for the current Locale 13: */ 14: public void initLocaleForDataFile() { 15: String dataFile = null; 16: // Checking that state of presenter is present, also make sure the item is eligible for localization by locating the "_" in the name 17: if(presenter.getConfiguration().getDatasource() != null && 18: presenter.getConfiguration().getDatasource().isNodeDatasource() && 19: presenter.getConfiguration().getDatasource().getNodeIdDatasource() != null && 20: !presenter.getConfiguration().getDatasource().getNodeIdDatasource().equals("") && 21: presenter.getConfiguration().getDatasource().getNodeIdDatasource().indexOf("_") > 0) { 22: dataFile = presenter.getConfiguration().getDatasource().getNodeIdDatasource(); 23: FacesContext fc = FacesContext.getCurrentInstance(); 24: //Leveraging the current faces contenxt to get current localization language 25: String currentLocale = fc.getViewRoot().getLocale().getLanguage().toUpperCase(); 26: String newDataFile = dataFile; 27: String [] uniqueIdArr = dataFile.split("_"); 28: if(uniqueIdArr.length > 0) { 29: newDataFile = String.format(CP_D_DOCNAME_FORMAT, uniqueIdArr[CP_UNIQUE_ID_INDEX], currentLocale); 30: } 31: //Replacing the current Node datasource with localized datafile. 32: presenter.getConfiguration().getDatasource().setNodeIdDatasource(newDataFile); 33: } 34: } With this bean code available to our WebCenter Portal implementation we can start the next step, by overriding the standard behavior in content presenter by applying a MDS Taskflow customization to the content presenter taskflow, following taskflow customization has been applied to the customization project attached to this post:- Library: WebCenter Document Library Service View- Path: oracle.webcenter.doclib.view.jsf.taskflows.presenter- File: contentPresenter.xml Changes made in above customization view:1. A new method invocation activity has been added (initLocaleForDataFile)2. The method invocation invokes the new NLSHelperBean3. The default activity is moved to the new Method invocation (initLocaleForDataFile)4. The outcome from the method invocation goes to determine-navigation (original default activity) The above changes concludes the presentation modification to support a compatible localization scenario for a content driven page. In addition this customization do not limit or disables the out of the box capabilities of WebCenter Portal. Steps to enable above customization Start JDeveloper and open your WebCenter Portal Application Select "Open Project" and include the extracted project you downloaded (CPNLSCustomizations.zip) Make sure the build out put from CPNLSCustomizations project is a dependency to your Portal project Deploy your Portal Application to your WC_CustomPortal managed server Make sure your naming convention of the two data files follow above recommendation Example result of the solution: Solution Scenario 2 - Localization aware content creation and authoring As you could see from Solution Scenario 1 we require the naming convention to be strictly followed, this means in the hands of a user with limited technology knowledge this can be one of the failing links in this solutions. Therefore I strongly recommend that you also follow this part since this will eliminate this risk and also increase the editors/authors usability with a magnitude. The current WebCenter Portal Architecture leverages WebCenter Content today to maintain, publish and manage content, therefore we need to make few efforts in making sure this part of the architecture is on board with our new naming practice and also simplifies the creation of content for our end users. As you probably remember the naming convention required a prefix to be common so I propose we enable a new component that help you auto name the content items dDocName (this means that the readable title can still be in a human readable format). The new component (WCP-LocalizationSupport.zip) built for this scenario will enable a couple of things: 1. A new service where a sequential number can be generate on request - service name: GET_WCP_LOCALE_CONTENTID 2. The content presenter is leveraging a specific function when launching the content creation wizard from within Content Presenter. Assumption is that users will create the content by clicking "Create Web Content" button. When clicking the button the wizard opened is actually running in side of WebCenter Content server, file executed (contentwizard.hcsp). This file uses JSON commands that will generate operations in the content server, I have extend this file to create two identical data files instead of one.- First it creates the English version by leveraging the new Service and a Global Rule to set the dDocName on the original check in screen, this global rule is available in a configuration package attached to this blog (NLSContentProfileRule.zip)- Secondly we run a set of JSON javascripts to create the Spanish version with the same details except for the name where we replace the suffix with (_ES)- Then content creation wizard ends with its out of the box behavior and assigns the Content Presenter instance the English versionSee Javascript markup below - this can be changed in the (WCP-LocalizationSupport.zip/component/WCP-LocalizationSupport/publish/webcenter) 1: //---------------------------------------A-TEAM--------------------------------------- 2: WCM.ContentWizard.CheckinContentPage.OnCheckinComplete = function(returnParams) 3: { 4: var callback = WCM.ContentWizard.CheckinContentPage.checkinCompleteCallback; 5: WCM.ContentWizard.ChooseContentPage.OnSelectionComplete(returnParams, callback); 6: // Load latest DOC_INFO_SIMPLE 7: var cgiPath = DOCLIB.config.httpCgiPath; 8: var jsonBinder = new WCM.Idc.JSONBinder(); 9: jsonBinder.SetLocalDataValue('IdcService', 'DOC_INFO_SIMPLE'); 10: jsonBinder.SetLocalDataValue('dID', returnParams.dID); 11: jsonBinder.Send(cgiPath, $CB(this, function(http) { 12: var ret = http.GetResponseText(); 13: var binder = new WCM.Idc.JSONBinder(ret); 14: var dDocName = binder.GetResultSetValue('DOC_INFO', 'dDocName', 0); 15: if(dDocName.indexOf("_") > 0){ 16: var ssBinder = new WCM.Idc.JSONBinder(); 17: ssBinder.SetLocalDataValue('IdcService', 'SS_CHECKIN_NEW'); 18: //Additional Localization dDocName generated 19: ssBinder.SetLocalDataValue('dDocName', getLocalizedDocName(dDocName, "es")); 20: ssBinder.SetLocalDataValue('primaryFile', 'default.xml'); 21: ssBinder.SetLocalDataValue('ssDefaultDocumentToken', 'SSContributorDataFile'); 22:   23: for(var n = 0 ; n < binder.GetResultSetFields('DOC_INFO').length ; n++) { 24: var field = binder.GetResultSetFields('DOC_INFO')[n]; 25: if(field != 'dID' && 26: field != 'dDocName' && 27: field != 'dID' && 28: field != 'dReleaseState' && 29: field != 'dRevClassID' && 30: field != 'dRevisionID' && 31: field != 'dRevLabel') { 32: ssBinder.SetLocalDataValue(field, binder.GetResultSetValue('DOC_INFO', field, 0)); 33: } 34: } 35: ssBinder.Send(cgiPath, $CB(this, function(http) {})); 36: } 37: })); 38: } 39:   40: //Support function to create localized dDocNames 41: function getLocalizedDocName(dDocName, lang) { 42: var result = dDocName.replace("_EN", ("_" + lang)); 43: return result; 44: } 45: //---------------------------------------A-TEAM--------------------------------------- 3. By applying the enclosed NLSContentProfileRule.zip, the check in screen for DataFile creation will have auto naming enabled with localization suffix (default is English)You can change the default language by updating the GlobalNlsRule and assign preferred prefix.See Rule markup for dDocName field below: <$executeService("GET_WCP_LOCALE_CONTENTID")$><$dprDefaultValue=WCP_LOCALE.LocaleContentId & "_EN"$> Steps to enable above extensions and configurations Install WebCenter Component (WCP-LocalizationSupport.zip), via the AdminServer in WebCenter Content Administration menus Enable the component and restart the content server Apply the configuration bundle to enable the new Global Rule (GlobalNlsRule), via the WebCenter Content Administration/Config Migration Admin New Content Creation Experience Result Content EditingContent editing will by default be enabled for authoring in the current select locale since the content file is selected by (Solution Scenario 1), this means that a user can switch his browser locale and then get the editing experience adaptable to the current selected locale. NotesA-Team are planning to post a solution on how to inline switch the locale of the WebCenter Portal Session, so the Content Presenter, Navigation Model and other Face related features are localized accordingly. Content Presenter examples used in this post is an extension to following post:https://blogs.oracle.com/ATEAM_WEBCENTER/entry/enable_content_editing_of_iterative Downloads CPNLSCustomizations.zip - WebCenter Portal, Content Presenter Customization https://blogs.oracle.com/ATEAM_WEBCENTER/resource/stefan.krantz/CPNLSCustomizations.zip WCP-LocalizationSupport.zip - WebCenter Content, Extension Component to enable localization creation of files with compliant auto naminghttps://blogs.oracle.com/ATEAM_WEBCENTER/resource/stefan.krantz/WCP-LocalizationSupport.zip NLSContentProfileRule.zip - WebCenter Content, Configuration Update Bundle to enable Global rule for new check in naming of data fileshttps://blogs.oracle.com/ATEAM_WEBCENTER/resource/stefan.krantz/NLSContentProfileRule.zip

    Read the article

  • Entity Framework v1 &hellip; Brief Synopsis and Tips &ndash; Part 2

    - by Rohit Gupta
    Using Entity Framework with ASMX Web sErvices and WCF Web Service: If you use ASMX WebService to expose Entity objects from Entity Framework... then the ASMX Webservice does not  include object graphs, one work around is to use Facade pattern or to use WCF Service. The other important aspect of using ASMX Web Services along with Entity Framework is that the ASMX Client is not aware of the existence of EF v1 since the client solely deals with C# objects (not EntityObjects or ObjectContext). Since the client is not aware of the ObjectContext hence the client cannot participate in change tracking since the client only receives the Current Values and not the Orginal values when the service sends the the Entity objects to the client. Thus there are 2 drawbacks to using EntityFramework with ASMX Web Service: 1. Object state is not maintained... so to overcome this limitation we need insert/update single entity at a time and retrieve the original values for the entity being updated on the server/service end before calling Save Changes. 2. ASMX does not maintain object graphs... i.e. Customer.Reservations or Customer.Reservations.Trip relationships are not maintained. Thus you need to send these relationships separately from service to client. WCF Web Service overcomes the object graph limitation of ASMX Web Service, but we need to insure that we are populating all the non-null scalar properties of all the objects in the object graph before calling Update. WCF Web service still cannot overcome the second limitation of tracking changes to entities at the client end. Also note that the "Customer" class in the Client is very different from the "Customer" class in the Entity Framework Model Entities. They are incompatible with each other hence we cannot cast one to the other. However the .NET Framework translates the client "Customer" Entity to the EFv1 Model "customer" Entity once the entity is serialzed back on the ASMX server end. If you need change tracking enabled on the client then we need to use WCF Data Services which is available with VS 2010. ====================================================================================================== In WCF when adding an object that has relationships, the framework assumes that every object in the object graph needs to be added to store. for e.g. in a Customer.Reservations.Trip object graph, when a Customer Entity is added to the store, the EFv1 assumes that it needs to a add a Reservations collection and also Trips for each Reservation. Thus if we need to use existing Trips for reservations then we need to insure that we null out the Trip object reference from Reservations and set the TripReference to the EntityKey of the desired Trip instead. ====================================================================================================== Understanding Relationships and Associations in EFv1 The Golden Rule of EF is that it does not load entities/relationships unless you ask it to explicitly do so. However there is 1 exception to this rule. This exception happens when you attach/detach entities from the ObjectContext. If you detach an Entity in a ObjectGraph from the ObjectContext, then the ObjectContext removes the ObjectStateEntry for this Entity and all the relationship Objects associated with this Entity. For e.g. in a Customer.Order.OrderDetails if the Customer Entity is detached from the ObjectContext then you cannot traverse to the Order and OrderDetails Entities (that still exist in the ObjectContext) from the Customer Entity(which does not exist in the Object Context) Conversely, if you JOIN a entity that is not in the ObjectContext with a Entity that is in the ObjContext then the First Entity will automatically be added to the ObjContext since relationships for the 2 Entities need to exist in the ObjContext. ========================================================= You cannot attach an EntityCollection to an entity through its navigation property for e.g. you cannot code myContact.Addresses = myAddressEntityCollection ========================================================== Cascade Deletes in EDM: The Designer does not support specifying cascase deletes for a Entity. To enable cascasde deletes on a Entity in EDM use the Association definition in CSDL for the Entity. for e.g. SalesOrderDetail (SOD) has a Foreign Key relationship with SalesOrderHeader (SalesOrderHeader 1 : SalesOrderDetail *) if you specify a cascade Delete on SalesOrderHeader Entity then calling deleteObject on SalesOrderHeader (SOH) Entity will send delete commands for SOH record and all the SOD records that reference the SOH record. ========================================================== As a good design practise, if you use Cascade Deletes insure that Cascade delete facet is used both in the EDM as well as in the database. Even though it is not absolutely mandatory to have Cascade deletes on both Database and EDM (since you can see that just the Cascade delete spec on the SOH Entity in EDM will insure that SOH record and all related SOD records will be deleted from the database ... even though you dont have cascade delete configured in the database in the SOD table) ============================================================== Maintaining relationships in Code When Setting a Navigation property of a Entity (for e.g. setting the Contact Navigation property of Address Entity) the following rules apply : If both objects are detached, no relationship object will be created. You are simply setting a property the CLR way. If both objects are attached, a relationship object will be created. If only one of the objects is attached, the other will become attached and a relationship object will be created. If that detached object is new, when it is attached to the context its EntityState will be Added. One important rule to remember regarding synchronizing the EntityReference.Value and EntityReference.EntityKey properties is that when attaching an Entity which has a EntityReference (e.g. Address Entity with ContactReference) the Value property will take precedence and if the Value and EntityKey are out of sync, the EntityKey will be updated to match the Value. ====================================================== If you call .Load() method on a detached Entity then the .Load() operation will throw an exception. There is one exception to this rule. If you load entities using MergeOption.NoTracking, you will be able to call .Load() on such entities since these Entities are accessible by the ObjectContext. So the bottomline is that we need Objectontext to be able to call .Load() method to do deffered loading on EntityReference or EntityCollection. Another rule to remember is that you cannot call .Load() on entities that have a EntityState.Added State since the ObjectContext uses the EntityKey of the Primary (Parent) Entity when loading the related (Child) Entity (and not the EntityKey of the child (even if the EntityKey of the child is present before calling .Load()) ====================================================== You can use ObjContext.Add() to add a entity to the ObjContext and set the EntityState of the new Entity to EntityState.Added. here no relationships are added/updated. You can also use EntityCollection.Add() method to add an entity to another entity's related EntityCollection for e.g. contact has a Addresses EntityCollection so to add a new address use contact.Addresses.Add(newAddress) to add a new address to the Addresses EntityCollection. Note that if the entity does not already exist in the ObjectContext then calling contact.Addresses.Add(myAddress) will cause a new Address Entity to be added to the ObjContext with EntityState.Added and it will also add a RelationshipEntry (a relationship object) with EntityState.Added which connects the Contact (contact) with the new address newAddress. Note that if the entity already exists in the Objectcontext (being part theOtherContact.Addresses Collection), then calling contact.Addresses.Add(existingAddress) will add 2 RelationshipEntry objects to the ObjectStateEntry Collection, one with EntityState.Deleted and the other with EntityState.Added. This implies that the existingAddress Entity is removed from the theOtherContact.Addresses Collection and Added to the contact.Addresses Collection..effectively reassigning the address entity from the theOtherContact to "contact". This is called moving an existing entity to a new object graph. ====================================================== You usually use ObjectContext.Attach() and EntityCollection.Attach() methods usually when you need to reconstruct the ObjectGraph after deserializing the objects as received from a ASMX Web Service Client. Attach is usually used to connect existing Entities in the ObjectContext. When EntityCollection.Attach() is called the EntityState of the RelationshipEntry (the relationship object) remains as EntityState.unchanged whereas when EntityCollection.Add() method is called the EntityState of the relationship object changes to EntityState.Added or EntityState.Deleted as the situation demands. ========================================================= LINQ To Entities Tips: Select Many does Inner Join by default.   for e.g. from c in Contact from a in c.Address select c ... this will do a Inner Join between the Contacts and Addresses Table and return only those Contacts that have a Address. ======================================================== Group Joins Do LEFT Join by default. e.g. from a in Address join c in Contact ON a.Contact.ContactID == c.ContactID Into g WHERE a.CountryRegion == "US" select g; This query will do a left join on the Contact table and return contacts that have a address in "US" region The following query : from c in Contact join a in Address.Where(a1 => a1.CountryRegion == "US") on c.ContactID  equals a.Contact.ContactID into addresses select new {c, addresses} will do a left join on the Address table and return All Contacts. In these Contacts only those will have its Address EntityCollection Populated which have a Address in the "US" region, the other contacts will have 0 Addresses in the Address collection (even if addresses for those contacts exist in the database but are in a different region) ======================================================== Linq to Entities does not support DefaultIfEmpty().... instead use .Include("Address") Query Builder method to do a Left JOIN or use Group Joins if you need more control like Filtering on the Address EntityCollection of Contact Entity =================================================================== Use CreateSourceQuery() on the EntityReference or EntityCollection if you need to add filters during deferred loading of Entities (Deferred loading in EFv1 happens when you call Load() method on the EntityReference or EntityCollection. for e.g. var cust=context.Contacts.OfType<Customer>().First(); var sq = cust.Reservations.CreateSourceQuery().Where(r => r.ReservationDate > new DateTime(2008,1,1)); cust.Reservations.Attach(sq); This populates only those reservations that are older than Jan 1 2008. This is the only way (in EFv1) to Attach a Range of Entities to a EntityCollection using the Attach() method ================================================================== If you need to get the Foreign Key value for a entity e.g. to get the ContactID value from a Address Entity use this :                                address.ContactReference.EntityKey.EntityKeyValues.Where(k=> k.Key == "ContactID")

    Read the article

  • Ada and 'The Book'

    - by Phil Factor
    The long friendship between Charles Babbage and Ada Lovelace created one of the most exciting and mysterious of collaborations ever to have resulted in a technological breakthrough. The fireworks that created by the collision of two prodigious mathematical and creative talents resulted in an invention, the Analytical Engine, which went on to change society fundamentally. However, beyond that, we just don't know what the bulk of their collaborative work was about:;  it was done in strictest secrecy. Even the known outcome of their friendship, the first programmable computer, was shrouded in mystery. At the time, nobody, except close friends and family, had any idea of Ada Byron's contribution to the invention of the ‘Engine’, and how to program it. Her great insight was published in August 1843, under the initials AAL, standing for Ada Augusta Lovelace, her title then being the Countess of Lovelace. It was contained in a lengthy ‘note’ to her translation of a publication that remains the best description of Babbage's amazing Analytical Engine. The secret identity of the person behind those enigmatic initials was finally revealed by Prince de Polignac who, seventy years later, wrote to Ada's daughter to seek confirmation that her mother had, indeed, been the author of the brilliant sentences that described so accurately how Babbage's mechanical computer could be programmed with punch-cards. L.F. Menabrea's paper on the Analytical Engine first appeared in the 'Bibliotheque Universelle de Geneve' in October 1842, and Ada translated it anonymously for Taylor's 'Scientific Memoirs'. Charles Babbage was surprised that she had not written an original paper as she already knew a surprising amount about the way the machine worked. He persuaded her to at least write some explanatory notes. These notes ended up extending to four times the length of the original article and represented the first published account of how a machine could be programmed to perform any calculation. Her example of programming the Bernoulli sequence would have worked on the Analytical engine had the device’s construction been completed, and gave Ada an unassailable claim to have invented the art of programming. What was the reason for Ada's secrecy? She was the only legitimate child of Lord Byron, who was probably the best known celebrity of the age, so she was already famous. She was a senior aristocrat, with titles, a fortune in money and vast estates in the Midlands. She had political influence, and was the cousin of Lord Melbourne, who was the Prime Minister at that time. She was friendly with the young Queen Victoria. Her mathematical activities were a pastime, and not one that would be considered by others to be in keeping with her roles and responsibilities. You wouldn't dare to dream up a fictional heroine like Ada. She was dazzlingly beautiful and talented. She could speak several languages fluently, and play some musical instruments with professional skill. Contemporary accounts refer to her being 'accomplished in science, art and literature'. On top of that, she was a brilliant mathematician, a talent inherited from her mother, Annabella Milbanke. In her mother's circle of literary and scientific friends was Charles Babbage, and Ada's friendship with him dates from her teenage zest for Mathematics. She was one of the first people he'd ever met who understood what he had attempted to achieve with the 'Difference Engine', and with whom he could converse as intellectual equals. He arranged for her to have an education from the most talented academics in the country. Ada melted the heart of the cantankerous genius to the point that he became a faithful and loyal father-figure to her. She was one of the very few who could grasp the principles of the later, and very different, ‘Analytical Engine’ which was designed from the start to tackle a variety of tasks. Sadly, Ada Byron's life ended less than a decade after completing the work that assured her long-term fame, in November 1852. She was dying of cancer, her gambling habits had caused her to run up huge debts, she'd had more than one affairs, and she was being blackmailed. Her brilliant but unempathic mother was nursing her in her final illness, destroying her personal letters and records, and repaying her debts. Her husband was distraught but helpless. Charles Babbage, however, maintained his steadfast paternalistic friendship to the end. She appointed her loyal friend to be her executor. For years, she and Babbage had been working together on a secret project, known only as 'The Book'. We have a clue to what it was in a letter written by her nine years earlier, on 11th August 1843. It was a joint project by herself and Lord Lovelace, her husband, and was intended to involve Babbage's 'undivided energies'. It involved 'consulting your Engine' (it required Babbage’s computer). The letter gives no hint about the project except for the high-minded nature of its purpose, and its highly mathematical nature.  From then on, the surviving correspondence between the two gives only veiled references to 'The Book'. There isn't much, since Babbage later destroyed any letters that could have damaged her reputation within the Establishment. 'I cannot spare the book today, which I am very sorry for. At the moment I want it for constant reference, but I think you can have it tomorrow' (Oct 1844)  And 'I will send you the book directly, and you can say, when you receive it, how long you will want to keep it'. (Nov 1844)  The two of them were obviously intent on the work: She writes, four years later, 'I have an engagement for Wednesday which will prevent me from attending to your wishes about the book' (Dec 1848). This was something that they both needed to work on, but could not do in parallel: 'I will send the book on Tuesday, and it can be left with you till Friday' (11 Feb 1849). After six years work, it had been so well-handled that it was beginning to fall apart: 'Don't forget the new cover you promised for the book. The poor book is very shabby and wants one' (20 Sept 1849). So what was going on? The word 'book' was not a code-word: it was a real book, probably a 'printer's blank', plain paper, but properly bound so printers and publishers could show off how the published work might look. The hints from the correspondence are of advanced mathematics. It is obvious that the book was travelling between them, back and forth, each one working on it for less than a week before passing it back. Ada and her husband were certainly involved in gambling large sums of money on the horses, and so most biographers have concluded that the three of them were trying to calculate the mathematical odds on the horses. This theory has three large problems. Firstly, Ada's original letter proposing the project refers to its high-minded nature. Babbage was temperamentally opposed to gambling and would scarcely have given so much time to the project, even though he was devoted to Ada. Secondly, Babbage would have very soon have realized the hopelessness of trying to beat the bookies. This sort of betting never attracts his type of intellectual background. The third problem is that any work on calculating the odds on horses would not need a well-thumbed book to pass back and forth between them; they would have not had to work in series. The original project was instigated by Ada, along with her husband, William King-Noel, 1st Earl of Lovelace. Charles Babbage was invited to join the project after the couple had come up with the idea. What could William have contributed? One might assume that William was a Bertie Wooster character, addicted only to the joys of the turf, but this was far from the truth. He was a scientist, a Cambridge graduate who was later elected to be a Fellow of the Royal Society. After Eton, he went to Trinity College, Cambridge. On graduation, he entered the diplomatic service and acted as secretary under Lord Nugent, who was Lord Commissioner of the Ionian Islands. William was very friendly with Babbage too, able to discuss scientific matters on equal terms. He was a capable engineer who invented a process for bending large timbers by the application of steam heat. He delivered a paper to the Institution of Civil Engineers in 1849, and received praise from the great engineer, Isambard Kingdom Brunel. As well as being Lord Lieutenant of the County of Surrey for most of Victoria's reign, he had time for a string of scientific and engineering achievements. Whatever the project was, it is unlikely that William was a junior partner. After Ada's death, the project disappeared. Then, two years later, Babbage, through one of his occasional outbursts of temper, demonstrated that he was able to decrypt one of the most powerful of secret codes, Vigenère's autokey cipher.  All contemporary diplomatic and military messages used a variant of this cipher. Babbage had made three important discoveries, namely, the mathematical law of this cipher, the principle of the key periodicity, and the technique of the symmetry of position. The technique is now known as the Kasiski examination, also called the Kasiski test, but Babbage got there first. At one time, he listed amongst his future projects, the writing of a book 'The Philosophy of Decyphering', but it never came to anything. This discovery was going to change the course of history, since it was used to decipher the Russians’ military dispatches in the Crimean war. Babbage himself played a role during the Crimean War as a cryptographical adviser to his friend, Rear-Admiral Sir Francis Beaufort of the Admiralty. This is as much as we can be certain about in trying to make sense of the bulk of the time that Charles Babbage and Ada Lovelace worked together. Nine years of intensive work, involving the 'Engine' and a great deal of mathematics and research seems to have been lost: or has it? I've argued in the past http://www.simple-talk.com/community/blogs/philfactor/archive/2008/06/13/59614.aspx that the cracking of the Vigenère autokey cipher, was a fundamental motive behind the British Government's support and funding of the 'Difference Engine'. The Duke of Wellington, whose understanding of the military significance of being able to read enemy dispatches, was the most steadfast advocate of the project. If the three friends were actually doing the work of cracking codes by mathematical techniques that used the techniques of key periodicity, and symmetry of position (the use of a book being passed quickly to and fro is very suggestive), intending to then use the 'Engine' to do the routine cracking of each dispatch, then this is a rather different story. The project was Ada and William's idea. (William had served in the diplomatic service and would be familiar with the use of codes). This makes Ada Lovelace the initiator of a project which, by giving both Britain, and probably the USA, a diplomatic and military advantage in the second part of the Nineteenth century, changed world history. Ada would never have wanted any credit for cracking the cipher, and developing the method that rendered all contemporary military and diplomatic ciphering techniques nugatory; quite the reverse. And it is clear from the gaps in the record of the letters between the collaborators that the evidence was destroyed, probably on her request by her irascible but intensely honorable executor, Charles Babbage. Charles Babbage toyed with the idea of going public, but the Crimean war put an end to that. The British Government had a valuable secret, and intended to keep it that way. Ada and Charles had quite often discussed possible moneymaking projects that would fund the development of the Analytic Engine, the first programmable computer, but their secret work was never in the running as a potential cash cow. I suspect that the British Government was, even then, working on the concealment of a discovery whose value to the nation depended on it remaining so. The success of code-breaking in the Crimean war, and the American Civil war, led to the British and Americans  subsequently giving much more weight and funding to the science of decryption. Paradoxically, this makes Ada's contribution even closer to the creation of Colossus, the first digital computer, at Bletchley Park, specifically to crack the Nazi’s secret codes.

    Read the article

  • Additional options in MDL

    - by Jane Zhang
        The Metadata Loader(MDL) enables you to populate a new repository as well as transfer, update, or restore a backup of existing repository metadata. It consists of two utilities: metadata export and metadata import. The export utility extracts metadata objects from a repository and writes the information into a file. The import utility reads the metadata information from an exported file and inserts the metadata objects into a repository.      While the Design Client provides an intuitive UI that helps you perform the most commonly used export and import tasks, OMBPlus scripting enables you to specify some additional options, and manage a control file that allows you to perform more specialized export and import tasks. Is it possible to utilize these options in MDL from Design Client? This article will tell you how to achieve it.      A property file named mdl.properties is used to configure the additional options. It stores options in name/value pairs. This file can be created and placed under the directory <owb installation path>/owb/bin/admin/. Below we will introduce the options that can be specified in the mdl.properties file. 1. DEFAULTDIRECTORY     When we open a Metadata Export/Import dialog in Design Client, a default directory is provided for MDL file and log file. For MDL Export, the default directory is <owb installation path>/owb/bin/. As for MDL Import, the default directory is <owb installation path>/owb/mdl/. It may not be the one you would want to use as a default. You can specify the option DEFAULTDIRECTORY in the mdl.properties file to set your own default directory for MDL Export/Import, for example, DEFAULTDIRECOTRY=/tmp/     In this example, the default directory is set to /tmp/. Be sure the value ends with a file separator since it represents a directory. In Windows, the file separator is “\”. In linux, the file separator is “/”. 2. MDLTRACEFILE     Sometimes we would like to trace the whole process of MDL Export/Import, and get detailed information about operations to help developers or supports troubleshooting. To turn on MDL trace, set the option MDLTRACEFILE in the mdl.properties file. MDLTRACEFILE=/tmp/mdl.trc    The right side of the equals sign is to specify the name of the file for MDL trace information to be written. If no path is specified, the file will be placed under directory <owb installation path>/owb/bin/admin/. However, the trace file may be large if the MDL file contains a large number of metadata objects, so please use this option sparingly. 3. CONTROLFILE       We can use a control file to specify how objects are imported or exported. We can set an option called CONTROLFILE in the mdl.properties file, so the control file can also be utilized in Design Client, for example, CONTROLFILE=/tmp/mdl_control_file.ctl     The control file stores options in name/value pairs. When using control file, be sure the file exists, otherwise an exception java.lang.Exception: CNV0002-0031(ERROR): Cannot find specified file will be thrown out during MDL Export/Import.      Next we will introduce some options specified in control file. ZIPFILEFORMAT     By default, MDL exports objects into a zip format file. This zip file has an .mdl extension and contains two files. For example, you export the repository metadata into a file called projects.mdl. When you unzip this MDL file, you obtain two files. The file projects.mdx contains the repository objects. The file mdlcatalog.xml contains internal information about the MDL XML file. Another choice is to combine these two files into one unzip text format file when doing MDL exporting.    In OMBPlus command related to MDL, there is an option called FILE_FORMAT which is used to specify the file format for the exported file. Its acceptable values are ZIP or TEXT. When the value TEXT is selected, the exported file is in text format, for example, OMBEXPORT MDL_FILE '/tmp/options_file_format_test.mdl' FILE_FORMAT TEXT FROM PROJECT 'MY_PROJECT'    How to achieve this via Design Client when doing an MDL exporting? Here we have another option called ZIPFILEFORMAT which has the same function as the FILE_FORMAT. The difference is the acceptable values for ZIPFILEFORMAT are Y or N. When the value is set to N, the exported file is in text format, otherwise it is in zip file format. LOGMESSAGELEVEL     Whenever you export or import repository metadata, MDL writes diagnostic and statistical information to a log file. Their are 3 types of status messages: Informational, Warning and Error. By default, the log file includes all types of message. Sometimes, user may only care about one type of messages, for example, they would like only error messages written to the log file. In order to achieve this, we can set an option called LOGMESSAGELEVEL in control file. The acceptable values for LOGMESSAGELEVEL are ALL, WARNING and ERROR. ALL: If the option LOGMESSAGELEVEL is set to ALL, all types of messages (Informational, Warning and Error) will be written into the log file. WARNING: If the option LOGMESSAGELEVEL is set to WARNING, only warning messages will be written into log file. ERROR: If the option LOGMESSAGELEVEL is set to ERROR, only error messages will be written into log file. UPDATEPROJECTATTRIBUTES, UPDATEMODULEATTRIBUTES      These two options are used to decide whether updating the attributes of projects/modules. The options work when projects/modules being imported already exist in repository and we use update metadata mode or replace metadata mode to do the MDL import. The acceptable values for these two options are Y or N. If the value is set to Y, the attributes of projects/modules will be updated, otherwise not.      Next, let’s give an example to see how these options take effect in MDL. 1. First of all, create the property file mdl.properties under the directory <owb installation path>/owb/bin/admin/. 2. Specify the options in the mdl.properties file, see the following screenshot. 3. Create the control file mdl_control_file.ctl under the directory /tmp/. Set the following options in control file. 4. Log into the OWB Design Client. 5. Create an Oracle module named ORA_MOD_1 under the project MY_PROJECT, then export the project MY_PROJECT into file my_project.mdl. 6. Check the trace file mdl.trc under the directory /tmp/. In this file, we can see very detail information for the above export task. 7. Check the exported MDL file. The file my_project.mdl is in text format. Opening the file, you can see the content of the file directly. It concats the file my_project.mdx and mdlcatalog.xml. 8. Modify the project MY_PROJECT and Oracle module ORA_MOD_1, add descriptions for them separately. Delete the location created in step 5. 9. Import the MDL file my_project.mdl. From the Metadata Import dialog, we can see the default directory for MDL file and log file has been changed to /tmp/. Here we use update metadata mode, match by names to do the importing. 10. After importing, check the description of the project MY_PROJECT, we can see the description is still there. But the description of the Oracle module ORA_MOD_1 has gone. That because we set the option UPDATEPROJECTATTRIBUTES to N, and set the option UPDATEMODULEATTRIBUTES to Y. 11. Check the log file, the log file only contains warning messages and the log message level is set to WARNING.      For more details about the 3 types of status messages, see Oracle® Warehouse Builder Installation and Administration Guide11g Release 2.

    Read the article

  • Optimizing Solaris 11 SHA-1 on Intel Processors

    - by danx
    SHA-1 is a "hash" or "digest" operation that produces a 160 bit (20 byte) checksum value on arbitrary data, such as a file. It is intended to uniquely identify text and to verify it hasn't been modified. Max Locktyukhin and others at Intel have improved the performance of the SHA-1 digest algorithm using multiple techniques. This code has been incorporated into Solaris 11 and is available in the Solaris Crypto Framework via the libmd(3LIB), the industry-standard libpkcs11(3LIB) library, and Solaris kernel module sha1. The optimized code is used automatically on systems with a x86 CPU supporting SSSE3 (Intel Supplemental SSSE3). Intel microprocessor architectures that support SSSE3 include Nehalem, Westmere, Sandy Bridge microprocessor families. Further optimizations are available for microprocessors that support AVX (such as Sandy Bridge). Although SHA-1 is considered obsolete because of weaknesses found in the SHA-1 algorithm—NIST recommends using at least SHA-256, SHA-1 is still widely used and will be with us for awhile more. Collisions (the same SHA-1 result for two different inputs) can be found with moderate effort. SHA-1 is used heavily though in SSL/TLS, for example. And SHA-1 is stronger than the older MD5 digest algorithm, another digest option defined in SSL/TLS. Optimizations Review SHA-1 operates by reading an arbitrary amount of data. The data is read in 512 bit (64 byte) blocks (the last block is padded in a specific way to ensure it's a full 64 bytes). Each 64 byte block has 80 "rounds" of calculations (consisting of a mixture of "ROTATE-LEFT", "AND", and "XOR") applied to the block. Each round produces a 32-bit intermediate result, called W[i]. Here's what each round operates: The first 16 rounds, rounds 0 to 15, read the 512 bit block 32 bits at-a-time. These 32 bits is used as input to the round. The remaining rounds, rounds 16 to 79, use the results from the previous rounds as input. Specifically for round i it XORs the results of rounds i-3, i-8, i-14, and i-16 and rotates the result left 1 bit. The remaining calculations for the round is a series of AND, XOR, and ROTATE-LEFT operators on the 32-bit input and some constants. The 32-bit result is saved as W[i] for round i. The 32-bit result of the final round, W[79], is the SHA-1 checksum. Optimization: Vectorization The first 16 rounds can be vectorized (computed in parallel) because they don't depend on the output of a previous round. As for the remaining rounds, because of step 2 above, computing round i depends on the results of round i-3, W[i-3], one can vectorize 3 rounds at-a-time. Max Locktyukhin found through simple factoring, explained in detail in his article referenced below, that the dependencies of round i on the results of rounds i-3, i-8, i-14, and i-16 can be replaced instead with dependencies on the results of rounds i-6, i-16, i-28, and i-32. That is, instead of initializing intermediate result W[i] with: W[i] = (W[i-3] XOR W[i-8] XOR W[i-14] XOR W[i-16]) ROTATE-LEFT 1 Initialize W[i] as follows: W[i] = (W[i-6] XOR W[i-16] XOR W[i-28] XOR W[i-32]) ROTATE-LEFT 2 That means that 6 rounds could be vectorized at once, with no additional calculations, instead of just 3! This optimization is independent of Intel or any other microprocessor architecture, although the microprocessor has to support vectorization to use it, and exploits one of the weaknesses of SHA-1. Optimization: SSSE3 Intel SSSE3 makes use of 16 %xmm registers, each 128 bits wide. The 4 32-bit inputs to a round, W[i-6], W[i-16], W[i-28], W[i-32], all fit in one %xmm register. The following code snippet, from Max Locktyukhin's article, converted to ATT assembly syntax, computes 4 rounds in parallel with just a dozen or so SSSE3 instructions: movdqa W_minus_04, W_TMP pxor W_minus_28, W // W equals W[i-32:i-29] before XOR // W = W[i-32:i-29] ^ W[i-28:i-25] palignr $8, W_minus_08, W_TMP // W_TMP = W[i-6:i-3], combined from // W[i-4:i-1] and W[i-8:i-5] vectors pxor W_minus_16, W // W = (W[i-32:i-29] ^ W[i-28:i-25]) ^ W[i-16:i-13] pxor W_TMP, W // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) movdqa W, W_TMP // 4 dwords in W are rotated left by 2 psrld $30, W // rotate left by 2 W = (W >> 30) | (W << 2) pslld $2, W_TMP por W, W_TMP movdqa W_TMP, W // four new W values W[i:i+3] are now calculated paddd (K_XMM), W_TMP // adding 4 current round's values of K movdqa W_TMP, (WK(i)) // storing for downstream GPR instructions to read A window of the 32 previous results, W[i-1] to W[i-32] is saved in memory on the stack. This is best illustrated with a chart. Without vectorization, computing the rounds is like this (each "R" represents 1 round of SHA-1 computation): RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR With vectorization, 4 rounds can be computed in parallel: RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR Optimization: AVX The new "Sandy Bridge" microprocessor architecture, which supports AVX, allows another interesting optimization. SSSE3 instructions have two operands, a input and an output. AVX allows three operands, two inputs and an output. In many cases two SSSE3 instructions can be combined into one AVX instruction. The difference is best illustrated with an example. Consider these two instructions from the snippet above: pxor W_minus_16, W // W = (W[i-32:i-29] ^ W[i-28:i-25]) ^ W[i-16:i-13] pxor W_TMP, W // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) With AVX they can be combined in one instruction: vpxor W_minus_16, W, W_TMP // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) This optimization is also in Solaris, although Sandy Bridge-based systems aren't widely available yet. As an exercise for the reader, AVX also has 256-bit media registers, %ymm0 - %ymm15 (a superset of 128-bit %xmm0 - %xmm15). Can %ymm registers be used to parallelize the code even more? Optimization: Solaris-specific In addition to using the Intel code described above, I performed other minor optimizations to the Solaris SHA-1 code: Increased the digest(1) and mac(1) command's buffer size from 4K to 64K, as previously done for decrypt(1) and encrypt(1). This size is well suited for ZFS file systems, but helps for other file systems as well. Optimized encode functions, which byte swap the input and output data, to copy/byte-swap 4 or 8 bytes at-a-time instead of 1 byte-at-a-time. Enhanced the Solaris mdb(1) and kmdb(1) debuggers to display all 16 %xmm and %ymm registers (mdb "$x" command). Previously they only displayed the first 8 that are available in 32-bit mode. Can't optimize if you can't debug :-). Changed the SHA-1 code to allow processing in "chunks" greater than 2 Gigabytes (64-bits) Performance I measured performance on a Sun Ultra 27 (which has a Nehalem-class Xeon 5500 Intel W3570 microprocessor @3.2GHz). Turbo mode is disabled for consistent performance measurement. Graphs are better than words and numbers, so here they are: The first graph shows the Solaris digest(1) command before and after the optimizations discussed here, contained in libmd(3LIB). I ran the digest command on a half GByte file in swapfs (/tmp) and execution time decreased from 1.35 seconds to 0.98 seconds. The second graph shows the the results of an internal microbenchmark that uses the Solaris libpkcs11(3LIB) library. The operations are on a 128 byte buffer with 10,000 iterations. The results show operations increased from 320,000 to 416,000 operations per second. Finally the third graph shows the results of an internal kernel microbenchmark that uses the Solaris /kernel/crypto/amd64/sha1 module. The operations are on a 64Kbyte buffer with 100 iterations. third graph shows the results of an internal kernel microbenchmark that uses the Solaris /kernel/crypto/amd64/sha1 module. The operations are on a 64Kbyte buffer with 100 iterations. The results show for 1 kernel thread, operations increased from 410 to 600 MBytes/second. For 8 kernel threads, operations increase from 1540 to 1940 MBytes/second. Availability This code is in Solaris 11 FCS. It is available in the 64-bit libmd(3LIB) library for 64-bit programs and is in the Solaris kernel. You must be running hardware that supports Intel's SSSE3 instructions (for example, Intel Nehalem, Westmere, or Sandy Bridge microprocessor architectures). The easiest way to determine if SSSE3 is available is with the isainfo(1) command. For example, nehalem $ isainfo -v $ isainfo -v 64-bit amd64 applications sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu If the output also shows "avx", the Solaris executes the even-more optimized 3-operand AVX instructions for SHA-1 mentioned above: sandybridge $ isainfo -v 64-bit amd64 applications avx xsave pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications avx xsave pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this code. Solaris libraries and kernel automatically determine if it's running on SSSE3 or AVX-capable machines and execute the correctly-tuned code for that microprocessor. Summary The Solaris 11 Crypto Framework, via the sha1 kernel module and libmd(3LIB) and libpkcs11(3LIB) libraries, incorporated a useful SHA-1 optimization from Intel for SSSE3-capable microprocessors. As with other Solaris optimizations, they come automatically "under the hood" with the current Solaris release. References "Improving the Performance of the Secure Hash Algorithm (SHA-1)" by Max Locktyukhin (Intel, March 2010). The source for these SHA-1 optimizations used in Solaris "SHA-1", Wikipedia Good overview of SHA-1 FIPS 180-1 SHA-1 standard (FIPS, 1995) NIST Comments on Cryptanalytic Attacks on SHA-1 (2005, revised 2006)

    Read the article

  • C#/.NET &ndash; Finding an Item&rsquo;s Index in IEnumerable&lt;T&gt;

    - by James Michael Hare
    Sorry for the long blogging hiatus.  First it was, of course, the holidays hustle and bustle, then my brother and his wife gave birth to their son, so I’ve been away from my blogging for two weeks. Background: Finding an item’s index in List<T> is easy… Many times in our day to day programming activities, we want to find the index of an item in a collection.  Now, if we have a List<T> and we’re looking for the item itself this is trivial: 1: // assume have a list of ints: 2: var list = new List<int> { 1, 13, 42, 64, 121, 77, 5, 99, 132 }; 3:  4: // can find the exact item using IndexOf() 5: var pos = list.IndexOf(64); This will return the position of the item if it’s found, or –1 if not.  It’s easy to see how this works for primitive types where equality is well defined.  For complex types, however, it will attempt to compare them using EqualityComparer<T>.Default which, in a nutshell, relies on the object’s Equals() method. So what if we want to search for a condition instead of equality?  That’s also easy in a List<T> with the FindIndex() method: 1: // assume have a list of ints: 2: var list = new List<int> { 1, 13, 42, 64, 121, 77, 5, 99, 132 }; 3:  4: // finds index of first even number or -1 if not found. 5: var pos = list.FindIndex(i => i % 2 == 0);   Problem: Finding an item’s index in IEnumerable<T> is not so easy... This is all well and good for lists, but what if we want to do the same thing for IEnumerable<T>?  A collection of IEnumerable<T> has no indexing, so there’s no direct method to find an item’s index.  LINQ, as powerful as it is, gives us many tools to get us this information, but not in one step.  As with almost any problem involving collections, there are several ways to accomplish the same goal.  And once again as with almost any problem involving collections, the choice of the solution somewhat depends on the situation. So let’s look at a few possible alternatives.  I’m going to express each of these as extension methods for simplicity and consistency. Solution: The TakeWhile() and Count() combo One of the things you can do is to perform a TakeWhile() on the list as long as your find condition is not true, and then do a Count() of the items it took.  The only downside to this method is that if the item is not in the list, the index will be the full Count() of items, and not –1.  So if you don’t know the size of the list beforehand, this can be confusing. 1: // a collection of extra extension methods off IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // Finds an item in the collection, similar to List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: // note if item not found, result is length and not -1! 8: return list.TakeWhile(i => !finder(i)).Count(); 9: } 10: } Personally, I don’t like switching the paradigm of not found away from –1, so this is one of my least favorites.  Solution: Select with index Many people don’t realize that there is an alternative form of the LINQ Select() method that will provide you an index of the item being selected: 1: list.Select( (item,index) => do something here with the item and/or index... ) This can come in handy, but must be treated with care.  This is because the index provided is only as pertains to the result of previous operations (if any).  For example: 1: // assume have a list of ints: 2: var list = new List<int> { 1, 13, 42, 64, 121, 77, 5, 99, 132 }; 3:  4: // you'd hope this would give you the indexes of the even numbers 5: // which would be 2, 3, 8, but in reality it gives you 0, 1, 2 6: list.Where(item => item % 2 == 0).Select((item,index) => index); The reason the example gives you the collection { 0, 1, 2 } is because the where clause passes over any items that are odd, and therefore only the even items are given to the select and only they are given indexes. Conversely, we can’t select the index and then test the item in a Where() clause, because then the Where() clause would be operating on the index and not the item! So, what we have to do is to select the item and index and put them together in an anonymous type.  It looks ugly, but it works: 1: // extensions defined on IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // finds an item in a collection, similar to List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: // if you don't name the anonymous properties they are the variable names 8: return list.Select((item, index) => new { item, index }) 9: .Where(p => finder(p.item)) 10: .Select(p => p.index + 1) 11: .FirstOrDefault() - 1; 12: } 13: }     So let’s look at this, because i know it’s convoluted: First Select() joins the items and their indexes into an anonymous type. Where() filters that list to only the ones matching the predicate. Second Select() picks the index of the matches and adds 1 – this is to distinguish between not found and first item. FirstOrDefault() returns the first item found from the previous clauses or default (zero) if not found. Subtract one so that not found (zero) will be –1, and first item (one) will be zero. The bad thing is, this is ugly as hell and creates anonymous objects for each item tested until it finds the match.  This concerns me a bit but we’ll defer judgment until compare the relative performances below. Solution: Convert ToList() and use FindIndex() This solution is easy enough.  We know any IEnumerable<T> can be converted to List<T> using the LINQ extension method ToList(), so we can easily convert the collection to a list and then just use the FindIndex() method baked into List<T>. 1: // a collection of extension methods for IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // find the index of an item in the collection similar to List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: return list.ToList().FindIndex(finder); 8: } 9: } This solution is simplicity itself!  It is very concise and elegant and you need not worry about anyone misinterpreting what it’s trying to do (as opposed to the more convoluted LINQ methods above). But the main thing I’m concerned about here is the performance hit to allocate the List<T> in the ToList() call, but once again we’ll explore that in a second. Solution: Roll your own FindIndex() for IEnumerable<T> Of course, you can always roll your own FindIndex() method for IEnumerable<T>.  It would be a very simple for loop which scans for the item and counts as it goes.  There’s many ways to do this, but one such way might look like: 1: // extension methods for IEnumerable<T> 2: public static class EnumerableExtensions 3: { 4: // Finds an item matching a predicate in the enumeration, much like List<T>.FindIndex() 5: public static int FindIndex<T>(this IEnumerable<T> list, Predicate<T> finder) 6: { 7: int index = 0; 8: foreach (var item in list) 9: { 10: if (finder(item)) 11: { 12: return index; 13: } 14:  15: index++; 16: } 17:  18: return -1; 19: } 20: } Well, it’s not quite simplicity, and those less familiar with LINQ may prefer it since it doesn’t include all of the lambdas and behind the scenes iterators that come with deferred execution.  But does having this long, blown out method really gain us much in performance? Comparison of Proposed Solutions So we’ve now seen four solutions, let’s analyze their collective performance.  I took each of the four methods described above and run them over 100,000 iterations of lists of size 10, 100, 1000, and 10000 and here’s the performance results.  Then I looked for targets at the begining of the list (best case), middle of the list (the average case) and not in the list (worst case as must scan all of the list). Each of the times below is the average time in milliseconds for one execution as computer over the 100,000 iterations: Searches Matching First Item (Best Case)   10 100 1000 10000 TakeWhile 0.0003 0.0003 0.0003 0.0003 Select 0.0005 0.0005 0.0005 0.0005 ToList 0.0002 0.0003 0.0013 0.0121 Manual 0.0001 0.0001 0.0001 0.0001   Searches Matching Middle Item (Average Case)   10 100 1000 10000 TakeWhile 0.0004 0.0020 0.0191 0.1889 Select 0.0008 0.0042 0.0387 0.3802 ToList 0.0002 0.0007 0.0057 0.0562 Manual 0.0002 0.0013 0.0129 0.1255   Searches Where Not Found (Worst Case)   10 100 1000 10000 TakeWhile 0.0006 0.0039 0.0381 0.3770 Select 0.0012 0.0081 0.0758 0.7583 ToList 0.0002 0.0012 0.0100 0.0996 Manual 0.0003 0.0026 0.0253 0.2514   Notice something interesting here, you’d think the “roll your own” loop would be the most efficient, but it only wins when the item is first (or very close to it) regardless of list size.  In almost all other cases though and in particular the average case and worst case, the ToList()/FindIndex() combo wins for performance, even though it is creating some temporary memory to hold the List<T>.  If you examine the algorithm, the reason why is most likely because once it’s in a ToList() form, internally FindIndex() scans the internal array which is much more efficient to iterate over.  Thus, it takes a one time performance hit (not including any GC impact) to create the List<T> but after that the performance is much better. Summary If you’re concerned about too many throw-away objects, you can always roll your own FindIndex() method, but for sheer simplicity and overall performance, using the ToList()/FindIndex() combo performs best on nearly all list sizes in the average and worst cases.    Technorati Tags: C#,.NET,Litte Wonders,BlackRabbitCoder,Software,LINQ,List

    Read the article

  • UndoRedo on Nodes

    - by Geertjan
    When a change is made to the property in the Properties Window, below, the undo/redo functionality becomes enabled: When undo/redo are invoked, e.g., via the buttons in the toolbar, the display name of the node changes accordingly. The only problem I have is that the buttons only become enabled when the Person Window is selected, not when the Properties Window is selected, which would be desirable. Here's the Person object: public class Person implements PropertyChangeListener {     private String name;     public static final String PROP_NAME = "name";     public Person(String name) {         this.name = name;     }     public String getName() {         return name;     }     public void setName(String name) {         String oldName = this.name;         this.name = name;         propertyChangeSupport.firePropertyChange(PROP_NAME, oldName, name);     }     private transient final PropertyChangeSupport propertyChangeSupport = new PropertyChangeSupport(this);     public void addPropertyChangeListener(PropertyChangeListener listener) {         propertyChangeSupport.addPropertyChangeListener(listener);     }     public void removePropertyChangeListener(PropertyChangeListener listener) {         propertyChangeSupport.removePropertyChangeListener(listener);     }     @Override     public void propertyChange(PropertyChangeEvent evt) {         propertyChangeSupport.firePropertyChange(evt);     } } And here's the Node with UndoRedo enablement: public class PersonNode extends AbstractNode implements UndoRedo.Provider, PropertyChangeListener {     private UndoRedo.Manager manager = new UndoRedo.Manager();     private boolean undoRedoEvent;     public PersonNode(Person person) {         super(Children.LEAF, Lookups.singleton(person));         person.addPropertyChangeListener(this);         setDisplayName(person.getName());     }     @Override     protected Sheet createSheet() {         Sheet sheet = Sheet.createDefault();         Sheet.Set set = Sheet.createPropertiesSet();         set.put(new NameProperty(getLookup().lookup(Person.class)));         sheet.put(set);         return sheet;     }     @Override     public void propertyChange(PropertyChangeEvent evt) {         if (evt.getPropertyName().equals(Person.PROP_NAME)) {             firePropertyChange(evt.getPropertyName(), evt.getOldValue(), evt.getNewValue());         }     }     public void fireUndoableEvent(String property, Person source, Object oldValue, Object newValue) {         manager.addEdit(new MyAbstractUndoableEdit(source, oldValue, newValue));     }     @Override     public UndoRedo getUndoRedo() {         return manager;     }     @Override     public String getDisplayName() {         Person p = getLookup().lookup(Person.class);         if (p != null) {             return p.getName();         }         return super.getDisplayName();     }     private class NameProperty extends PropertySupport.ReadWrite<String> {         private Person p;         public NameProperty(Person p) {             super("name", String.class, "Name", "Name of Person");             this.p = p;         }         @Override         public String getValue() throws IllegalAccessException, InvocationTargetException {             return p.getName();         }         @Override         public void setValue(String newValue) throws IllegalAccessException, IllegalArgumentException, InvocationTargetException {             String oldValue = p.getName();             p.setName(newValue);             if (!undoRedoEvent) {                 fireUndoableEvent("name", p, oldValue, newValue);                 fireDisplayNameChange(oldValue, newValue);             }         }     }     class MyAbstractUndoableEdit extends AbstractUndoableEdit {         private final String oldValue;         private final String newValue;         private final Person source;         private MyAbstractUndoableEdit(Person source, Object oldValue, Object newValue) {             this.oldValue = oldValue.toString();             this.newValue = newValue.toString();             this.source = source;         }         @Override         public boolean canRedo() {             return true;         }         @Override         public boolean canUndo() {             return true;         }         @Override         public void undo() throws CannotUndoException {             undoRedoEvent = true;             source.setName(oldValue.toString());             fireDisplayNameChange(oldValue, newValue);             undoRedoEvent = false;         }         @Override         public void redo() throws CannotUndoException {             undoRedoEvent = true;             source.setName(newValue.toString());             fireDisplayNameChange(oldValue, newValue);             undoRedoEvent = false;         }     } } Does anyone out there know how to have the Undo/Redo functionality enabled when the Properties Window is selected?

    Read the article

  • WSDL-world vs CLR-world – some differences

    - by nmarun
    A change in mindset is required when switching between a typical CLR application and a web service application. There are some things in a CLR environment that just don’t add-up in a WSDL arena (and vice-versa). I’m listing some of them here. When I say WSDL-world, I’m mostly talking with respect to a WCF Service and / or a Web Service. No (direct) Method Overloading: You definitely can have overloaded methods in a, say, Console application, but when it comes to a WCF / Web Services application, you need to adorn these overloaded methods with a special attribute so the service knows which specific method to invoke. When you’re working with WCF, use the Name property of the OperationContract attribute to provide unique names. 1: [OperationContract(Name = "AddInt")] 2: int Add(int arg1, int arg2); 3:  4: [OperationContract(Name = "AddDouble")] 5: double Add(double arg1, double arg2); By default, the proxy generates the code for this as: 1: [System.ServiceModel.OperationContractAttribute( 2: Action="http://tempuri.org/ILearnWcfService/AddInt", 3: ReplyAction="http://tempuri.org/ILearnWcfService/AddIntResponse")] 4: int AddInt(int arg1, int arg2); 5: 6: [System.ServiceModel.OperationContractAttribute( 7: Action="http://tempuri.org/ILearnWcfServiceExtend/AddDouble", 8: ReplyAction="http://tempuri.org/ILearnWcfServiceExtend/AddDoubleResponse")] 9: double AddDouble(double arg1, double arg2); With Web Services though the story is slightly different. Even after setting the MessageName property of the WebMethod attribute, the proxy does not change the name of the method, but only the underlying soap message changes. 1: [WebMethod] 2: public string HelloGalaxy() 3: { 4: return "Hello Milky Way!"; 5: } 6:  7: [WebMethod(MessageName = "HelloAnyGalaxy")] 8: public string HelloGalaxy(string galaxyName) 9: { 10: return string.Format("Hello {0}!", galaxyName); 11: } The one thing you need to remember is to set the WebServiceBinding accordingly. 1: [WebServiceBinding(ConformsTo = WsiProfiles.None)] The proxy is: 1: [System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://tempuri.org/HelloGalaxy", 2: RequestNamespace="http://tempuri.org/", 3: ResponseNamespace="http://tempuri.org/", 4: Use=System.Web.Services.Description.SoapBindingUse.Literal, 5: ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)] 6: public string HelloGalaxy() 7:  8: [System.Web.Services.WebMethodAttribute(MessageName="HelloGalaxy1")] 9: [System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://tempuri.org/HelloAnyGalaxy", 10: RequestElementName="HelloAnyGalaxy", 11: RequestNamespace="http://tempuri.org/", 12: ResponseElementName="HelloAnyGalaxyResponse", 13: ResponseNamespace="http://tempuri.org/", 14: Use=System.Web.Services.Description.SoapBindingUse.Literal, 15: ParameterStyle=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)] 16: [return: System.Xml.Serialization.XmlElementAttribute("HelloAnyGalaxyResult")] 17: public string HelloGalaxy(string galaxyName) 18:  You see the calling method name is the same in the proxy, however the soap message that gets generated is different. Using interchangeable data types: See details on this here. Type visibility: In a CLR-based application, if you mark a field as private, well we all know, it’s ‘private’. Coming to a WSDL side of things, in a Web Service, private fields and web methods will not get generated in the proxy. In WCF however, all your operation contracts will be public as they get implemented from an interface. Even in case your ServiceContract interface is declared internal/private, you will see it as a public interface in the proxy. This is because type visibility is a CLR concept and has no bearing on WCF. Also if a private field has the [DataMember] attribute in a data contract, it will get emitted in the proxy class as a public property for the very same reason. 1: [DataContract] 2: public struct Person 3: { 4: [DataMember] 5: private int _x; 6:  7: [DataMember] 8: public int Id { get; set; } 9:  10: [DataMember] 11: public string FirstName { get; set; } 12:  13: [DataMember] 14: public string Header { get; set; } 15: } 16: } See the ‘_x’ field is a private member with the [DataMember] attribute, but the proxy class shows as below: 1: [System.Runtime.Serialization.DataMemberAttribute()] 2: public int _x { 3: get { 4: return this._xField; 5: } 6: set { 7: if ((this._xField.Equals(value) != true)) { 8: this._xField = value; 9: this.RaisePropertyChanged("_x"); 10: } 11: } 12: } Passing derived types to web methods / operation contracts: Once again, in a CLR application, I can have a derived class be passed as a parameter where a base class is expected. I have the following set up for my WCF service. 1: [DataContract] 2: public class Employee 3: { 4: [DataMember(Name = "Id")] 5: public int EmployeeId { get; set; } 6:  7: [DataMember(Name="FirstName")] 8: public string FName { get; set; } 9:  10: [DataMember] 11: public string Header { get; set; } 12: } 13:  14: [DataContract] 15: public class Manager : Employee 16: { 17: [DataMember] 18: private int _x; 19: } 20:  21: // service contract 22: [OperationContract] 23: Manager SaveManager(Employee employee); 24:  25: // in my calling code 26: Manager manager = new Manager {_x = 1, FirstName = "abc"}; 27: manager = LearnWcfServiceClient.SaveManager(manager); The above will throw an exception saying: In short, this is saying, that a Manager type was found where an Employee type was expected! Hierarchy flattening of interfaces in WCF: See details on this here. In CLR world, you’ll see the entire hierarchy as is. That’s another difference. Using ref parameters: * can use ref for parameters, but operation contract should not be one-way (gives an error when you do an update service reference)   => bad programming; create a return object that is composed of everything you need! This one kind of stumped me. Not sure why I tried this, but you can pass parameters prefixed with ref keyword* (* terms and conditions apply). The main issue is this, how would we know the changes that were made to a ‘ref’ input parameter are returned back from the service and updated to the local variable? Turns out both Web Services and WCF make this tracking happen by passing the input parameter in the response soap. This way when the deserializer does its magic, it maps all the elements of the response xml thereby updating our local variable. Here’s what I’m talking about. 1: [WebMethod(MessageName = "HelloAnyGalaxy")] 2: public string HelloGalaxy(ref string galaxyName) 3: { 4: string output = string.Format("Hello {0}", galaxyName); 5: if (galaxyName == "Andromeda") 6: { 7: galaxyName = string.Format("{0} (2.5 million light-years away)", galaxyName); 8: } 9: return output; 10: } This is how the request and response look like in soapUI. As I said above, the behavior is quite similar for WCF as well. But the catch comes when you have a one-way web methods / operation contracts. If you have an operation contract whose return type is void, is marked one-way and that has ref parameters then you’ll get an error message when you try to reference such a service. 1: [OperationContract(Name = "Sum", IsOneWay = true)] 2: void Sum(ref double arg1, ref double arg2); 3:  4: public void Sum(ref double arg1, ref double arg2) 5: { 6: arg1 += arg2; 7: } This is what I got when I did an update to my service reference: Makes sense, because a OneWay operation is… one-way – there’s no returning from this operation. You can also have a one-way web method: 1: [SoapDocumentMethod(OneWay = true)] 2: [WebMethod(MessageName = "HelloAnyGalaxy")] 3: public void HelloGalaxy(ref string galaxyName) This will throw an exception message similar to the one above when you try to update your web service reference. In the CLR space, there’s no such concept of a ‘one-way’ street! Yes, there’s void, but you very well can have ref parameters returned through such a method. Just a point here; although the ref/out concept sounds cool, it’s generally is a code-smell. The better approach is to always return an object that is composed of everything you need returned from a method. These are some of the differences that we need to bear when dealing with services that are different from our daily ‘CLR’ life.

    Read the article

  • Building Publishing Pages in Code

    - by David Jacobus
    Originally posted on: http://geekswithblogs.net/djacobus/archive/2013/10/27/154478.aspxOne of the Mantras we developers try to follow: Ensure that the solution package we deliver to the client is complete.  We build Web Parts, Master Pages, Images, CSS files and other artifacts that we push to the client with a WSP (Solution Package) And then we have them finish the solution by building their site pages by adding the web parts to the site pages.       I am a proponent that we,  the developers,  should minimize this time consuming work and build these site pages in code.  I found a few blogs and some MSDN documentation but not really a complete solution that has all these artifacts working in one solution.   What I am will discuss and provide a solution for is a package that has: 1.  Master Page 2.  Page Layout 3.  Page Web Parts 4.  Site Pages   Most all done in code without the development team or the developers having to finish up the site building process spending a few hours or days completing the site!  I am not implying that in Development we do this. In fact,  we build these pages incrementally testing our web parts, etc. I am saying that the final action in our solution is that we take all these artifacts and add them to the site pages in code, the client then only needs to activate a few features and VIOLA their site appears!.  I had a project that had me build 8 pages like this as part of the solution.   In this blog post, I am taking a master page solution that I have called DJGreenMaster.  On My Office 365 Development Site it looks like this:     It is a generic master page for a SharePoint 2010 site Along with a three column layout.  Centered with a footer that uses a SharePoint List and Web Part for the footer links.  I use this master page a lot in my site development!  Easy to change the color and site logo with a little CSS.   I am going to add a few web parts for discussion purposes and then add these web parts to a site page in code.    Lets look at the solution package for DJ Green Master as that will be the basis project for building the site pages:   What you are seeing  is a complete solution to add a Master Page to a site collection which contains: 1.  Master Page Module which contains the Master Page and Page Layout 2.  The Footer Module to add the Footer Web Part 3.  Miscellaneous modules to add images, JQuery, CSS and subsite page 4.  3 features and two feature event receivers: a.  DJGreenCSS, used to add the master page CSS file to Style Sheet Library and an Event Receiver to check it in. b.  DJGreenMaster used to add the Master Page and Page Layout.  In an Event Receiver change the master page to DJGreenMaster , create the footer list and check the files in. c.  DJGreenMasterWebParts add the Footer Web Part to the site collection. I won’t go over the code for this as I will give it to you at the end of this blog post. I have discussed creating a list in code in a previous post.  So what we have is the basis to begin what is germane to this discussion.  I have the first two requirements completed.  I need now to add page web parts and the build the pages in code.  For the page web parts, I will use one downloaded from Codeplex which does not use a SharePoint custom list for simplicity:   Weather Web Part and another downloaded from MSDN which is a SharePoint Custom Calendar Web Part, I had to add some functionality to make the events color coded to exceed the built-in 10 overlays using JQuery!    Here is the solution with the added projects:     Here is a screen shot of the Weather Web Part Deployed:   Here is a screen shot of the Site Calendar with JQuery:     Okay, Now we get to the final item:  To create Publishing pages.   We need to add a feature receiver to the DJGreenMaster project I will name it DJSitePages and also add a Event Receiver:       We will build the page at the site collection level and all of the code necessary will be contained in the event receiver.   Added a reference to the Microsoft.SharePoint.Publishing.dll contained in the ISAPI folder of the 14 Hive.   First we will add some static methods from which we will call  in our Event Receiver:   1: private static void checkOut(string pagename, PublishingPage p) 2: { 3: if (p.Name.Equals(pagename, StringComparison.InvariantCultureIgnoreCase)) 4: { 5: 6: if (p.ListItem.File.CheckOutType == SPFile.SPCheckOutType.None) 7: { 8: p.CheckOut(); 9: } 10:   11: if (p.ListItem.File.CheckOutType == SPFile.SPCheckOutType.Online) 12: { 13: p.CheckIn("initial"); 14: p.CheckOut(); 15: } 16: } 17: } 18: private static void checkin(PublishingPage p,PublishingWeb pw) 19: { 20: SPFile publishFile = p.ListItem.File; 21:   22: if (publishFile.CheckOutType != SPFile.SPCheckOutType.None) 23: { 24:   25: publishFile.CheckIn( 26:   27: "CheckedIn"); 28:   29: publishFile.Publish( 30:   31: "published"); 32: } 33: // In case of content approval, approve the file need to add 34: //pulishing site 35: if (pw.PagesList.EnableModeration) 36: { 37: publishFile.Approve("Initial"); 38: } 39: publishFile.Update(); 40: }   In a Publishing Site, CheckIn and CheckOut  are required when dealing with pages in a publishing site.  Okay lets look at the Feature Activated Event Receiver: 1: public override void FeatureActivated(SPFeatureReceiverProperties properties) 2: { 3:   4:   5:   6: object oParent = properties.Feature.Parent; 7:   8:   9:   10: if (properties.Feature.Parent is SPWeb) 11: { 12:   13: currentWeb = (SPWeb)oParent; 14:   15: currentSite = currentWeb.Site; 16:   17: } 18:   19: else 20: { 21:   22: currentSite = (SPSite)oParent; 23:   24: currentWeb = currentSite.RootWeb; 25:   26: } 27: 28:   29: //create the publishing pages 30: CreatePublishingPage(currentWeb, "Home.aspx", "ThreeColumnLayout.aspx","Home"); 31: //CreatePublishingPage(currentWeb, "Dummy.aspx", "ThreeColumnLayout.aspx","Dummy"); 32: }     Basically we are calling the method Create Publishing Page with parameters:  Current Web, Name of the Page, The Page Layout, Title of the page.  Let’s look at the Create Publishing Page method:   1:   2: private void CreatePublishingPage(SPWeb site, string pageName, string pageLayoutName, string title) 3: { 4: PublishingSite pubSiteCollection = new PublishingSite(site.Site); 5: PublishingWeb pubSite = null; 6: if (pubSiteCollection != null) 7: { 8: // Assign an object to the pubSite variable 9: if (PublishingWeb.IsPublishingWeb(site)) 10: { 11: pubSite = PublishingWeb.GetPublishingWeb(site); 12: } 13: } 14: // Search for the page layout for creating the new page 15: PageLayout currentPageLayout = FindPageLayout(pubSiteCollection, pageLayoutName); 16: // Check or the Page Layout could be found in the collection 17: // if not (== null, return because the page has to be based on 18: // an excisting Page Layout 19: if (currentPageLayout == null) 20: { 21: return; 22: } 23:   24: 25: PublishingPageCollection pages = pubSite.GetPublishingPages(); 26: foreach (PublishingPage p in pages) 27: { 28: //The page allready exists 29: if ((p.Name == pageName)) return; 30:   31: } 32: 33:   34:   35: PublishingPage newPage = pages.Add(pageName, currentPageLayout); 36: newPage.Description = pageName.Replace(".aspx", ""); 37: // Here you can set some properties like: 38: newPage.IncludeInCurrentNavigation = true; 39: newPage.IncludeInGlobalNavigation = true; 40: newPage.Title = title; 41: 42: 43:   44:   45: 46:   47: //build the page 48:   49: 50: switch (pageName) 51: { 52: case "Homer.aspx": 53: checkOut("Courier.aspx", newPage); 54: BuildHomePage(site, newPage); 55: break; 56:   57:   58: default: 59: break; 60: } 61: // newPage.Update(); 62: //Now we can checkin the newly created page to the “pages” library 63: checkin(newPage, pubSite); 64: 65: 66: }     The narrative in what is going on here is: 1.  We need to find out if we are dealing with a Publishing Web.  2.  Get the Page Layout 3.  Create the Page in the pages list. 4.  Based on the page name we build that page.  (Here is where we can add all the methods to build multiple pages.) In the switch we call Build Home Page where all the work is done to add the web parts.  Prior to adding the web parts we need to add references to the two web part projects in the solution. using WeatherWebPart.WeatherWebPart; using CSSharePointCustomCalendar.CustomCalendarWebPart;   We can then reference them in the Build Home Page method.   Let’s look at Build Home Page: 1:   2: private static void BuildHomePage(SPWeb web, PublishingPage pubPage) 3: { 4: // build the pages 5: // Get the web part manager for each page and do the same code as below (copy and paste, change to the web parts for the page) 6: // Part Description 7: SPLimitedWebPartManager mgr = web.GetLimitedWebPartManager(web.Url + "/Pages/Home.aspx", System.Web.UI.WebControls.WebParts.PersonalizationScope.Shared); 8: WeatherWebPart.WeatherWebPart.WeatherWebPart wwp = new WeatherWebPart.WeatherWebPart.WeatherWebPart() { ChromeType = PartChromeType.None, Title = "Todays Weather", AreaCode = "2504627" }; 9: //Dictionary<string, string> wwpDic= new Dictionary<string, string>(); 10: //wwpDic.Add("AreaCode", "2504627"); 11: //setWebPartProperties(wwp, "WeatherWebPart", wwpDic); 12:   13: // Add the web part to a pagelayout Web Part Zone 14: mgr.AddWebPart(wwp, "g_685594D193AA4BBFABEF2FB0C8A6C1DD", 1); 15:   16: CSSharePointCustomCalendar.CustomCalendarWebPart.CustomCalendarWebPart cwp = new CustomCalendarWebPart() { ChromeType = PartChromeType.None, Title = "Corporate Calendar", listName="CorporateCalendar" }; 17:   18: mgr.AddWebPart(cwp, "g_20CBAA1DF45949CDA5D351350462E4C6", 1); 19:   20:   21: pubPage.Update(); 22:   23: } Here is what we are doing: 1.  We got  a reference to the SharePoint Limited Web Part Manager and linked/referenced Home.aspx  2.  Instantiated the a new Weather Web Part and used the Manager to add it to the page in a web part zone identified by ID,  thus the need for a Page Layout where the developer knows the ID’s. 3.  Instantiated the Calendar Web Part and used the Manager to add it to the page. 4. We the called the Publishing Page update method. 5.  Lastly, the Create Publishing Page method checks in the page just created.   Here is a screen shot of the page right after a deploy!       Okay!  I know we could make a home page look much better!  However, I built this whole Integrated solution in less than a day with the caveat that the Green Master was already built!  So what am I saying?  Build you web parts, master pages, etc.  At the very end of the engagement build the pages.  The client will be very happy!  Here is the code for this solution Code

    Read the article

  • 8-Puzzle Solution executes infinitely [migrated]

    - by Ashwin
    I am looking for a solution to 8-puzzle problem using the A* Algorithm. I found this project on the internet. Please see the files - proj1 and EightPuzzle. The proj1 contains the entry point for the program(the main() function) and EightPuzzle describes a particular state of the puzzle. Each state is an object of the 8-puzzle. I feel that there is nothing wrong in the logic. But it loops forever for these two inputs that I have tried : {8,2,7,5,1,6,3,0,4} and {3,1,6,8,4,5,7,2,0}. Both of them are valid input states. What is wrong with the code? Note For better viewing copy the code in a Notepad++ or some other text editor(which has the capability to recognize java source file) because there are lot of comments in the code. Since A* requires a heuristic, they have provided the option of using manhattan distance and a heuristic that calculates the number of misplaced tiles. And to ensure that the best heuristic is executed first, they have implemented a PriorityQueue. The compareTo() function is implemented in the EightPuzzle class. The input to the program can be changed by changing the value of p1d in the main() function of proj1 class. The reason I am telling that there exists solution for the two my above inputs is because the applet here solves them. Please ensure that you select 8-puzzle from teh options in the applet. EDITI gave this input {0,5,7,6,8,1,2,4,3}. It took about 10 seconds and gave a result with 26 moves. But the applet gave a result with 24 moves in 0.0001 seconds with A*. For quick reference I have pasted the the two classes without the comments : EightPuzzle import java.util.*; public class EightPuzzle implements Comparable <Object> { int[] puzzle = new int[9]; int h_n= 0; int hueristic_type = 0; int g_n = 0; int f_n = 0; EightPuzzle parent = null; public EightPuzzle(int[] p, int h_type, int cost) { this.puzzle = p; this.hueristic_type = h_type; this.h_n = (h_type == 1) ? h1(p) : h2(p); this.g_n = cost; this.f_n = h_n + g_n; } public int getF_n() { return f_n; } public void setParent(EightPuzzle input) { this.parent = input; } public EightPuzzle getParent() { return this.parent; } public int inversions() { /* * Definition: For any other configuration besides the goal, * whenever a tile with a greater number on it precedes a * tile with a smaller number, the two tiles are said to be inverted */ int inversion = 0; for(int i = 0; i < this.puzzle.length; i++ ) { for(int j = 0; j < i; j++) { if(this.puzzle[i] != 0 && this.puzzle[j] != 0) { if(this.puzzle[i] < this.puzzle[j]) inversion++; } } } return inversion; } public int h1(int[] list) // h1 = the number of misplaced tiles { int gn = 0; for(int i = 0; i < list.length; i++) { if(list[i] != i && list[i] != 0) gn++; } return gn; } public LinkedList<EightPuzzle> getChildren() { LinkedList<EightPuzzle> children = new LinkedList<EightPuzzle>(); int loc = 0; int temparray[] = new int[this.puzzle.length]; EightPuzzle rightP, upP, downP, leftP; while(this.puzzle[loc] != 0) { loc++; } if(loc % 3 == 0){ temparray = this.puzzle.clone(); temparray[loc] = temparray[loc + 1]; temparray[loc + 1] = 0; rightP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1); rightP.setParent(this); children.add(rightP); }else if(loc % 3 == 1){ //add one child swaps with right temparray = this.puzzle.clone(); temparray[loc] = temparray[loc + 1]; temparray[loc + 1] = 0; rightP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1); rightP.setParent(this); children.add(rightP); //add one child swaps with left temparray = this.puzzle.clone(); temparray[loc] = temparray[loc - 1]; temparray[loc - 1] = 0; leftP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1); leftP.setParent(this); children.add(leftP); }else if(loc % 3 == 2){ // add one child swaps with left temparray = this.puzzle.clone(); temparray[loc] = temparray[loc - 1]; temparray[loc - 1] = 0; leftP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1); leftP.setParent(this); children.add(leftP); } if(loc / 3 == 0){ //add one child swaps with lower temparray = this.puzzle.clone(); temparray[loc] = temparray[loc + 3]; temparray[loc + 3] = 0; downP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1); downP.setParent(this); children.add(downP); }else if(loc / 3 == 1 ){ //add one child, swap with upper temparray = this.puzzle.clone(); temparray[loc] = temparray[loc - 3]; temparray[loc - 3] = 0; upP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1); upP.setParent(this); children.add(upP); //add one child, swap with lower temparray = this.puzzle.clone(); temparray[loc] = temparray[loc + 3]; temparray[loc + 3] = 0; downP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1); downP.setParent(this); children.add(downP); }else if (loc / 3 == 2 ){ //add one child, swap with upper temparray = this.puzzle.clone(); temparray[loc] = temparray[loc - 3]; temparray[loc - 3] = 0; upP = new EightPuzzle(temparray, this.hueristic_type, this.g_n + 1); upP.setParent(this); children.add(upP); } return children; } public int h2(int[] list) // h2 = the sum of the distances of the tiles from their goal positions // for each item find its goal position // calculate how many positions it needs to move to get into that position { int gn = 0; int row = 0; int col = 0; for(int i = 0; i < list.length; i++) { if(list[i] != 0) { row = list[i] / 3; col = list[i] % 3; row = Math.abs(row - (i / 3)); col = Math.abs(col - (i % 3)); gn += row; gn += col; } } return gn; } public String toString() { String x = ""; for(int i = 0; i < this.puzzle.length; i++){ x += puzzle[i] + " "; if((i + 1) % 3 == 0) x += "\n"; } return x; } public int compareTo(Object input) { if (this.f_n < ((EightPuzzle) input).getF_n()) return -1; else if (this.f_n > ((EightPuzzle) input).getF_n()) return 1; return 0; } public boolean equals(EightPuzzle test){ if(this.f_n != test.getF_n()) return false; for(int i = 0 ; i < this.puzzle.length; i++) { if(this.puzzle[i] != test.puzzle[i]) return false; } return true; } public boolean mapEquals(EightPuzzle test){ for(int i = 0 ; i < this.puzzle.length; i++) { if(this.puzzle[i] != test.puzzle[i]) return false; } return true; } } proj1 import java.util.*; public class proj1 { /** * @param args */ public static void main(String[] args) { int[] p1d = {1, 4, 2, 3, 0, 5, 6, 7, 8}; int hueristic = 2; EightPuzzle start = new EightPuzzle(p1d, hueristic, 0); int[] win = { 0, 1, 2, 3, 4, 5, 6, 7, 8}; EightPuzzle goal = new EightPuzzle(win, hueristic, 0); astar(start, goal); } public static void astar(EightPuzzle start, EightPuzzle goal) { if(start.inversions() % 2 == 1) { System.out.println("Unsolvable"); return; } // function A*(start,goal) // closedset := the empty set // The set of nodes already evaluated. LinkedList<EightPuzzle> closedset = new LinkedList<EightPuzzle>(); // openset := set containing the initial node // The set of tentative nodes to be evaluated. priority queue PriorityQueue<EightPuzzle> openset = new PriorityQueue<EightPuzzle>(); openset.add(start); while(openset.size() > 0){ // x := the node in openset having the lowest f_score[] value EightPuzzle x = openset.peek(); // if x = goal if(x.mapEquals(goal)) { // return reconstruct_path(came_from, came_from[goal]) Stack<EightPuzzle> toDisplay = reconstruct(x); System.out.println("Printing solution... "); System.out.println(start.toString()); print(toDisplay); return; } // remove x from openset // add x to closedset closedset.add(openset.poll()); LinkedList <EightPuzzle> neighbor = x.getChildren(); // foreach y in neighbor_nodes(x) while(neighbor.size() > 0) { EightPuzzle y = neighbor.removeFirst(); // if y in closedset if(closedset.contains(y)){ // continue continue; } // tentative_g_score := g_score[x] + dist_between(x,y) // // if y not in openset if(!closedset.contains(y)){ // add y to openset openset.add(y); // } // } // } } public static void print(Stack<EightPuzzle> x) { while(!x.isEmpty()) { EightPuzzle temp = x.pop(); System.out.println(temp.toString()); } } public static Stack<EightPuzzle> reconstruct(EightPuzzle winner) { Stack<EightPuzzle> correctOutput = new Stack<EightPuzzle>(); while(winner.getParent() != null) { correctOutput.add(winner); winner = winner.getParent(); } return correctOutput; } }

    Read the article

  • Using SPServices &amp; jQuery to Find My Stuff from Multi-Select Person/Group Field

    - by Mark Rackley
    Okay… quick blog post for all you SPServices fans out there. I needed to quickly write a script that would return all the tasks currently assigned to me.  I also wanted it to return any task that was assigned to a group I belong to. This can actually be done with a CAML query, so no big deal, right?  The rub is that the “assigned to” field is a multi-select person or group field. As far as I know (and I actually know so little) you cannot just write a CAML query to return this information. If you can, please leave a comment below and disregard the rest of this blog post… So… what’s a hacker to do? As always, I break things down to their most simple components (I really love the KISS principle and would get it tattooed on my back if people wouldn’t think it meant “Knights In Satan’s Service”. You really gotta be an old far to get that reference).  Here’s what we’re going to do: Get currently logged in user’s name as it is stored in a person field Find all the SharePoint groups the current user belongs to Retrieve a set of assigned tasks from the task list and then find those that are assigned to current  user or group current user belongs to Nothing too hairy… So let’s get started Some Caveats before I continue There are some obvious performance implications with this solution as I make a total of four SPServices calls and there’s a lot of looping going on. Also, the CAML query in this blog has NOT been optimized. If you move forward with this code, tweak it so that it returns a further subset of data or you will see horrible performance if you have a few hundred entries in your task list. Add a date range to the CAML or something. Find some way to limit the results as much as possible. Lastly, if you DO have a better solution, I would like you to share. Iron sharpens iron and all…   Alright, let’s really get started. Get currently logged in user’s name as it is stored in a person field First thing we need to do is understand how a person group looks when you look at the XML returned from a SharePoint Web Service call. It turns out it’s stored like any other multi select item in SharePoint which is <id>;#<value> and when you assign a person to that field the <value> equals the person’s name “Mark Rackley” in my case. This is for Windows Authentication, I would expect this to be different in FBA, but I’m not using FBA. If you want to know what it looks like with FBA you can use the code in this blog and strategically place an alert to see the value.  Anyway… I need to find the name of the user who is currently logged in as it is stored in the person field. This turns out to be one SPServices call: var userName = $().SPServices.SPGetCurrentUser({                     fieldName: "Title",                     debug: false                     }); As you can see, the “Title” field has the information we need. I suspect (although again, I haven’t tried) that the Title field also contains the user’s name as we need it if I was using FBA. Okay… last thing we need to do is store our users name in an array for processing later: myGroups = new Array(); myGroups.push(userName); Find all the SharePoint groups the current user belongs to Now for the groups. How are groups returned in that XML stream?  Same as the person <ID>;#<Group Name>, and if it’s a mutli select it’s all returned in one big long string “<ID>;#<Group Name>;#<ID>;#<Group Name>;#<ID>;#<Group Name>;#<ID>;#<Group Name>;#<ID>;#<Group Name>”.  So, how do we find all the groups the current user belongs to? This is also a simple SPServices call. Using the “GetGroupCollectionFromUser” operation we can find all the groups a user belongs to. So, let’s execute this method and store all our groups. $().SPServices({       operation: "GetGroupCollectionFromUser",       userLoginName: $().SPServices.SPGetCurrentUser(),       async: false,       completefunc: function(xData, Status) {          $(xData.responseXML).find("[nodeName=Group]").each(function() {                 myGroups.push($(this).attr("Name"));          });         }     }); So, all we did in the above code was execute the “GetGroupCollectionFromUser” operation and look for the each “Group” node (row) and store the name for each group in our array that we put the user’s name in previously (myGroups). Now we have an array that contains the current user’s name as it will appear in the person field XML and  all the groups the current user belongs to. The Rest Now comes the easy part for all of you familiar with SPServices. We are going to retrieve our tasks from the Task list using “GetListItems” and look at each entry to see if it belongs to this person. If it does belong to this person we are going to store it for later processing. That code looks something like this: // get list of assigned tasks that aren't closed... *modify the CAML to perform better!*             $().SPServices({                   operation: "GetListItems",                   async: false,                   listName: "Tasks",                   CAMLViewFields: "<ViewFields>" +                             "<FieldRef Name='AssignedTo' />" +                             "<FieldRef Name='Title' />" +                             "<FieldRef Name='StartDate' />" +                             "<FieldRef Name='EndDate' />" +                             "<FieldRef Name='Status' />" +                             "</ViewFields>",                   CAMLQuery: "<Query><Where><And><IsNotNull><FieldRef Name='AssignedTo'/></IsNotNull><Neq><FieldRef Name='Status'/><Value Type='Text'>Completed</Value></Neq></And></Where></Query>",                     completefunc: function (xData, Status) {                         var aDataSet = new Array();                        //loop through each returned Task                         $(xData.responseXML).find("[nodeName=z:row]").each(function() {                             //store the multi-select string of who task is assigned to                             var assignedToString = $(this).attr("ows_AssignedTo");                             found = false;                            //loop through the persons name and all the groups they belong to                             for(var i=0; i<myGroups.length; i++) {                                 //if the person's name or group exists in the assigned To string                                 //then the task is assigned to them                                 if (assignedToString.indexOf(myGroups[i]) >= 0){                                     found = true;                                     break;                                 }                             }                             //if the Task belongs to this person then store or display it                             //(I'm storing it in an array)                             if (found){                                 var thisName = $(this).attr("ows_Title");                                 var thisStartDate = $(this).attr("ows_StartDate");                                 var thisEndDate = $(this).attr("ows_EndDate");                                 var thisStatus = $(this).attr("ows_Status");                                                                  var aDataRow=new Array(                                     thisName,                                     thisStartDate,                                     thisEndDate,                                     thisStatus);                                 aDataSet.push(aDataRow);                             }                          });                          SomeFunctionToDisplayData(aDataSet);                     }                 }); Some notes on why I did certain things and additional caveats. You will notice in my code that I’m doing an AssignedToString.indexOf(GroupName) to see if the task belongs to the person. This could possibly return bad results if you have SharePoint Group names that are named in such a way that the “IndexOf” returns a false positive.  For example if you have a Group called “My Users” and a group called “My Users – SuperUsers” then if a user belonged to “My Users” it would return a false positive on executing “My Users – SuperUsers”.IndexOf(“My Users”). Make sense? Just be aware of this when naming groups, we don’t have this problem. This is where also some fine-tuning can probably be done by those smarter than me. This is a pretty inefficient method to determine if a task belongs to a user, I mean what if a user belongs to 20 groups? That’s a LOT of looping.  See all the opportunities I give you guys to do something fun?? Also, why am I storing my values in an array instead of just writing them out to a Div? Well.. I want to pass my data to a jQuery library to format it all nice and pretty and an Array is a great way to do that. When all is said and done and we put all the code together it looks like:   $(document).ready(function() {         var userName = $().SPServices.SPGetCurrentUser({                     fieldName: "Title",                     debug: false                     });         myGroups = new Array();     myGroups.push(userName );       $().SPServices({       operation: "GetGroupCollectionFromUser",       userLoginName: $().SPServices.SPGetCurrentUser(),       async: false,       completefunc: function(xData, Status) {          $(xData.responseXML).find("[nodeName=Group]").each(function() {                 myGroups.push($(this).attr("Name"));          });                      // get list of assigned tasks that aren't closed... *modify this CAML to perform better!*             $().SPServices({                   operation: "GetListItems",                   async: false,                   listName: "Tasks",                   CAMLViewFields: "<ViewFields>" +                             "<FieldRef Name='AssignedTo' />" +                             "<FieldRef Name='Title' />" +                             "<FieldRef Name='StartDate' />" +                             "<FieldRef Name='EndDate' />" +                             "<FieldRef Name='Status' />" +                             "</ViewFields>",                   CAMLQuery: "<Query><Where><And><IsNotNull><FieldRef Name='AssignedTo'/></IsNotNull><Neq><FieldRef Name='Status'/><Value Type='Text'>Completed</Value></Neq></And></Where></Query>",                     completefunc: function (xData, Status) {                         var aDataSet = new Array();                         //loop through each returned Task                         $(xData.responseXML).find("[nodeName=z:row]").each(function() {                             //store the multi-select string of who task is assigned to                             var assignedToString = $(this).attr("ows_AssignedTo");                             found = false;                            //loop through the persons name and all the groups they belong to                             for(var i=0; i<myGroups.length; i++) {                                 //if the person's name or group exists in the assigned To string                                 //then the task is assigned to them                                 if (assignedToString.indexOf(myGroups[i]) >= 0){                                     found = true;                                     break;                                 }                             }                            //if the Task belongs to this person then store or display it                             //(I'm storing it in an array)                             if (found){                                 var thisName = $(this).attr("ows_Title");                                 var thisStartDate = $(this).attr("ows_StartDate");                                 var thisEndDate = $(this).attr("ows_EndDate");                                 var thisStatus = $(this).attr("ows_Status");                                                                  var aDataRow=new Array(                                     thisName,                                     thisStartDate,                                     thisEndDate,                                     thisStatus);                                 aDataSet.push(aDataRow);                             }                          });                          SomeFunctionToDisplayData(aDataSet);                     }                 });       }    });  }); Final Thoughts So, there you have it. Take it and run with it. Make it something cool (and tell me how you did it). Another possible way to improve performance in this scenario is to use a DVWP to display the tasks and use jQuery and the “myGroups” array from this blog post to hide all those rows that don’t belong to the current user. I haven’t tried it, but it does move some of the processing off to the server (generating the view) so it may perform better.  As always, thanks for stopping by… hope you have a Merry Christmas…

    Read the article

  • HTML Tidy in NetBeans IDE (Part 2)

    - by Geertjan
    This is what I was aiming for in the previous blog entry: What you can see above (especially if you click to enlarge it) is that I have HTML Tidy integrated into the NetBeans analyzer functionality, which is pluggable from 7.2 onwards. Well, if you set an implementation dependency on "Static Analysis Core", since it's not an official API yet. Also, the scopes of the analyzer functionality are not pluggable. That means you can 'only' set the analyzer's scope to one or more projects, one or more packages, or one or more files. Not one or more folders, which means you can't have a bunch off HTML files in a folder that you access via the Favorites window and then run the analyzer on that folder (or on multiple folders). Thus, to try out my new code, I had to put some HTML files into a package inside a Java application. Then I chose that package as the scope of the analyzer. Then I ran all the analyzers (i.e., standard NetBeans Java hints, FindBugs, as well as my HTML Tidy extension) on that package. The screenshot above is the result. Here's all the code for the above, which is a port of the Action code from the previous blog entry into a new Analyzer implementation: import java.io.IOException; import java.io.PrintWriter; import java.io.StringWriter; import java.util.ArrayList; import java.util.Collections; import java.util.List; import javax.swing.JComponent; import javax.swing.text.Document; import org.netbeans.api.fileinfo.NonRecursiveFolder; import org.netbeans.modules.analysis.spi.Analyzer; import org.netbeans.modules.analysis.spi.Analyzer.AnalyzerFactory; import org.netbeans.modules.analysis.spi.Analyzer.Context; import org.netbeans.modules.analysis.spi.Analyzer.CustomizerProvider; import org.netbeans.modules.analysis.spi.Analyzer.WarningDescription; import org.netbeans.spi.editor.hints.ErrorDescription; import org.netbeans.spi.editor.hints.ErrorDescriptionFactory; import org.netbeans.spi.editor.hints.Severity; import org.openide.cookies.EditorCookie; import org.openide.filesystems.FileObject; import org.openide.loaders.DataObject; import org.openide.util.Exceptions; import org.openide.util.lookup.ServiceProvider; import org.w3c.tidy.Tidy; public class TidyAnalyzer implements Analyzer {     private final Context ctx;     private TidyAnalyzer(Context cntxt) {         this.ctx = cntxt;     }     @Override     public Iterable<? extends ErrorDescription> analyze() {         List<ErrorDescription> result = new ArrayList<ErrorDescription>();         for (NonRecursiveFolder sr : ctx.getScope().getFolders()) {             FileObject folder = sr.getFolder();             for (FileObject fo : folder.getChildren()) {                 for (ErrorDescription ed : doRunHTMLTidy(fo)) {                     if (fo.getMIMEType().equals("text/html")) {                         result.add(ed);                     }                 }             }         }         return result;     }     private List<ErrorDescription> doRunHTMLTidy(FileObject sr) {         final List<ErrorDescription> result = new ArrayList<ErrorDescription>();         Tidy tidy = new Tidy();         StringWriter stringWriter = new StringWriter();         PrintWriter errorWriter = new PrintWriter(stringWriter);         tidy.setErrout(errorWriter);         try {             Document doc = DataObject.find(sr).getLookup().lookup(EditorCookie.class).openDocument();             tidy.parse(sr.getInputStream(), System.out);             String[] split = stringWriter.toString().split("\n");             for (String string : split) {                 //Bit of ugly string parsing coming up:                 if (string.startsWith("line")) {                     final int end = string.indexOf(" c");                     int lineNumber = Integer.parseInt(string.substring(0, end).replace("line ", ""));                     string = string.substring(string.indexOf(": ")).replace(":", "");                     result.add(ErrorDescriptionFactory.createErrorDescription(                             Severity.WARNING,                             string,                             doc,                             lineNumber));                 }             }         } catch (IOException ex) {             Exceptions.printStackTrace(ex);         }         return result;     }     @Override     public boolean cancel() {         return true;     }     @ServiceProvider(service = AnalyzerFactory.class)     public static final class MyAnalyzerFactory extends AnalyzerFactory {         public MyAnalyzerFactory() {             super("htmltidy", "HTML Tidy", "org/jtidy/format_misc.gif");         }         public Iterable<? extends WarningDescription> getWarnings() {             return Collections.EMPTY_LIST;         }         @Override         public <D, C extends JComponent> CustomizerProvider<D, C> getCustomizerProvider() {             return null;         }         @Override         public Analyzer createAnalyzer(Context cntxt) {             return new TidyAnalyzer(cntxt);         }     } } The above only works on packages, not on projects and not on individual files.

    Read the article

  • Showing an Action on a TopComponent Node

    - by Geertjan
    Let's say you want to extend the tools in NetBeans IDE, specifically for TopComponents. When the user right-clicks in the Projects window (or Files window or Favorites window) on a Java class that extends TopComponent, a menu item should be available for branding the TopComponent. What "branding" entails is, at this stage, a secondary question. The primary question, from an implementation point of view, is "how do I create an action that is only shown when the user right-clicks on a TopComponent?" Here's the solution, in NetBeans IDE 7.2 (the "lazy" attribute, here set to false, is new in 7.2): import com.sun.source.tree.ClassTree; import com.sun.source.util.TreePathScanner; import java.awt.event.ActionEvent; import java.io.IOException; import javax.lang.model.element.Element; import javax.lang.model.element.TypeElement; import javax.swing.AbstractAction; import javax.swing.Action; import javax.swing.JOptionPane; import org.netbeans.api.java.source.CompilationController; import org.netbeans.api.java.source.CompilationInfo; import org.netbeans.api.java.source.JavaSource; import org.netbeans.api.java.source.JavaSource.Phase; import org.netbeans.api.java.source.Task; import org.openide.awt.ActionID; import org.openide.awt.ActionReference; import org.openide.awt.ActionReferences; import org.openide.awt.ActionRegistration; import org.openide.awt.DynamicMenuContent; import org.openide.loaders.DataObject; import org.openide.util.ContextAwareAction; import org.openide.util.Exceptions; import org.openide.util.Lookup; import org.openide.util.NbBundle.Messages; import org.openide.util.Utilities; @ActionID(     category = "Tools", id = "org.tc.customizer.BrandTopComponentAction") @ActionRegistration(     displayName = "#CTL_BrandTopComponentAction",     lazy = false) @ActionReferences({     @ActionReference(path = "Loaders/text/x-java/Actions", position = 150) }) @Messages("CTL_BrandTopComponentAction=Brand") public final class BrandTopComponentAction extends AbstractAction implements ContextAwareAction {     private final DataObject dobj;     public BrandTopComponentAction() {         this(Utilities.actionsGlobalContext());     }     public BrandTopComponentAction(Lookup context) {         super(Bundle.CTL_BrandTopComponentAction());         this.dobj = context.lookup(DataObject.class);         //Enable the menu item only if we're dealing with a TopComponent         JavaSource javaSource = JavaSource.forFileObject(dobj.getPrimaryFile());         try {             javaSource.runUserActionTask(new ScanForTopComponentTask(this), true);         } catch (IOException ex) {             Exceptions.printStackTrace(ex);         }         //Hide the menu item if it isn't enabled:         putValue(DynamicMenuContent.HIDE_WHEN_DISABLED, true);     }     @Override     public void actionPerformed(ActionEvent ev) {         JOptionPane.showMessageDialog(null, "Hurray, I am a TopComponent!");         //Now add your code for showing a dialog,         //where the dialog will display UI for branding the TopComponent somehow         //and retrieve those branding values         //and then change the TopComponent class accordingly.     }     @Override     public Action createContextAwareInstance(Lookup actionContext) {         return new BrandTopComponentAction(actionContext);     }     private static class ScanForTopComponentTask implements Task<CompilationController> {         private final BrandTopComponentAction action;         private ScanForTopComponentTask(BrandTopComponentAction action) {             this.action = action;         }         @Override         public void run(CompilationController compilationController) throws Exception {             compilationController.toPhase(Phase.ELEMENTS_RESOLVED);             new MemberVisitor(compilationController, action).scan(                     compilationController.getCompilationUnit(), null);         }     }     private static class MemberVisitor extends TreePathScanner<Void, Void> {         private CompilationInfo info;         private final AbstractAction action;         public MemberVisitor(CompilationInfo info, AbstractAction action) {             this.info = info;             this.action = action;         }         @Override         public Void visitClass(ClassTree t, Void v) {             Element el = info.getTrees().getElement(getCurrentPath());             if (el != null) {                 TypeElement te = (TypeElement) el;                 if (te.getSuperclass().toString().equals("org.openide.windows.TopComponent")){                     action.setEnabled(true);                 } else {                     action.setEnabled(false);                 }             }             return null;         }     } } The code above is the result of combining various tutorials found on the NetBeans Platform Learning Trail.

    Read the article

  • Primefaces: java.lang.ClassCastException: java.util.HashMap cannot be cast to ClassObject

    - by razegarra
    I have a problem with p:dataTable in Primefaces, I can not find the error. Class UsuarioAsig: public class UsuarioAsig { private BigDecimal codigopersona; private String nombre; private String paterno; private String materno; private String login; private String observacion; private String tipocontrol; private String externo; private String habilitado; private String nombreperfil; private BigDecimal codigousuario; ...get and set...} Class UsuarioAsigListaDataModel: public class UsuarioAsigListaDataModel extends ListDataModel<UsuarioAsig> implements SelectableDataModel<UsuarioAsig> { public UsuarioAsigListaDataModel(){} public UsuarioAsigListaDataModel(List<UsuarioAsig> data){super(data);} @Override public UsuarioAsig getRowData(String rowKey) { @SuppressWarnings("unchecked") List<UsuarioAsig> listaUsuarioAsigLectura = (List<UsuarioAsig>) getWrappedData(); for (UsuarioAsig usuarioAsig : listaUsuarioAsigLectura) { if (usuarioAsig.getCodigopersona().equals(rowKey)) { return usuarioAsig; } } return null; } @Override public Object getRowKey(UsuarioAsig usuarioAsig) { return usuarioAsig.getCodigopersona(); }} Controller UsuarioAsigController: @Controller("usuarioAsigController") @Scope(value = "session") public class UsuarioAsigController { private List<UsuarioAsig> listaUsuarioAsig; private HashMap<String, Object> selUsuarioAsig; private UsuarioAsigListaDataModel mediumUsuarioAsigModel; @Autowired UsuarioService usuarioService; ... public List<UsuarioAsig> getListaUsuarioAsig() { listaUsuarioAsig = usuarioService.selectAsig(); return listaUsuarioAsig; } public void setListaUsuarioAsig(List<UsuarioAsig> listaUsuarioAsig) { this.listaUsuarioAsig = listaUsuarioAsig; } public void setMediumUsuarioAsigModel(UsuarioAsigListaDataModel mediumUsuarioAsigModel) { this.mediumUsuarioAsigModel = mediumUsuarioAsigModel; } public UsuarioAsigListaDataModel getMediumUsuarioAsigModel() { listaUsuarioAsig = usuarioService.selectAsig(); mediumUsuarioAsigModel = new UsuarioAsigListaDataModel(listaUsuarioAsig); return mediumUsuarioAsigModel; } public void onRowSelect(SelectEvent event) { FacesMessage msg = new FacesMessage("Usuario seleccionado", ((UsuarioAsig) event.getObject()).getNombre()); FacesContext.getCurrentInstance().addMessage(null, msg); } } the error is generated when you click on one of the lines of datatable: asiginst.xhtml: <h:form id="form"> <p:growl id="msgs" showDetail="true" /> <p:dataTable id="usuarioAsigListaDataModel" var="usuarioAsig" value="#{usuarioAsigController.mediumUsuarioAsigModel}" rowKey="#{usuarioAsig.codigopersona}" selection="#{usuarioAsigController.selUsuarioAsig}" selectionMode="single" paginator="true" rows="10"> <p:ajax event="rowSelect" listener="#{usuarioAsigController.onRowSelect}" update=":form:msgs" /> <p:column headerText="Código" style="width:10%">#{usuarioAsig.codigopersona}</p:column> <p:column headerText="Nombre" style="width:32%">#{usuarioAsig.nombre}</p:column> <p:column headerText="Apellidos" style="width:32%">#{usuarioAsig.paterno} #{usuarioasig.materno}</p:column> <p:column headerText="Tipo Control" style="width:20%">#{usuarioAsig.tipocontrol}</p:column> <p:column headerText="Habilitado" style="width:6%">#{usuarioAsig.habilitado}</p:column> </p:dataTable> </h:form> THE ERROR IS GENERATED: WARNING: asiginst.xhtml @51,103 listener="#{usuarioAsigController.onRowSelect}": java.lang.ClassCastException: java.util.HashMap cannot be cast to com.datos.entidades.qry.UsuarioAsig javax.el.ELException: asiginst.xhtml @51,103 listener="#{usuarioAsigController.onRowSelect}": java.lang.ClassCastException: java.util.HashMap cannot be cast to com.datos.entidades.qry.UsuarioAsig at com.sun.faces.facelets.el.TagMethodExpression.invoke(TagMethodExpression.java:111) at org.primefaces.behavior.ajax.AjaxBehaviorListenerImpl.processArgListener(AjaxBehaviorListenerImpl.java:69) at org.primefaces.behavior.ajax.AjaxBehaviorListenerImpl.processAjaxBehavior(AjaxBehaviorListenerImpl.java:56) at org.primefaces.event.SelectEvent.processListener(SelectEvent.java:40) at javax.faces.component.behavior.BehaviorBase.broadcast(BehaviorBase.java:102) at javax.faces.component.UIComponentBase.broadcast(UIComponentBase.java:760) at javax.faces.component.UIData.broadcast(UIData.java:1071) at javax.faces.component.UIData.broadcast(UIData.java:1093) at javax.faces.component.UIViewRoot.broadcastEvents(UIViewRoot.java:794) at javax.faces.component.UIViewRoot.processApplication(UIViewRoot.java:1259) at com.sun.faces.lifecycle.InvokeApplicationPhase.execute(InvokeApplicationPhase.java:81) at com.sun.faces.lifecycle.Phase.doPhase(Phase.java:101) at com.sun.faces.lifecycle.LifecycleImpl.execute(LifecycleImpl.java:118) at javax.faces.webapp.FacesServlet.service(FacesServlet.java:409) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:305) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:210) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:225) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:169) at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:472) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:168) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:98) at org.apache.catalina.valves.AccessLogValve.invoke(AccessLogValve.java:927) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:118) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:407) at org.apache.coyote.http11.AbstractHttp11Processor.process(AbstractHttp11Processor.java:999) at org.apache.coyote.AbstractProtocol$AbstractConnectionHandler.process(AbstractProtocol.java:565) at org.apache.tomcat.util.net.JIoEndpoint$SocketProcessor.run(JIoEndpoint.java:309) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603) at java.lang.Thread.run(Thread.java:722) Caused by: java.lang.ClassCastException: java.util.HashMap cannot be cast to com.datos.entidades.qry.UsuarioAsig at com.controller.UsuarioAsigController.onRowSelect(UsuarioAsigController.java:217) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:601) at org.apache.el.parser.AstValue.invoke(AstValue.java:264) at org.apache.el.MethodExpressionImpl.invoke(MethodExpressionImpl.java:278) at com.sun.faces.facelets.el.TagMethodExpression.invoke(TagMethodExpression.java:105) ... 29 more

    Read the article

  • Fluent NHibernate: mapping complex many-to-many (with additional columns) and setting fetch

    - by HackedByChinese
    I need a Fluent NHibernate mapping that will fulfill the following (if nothing else, I'll also take the appropriate NHibernate XML mapping and reverse engineer it). DETAILS I have a many-to-many relationship between two entities: Parent and Child. That is accomplished by an additional table to store the identities of the Parent and Child. However, I also need to define two additional columns on that mapping that provide more information about the relationship. This is roughly how I've defined my types, at least the relevant parts (where Entity is some base type that provides an Id property and checks for equivalence based on that Id): public class Parent : Entity { public virtual IList<ParentChildRelationship> Children { get; protected set; } public virtual void AddChildRelationship(Child child, int customerId) { var relationship = new ParentChildRelationship { CustomerId = customerId, Parent = this, Child = child }; if (Children == null) Children = new List<ParentChildRelationship>(); if (Children.Contains(relationship)) return; relationship.Sequence = Children.Count; Children.Add(relationship); } } public class Child : Entity { // child doesn't care about its relationships } public class ParentChildRelationship { public int CustomerId { get; set; } public Parent Parent { get; set; } public Child Child { get; set; } public int Sequence { get; set; } public override bool Equals(object obj) { if (ReferenceEquals(null, obj)) return false; if (ReferenceEquals(this, obj)) return true; var other = obj as ParentChildRelationship; if (return other == null) return false; return (CustomerId == other.CustomerId && Parent == other.Parent && Child == other.Child); } public override int GetHashCode() { unchecked { int result = CustomerId; result = Parent == null ? 0 : (result*397) ^ Parent.GetHashCode(); result = Child == null ? 0 : (result*397) ^ Child.GetHashCode(); return result; } } } The tables in the database look approximately like (assume primary/foreign keys and forgive syntax): create table Parent ( id int identity(1,1) not null ) create table Child ( id int identity(1,1) not null ) create table ParentChildRelationship ( customerId int not null, parent_id int not null, child_id int not null, sequence int not null ) I'm OK with Parent.Children being a lazy loaded property. However, the ParentChildRelationship should eager load ParentChildRelationship.Child. Furthermore, I want to use a Join when I eager load. The SQL, when accessing Parent.Children, NHibernate should generate an equivalent query to: SELECT * FROM ParentChildRelationship rel LEFT OUTER JOIN Child ch ON rel.child_id = ch.id WHERE parent_id = ? OK, so to do that I have mappings that look like this: ParentMap : ClassMap<Parent> { public ParentMap() { Table("Parent"); Id(c => c.Id).GeneratedBy.Identity(); HasMany(c => c.Children).KeyColumn("parent_id"); } } ChildMap : ClassMap<Child> { public ChildMap() { Table("Child"); Id(c => c.Id).GeneratedBy.Identity(); } } ParentChildRelationshipMap : ClassMap<ParentChildRelationship> { public ParentChildRelationshipMap() { Table("ParentChildRelationship"); CompositeId() .KeyProperty(c => c.CustomerId, "customerId") .KeyReference(c => c.Parent, "parent_id") .KeyReference(c => c.Child, "child_id"); Map(c => c.Sequence).Not.Nullable(); } } So, in my test if i try to get myParentRepo.Get(1).Children, it does in fact get me all the relationships and, as I access them from the relationship, the Child objects (for example, I can grab them all by doing parent.Children.Select(r => r.Child).ToList()). However, the SQL that NHibernate is generating is inefficient. When I access parent.Children, NHIbernate does a SELECT * FROM ParentChildRelationship WHERE parent_id = 1 and then a SELECT * FROM Child WHERE id = ? for each child in each relationship. I understand why NHibernate is doing this, but I can't figure out how to set up the mapping to make NHibernate query the way I mentioned above.

    Read the article

  • Injection with google guice does not work anymore after obfuscation with proguard

    - by sme
    Has anyone ever tried to combine the use of google guice with obfuscation (in particular proguard)? The obfuscated version of my code does not work with google guice as guice complains about missing type parameters. This information seems to be erased by the transformation step that proguard does, even when the relevant classes are excluded from the obfuscation. The stack trace looks like this: com.google.inject.CreationException: Guice creation errors: 1) Cannot inject a Provider that has no type parameter while locating com.google.inject.Provider for parameter 0 at de.repower.lvs.client.admin.user.administration.AdminUserCommonPanel.setPasswordPanelProvider(SourceFile:499) at de.repower.lvs.client.admin.user.administration.AdminUserCommonPanel.setPasswordPanelProvider(SourceFile:499) while locating de.repower.lvs.client.admin.user.administration.AdminUserCommonPanel for parameter 0 at de.repower.lvs.client.admin.user.administration.b.k.setParentPanel(SourceFile:65) at de.repower.lvs.client.admin.user.administration.b.k.setParentPanel(SourceFile:65) at de.repower.lvs.client.admin.user.administration.o.a(SourceFile:38) 2) Cannot inject a Provider that has no type parameter while locating com.google.inject.Provider for parameter 0 at de.repower.lvs.client.admin.user.administration.AdminUserCommonPanel.setWindTurbineAccessGroupProvider(SourceFile:509) at de.repower.lvs.client.admin.user.administration.AdminUserCommonPanel.setWindTurbineAccessGroupProvider(SourceFile:509) while locating de.repower.lvs.client.admin.user.administration.AdminUserCommonPanel for parameter 0 at de.repower.lvs.client.admin.user.administration.b.k.setParentPanel(SourceFile:65) at de.repower.lvs.client.admin.user.administration.b.k.setParentPanel(SourceFile:65) at de.repower.lvs.client.admin.user.administration.o.a(SourceFile:38) 2 errors at com.google.inject.internal.Errors.throwCreationExceptionIfErrorsExist(Errors.java:354) at com.google.inject.InjectorBuilder.initializeStatically(InjectorBuilder.java:152) at com.google.inject.InjectorBuilder.build(InjectorBuilder.java:105) at com.google.inject.Guice.createInjector(Guice.java:92) at com.google.inject.Guice.createInjector(Guice.java:69) at com.google.inject.Guice.createInjector(Guice.java:59) I tried to create a small example (without using guice) that seems to reproduce the problem: package de.repower.common; import java.lang.reflect.Method; import java.lang.reflect.ParameterizedType; import java.lang.reflect.Type; class SomeClass<S> { } public class ParameterizedTypeTest { public void someMethod(SomeClass<Integer> param) { System.out.println("value: " + param); System.setProperty("my.dummmy.property", "hallo"); } private static void checkParameterizedMethod(ParameterizedTypeTest testObject) { System.out.println("checking parameterized method ..."); Method[] methods = testObject.getClass().getMethods(); for (Method method : methods) { if (method.getName().equals("someMethod")) { System.out.println("Found method " + method.getName()); Type[] types = method.getGenericParameterTypes(); Type parameterType = types[0]; if (parameterType instanceof ParameterizedType) { Type parameterizedType = ((ParameterizedType) parameterType).getActualTypeArguments()[0]; System.out.println("Parameter: " + parameterizedType); System.out.println("Class: " + ((Class) parameterizedType).getName()); } else { System.out.println("Failed: type ist not instance of ParameterizedType"); } } } } public static void main(String[] args) { System.out.println("Starting ..."); try { ParameterizedTypeTest someInstance = new ParameterizedTypeTest(); checkParameterizedMethod(someInstance); } catch (SecurityException e) { e.printStackTrace(); } } } If you run this code unsbfuscated, the output looks like this: Starting ... checking parameterized method ... Found method someMethod Parameter: class java.lang.Integer Class: java.lang.Integer But running the version obfuscated with proguard yields: Starting ... checking parameterized method ... Found method someMethod Failed: type ist not instance of ParameterizedType These are the options I used for obfuscation: -injars classes_eclipse\methodTest.jar -outjars classes_eclipse\methodTestObfuscated.jar -libraryjars 'C:\Program Files\Java\jre6\lib\rt.jar' -dontskipnonpubliclibraryclasses -dontskipnonpubliclibraryclassmembers -dontshrink -printusage classes_eclipse\shrink.txt -dontoptimize -dontpreverify -verbose -keep class **.ParameterizedTypeTest.class { <fields>; <methods>; } -keep class ** { <fields>; <methods>; } # Keep - Applications. Keep all application classes, along with their 'main' # methods. -keepclasseswithmembers public class * { public static void main(java.lang.String[]); } # Also keep - Enumerations. Keep the special static methods that are required in # enumeration classes. -keepclassmembers enum * { public static **[] values(); public static ** valueOf(java.lang.String); } # Also keep - Database drivers. Keep all implementations of java.sql.Driver. -keep class * extends java.sql.Driver # Also keep - Swing UI L&F. Keep all extensions of javax.swing.plaf.ComponentUI, # along with the special 'createUI' method. -keep class * extends javax.swing.plaf.ComponentUI { public static javax.swing.plaf.ComponentUI createUI(javax.swing.JComponent); } # Keep names - Native method names. Keep all native class/method names. -keepclasseswithmembers,allowshrinking class * { native <methods>; } # Keep names - _class method names. Keep all .class method names. This may be # useful for libraries that will be obfuscated again with different obfuscators. -keepclassmembers,allowshrinking class * { java.lang.Class class$(java.lang.String); java.lang.Class class$(java.lang.String,boolean); } Does anyone have an idea of how to solve this (apart from the obvious workaround to put the relevant files into a seperate jar and not obfuscate it)? Best regards, Stefan

    Read the article

  • running multi threads in Java

    - by owca
    My task is to simulate activity of couple of persons. Each of them has few activities to perform in some random time: fast (0-5s), medium(5-10s), slow(10-20s) and very slow(20-30s). Each person performs its task independently in the same time. At the beginning of new task I should print it's random time, start the task and then after time passes show next task's time and start it. I've written run() function that counts time, but now it looks like threads are done one after another and not in the same time or maybe they're just printed in this way. public class People{ public static void main(String[] args){ Task tasksA[]={new Task("washing","fast"), new Task("reading","slow"), new Task("shopping","medium")}; Task tasksM[]={new Task("sleeping zzzzzzzzzz","very slow"), new Task("learning","slow"), new Task(" :** ","slow"), new Task("passing an exam","slow") }; Task tasksJ[]={new Task("listening music","medium"), new Task("doing nothing","slow"), new Task("walking","medium") }; BusyPerson friends[]={ new BusyPerson("Alice",tasksA), new BusyPerson("Mark",tasksM), new BusyPerson("John",tasksJ)}; System.out.println("STARTING....................."); for(BusyPerson f: friends) (new Thread(f)).start(); System.out.println("DONE........................."); } } class Task { private String task; private int time; private Task[]tasks; public Task(String t, String s){ task = t; Speed speed = new Speed(); time = speed.getSpeed(s); } public Task(Task[]tab){ Task[]table=new Task[tab.length]; for(int i=0; i < tab.length; i++){ table[i] = tab[i]; } this.tasks = table; } } class Speed { private static String[]hows = {"fast","medium","slow","very slow"}; private static int[]maxs = {5000, 10000, 20000, 30000}; public Speed(){ } public static int getSpeed( String speedString){ String s = speedString; int up_limit=0; int down_limit=0; int time=0; //get limits of time for(int i=0; i<hows.length; i++){ if(s.equals(hows[i])){ up_limit = maxs[i]; if(i>0){ down_limit = maxs[i-1]; } else{ down_limit = 0; } } } //get random time within the limits Random rand = new Random(); time = rand.nextInt(up_limit) + down_limit; return time; } } class BusyPerson implements Runnable { private String name; private Task[] person_tasks; private BusyPerson[]persons; public BusyPerson(String s, Task[]t){ name = s; person_tasks = t; } public BusyPerson(BusyPerson[]tab){ BusyPerson[]table=new BusyPerson[tab.length]; for(int i=0; i < tab.length; i++){ table[i] = tab[i]; } this.persons = table; } public void run() { int time = 0; double t1=0; for(Task t: person_tasks){ t1 = (double)t.time/1000; System.out.println(name+" is... "+t.task+" "+t.speed+ " ("+t1+" sec)"); while (time == t.time) { try { Thread.sleep(10); } catch(InterruptedException exc) { System.out.println("End of thread."); return; } time = time + 100; } } } } And my output : STARTING..................... DONE......................... Mark is... sleeping zzzzzzzzzz very slow (36.715 sec) Mark is... learning slow (10.117 sec) Mark is... :** slow (29.543 sec) Mark is... passing an exam slow (23.429 sec) Alice is... washing fast (1.209 sec) Alice is... reading slow (23.21 sec) Alice is... shopping medium (11.237 sec) John is... listening music medium (8.263 sec) John is... doing nothing slow (13.576 sec) John is... walking medium (11.322 sec) Whilst it should be like this : STARTING..................... DONE......................... John is... listening music medium (7.05 sec) Alice is... washing fast (3.268 sec) Mark is... sleeping zzzzzzzzzz very slow (23.71 sec) Alice is... reading slow (15.516 sec) John is... doing nothing slow (13.692 sec) Alice is... shopping medium (8.371 sec) Mark is... learning slow (13.904 sec) John is... walking medium (5.172 sec) Mark is... :** slow (12.322 sec) Mark is... passing an exam very slow (27.1 sec)

    Read the article

  • Does anyone really understand how HFSC scheduling in Linux/BSD works?

    - by Mecki
    I read the original SIGCOMM '97 PostScript paper about HFSC, it is very technically, but I understand the basic concept. Instead of giving a linear service curve (as with pretty much every other scheduling algorithm), you can specify a convex or concave service curve and thus it is possible to decouple bandwidth and delay. However, even though this paper mentions to kind of scheduling algorithms being used (real-time and link-share), it always only mentions ONE curve per scheduling class (the decoupling is done by specifying this curve, only one curve is needed for that). Now HFSC has been implemented for BSD (OpenBSD, FreeBSD, etc.) using the ALTQ scheduling framework and it has been implemented Linux using the TC scheduling framework (part of iproute2). Both implementations added two additional service curves, that were NOT in the original paper! A real-time service curve and an upper-limit service curve. Again, please note that the original paper mentions two scheduling algorithms (real-time and link-share), but in that paper both work with one single service curve. There never have been two independent service curves for either one as you currently find in BSD and Linux. Even worse, some version of ALTQ seems to add an additional queue priority to HSFC (there is no such thing as priority in the original paper either). I found several BSD HowTo's mentioning this priority setting (even though the man page of the latest ALTQ release knows no such parameter for HSFC, so officially it does not even exist). This all makes the HFSC scheduling even more complex than the algorithm described in the original paper and there are tons of tutorials on the Internet that often contradict each other, one claiming the opposite of the other one. This is probably the main reason why nobody really seems to understand how HFSC scheduling really works. Before I can ask my questions, we need a sample setup of some kind. I'll use a very simple one as seen in the image below: Here are some questions I cannot answer because the tutorials contradict each other: What for do I need a real-time curve at all? Assuming A1, A2, B1, B2 are all 128 kbit/s link-share (no real-time curve for either one), then each of those will get 128 kbit/s if the root has 512 kbit/s to distribute (and A and B are both 256 kbit/s of course), right? Why would I additionally give A1 and B1 a real-time curve with 128 kbit/s? What would this be good for? To give those two a higher priority? According to original paper I can give them a higher priority by using a curve, that's what HFSC is all about after all. By giving both classes a curve of [256kbit/s 20ms 128kbit/s] both have twice the priority than A2 and B2 automatically (still only getting 128 kbit/s on average) Does the real-time bandwidth count towards the link-share bandwidth? E.g. if A1 and B1 both only have 64kbit/s real-time and 64kbit/s link-share bandwidth, does that mean once they are served 64kbit/s via real-time, their link-share requirement is satisfied as well (they might get excess bandwidth, but lets ignore that for a second) or does that mean they get another 64 kbit/s via link-share? So does each class has a bandwidth "requirement" of real-time plus link-share? Or does a class only have a higher requirement than the real-time curve if the link-share curve is higher than the real-time curve (current link-share requirement equals specified link-share requirement minus real-time bandwidth already provided to this class)? Is upper limit curve applied to real-time as well, only to link-share, or maybe to both? Some tutorials say one way, some say the other way. Some even claim upper-limit is the maximum for real-time bandwidth + link-share bandwidth? What is the truth? Assuming A2 and B2 are both 128 kbit/s, does it make any difference if A1 and B1 are 128 kbit/s link-share only, or 64 kbit/s real-time and 128 kbit/s link-share, and if so, what difference? If I use the seperate real-time curve to increase priorities of classes, why would I need "curves" at all? Why is not real-time a flat value and link-share also a flat value? Why are both curves? The need for curves is clear in the original paper, because there is only one attribute of that kind per class. But now, having three attributes (real-time, link-share, and upper-limit) what for do I still need curves on each one? Why would I want the curves shape (not average bandwidth, but their slopes) to be different for real-time and link-share traffic? According to the little documentation available, real-time curve values are totally ignored for inner classes (class A and B), they are only applied to leaf classes (A1, A2, B1, B2). If that is true, why does the ALTQ HFSC sample configuration (search for 3.3 Sample configuration) set real-time curves on inner classes and claims that those set the guaranteed rate of those inner classes? Isn't that completely pointless? (note: pshare sets the link-share curve in ALTQ and grate the real-time curve; you can see this in the paragraph above the sample configuration). Some tutorials say the sum of all real-time curves may not be higher than 80% of the line speed, others say it must not be higher than 70% of the line speed. Which one is right or are they maybe both wrong? One tutorial said you shall forget all the theory. No matter how things really work (schedulers and bandwidth distribution), imagine the three curves according to the following "simplified mind model": real-time is the guaranteed bandwidth that this class will always get. link-share is the bandwidth that this class wants to become fully satisfied, but satisfaction cannot be guaranteed. In case there is excess bandwidth, the class might even get offered more bandwidth than necessary to become satisfied, but it may never use more than upper-limit says. For all this to work, the sum of all real-time bandwidths may not be above xx% of the line speed (see question above, the percentage varies). Question: Is this more or less accurate or a total misunderstanding of HSFC? And if assumption above is really accurate, where is prioritization in that model? E.g. every class might have a real-time bandwidth (guaranteed), a link-share bandwidth (not guaranteed) and an maybe an upper-limit, but still some classes have higher priority needs than other classes. In that case I must still prioritize somehow, even among real-time traffic of those classes. Would I prioritize by the slope of the curves? And if so, which curve? The real-time curve? The link-share curve? The upper-limit curve? All of them? Would I give all of them the same slope or each a different one and how to find out the right slope? I still haven't lost hope that there exists at least a hand full of people in this world that really understood HFSC and are able to answer all these questions accurately. And doing so without contradicting each other in the answers would be really nice ;-)

    Read the article

  • What's the best Communication Pattern for EJB3-based applications?

    - by Hank
    I'm starting a JEE project that needs to be strongly scalable. So far, the concept was: several Message Driven Beans, responsible for different parts of the architecture each MDB has a Session Bean injected, handling the business logic a couple of Entity Beans, providing access to the persistence layer communication between the different parts of the architecture via Request/Reply concept via JMS messages: MDB receives msg containing activity request uses its session bean to execute necessary business logic returns response object in msg to original requester The idea was that by de-coupling parts of the architecture from each other via the message bus, there is no limit to the scalability. Simply start more components - as long as they are connected to the same bus, we can grow and grow. Unfortunately, we're having massive problems with the request-reply concept. Transaction Mgmt seems to be in our way plenty. It seams that session beans are not supposed to consume messages?! Reading http://blogs.sun.com/fkieviet/entry/request_reply_from_an_ejb and http://forums.sun.com/message.jspa?messageID=10338789, I get the feeling that people actually recommend against the request/reply concept for EJBs. If that is the case, how do you communicate between your EJBs? (Remember, scalability is what I'm after) Details of my current setup: MDB 1 'TestController', uses (local) SLSB 1 'TestService' for business logic TestController.onMessage() makes TestService send a message to queue XYZ and requests a reply TestService uses Bean Managed Transactions TestService establishes a connection & session to the JMS broker via a joint connection factory upon initialization (@PostConstruct) TestService commits the transaction after sending, then begins another transaction and waits 10 sec for the response Message gets to MDB 2 'LocationController', which uses (local) SLSB 2 'LocationService' for business logic LocationController.onMessage() makes LocationService send a message back to the requested JMSReplyTo queue Same BMT concept, same @PostConstruct concept all use the same connection factory to access the broker Problem: The first message gets send (by SLSB 1) and received (by MDB 2) ok. The sending of the returning message (by SLSB 2) is fine as well. However, SLSB 1 never receives anything - it just times out. I tried without the messageSelector, no change, still no receiving message. Is it not ok to consume message by a session bean? SLSB 1 - TestService.java @Resource(name = "jms/mvs.MVSControllerFactory") private javax.jms.ConnectionFactory connectionFactory; @PostConstruct public void initialize() { try { jmsConnection = connectionFactory.createConnection(); session = jmsConnection.createSession(false, Session.AUTO_ACKNOWLEDGE); System.out.println("Connection to JMS Provider established"); } catch (Exception e) { } } public Serializable sendMessageWithResponse(Destination reqDest, Destination respDest, Serializable request) { Serializable response = null; try { utx.begin(); Random rand = new Random(); String correlationId = rand.nextLong() + "-" + (new Date()).getTime(); // prepare the sending message object ObjectMessage reqMsg = session.createObjectMessage(); reqMsg.setObject(request); reqMsg.setJMSReplyTo(respDest); reqMsg.setJMSCorrelationID(correlationId); // prepare the publishers and subscribers MessageProducer producer = session.createProducer(reqDest); // send the message producer.send(reqMsg); System.out.println("Request Message has been sent!"); utx.commit(); // need to start second transaction, otherwise the first msg never gets sent utx.begin(); MessageConsumer consumer = session.createConsumer(respDest, "JMSCorrelationID = '" + correlationId + "'"); jmsConnection.start(); ObjectMessage respMsg = (ObjectMessage) consumer.receive(10000L); utx.commit(); if (respMsg != null) { response = respMsg.getObject(); System.out.println("Response Message has been received!"); } else { // timeout waiting for response System.out.println("Timeout waiting for response!"); } } catch (Exception e) { } return response; } SLSB 2 - LocationService.Java (only the reply method, rest is same as above) public boolean reply(Message origMsg, Serializable o) { boolean rc = false; try { // check if we have necessary correlationID and replyTo destination if (!origMsg.getJMSCorrelationID().equals("") && (origMsg.getJMSReplyTo() != null)) { // prepare the payload utx.begin(); ObjectMessage msg = session.createObjectMessage(); msg.setObject(o); // make it a response msg.setJMSCorrelationID(origMsg.getJMSCorrelationID()); Destination dest = origMsg.getJMSReplyTo(); // send it MessageProducer producer = session.createProducer(dest); producer.send(msg); producer.close(); System.out.println("Reply Message has been sent"); utx.commit(); rc = true; } } catch (Exception e) {} return rc; } sun-resources.xml <admin-object-resource enabled="true" jndi-name="jms/mvs.LocationControllerRequest" res-type="javax.jms.Queue" res-adapter="jmsra"> <property name="Name" value="mvs.LocationControllerRequestQueue"/> </admin-object-resource> <admin-object-resource enabled="true" jndi-name="jms/mvs.LocationControllerResponse" res-type="javax.jms.Queue" res-adapter="jmsra"> <property name="Name" value="mvs.LocationControllerResponseQueue"/> </admin-object-resource> <connector-connection-pool name="jms/mvs.MVSControllerFactoryPool" connection-definition-name="javax.jms.QueueConnectionFactory" resource-adapter-name="jmsra"/> <connector-resource enabled="true" jndi-name="jms/mvs.MVSControllerFactory" pool-name="jms/mvs.MVSControllerFactoryPool" />

    Read the article

  • Does anyone really understand how HFSC scheduling in Linux/BSD works?

    - by Mecki
    I read the original SIGCOMM '97 PostScript paper about HFSC, it is very technically, but I understand the basic concept. Instead of giving a linear service curve (as with pretty much every other scheduling algorithm), you can specify a convex or concave service curve and thus it is possible to decouple bandwidth and delay. However, even though this paper mentions to kind of scheduling algorithms being used (real-time and link-share), it always only mentions ONE curve per scheduling class (the decoupling is done by specifying this curve, only one curve is needed for that). Now HFSC has been implemented for BSD (OpenBSD, FreeBSD, etc.) using the ALTQ scheduling framework and it has been implemented Linux using the TC scheduling framework (part of iproute2). Both implementations added two additional service curves, that were NOT in the original paper! A real-time service curve and an upper-limit service curve. Again, please note that the original paper mentions two scheduling algorithms (real-time and link-share), but in that paper both work with one single service curve. There never have been two independent service curves for either one as you currently find in BSD and Linux. Even worse, some version of ALTQ seems to add an additional queue priority to HSFC (there is no such thing as priority in the original paper either). I found several BSD HowTo's mentioning this priority setting (even though the man page of the latest ALTQ release knows no such parameter for HSFC, so officially it does not even exist). This all makes the HFSC scheduling even more complex than the algorithm described in the original paper and there are tons of tutorials on the Internet that often contradict each other, one claiming the opposite of the other one. This is probably the main reason why nobody really seems to understand how HFSC scheduling really works. Before I can ask my questions, we need a sample setup of some kind. I'll use a very simple one as seen in the image below: Here are some questions I cannot answer because the tutorials contradict each other: What for do I need a real-time curve at all? Assuming A1, A2, B1, B2 are all 128 kbit/s link-share (no real-time curve for either one), then each of those will get 128 kbit/s if the root has 512 kbit/s to distribute (and A and B are both 256 kbit/s of course), right? Why would I additionally give A1 and B1 a real-time curve with 128 kbit/s? What would this be good for? To give those two a higher priority? According to original paper I can give them a higher priority by using a curve, that's what HFSC is all about after all. By giving both classes a curve of [256kbit/s 20ms 128kbit/s] both have twice the priority than A2 and B2 automatically (still only getting 128 kbit/s on average) Does the real-time bandwidth count towards the link-share bandwidth? E.g. if A1 and B1 both only have 64kbit/s real-time and 64kbit/s link-share bandwidth, does that mean once they are served 64kbit/s via real-time, their link-share requirement is satisfied as well (they might get excess bandwidth, but lets ignore that for a second) or does that mean they get another 64 kbit/s via link-share? So does each class has a bandwidth "requirement" of real-time plus link-share? Or does a class only have a higher requirement than the real-time curve if the link-share curve is higher than the real-time curve (current link-share requirement equals specified link-share requirement minus real-time bandwidth already provided to this class)? Is upper limit curve applied to real-time as well, only to link-share, or maybe to both? Some tutorials say one way, some say the other way. Some even claim upper-limit is the maximum for real-time bandwidth + link-share bandwidth? What is the truth? Assuming A2 and B2 are both 128 kbit/s, does it make any difference if A1 and B1 are 128 kbit/s link-share only, or 64 kbit/s real-time and 128 kbit/s link-share, and if so, what difference? If I use the seperate real-time curve to increase priorities of classes, why would I need "curves" at all? Why is not real-time a flat value and link-share also a flat value? Why are both curves? The need for curves is clear in the original paper, because there is only one attribute of that kind per class. But now, having three attributes (real-time, link-share, and upper-limit) what for do I still need curves on each one? Why would I want the curves shape (not average bandwidth, but their slopes) to be different for real-time and link-share traffic? According to the little documentation available, real-time curve values are totally ignored for inner classes (class A and B), they are only applied to leaf classes (A1, A2, B1, B2). If that is true, why does the ALTQ HFSC sample configuration (search for 3.3 Sample configuration) set real-time curves on inner classes and claims that those set the guaranteed rate of those inner classes? Isn't that completely pointless? (note: pshare sets the link-share curve in ALTQ and grate the real-time curve; you can see this in the paragraph above the sample configuration). Some tutorials say the sum of all real-time curves may not be higher than 80% of the line speed, others say it must not be higher than 70% of the line speed. Which one is right or are they maybe both wrong? One tutorial said you shall forget all the theory. No matter how things really work (schedulers and bandwidth distribution), imagine the three curves according to the following "simplified mind model": real-time is the guaranteed bandwidth that this class will always get. link-share is the bandwidth that this class wants to become fully satisfied, but satisfaction cannot be guaranteed. In case there is excess bandwidth, the class might even get offered more bandwidth than necessary to become satisfied, but it may never use more than upper-limit says. For all this to work, the sum of all real-time bandwidths may not be above xx% of the line speed (see question above, the percentage varies). Question: Is this more or less accurate or a total misunderstanding of HSFC? And if assumption above is really accurate, where is prioritization in that model? E.g. every class might have a real-time bandwidth (guaranteed), a link-share bandwidth (not guaranteed) and an maybe an upper-limit, but still some classes have higher priority needs than other classes. In that case I must still prioritize somehow, even among real-time traffic of those classes. Would I prioritize by the slope of the curves? And if so, which curve? The real-time curve? The link-share curve? The upper-limit curve? All of them? Would I give all of them the same slope or each a different one and how to find out the right slope? I still haven't lost hope that there exists at least a hand full of people in this world that really understood HFSC and are able to answer all these questions accurately. And doing so without contradicting each other in the answers would be really nice ;-)

    Read the article

  • java: how to compress data into a String and uncompress data from the String

    - by Guillaume
    I want to put some compressed data into a remote repository. To put data on this repository I can only use a method that take the name of the resource and its content as a String. (like data.txt + "hello world"). The repository is moking a filesystem but is not, so I can not use File directly. I want to be able to do the following: client send to server a file 'data.txt' server compress 'data.txt' into data.zip server send to repository content of data.zip repository store data.zip client download from repository data.zip and his able to open it with its favorite zip tool I have tried a lots of compressing example found on the web but each time a send the data to the repository, my resulting zip file is corrupted. Here is a sample class, using the zip*stream and that emulate the repository showcasing my problem. The created zip file is working, but after its 'serialization' it's get corrupted. (the sample class use jakarta commons.io ) Many thanks for your help. package zip; import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStream; import java.util.zip.ZipEntry; import java.util.zip.ZipInputStream; import java.util.zip.ZipOutputStream; import org.apache.commons.io.FileUtils; /** * Date: May 19, 2010 - 6:13:07 PM * * @author Guillaume AME. */ public class ZipMe { public static void addOrUpdate(File zipFile, File ... files) throws IOException { File tempFile = File.createTempFile(zipFile.getName(), null); // delete it, otherwise you cannot rename your existing zip to it. tempFile.delete(); boolean renameOk = zipFile.renameTo(tempFile); if (!renameOk) { throw new RuntimeException("could not rename the file " + zipFile.getAbsolutePath() + " to " + tempFile.getAbsolutePath()); } byte[] buf = new byte[1024]; ZipInputStream zin = new ZipInputStream(new FileInputStream(tempFile)); ZipOutputStream out = new ZipOutputStream(new FileOutputStream(zipFile)); ZipEntry entry = zin.getNextEntry(); while (entry != null) { String name = entry.getName(); boolean notInFiles = true; for (File f : files) { if (f.getName().equals(name)) { notInFiles = false; break; } } if (notInFiles) { // Add ZIP entry to output stream. out.putNextEntry(new ZipEntry(name)); // Transfer bytes from the ZIP file to the output file int len; while ((len = zin.read(buf)) > 0) { out.write(buf, 0, len); } } entry = zin.getNextEntry(); } // Close the streams zin.close(); // Compress the files if (files != null) { for (File file : files) { InputStream in = new FileInputStream(file); // Add ZIP entry to output stream. out.putNextEntry(new ZipEntry(file.getName())); // Transfer bytes from the file to the ZIP file int len; while ((len = in.read(buf)) > 0) { out.write(buf, 0, len); } // Complete the entry out.closeEntry(); in.close(); } // Complete the ZIP file } tempFile.delete(); out.close(); } public static void main(String[] args) throws IOException { final String zipArchivePath = "c:/temp/archive.zip"; final String tempFilePath = "c:/temp/data.txt"; final String resultZipFile = "c:/temp/resultingArchive.zip"; File zipArchive = new File(zipArchivePath); FileUtils.touch(zipArchive); File tempFile = new File(tempFilePath); FileUtils.writeStringToFile(tempFile, "hello world"); addOrUpdate(zipArchive, tempFile); //archive.zip exists and contains a compressed data.txt that can be read using winrar //now simulate writing of the zip into a in memory cache String archiveText = FileUtils.readFileToString(zipArchive); FileUtils.writeStringToFile(new File(resultZipFile), archiveText); //resultingArchive.zip exists, contains a compressed data.txt, but it can not //be read using winrar: CRC failed in data.txt. The file is corrupt } }

    Read the article

  • Gson Deserialize to Java Tree

    - by MountainX
    I need to deserialize some JSON to a Java tree structure that contains TreeNodes and NodeData. TreeNodes are thin wrappers around NodeData. I'll provide the JSON and the classes below. I have looked at the usual Gson help sources, including here, but I can't seem to come up with the solution. Serialization works fine with Gson. The JSON below was produced by Gson. But deserialization is the problem I need help with. Can someone show me how to write the deserializer (or suggest an alternative approach using Gson best practices)? Here is my JSON. The "data" element corresponds to class NodeData, and the "subList" JSON element corresponds to Java class TreeNode. { "data": { "version": "032", "name": "root", "path": "/", "id": "1", "parentId": "0", "toolTipText": "rootNode" }, "subList": [ { "data": { "version": "032", "name": "level1", "labelText": "Some Label Text at Level1", "path": "/root", "id": "2", "parentId": "1", "toolTipText": "a tool tip for level1" }, "subList": [ { "data": { "version": "032", "name": "level1_1", "labelText": "Label level1_1", "path": "/root/level1", "id": "3", "parentId": "2", "toolTipText": "ToolTipText for level1_1" } }, { "data": { "version": "032", "name": "level1_2", "labelText": "Label level1_2", "path": "/root/level1", "id": "4", "parentId": "2", "toolTipText": "ToolTipText for level1_2" } } ] }, { "data": { "version": "032", "name": "level2", "path": "/root", "id": "5", "parentId": "1", "toolTipText": "ToolTipText for level2" }, "subList": [ { "data": { "version": "032", "name": "level2_1", "labelText": "Label level2_1", "path": "/root/level2", "id": "6", "parentId": "5", "toolTipText": "ToolTipText for level2_1" }, "subList": [ { "data": { "version": "032", "name": "level2_1_1", "labelText": "Label level2_1_1", "path": "/root/level2/level2_1", "id": "7", "parentId": "6", "toolTipText": "ToolTipText for level2_1_1" } } ] } ] } ] } Here are the Java classes: public class Tree { private TreeNode rootElement; private HashMap<String, TreeNode> indexById; private HashMap<String, TreeNode> indexByKey; private long nextAvailableID = 0; public Tree() { indexById = new HashMap<String, TreeNode>(); indexByKey = new HashMap<String, TreeNode>(); } public long getNextAvailableID() { return this.nextAvailableID; } ... [snip] ... } public class TreeNode { private Tree tree; private NodeData data; public List<TreeNode> subList; private HashMap<String, TreeNode> indexById; private HashMap<String, TreeNode> indexByKey; //this default ctor is used only for Gson deserialization public TreeNode() { this.tree = new Tree(); indexById = tree.getIdIndex(); indexByKey = tree.getKeyIndex(); this.makeRoot(); tree.setRootElement(this); } //makes this node the root node. Calling this obviously has side effects. public NodeData makeRoot() { NodeData rootProp = new NodeData(TreeFactory.version, "example", "rootNode"); String nextAvailableID = getNextAvailableID(); if (!nextAvailableID.equals("1")) { throw new IllegalStateException(); } rootProp.setId(nextAvailableID); rootProp.setParentId("0"); rootProp.setKeyPathOnly("/"); rootProp.setSchema(tree); this.data = rootProp; rootProp.setNode(this); indexById.put(rootProp.getId(), this); indexByKey.put(rootProp.getKeyFullName(), this); return rootProp; } ... [snip] ... } public class NodeData { protected static Tree tree; private LinkedHashMap<String, String> keyValMap; protected String version; protected String name; protected String labelText; protected String path; protected String id; protected String parentId; protected TreeNode node; protected String toolTipText;//tool tip or help string protected String imagePath;//for things like images; not persisted to properties protected static final String delimiter = "/"; //this default ctor is used only for Gson deserialization public NodeData() { this("NOT_SET", "NOT_SET", "NOT_SET"); } ... [snip] ... } Side note: The tree data structure is a bit strange, as it includes indexes. Obviously, this isn't a typical search tree. In fact, the tree is used mainly to create a hierarchical path element (String) in each NodeData element. (Example: "path": "/root/level2/level2_1".) The indexes are actually used for NodeData retrieval.

    Read the article

  • Matlab Image watermarking question , using both SVD and DWT

    - by Georgek
    Hello all . here is a code that i got over the net ,and it is supposed to embed a watermark of size(50*20) called _copyright.bmp in the Code below . the size of the cover object is (512*512), it is called _lena_std_bw.bmp.What we did here is we did DWT2 2 times for the image , when we reached our second dwt2 cA2 size is 128*128. You should notice that the blocksize and it equals 4, it is used to determine the max msg size based on cA2 according to the following code:max_message=RcA2*CcA2/(blocksize^2). in our current case max_message would equal 128*128/(4^2)=1024. i want to embed a bigger watermark in the 2nd dwt2 and lets say the size of that watermark is 400*10(i can change the dimension using MS PAINT), what i have to do is change the size of the blocksize to 2. so max_message=4096.Matlab gives me 3 errors and they are : ??? Error using == plus Matrix dimensions must agree. Error in == idwt2 at 93 x = upsconv2(a,{Lo_R,Lo_R},sx,dwtEXTM,shift)+ ... % Approximation. Error in == two_dwt_svd_low_low at 88 CAA1 = idwt2(cA22,cH2,cV2,cD2,'haar',[RcA1,CcA1]); The origional Code is (the origional code where blocksize =4): %This algorithm makes DWT for the whole image and after that make DWT for %cH1 and make SVD for cH2 and embed the watermark in every level after SVD %(1) -------------- Embed Watermark ------------------------------------ %Add the watermar W to original image I and give the watermarked image in J %-------------------------------------------------------------------------- % set the gain factor for embeding and threshold for evaluation clc; clear all; close all; % save start time start_time=cputime; % set the value of threshold and alpha thresh=.5; alpha =0.01; % read in the cover object file_name='_lena_std_bw.bmp'; cover_object=double(imread(file_name)); % determine size of watermarked image Mc=size(cover_object,1); %Height Nc=size(cover_object,2); %Width % read in the message image and reshape it into a vector file_name='_copyright.bmp'; message=double(imread(file_name)); T=message; Mm=size(message,1); %Height Nm=size(message,2); %Width % perform 1-level DWT for the whole cover image [cA1,cH1,cV1,cD1] = dwt2(cover_object,'haar'); % determine the size of cA1 [RcA1 CcA1]=size(cA1) % perform 2-level DWT for cA1 [cA2,cH2,cV2,cD2] = dwt2(cA1,'haar'); % determine the size of cA2 [RcA2 CcA2]=size(cA2) % set the value of blocksize blocksize=4 % reshape the watermark to a vector message_vector=round(reshape(message,Mm*Nm,1)./256); W=message_vector; % determine maximum message size based on cA2, and blocksize max_message=RcA2*CcA2/(blocksize^2) % check that the message isn't too large for cover if (length(message) max_message) error('Message too large to fit in Cover Object') end %----------------------- process the image in blocks ---------------------- x=1; y=1; for (kk = 1:length(message_vector)) [cA2u cA2s cA2v]=svd(cA2(y:y+blocksize-1,x:x+blocksize-1)); % if message bit contains zero, modify S of the original image if (message_vector(kk) == 0) cA2s = cA2s*(1 + alpha); % otherwise mask is filled with zeros else cA2s=cA2s; end cA22(y:y+blocksize-1,x:x+blocksize-1)=cA2u*cA2s*cA2v; % move to next block of mask along x; If at end of row, move to next row if (x+blocksize) >= CcA2 x=1; y=y+blocksize; else x=x+blocksize; end end % perform IDWT CAA1 = idwt2(cA22,cH2,cV2,cD2,'haar',[RcA1,CcA1]); watermarked_image= idwt2(CAA1,cH1,cV1,cD1,'haar',[Mc,Nc]); % convert back to uint8 watermarked_image_uint8=uint8(watermarked_image); % write watermarked Image to file imwrite(watermarked_image_uint8,'dwt_watermarked.bmp','bmp'); % display watermarked image figure(1) imshow(watermarked_image_uint8,[]) title('Watermarked Image') %(2) ---------------------------------------------------------------------- %---------- Extract Watermark from attacked watermarked image ------------- %-------------------------------------------------------------------------- % read in the watermarked object file_name='dwt_watermarked.bmp'; watermarked_image=double(imread(file_name)); % determine size of watermarked image Mw=size(watermarked_image,1); %Height Nw=size(watermarked_image,2); %Width % perform 1-level DWT for the whole watermarked image [ca1,ch1,cv1,cd1] = dwt2(watermarked_image,'haar'); % determine the size of ca1 [Rca1 Cca1]=size(ca1); % perform 2-level DWT for ca1 [ca2,ch2,cv2,cd2] = dwt2(ca1,'haar'); % determine the size of ca2 [Rca2 Cca2]=size(ca2); % process the image in blocks % for each block get a bit for message x=1; y=1; for (kk = 1:length(message_vector)) % sets correlation to 1 when patterns are identical to avoid /0 errors % otherwise calcluate difference between the cover image and the % watermarked image [cA2u cA2s cA2v]=svd(cA2(y:y+blocksize-1,x:x+blocksize-1)); [ca2u1 ca2s1 ca2v1]=svd(ca2(y:y+blocksize-1,x:x+blocksize-1)); correlation(kk)=diag(ca2s1-cA2s)'*diag(ca2s1-cA2s)/(alpha*alpha)/(diag(cA2s)*diag(cA2s)); % move on to next block. At and of row move to next row if (x+blocksize) >= Cca2 x=1; y=y+blocksize; else x=x+blocksize; end end % if correlation exceeds average correlation correlation(kk)=correlation(kk)+mean(correlation(1:Mm*Nm)); for kk = 1:length(correlation) if (correlation(kk) > thresh*alpha);%thresh*mean(correlation(1:Mo*No))) message_vector(kk)=0; end end % reshape the message vector and display recovered watermark. figure(2) message=reshape(message_vector(1:Mm*Nm),Mm,Nm); imshow(message,[]) title('Recovered Watermark') % display processing time elapsed_time=cputime-start_time, please do help,its my graduation project and i have been trying this code for along time but failed miserable. Thanks in advance

    Read the article

< Previous Page | 66 67 68 69 70 71 72 73  | Next Page >