Search Results

Search found 27181 results on 1088 pages for 'oracle desktop virtualization'.

Page 702/1088 | < Previous Page | 698 699 700 701 702 703 704 705 706 707 708 709  | Next Page >

  • ANTLRWorks 2: Early Access Preview 10

    - by Geertjan
    I took a quick look at how the ANTLRWorks 2 project is getting on... and discovered that today, March 23, the new early access preview 10 has been released: http://www.antlr.org/wiki/display/ANTLR4/1.+Overview Downloaded it immediately and was impressed when browsing through the Java.g file that I also found on the Antlr site: (Click to enlarge the image above.) On the page above, the following enhancements are listed: Add tooltips for rule references Finally fixed the navigator update bug Major improvements to code completion Fix legacy mode Many performance and stability updates I've blogged before about how the developers on the above project consider their code completion to be "scary fast". Some discussions have taken place about how code developed by the ANTLRWorks team could be contributed to the NetBeans project, since NetBeans IDE and ANTLRWorks 2 are both based on the NetBeans Platform.

    Read the article

  • How To Run Two Windows 8 Apps At the Same Time With the Snap Feature

    - by Chris Hoffman
    Windows 8’s Modern interface includes support for running two Windows 8 apps side-by-side. This feature, named “Snap,” isn’t explained in the tutorial – you’ll have to know it exists to make use of it. While the multitasking may be limited compared to Windows desktop multitasking, it’s more flexible than iPad and Android tablets, which can only have a single app on the screen at a time. Note: Snap only works on monitors that are at least 1366 pixels wide. 6 Start Menu Replacements for Windows 8 What Is the Purpose of the “Do Not Cover This Hole” Hole on Hard Drives? How To Log Into The Desktop, Add a Start Menu, and Disable Hot Corners in Windows 8

    Read the article

  • Security in Robots and Automated Systems

    - by Roger Brinkley
    Alex Dropplinger posted a Freescale blog on Securing Robotics and Automated Systems where she asks the question,“How should we secure robotics and automated systems?”.My first thought on this was duh, make sure your robot is running Java. Java's built-in services for authentication, authorization, encryption/confidentiality, and the like can be leveraged and benefit robotic or autonomous implementations. Leveraging these built-in services and pluggable encryption models of Java makes adding security to an exist bot implementation much easier. But then I thought I should ask an expert on robotics so I fired the question off to Paul Perrone of Perrone Robotics. Paul's build automated vehicles and other forms of embedded devices like auto monitoring of commercial vehicles on highways.He says that most of the works that robots do now are autonomous so it isn't a problem in the short term. But long term projects like collision avoidance technology in automobiles are going to require it.Some of the work he's doing with his Java-based MAX, set of software building blocks containing a wide range of low level and higher level software modules that developers can use to build simple to complex robot and automation applications faster and cheaper, already provide some support for JAUS compliance and because their based on Java, access to standards based security APIs.But, as Paul explained to me, "the bottom line is…it depends on the criticality level of the bot, it's network connectivity, and whether or not a standards compliance is required."

    Read the article

  • Online ALTER TABLE in MySQL 5.6

    - by Marko Mäkelä
    This is the low-level view of data dictionary language (DDL) operations in the InnoDB storage engine in MySQL 5.6. John Russell gave a more high-level view in his blog post April 2012 Labs Release – Online DDL Improvements. MySQL before the InnoDB Plugin Traditionally, the MySQL storage engine interface has taken a minimalistic approach to data definition language. The only natively supported operations were CREATE TABLE, DROP TABLE and RENAME TABLE. Consider the following example: CREATE TABLE t(a INT); INSERT INTO t VALUES (1),(2),(3); CREATE INDEX a ON t(a); DROP TABLE t; The CREATE INDEX statement would be executed roughly as follows: CREATE TABLE temp(a INT, INDEX(a)); INSERT INTO temp SELECT * FROM t; RENAME TABLE t TO temp2; RENAME TABLE temp TO t; DROP TABLE temp2; You could imagine that the database could crash when copying all rows from the original table to the new one. For example, it could run out of file space. Then, on restart, InnoDB would roll back the huge INSERT transaction. To fix things a little, a hack was added to ha_innobase::write_row for committing the transaction every 10,000 rows. Still, it was frustrating that even a simple DROP INDEX would make the table unavailable for modifications for a long time. Fast Index Creation in the InnoDB Plugin of MySQL 5.1 MySQL 5.1 introduced a new interface for CREATE INDEX and DROP INDEX. The old table-copying approach can still be forced by SET old_alter_table=0. This interface is used in MySQL 5.5 and in the InnoDB Plugin for MySQL 5.1. Apart from the ability to do a quick DROP INDEX, the main advantage is that InnoDB will execute a merge-sort algorithm before inserting the index records into each index that is being created. This should speed up the insert into the secondary index B-trees and potentially result in a better B-tree fill factor. The 5.1 ALTER TABLE interface was not perfect. For example, DROP FOREIGN KEY still invoked the table copy. Renaming columns could conflict with InnoDB foreign key constraints. Combining ADD KEY and DROP KEY in ALTER TABLE was problematic and not atomic inside the storage engine. The ALTER TABLE interface in MySQL 5.6 The ALTER TABLE storage engine interface was completely rewritten in MySQL 5.6. Instead of introducing a method call for every conceivable operation, MySQL 5.6 introduced a handful of methods, and data structures that keep track of the requested changes. In MySQL 5.6, online ALTER TABLE operation can be requested by specifying LOCK=NONE. Also LOCK=SHARED and LOCK=EXCLUSIVE are available. The old-style table copying can be requested by ALGORITHM=COPY. That one will require at least LOCK=SHARED. From the InnoDB point of view, anything that is possible with LOCK=EXCLUSIVE is also possible with LOCK=SHARED. Most ALGORITHM=INPLACE operations inside InnoDB can be executed online (LOCK=NONE). InnoDB will always require an exclusive table lock in two phases of the operation. The execution phases are tied to a number of methods: handler::check_if_supported_inplace_alter Checks if the storage engine can perform all requested operations, and if so, what kind of locking is needed. handler::prepare_inplace_alter_table InnoDB uses this method to set up the data dictionary cache for upcoming CREATE INDEX operation. We need stubs for the new indexes, so that we can keep track of changes to the table during online index creation. Also, crash recovery would drop any indexes that were incomplete at the time of the crash. handler::inplace_alter_table In InnoDB, this method is used for creating secondary indexes or for rebuilding the table. This is the ‘main’ phase that can be executed online (with concurrent writes to the table). handler::commit_inplace_alter_table This is where the operation is committed or rolled back. Here, InnoDB would drop any indexes, rename any columns, drop or add foreign keys, and finalize a table rebuild or index creation. It would also discard any logs that were set up for online index creation or table rebuild. The prepare and commit phases require an exclusive lock, blocking all access to the table. If MySQL times out while upgrading the table meta-data lock for the commit phase, it will roll back the ALTER TABLE operation. In MySQL 5.6, data definition language operations are still not fully atomic, because the data dictionary is split. Part of it is inside InnoDB data dictionary tables. Part of the information is only available in the *.frm file, which is not covered by any crash recovery log. But, there is a single commit phase inside the storage engine. Online Secondary Index Creation It may occur that an index needs to be created on a new column to speed up queries. But, it may be unacceptable to block modifications on the table while creating the index. It turns out that it is conceptually not so hard to support online index creation. All we need is some more execution phases: Set up a stub for the index, for logging changes. Scan the table for index records. Sort the index records. Bulk load the index records. Apply the logged changes. Replace the stub with the actual index. Threads that modify the table will log the operations to the logs of each index that is being created. Errors, such as log overflow or uniqueness violations, will only be flagged by the ALTER TABLE thread. The log is conceptually similar to the InnoDB change buffer. The bulk load of index records will bypass record locking. We still generate redo log for writing the index pages. It would suffice to log page allocations only, and to flush the index pages from the buffer pool to the file system upon completion. Native ALTER TABLE Starting with MySQL 5.6, InnoDB supports most ALTER TABLE operations natively. The notable exceptions are changes to the column type, ADD FOREIGN KEY except when foreign_key_checks=0, and changes to tables that contain FULLTEXT indexes. The keyword ALGORITHM=INPLACE is somewhat misleading, because certain operations cannot be performed in-place. For example, changing the ROW_FORMAT of a table requires a rebuild. Online operation (LOCK=NONE) is not allowed in the following cases: when adding an AUTO_INCREMENT column, when the table contains FULLTEXT indexes or a hidden FTS_DOC_ID column, or when there are FOREIGN KEY constraints referring to the table, with ON…CASCADE or ON…SET NULL option. The FOREIGN KEY limitations are needed, because MySQL does not acquire meta-data locks on the child or parent tables when executing SQL statements. Theoretically, InnoDB could support operations like ADD COLUMN and DROP COLUMN in-place, by lazily converting the table to a newer format. This would require that the data dictionary keep multiple versions of the table definition. For simplicity, we will copy the entire table, even for DROP COLUMN. The bulk copying of the table will bypass record locking and undo logging. For facilitating online operation, a temporary log will be associated with the clustered index of table. Threads that modify the table will also write the changes to the log. When altering the table, we skip all records that have been marked for deletion. In this way, we can simply discard any undo log records that were not yet purged from the original table. Off-page columns, or BLOBs, are an important consideration. We suspend the purge of delete-marked records if it would free any off-page columns from the old table. This is because the BLOBs can be needed when applying changes from the log. We have special logging for handling the ROLLBACK of an INSERT that inserted new off-page columns. This is because the columns will be freed at rollback.

    Read the article

  • What's New & Cool in NetBeans IDE 7.x

    - by Geertjan
    Loads of new features have been added to NetBeans IDE during the NetBeans IDE 7.x release cycle, i.e., 7.0 together with all the minor releases that have come after that, up to 7.4, which was released during the last few days. Hard to keep track of everything added over all those releases, so instead of making a "What's New in NetBeans IDE 7.4" slide deck (which would only cover the highlights of the NetBeans IDE 7.4 Release Notes), as we would normally do, we've instead produced "What's New in NetBeans IDE 7.x", which is around 50 slides presenting all the key features of the IDE, together with all the key newest features. Here it is: If you want to present the wonderful world that is the NetBeans ecosystem to your JUG or school or university or colleagues in your company, just download the above slide deck (either PDF or the PowerPoint sources) here: https://netbeans.org/community/teams/evangelism And happy NetBeans IDE 7.4 to everyone using NetBeans IDE everywhere in the world!

    Read the article

  • WebLogic Server??????????

    - by Masa.Sasaki
    ???2?9??54?????! ?????????????8?WebLogic Server???@???????????WebLogic Server?3?????????????????????????????????????WebLogic Server???????????! WebLogic Server?MBean???????????2?????? ???????????????????????????????????????????????????????????????????????????????WebLogic Server?JRockit??????????????????????????????JRockit???????????&??????????????????????????WebLogic Server????????????????????????????????????????????????????????????????? ??????????????????????????????? ?????JMX MBean??????????GUI??????????????????????WLST (WebLogic Scripting Tool)????????Jython??????????????????????????MBean????????GUI???????????????????????????????????WebLogic Server???????????????????????????????????????????????????? ???????????2?16?(?)???6?:30?????14? WebLogic Server???@????????????????????????????????????????????(??????????)?

    Read the article

  • My ubuntuone is broken, what is the problem?

    - by user6962
    I am on 10.10 and u1sdtool seems to be completely broken. I reinstalled it, no change. I can add my PC to the account, but it is added twice(!) every time I tried. So I have my netbook and two times my PC in the account. The netbook with 10.04 has no problems. Below is the error msg I get when attempting to startup Ubuntu One on the command line. desktop:~$ u1sdtool --status Oops, an error ocurred: Traceback (most recent call last): Failure: dbus.exceptions.DBusException: org.freedesktop.DBus.Error.NoReply: Did not receive a reply. Possible causes include: the remote application did not send a reply, the message bus security policy blocked the reply, the reply timeout expired, or the network connection was broken. desktop:~$ Starting it from the Me Menu has the same effect, the HDD will get really busy for a minute and then nothing happens, the client will not start. Nothing in the syslog or anywhere.

    Read the article

  • Mastering snow and Java development at jDays in Gothenburg

    - by JavaCecilia
    Last weekend, I took the train from Stockholm to Gothenburg to attend and present at the new Java developer conference jDays. It was professionally arranged in the Swedish exhibition hall close to the amusement park Liseberg and we got a great deal out of the top-level presenters and hallway discussions. Understanding and Improving Your Java Process Our main purpose was to spread information on JVM and our monitoring tools for Java processes, so I held a crash course in the most important terms and concepts if you want to affect the performance of your Java process. From the beginning - the JVM specification to interpretation of heap usage graphs. For correct analysis, you also need to understand something about process memory - you need space for the Java heap (-Xms for initial size and -Xmx for max heap size), but the process memory also contain the thread stacks (to a size of -Xss), JVM internal data structures used for keeping track of Java objects on the heap, method compilation/optimization, native libraries, etc. If you get long pause times, make sure to monitor your application, see the allocation rate and frequency of pause times.My colleague Klara Ward then held a presentation on the Java Mission Control product, the profiling and diagnostics tools suite for HotSpot, coming soon. The room was packed and very appreciated, Klara demonstrated four different scenarios, e.g. how to diagnose and fix latencies due to lock contention for logging.My German colleague, OpenJDK ambassador Dalibor Topic travelled to Sweden to do the second keynote on "Make the Future Java". He let us in on the coming features and roadmaps of Java, now delivering major versions on a two-year schedule (Java 7 2011, Java 8 2013, etc). Also letting us in on where to download early versions of 8, to report problems early on. Software Development in teams Being a scout leader, I'm drilled in different team building and workshop techniques, creating strong groups - of course, I had to attend Henrik Berglund's session on building successful teams. He spoke about the importance of clear goals, autonomy and agreed processes. Thomas Sundberg ended the conference by doing live remote pair programming with Alex in Rumania and a concrete tips for people wanting to try it out (for local collaboration, remember to wash and change clothes). Memory Master Keynote The conference keynote was delivered by the Swedish memory master Mattias Ribbing, showing off by remembering the order of a deck of cards he'd seen once. He made it interactive by forcing the audience to learn a memory mastering technique of remembering ten ordered things by heart, asking us to shout out the order backwards and we made it! I desperately need this - bought the book, will get back on the subject. Continuous Delivery The most impressive presenter was Axel Fontaine on Continuous Delivery. Very well prepared slides with key images of his message and moved about the stage like a rock star. The topic is of course highly interesting, how to create an infrastructure enabling immediate feedback to developers and ability to release your product several times per day. Tomek Kaczanowski delivered a funny and useful presentation on good and bad tests, providing comic relief with poorly written tests and the useful rules of thumb how to rewrite them. To conclude, we had a great time and hope to see you at jDays next year :)

    Read the article

  • RPi and Java Embedded GPIO: Hooking Up Your Wires for Java

    - by hinkmond
    So, you bought your blue jumper wires, your LEDs, your resistors, your breadboard, and your fill of Fry's for the day. How do you hook this cool stuff up to write Java code to blink them LEDs? I'll step you through it. First look at that pinout diagram of the GPIO header that's on your RPi. Find the pins in the corner of your RPi board and make sure to orient it the right way. The upper left corner pin should have the characters "P1" next to it on the board. That pin next to "P1" is your Pin #1 (in the diagram). Then, you can start counting left, right, next row, left, right, next row, left, right, and so on: Pins # 1, 2, next row, 3, 4, next row, 5, 6, and so on. Take one blue jumper wire and connect to Pin # 3 (GPIO0). Connect the other end to a resistor and then the other end of the resistor into the breadboard. Each row of grouped-together holes on a breadboard are connected, so plug in the short-end of a common cathode LED (long-end of a common anode LED) into a hole that is in the same grouping as where the resistor is plugged in. Then, connect the other end of the LED back to Pin # 6 (GND) on the RPi GPIO header. Now you have your first LED connected ready for you to write some Java code to turn it on and off. (As, extra credit you can connect 7 other LEDs the same way to with one lead to Pins # 5, 7, 11, 13, 15, 19 & 21). Whew! That wasn't so bad, was it? Next blog post on this thread will have some Java source code for you to try... Hinkmond

    Read the article

  • Webcast WebCenter Content, April 11th, 2012

    - by rituchhibber
    Our next WebCenter Content webcast will be on April 10th, 2012. This WebCast will help you to prepare yourself for the WebCenter Content Certified Implementation Specialist EXAM. Webcast Details: Date Topic Speaker Web Call Details Intercall Details  April 10th                WebCenter Content   Refresh     Course      Markus NeubauerSilburyWebCenter ContentSpecialized Partner Join Webcast Dial-in numbers:CC/SP: 1579222/9221 Time: 12:00 -15:00 CET Break around 13:30 Conference ID/Key: 9819145/1004 For more details, please click here.

    Read the article

  • Exalogic 2.0.1 Tea Break Snippets - Creating and using Distribution Groups

    - by The Old Toxophilist
    By default running your Exalogic in a Virtual provides you with, what to Cloud Users, is a single large resource and they can just create vServers and not care about how they are laid down on the the underlying infrastructure. All the Cloud Users will know is that they can create vServers. For example if we have a Quarter Rack (8 Nodes) and our Cloud User creates 8 vServers those 8 vServers may run on 8 distinct nodes or may all run on the same node. Although in many cases we, as Cloud Users, may not be to worried how the Virtualisation Algorithm decides where to place our vServers there are cases where it is extremely important that vServers run on distinct physical compute nodes. For example if we have a Weblogic Cluster we will want the Servers with in the cluster to run on distinct physical node to cover for the situation where one physical node is lost. To achieve this the Exalogic Virtualised implementation provides Distribution Groups that define and anti-aliasing policy that the underlying Virtualisation Algorithm will take into account when placing vServers. It should be noted that Distribution Groups must be created before you create vServers because a vServer can only be added to a Distribution Group at creation time. Creating A Distribution Group To create a Distribution Groups we will first need to select the Account in which we want the Distribution Group to be created. Once we have selected the account we will see the Interface update and Account specific Actions will be displayed within the Action Panes. From the Action pane (or Right-Click on the Account) select the "Create Distribution Group" action. This will initiate the create wizard as follows. Distribution Group Details Within the first Step of the Wizard we can specify the name of the distribution group and this should be unique. In addition we can provide a detailed description of the group. Distribution Group Configuration The second step of the configuration wizard allows you to specify the number of elements that are required within this group and will specify a maximum of the number of nodes within you Exalogic. At this point it is always better to specify a group with spare capacity allowing for future expansion. As vServers are added to group the available slots decrease. Summary Finally the last step of the wizard display a summary of the information entered.

    Read the article

  • Selecting Items in a GeoToolkit Driven Map

    - by Geertjan
    When you take a look at all the tools provided by GeoToolkit, you'll be quite impressed. For example, within the US map shown in yesterday's blog entry, you can drill down into individual states by selecting them via the mouse, as shown below: With that, the basis of a more complex application is laid, since all the map-related functionality is handed to you out of the box. The sample referred to yesterday has been updated, if you check it out and run it (assuming you've taken the additional steps mentioned yesterday), you'll see the above. http://java.net/projects/nb-api-samples/sources/api-samples/show/versions/7.3/tutorials/geospatial/geotoolkit/MyGeospatialSystem

    Read the article

  • JDK bug migration milestone: JIRA now the system of record

    - by darcy
    I'm pleased to announce the OpenJDK bug database migration project has reached a significant milestone: the JDK has switched from the legacy Sun "bugtraq" system to a new internal JIRA instance as the system of record for our bug tracking. This completes the initial phase of the previously described plan of getting OpenJDK onto an externally visible and writable bug tracker. The identities contained in the current system include recognized OpenJDK contributors. The bug migration effort to date has been sizable in multiple dimensions. There are around 140,000 distinct issues imported into the JDK project of the JIRA instance, nearly 165,000 if backport issues to track multiple-release information are included. Separately, the Code Tools OpenJDK project has its own JIRA project populated with several thousands existing bugs. Once the OpenJDK JIRA instance is externalized, approved OpenJDK projects will be able to request the creation of a JIRA project for issue tracking. There are many differences in the schema used to model bugs between the legacy bug system and the schema for the new JIRA projects. We've favored simplifications to the existing system where possible and, after much discussion, we've settled on five main states for the OpenJDK JIRA projects: New Open In progress Resolved Closed The Open and In-progress states can have a substate Understanding field set to track whether the issues has its "Cause Known" or "Fix understood". In the closed state, a Verification field can indicate whether a fix has been verified, unverified, or if the fix has failed. At the moment, there will be very little externally visible difference between JIRA for OpenJDK and the legacy system it replaces. One difference is that bug numbers for newly filed issues in the JIRA JDK project will be 8000000 and above. If you are working with JDK Hg repositories, update any local copies of jcheck to the latest version which recognizes this expanded bug range. (The bug numbers of existing issues have been preserved on the import into JIRA). Relatively soon, we plan for the pages published on bugs.sun.com to be generated from information in JIRA rather than in the legacy system. When this occurs, there will be some differences in the page display and the terminology used will be revised to reflect JIRA usage, such as referring to the "component/subcomponent" of an issue rather than its "category". The exact timing of this transition will be announced when it is known. We don't currently have a firm timeline for externalization of the JIRA system. Updates will be provided as they become available. However, that is unlikely to happen before JavaOne next week!

    Read the article

  • Enterprise Trade Compliance: Changing Trade Operations around the World

    - by John Murphy
    We live in a world of incredible bounty and speed where any product can be delivered anywhere on earth. However, our world is also filled with challenges for business – where volatility, uncertainty, risk, and chaos are our daily companions. To prosper amid the realities of this new world, organizations cannot rely on old strategies; they need new business models. Key trends within the global economy are mandating that companies fully integrate global trade management best practices within broader supply chain management strategies, rather than simply leaving it as a discrete event at the end of the order or procurement cycle. To explain, many companies face a complicated and changing compliance environment. This is directly linked to the speed and configuration of the supply chain, particularly with the explosion of new markets, shorter service cycles and ship times, accelerating rates of globalization and outsourcing, and increasing product complexity and regulation. Read More...

    Read the article

  • Salon du E-commerce et Social CRM B2B

    - by Valérie De Montvallon
    Nous participions au Salon du E-commerce et Social CRM B2B en septembre dernier et nous vous proposons la vidéo réalisée par Les décideurs de la relation client. Découvrez des avis d'experts de la Relation Client pour en savoir toujours plus sur le Social CRM BtoB. Pour le BtoB, la gestion de la Relation Client semble bien simple quand il s’agit de récolter des informations à partir d’appels téléphoniques, d’entretiens physiques ou d’emails. Toutefois, la tâche s’enhardit sur les réseaux sociaux. Ces plateformes sont-elles réellement adaptées au BtoB ? Comment procéder quand on se lance ? Quels sont les pièges à éviter ? Quels sont les éléments qui laissent à penser que le Social CRM BtoB est une vraie tendance de la Relation Client ? Autant de questions auxquelles les experts rencontrés ont apporté des éléments de réponse. Vous découvrirez l'interview de notre expert, Khalid Madarbokus, qui s'exprime sur la remontée d'informations depuis les médias sociaux au sein des départements d'une entreprise B2B (à 3:20)

    Read the article

  • Getting Started Plugging into the "Find in Projects" Dialog

    - by Geertjan
    In case you missed it amidst all the code in yesterday's blog entry, the "Find in Projects" dialog is now pluggable. I think that's really cool. The code yesterday gives you a complete example, but let's break it down a bit and deconstruct down to a very simple hello world scenario. We'll end up with as many extra tabs in the "Find in Projects" dialog as we need, for example, three in this case:  And clicking on any of those extra tabs will, in this simple example, simply show us this: Once we have that, we'll be able to continue adding small bits of code over the next few blog entries until we have something more useful. So, in this blog entry, you'll literally be able to display "Hello World" within a new tab in the "Find in Projects" dialog: import javax.swing.JComponent; import javax.swing.JLabel; import org.netbeans.spi.search.provider.SearchComposition; import org.netbeans.spi.search.provider.SearchProvider; import org.netbeans.spi.search.provider.SearchProvider.Presenter; import org.openide.NotificationLineSupport; import org.openide.util.lookup.ServiceProvider; @ServiceProvider(service = SearchProvider.class) public class ExampleSearchProvider1 extends SearchProvider { @Override public Presenter createPresenter(boolean replaceMode) { return new ExampleSearchPresenter(this); } @Override public boolean isReplaceSupported() { return false; } @Override public boolean isEnabled() { return true; } @Override public String getTitle() { return "Demo Extension 1"; } public class ExampleSearchPresenter extends SearchProvider.Presenter { private ExampleSearchPresenter(ExampleSearchProvider1 sp) { super(sp, true); } @Override public JComponent getForm() { return new JLabel("Hello World"); } @Override public SearchComposition composeSearch() { return null; } @Override public boolean isUsable(NotificationLineSupport nls) { return true; } } } That's it, not much code, works fine in NetBeans IDE 7.2 Beta, and is easier to digest than the big chunk from yesterday. If you make three classes like the above in a NetBeans module, and you install it, you'll have three new tabs in the "Find in Projects" dialog. The only required dependencies are Dialogs API, Lookup API, and Search in Projects API. Read the javadoc linked above and then in next blog entries we'll continue to build out something like the sample you saw in yesterday's blog entry.

    Read the article

  • how to make Chromium-browser start on vnc display?

    - by Oleksandr Dudchenko
    I have started Tightvncserver on Lubuntu 12.04 via the command $ tightvncserver -geometry 800x600 -depth 16 :2 VNC server successfully started and I got message like follows. New 'X' desktop is gateway:2 Starting applications specified in /home/dolv/.vnc/xstartup Log file is /home/dolv/.vnc/gateway:2.log Then I've successfully loged in from remote PC using realvncclient. Trying to start Chromium-browser from menu... no luck. There was one more attempt: I opened the LXTerminal from menu. Trying to start is from terminal with the command /usr/bim/chromium-browser & it returned the message like follows: Xlib: extention "RANDR" missing on desktop :2 I have also discovered that after my two attampts the chromium-browser has created 2 new windows on the host on which was session running on display :0 The Question: How to make the browser start on that display from which it was called (in my occasion from vnc session display)?

    Read the article

  • How would you design an application with many target platforms and devices?

    - by Pierre 303
    I'm in a very beginning of the design phase of an application that will have to run in the following platforms/devices: Desktop: Windows, Linux & Mac Mobile: Android, iPhone/iPad & Windows Phone 7 Web: Silverlight I will use C# on Mono and I want to maximize code re-usability. Except for the desktop (I'll use WinForms/GTK#), my concern is related to many different GUI that I will face. What would be your approach? Obviously, the views will be different, but what about the controllers, data access, utility classes, etc. Is it really acceptable to share everything but the views?

    Read the article

  • JavaOne Latin America Early Bird Discount: R$300,00 Off

    - by Tori Wieldt
    Learn how to code in Java more efficiently, pick up Java best practices, and participate in world-class networking at JavaOne Latin America—all for R$300,00 less if you register by 16 November. Have you ever wondered how to construct embedded Java applications for next-generation smart devices? Want to profit from client-side solutions using JavaFX, or simply build modern applications in Java 7? Techniques for these and much more are showcased at JavaOne Latin America—and you’re invited! Choose from more than 50 sessions, multiple demos, plus keynotes and hands-on labs. Topics include: Core Java Platform JavaFX and Rich User Experiences Java EE, Web Services, and the Cloud Java ME, Java Embedded, and Java Card Secure Your Place Now—Register now! Para mais informações ou inscrição ligue para (11) 2875-4163.

    Read the article

  • Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 4)

    - by hinkmond
    And now here's the Java code that you'll need to read your ghost sensor on your Raspberry Pi The general idea is that you are using Java code to access the GPIO pin on your Raspberry Pi where the ghost sensor (JFET trasistor) detects minute changes in the electromagnetic field near the Raspberry Pi and will change the GPIO pin to high (+3 volts) when something is detected, otherwise there is no value (ground). Here's that Java code: try { /*** Init GPIO port(s) for input ***/ // Open file handles to GPIO port unexport and export controls FileWriter unexportFile = new FileWriter("/sys/class/gpio/unexport"); FileWriter exportFile = new FileWriter("/sys/class/gpio/export"); for (String gpioChannel : GpioChannels) { System.out.println(gpioChannel); // Reset the port File exportFileCheck = new File("/sys/class/gpio/gpio"+gpioChannel); if (exportFileCheck.exists()) { unexportFile.write(gpioChannel); unexportFile.flush(); } // Set the port for use exportFile.write(gpioChannel); exportFile.flush(); // Open file handle to input/output direction control of port FileWriter directionFile = new FileWriter("/sys/class/gpio/gpio" + gpioChannel + "/direction"); // Set port for input directionFile.write(GPIO_IN); } /*** Read data from each GPIO port ***/ RandomAccessFile[] raf = new RandomAccessFile[GpioChannels.length]; int sleepPeriod = 10; final int MAXBUF = 256; byte[] inBytes = new byte[MAXBUF]; String inLine; int zeroCounter = 0; // Get current timestamp with Calendar() Calendar cal; DateFormat dateFormat = new SimpleDateFormat("yyyy/MM/dd HH:mm:ss.SSS"); String dateStr; // Open RandomAccessFile handle to each GPIO port for (int channum=0; channum And, then we just load up our Java SE Embedded app, place each Raspberry Pi with a ghost sensor attached in strategic locations around our Santa Clara office (which apparently is very haunted by ghosts from the Agnews Insane Asylum 1906 earthquake), and watch our analytics for any ghosts. Easy peazy. See the previous posts for the full series on the steps to this cool demo: Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 1) Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 2) Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 3) Halloween: Season for Java Embedded Internet of Spooky Things (IoST) (Part 4) Hinkmond

    Read the article

  • Draggable & Resizable Editors

    - by Geertjan
    Thanks to a cool tip from Steven Yi (here in the comments to a blog entry), I was able to make a totally pointless but fun set of draggable and resizable editors: What you see above are two JEditorPanes within JPanels. The JPanels are within ComponentWidgets provided by the NetBeans Visual Library, which is also where the special border comes from. The ComponentWidgets are within a Visual Library Scene, which is within a JScrollPane in a TopComponent. Each editor has this, which means the NetBeans Java Editor is bound to the JEditorPane: jEditorPane1.setContentType("text/x-java"); EditorKit kit = CloneableEditorSupport.getEditorKit("text/x-java"); jEditorPane1.setEditorKit(kit); jEditorPane1.getDocument().putProperty("mimeType", "text/x-java"); A similar thing is done in the other JEditorPane, i.e., it is bound to the XML Editor. While the XML Editor also has code completion, in addition to syntax coloring, as can be seen above, this is not the case for the JEditorPane bound to the Java Editor, since the JEditorPane doesn't have a Java classpath, which is needed for Java code completion to work.

    Read the article

  • CPU Usage in Very Large Coherence Clusters

    - by jpurdy
    When sizing Coherence installations, one of the complicating factors is that these installations (by their very nature) tend to be application-specific, with some being large, memory-intensive caches, with others acting as I/O-intensive transaction-processing platforms, and still others performing CPU-intensive calculations across the data grid. Regardless of the primary resource requirements, Coherence sizing calculations are inherently empirical, in that there are so many permutations that a simple spreadsheet approach to sizing is rarely optimal (though it can provide a good starting estimate). So we typically recommend measuring actual resource usage (primarily CPU cycles, network bandwidth and memory) at a given load, and then extrapolating from those measurements. Of course there may be multiple types of load, and these may have varying degrees of correlation -- for example, an increased request rate may drive up the number of objects "pinned" in memory at any point, but the increase may be less than linear if those objects are naturally shared by concurrent requests. But for most reasonably-designed applications, a linear resource model will be reasonably accurate for most levels of scale. However, at extreme scale, sizing becomes a bit more complicated as certain cluster management operations -- while very infrequent -- become increasingly critical. This is because certain operations do not naturally tend to scale out. In a small cluster, sizing is primarily driven by the request rate, required cache size, or other application-driven metrics. In larger clusters (e.g. those with hundreds of cluster members), certain infrastructure tasks become intensive, in particular those related to members joining and leaving the cluster, such as introducing new cluster members to the rest of the cluster, or publishing the location of partitions during rebalancing. These tasks have a strong tendency to require all updates to be routed via a single member for the sake of cluster stability and data integrity. Fortunately that member is dynamically assigned in Coherence, so it is not a single point of failure, but it may still become a single point of bottleneck (until the cluster finishes its reconfiguration, at which point this member will have a similar load to the rest of the members). The most common cause of scaling issues in large clusters is disabling multicast (by configuring well-known addresses, aka WKA). This obviously impacts network usage, but it also has a large impact on CPU usage, primarily since the senior member must directly communicate certain messages with every other cluster member, and this communication requires significant CPU time. In particular, the need to notify the rest of the cluster about membership changes and corresponding partition reassignments adds stress to the senior member. Given that portions of the network stack may tend to be single-threaded (both in Coherence and the underlying OS), this may be even more problematic on servers with poor single-threaded performance. As a result of this, some extremely large clusters may be configured with a smaller number of partitions than ideal. This results in the size of each partition being increased. When a cache server fails, the other servers will use their fractional backups to recover the state of that server (and take over responsibility for their backed-up portion of that state). The finest granularity of this recovery is a single partition, and the single service thread can not accept new requests during this recovery. Ordinarily, recovery is practically instantaneous (it is roughly equivalent to the time required to iterate over a set of backup backing map entries and move them to the primary backing map in the same JVM). But certain factors can increase this duration drastically (to several seconds): large partitions, sufficiently slow single-threaded CPU performance, many or expensive indexes to rebuild, etc. The solution of course is to mitigate each of those factors but in many cases this may be challenging. Larger clusters also lead to the temptation to place more load on the available hardware resources, spreading CPU resources thin. As an example, while we've long been aware of how garbage collection can cause significant pauses, it usually isn't viewed as a major consumer of CPU (in terms of overall system throughput). Typically, the use of a concurrent collector allows greater responsiveness by minimizing pause times, at the cost of reducing system throughput. However, at a recent engagement, we were forced to turn off the concurrent collector and use a traditional parallel "stop the world" collector to reduce CPU usage to an acceptable level. In summary, there are some less obvious factors that may result in excessive CPU consumption in a larger cluster, so it is even more critical to test at full scale, even though allocating sufficient hardware may often be much more difficult for these large clusters.

    Read the article

  • Maxco Quickly Implements JD Edwards World A9.1

    David Bryant, Vice President and CFO of Maxco, explains to Cliff why Maxco chose to be one of the first to implement JD Edwards World A9.1, how the implementation is going to be a huge competitive advantage for Maxco and its customers, and the value Bryant sees in being part of the Quest User Group community.

    Read the article

< Previous Page | 698 699 700 701 702 703 704 705 706 707 708 709  | Next Page >