Search Results

Search found 1889 results on 76 pages for 'evolutionary algorithms'.

Page 71/76 | < Previous Page | 67 68 69 70 71 72 73 74 75 76  | Next Page >

  • C++ vs Matlab vs Python as a main language for Computer Vision Postgraduate

    - by Hough
    Hi all, Firstly, sorry for a somewhat long question but I think that many people are in the same situation as me and hopefully they can also gain some benefit from this. I'll be starting my PhD very soon which involve the fields of computer vision, pattern recognition and machine learning. Currently, I'm using opencv (2.1) C++ interface and I especially like its powerful Mat class and the overloaded operations available for matrix and image seamless operations and transformations. I've also tried (and implemented many small vision projects) using opencv python interface (new bindings; opencv 2.1) and I really enjoy python's ability to integrate opencv, numpy, scipy and matplotlib. But recently, I went back to opencv C++ interface because I felt that the official python new bindings were not stable enough and no overloaded operations are available for matrices and images, not to mention the lack of machine learning modules and slow speeds in certain operations. I've also used Matlab extensively in the past and although I've used mex files and other means to speed up the program, I just felt that Matlab's performance was inadequate for real-time vision tasks, be it for fast prototyping or not. When the project becomes larger and larger, many tasks have to be re-written in C and compiled into Mex files increasingly and Matlab becomes nothing more than a glue language. Here comes the sub-questions: For postgrad studies in these fields (machine learning, vision, pattern recognition), what is your main or ideal programming language for rapid prototyping of ideas and testing algorithms contained in papers? For postgrad studies, can you list down the pros and cons of using the following languages? C++ (with opencv + gsl + svmlib + other libraries) vs Matlab (with all its toolboxes) vs python (with the imcomplete opencv bindings + numpy + scipy + matplotlib). Are there computer vision PhD/postgrad students here who are using only C++ (with all its availabe libraries including opencv) without even needing to resort to Matlab or python? In other words, given the current existing computer vision or machine learning libraries, is C++ alone sufficient for fast prototyping of ideas? If you're currently using Java or C# for your postgrad work, can you list down the reasons why they should be used and how they compare to other languages in terms of available libraries? What is the de facto vision/machine learning programming language and its associated libraries used in your university research group? Thanks in advance.

    Read the article

  • How to make efficient code emerge through unit testing

    - by Jean
    Hi, I participate in a TDD Coding Dojo, where we try to practice pure TDD on simple problems. It occured to me however that the code which emerges from the unit tests isn't the most efficient. Now this is fine most of the time, but what if the code usage grows so that efficiency becomes a problem. I love the way the code emerges from unit testing, but is it possible to make the efficiency property emerge through further tests ? Here is a trivial example in ruby: prime factorization. I followed a pure TDD approach making the tests pass one after the other validating my original acceptance test (commented at the bottom). What further steps could I take, if I wanted to make one of the generic prime factorization algorithms emerge ? To reduce the problem domain, let's say I want to get a quadratic sieve implementation ... Now in this precise case I know the "optimal algorithm, but in most cases, the client will simply add a requirement that the feature runs in less than "x" time for a given environment. require 'shoulda' require 'lib/prime' class MathTest < Test::Unit::TestCase context "The math module" do should "have a method to get primes" do assert Math.respond_to? 'primes' end end context "The primes method of Math" do should "return [] for 0" do assert_equal [], Math.primes(0) end should "return [1] for 1 " do assert_equal [1], Math.primes(1) end should "return [1,2] for 2" do assert_equal [1,2], Math.primes(2) end should "return [1,3] for 3" do assert_equal [1,3], Math.primes(3) end should "return [1,2] for 4" do assert_equal [1,2,2], Math.primes(4) end should "return [1,5] for 5" do assert_equal [1,5], Math.primes(5) end should "return [1,2,3] for 6" do assert_equal [1,2,3], Math.primes(6) end should "return [1,3] for 9" do assert_equal [1,3,3], Math.primes(9) end should "return [1,2,5] for 10" do assert_equal [1,2,5], Math.primes(10) end end # context "Functionnal Acceptance test 1" do # context "the prime factors of 14101980 are 1,2,2,3,5,61,3853"do # should "return [1,2,3,5,61,3853] for ${14101980*14101980}" do # assert_equal [1,2,2,3,5,61,3853], Math.primes(14101980*14101980) # end # end # end end and the naive algorithm I created by this approach module Math def self.primes(n) if n==0 return [] else primes=[1] for i in 2..n do if n%i==0 while(n%i==0) primes<<i n=n/i end end end primes end end end

    Read the article

  • C++ vs Matlab vs Python as a main language for Computer Vision Research

    - by Hough
    Hi all, Firstly, sorry for a somewhat long question but I think that many people are in the same situation as me and hopefully they can also gain some benefit from this. I'll be starting my PhD very soon which involves the fields of computer vision, pattern recognition and machine learning. Currently, I'm using opencv (2.1) C++ interface and I especially like its powerful Mat class and the overloaded operations available for matrix and image operations and seamless transformations. I've also tried (and implemented many small vision projects) using opencv python interface (new bindings; opencv 2.1) and I really enjoy python's ability to integrate opencv, numpy, scipy and matplotlib. But recently, I went back to opencv C++ interface because I felt that the official python new bindings were not stable enough and no overloaded operations are available for matrices and images, not to mention the lack of machine learning modules and slow speeds in certain operations. I've also used Matlab extensively in the past and although I've used mex files and other means to speed up the program, I just felt that Matlab's performance was inadequate for real-time vision tasks, be it for fast prototyping or not. When the project becomes larger and larger, many tasks have to be re-written in C and compiled into Mex files increasingly and Matlab becomes nothing more than a glue language. Here comes the sub-questions: For carrying out research in these fields (machine learning, vision, pattern recognition), what is your main or ideal programming language for rapid prototyping of ideas and testing algorithms contained in papers? For computer vision research work, can you list down the pros and cons of using the following languages? C++ (with opencv + gsl + svmlib + other libraries) vs Matlab (with all its toolboxes) vs python (with the imcomplete opencv bindings + numpy + scipy + matplotlib). Are there computer vision PhD/postgrad students here who are using only C++ (with all its availabe libraries including opencv) without even needing to resort to Matlab or python? In other words, given the current existing computer vision or machine learning libraries, is C++ alone sufficient for fast prototyping of ideas? If you're currently using Java or C# for your research, can you list down the reasons why they should be used and how they compare to other languages in terms of available libraries? What is the de facto vision/machine learning programming language and its associated libraries used in your research group? Thanks in advance. Edit: As suggested, I've opened the question to both academic and non-academic computer vision/machine learning/pattern recognition researchers and groups.

    Read the article

  • Rush Hour - Solving the game

    - by Rubys
    Rush Hour if you're not familiar with it, the game consists of a collection of cars of varying sizes, set either horizontally or vertically, on a NxM grid that has a single exit. Each car can move forward/backward in the directions it's set in, as long as another car is not blocking it. You can never change the direction of a car. There is one special car, usually it's the red one. It's set in the same row that the exit is in, and the objective of the game is to find a series of moves (a move - moving a car N steps back or forward) that will allow the red car to drive out of the maze. I've been trying to think how to solve this problem computationally, and I can really not think of any good solution. I came up with a few: Backtracking. This is pretty simple - Recursion and some more recursion until you find the answer. However, each car can be moved a few different ways, and in each game state a few cars can be moved, and the resulting game tree will be HUGE. Some sort of constraint algorithm that will take into account what needs to be moved, and work recursively somehow. This is a very rough idea, but it is an idea. Graphs? Model the game states as a graph and apply some sort of variation on a coloring algorithm, to resolve dependencies? Again, this is a very rough idea. A friend suggested genetic algorithms. This is sort of possible but not easily. I can't think of a good way to make an evaluation function, and without that we've got nothing. So the question is - How to create a program that takes a grid and the vehicle layout, and outputs a series of steps needed to get the red car out? Sub-issues: Finding some solution. Finding an optimal solution (minimal number of moves) Evaluating how good a current state is Example: How can you move the cars in this setting, so that the red car can "exit" the maze through the exit on the right?

    Read the article

  • Most efficient method to query a Young Tableau

    - by Matthieu M.
    A Young Tableau is a 2D matrix A of dimensions M*N such that: i,j in [0,M)x[0,N): for each p in (i,M), A[i,j] <= A[p,j] for each q in (j,N), A[i,j] <= A[i,q] That is, it's sorted row-wise and column-wise. Since it may contain less than M*N numbers, the bottom-right values might be represented either as missing or using (in algorithm theory) infinity to denote their absence. Now the (elementary) question: how to check if a given number is contained in the Young Tableau ? Well, it's trivial to produce an algorithm in O(M*N) time of course, but what's interesting is that it is very easy to provide an algorithm in O(M+N) time: Bottom-Left search: Let x be the number we look for, initialize i,j as M-1, 0 (bottom left corner) If x == A[i,j], return true If x < A[i,j], then if i is 0, return false else decrement i and go to 2. Else, if j is N-1, return false else increment j This algorithm does not make more than M+N moves. The correctness is left as an exercise. It is possible though to obtain a better asymptotic runtime. Pivot Search: Let x be the number we look for, initialize i,j as floor(M/2), floor(N/2) If x == A[i,j], return true If x < A[i,j], search (recursively) in A[0:i-1, 0:j-1], A[i:M-1, 0:j-1] and A[0:i-1, j:N-1] Else search (recursively) in A[i+1:M-1, 0:j], A[i+1:M-1, j+1:N-1] and A[0:i, j+1:N-1] This algorithm proceed by discarding one of the 4 quadrants at each iteration and running recursively on the 3 left (divide and conquer), the master theorem yields a complexity of O((N+M)**(log 3 / log 4)) which is better asymptotically. However, this is only a big-O estimation... So, here are the questions: Do you know (or can think of) an algorithm with a better asymptotical runtime ? Like introsort prove, sometimes it's worth switching algorithms depending on the input size or input topology... do you think it would be possible here ? For 2., I am notably thinking that for small size inputs, the bottom-left search should be faster because of its O(1) space requirement / lower constant term.

    Read the article

  • Is it normal for a programmer with 2 years experience to take a long time to code simple programs?

    - by ajax81
    Hi all, I'm a relatively new programmer (18 months on the scene), and I'm finally getting to the point where I'm comfortable accepting projects and developing solutions under minimal supervision. Unfortunately, this also means that I've become acutely aware of my performance shortfalls, the most prevalent of which is the amount of time it takes me to develop, test, and submit algorithms for review. A great example of what I'm talking about occurred this week when I was tasked with developing a simple XML web service (asp.net 3.5) callable via client-side JavaScript, that accepts a single parameter and returns a dataset output to a modal window (please note this is the first time I've had to develop a web service and have had ZERO experience creating/consuming them...let alone calling them from JS client side). Keeping a long story short -- I worked on it for 4 days straight, all day each day, for a grand total of 36 hours, not including the time I spent dwelling on the problem in the shower, the morning commute, and laying awake in bed at night. I learned a great deal about web services and xml/json/javascript...but was called in for a management review to discuss the length of time it took me to develop the solution. In the meeting, I was praised for the quality of my work and was in fact told that my effort was commendable. However, they (senior leads and pm's) weren't impressed with the amount of time it took me to develop the solution and expressed that they would have liked to see the solution in roughly 1/3 of the time it took me. I guess what concerns me the most is that I've identified this pattern as common for myself. Between online videos, book research, and trial/error coding...if its something I haven't seen before, I can spend up to two weeks on a problem that seems to only take the pros in the videos moments to code up. And of course, knowing that management isn't happy with this pattern has shaken me up a bit. To sum up, I have some very specific questions I'd like to ask, and would greatly appreciate your objective professional feedback. Is my experience as a junior programmer common among new developers? Or is it possible that I'm just not cut out for the work? If you suspect that my experience is not common and that there may be an aptitude issue, do you have any suggestions/solutions that I could propose to management to help bring me up to speed? Do seasoned, professional programmers ever encounter knowledge barriers that considerably delay deliverables? When you started out in the industry, did you know how to "do it all"? If not, how long did it take you to be perceived as "proficient"? Was it a natural progression of trial and error, or was there a particular zen moment when you knew you had achieved super saiyen power level? Anyways, thanks for taking the time to read my question(s). I don't know if this is the right place to ask for professional career guidance, but I greatly appreciate your willingness to help me out. Cheers, Daniel

    Read the article

  • Calculating CPU frequency in C with RDTSC always returns 0

    - by Nazgulled
    Hi, The following piece of code was given to us from our instructor so we could measure some algorithms performance: #include <stdio.h> #include <unistd.h> static unsigned cyc_hi = 0, cyc_lo = 0; static void access_counter(unsigned *hi, unsigned *lo) { asm("rdtsc; movl %%edx,%0; movl %%eax,%1" : "=r" (*hi), "=r" (*lo) : /* No input */ : "%edx", "%eax"); } void start_counter() { access_counter(&cyc_hi, &cyc_lo); } double get_counter() { unsigned ncyc_hi, ncyc_lo, hi, lo, borrow; double result; access_counter(&ncyc_hi, &ncyc_lo); lo = ncyc_lo - cyc_lo; borrow = lo > ncyc_lo; hi = ncyc_hi - cyc_hi - borrow; result = (double) hi * (1 << 30) * 4 + lo; return result; } However, I need this code to be portable to machines with different CPU frequencies. For that, I'm trying to calculate the CPU frequency of the machine where the code is being run like this: int main(void) { double c1, c2; start_counter(); c1 = get_counter(); sleep(1); c2 = get_counter(); printf("CPU Frequency: %.1f MHz\n", (c2-c1)/1E6); printf("CPU Frequency: %.1f GHz\n", (c2-c1)/1E9); return 0; } The problem is that the result is always 0 and I can't understand why. I'm running Linux (Arch) as guest on VMware. On a friend's machine (MacBook) it is working to some extent; I mean, the result is bigger than 0 but it's variable because the CPU frequency is not fixed (we tried to fix it but for some reason we are not able to do it). He has a different machine which is running Linux (Ubuntu) as host and it also reports 0. This rules out the problem being on the virtual machine, which I thought it was the issue at first. Any ideas why this is happening and how can I fix it?

    Read the article

  • Constraint Satisfaction Problem

    - by Carl Smotricz
    I'm struggling my way through Artificial Intelligence: A Modern Approach in order to alleviate my natural stupidity. In trying to solve some of the exercises, I've come up against the "Who Owns the Zebra" problem, Exercise 5.13 in Chapter 5. This has been a topic here on SO but the responses mostly addressed the question "how would you solve this if you had a free choice of problem solving software available?" I accept that Prolog is a very appropriate programming language for this kind of problem, and there are some fine packages available, e.g. in Python as shown by the top-ranked answer and also standalone. Alas, none of this is helping me "tough it out" in a way as outlined by the book. The book appears to suggest building a set of dual or perhaps global constraints, and then implementing some of the algorithms mentioned to find a solution. I'm having a lot of trouble coming up with a set of constraints suitable for modelling the problem. I'm studying this on my own so I don't have access to a professor or TA to get me over the hump - this is where I'm asking for your help. I see little similarity to the examples in the chapter. I was eager to build dual constraints and started out by creating (the logical equivalent of) 25 variables: nationality1, nationality2, nationality3, ... nationality5, pet1, pet2, pet3, ... pet5, drink1 ... drink5 and so on, where the number was indicative of the house's position. This is fine for building the unary constraints, e.g. The Norwegian lives in the first house: nationality1 = { :norway }. But most of the constraints are a combination of two such variables through a common house number, e.g. The Swede has a dog: nationality[n] = { :sweden } AND pet[n] = { :dog } where n can range from 1 to 5, obviously. Or stated another way: nationality1 = { :sweden } AND pet1 = { :dog } XOR nationality2 = { :sweden } AND pet2 = { :dog } XOR nationality3 = { :sweden } AND pet3 = { :dog } XOR nationality4 = { :sweden } AND pet4 = { :dog } XOR nationality5 = { :sweden } AND pet5 = { :dog } ...which has a decidedly different feel to it than the "list of tuples" advocated by the book: ( X1, X2, X3 = { val1, val2, val3 }, { val4, val5, val6 }, ... ) I'm not looking for a solution per se; I'm looking for a start on how to model this problem in a way that's compatible with the book's approach. Any help appreciated.

    Read the article

  • Permutations of Varying Size

    - by waiwai933
    I'm trying to write a function in PHP that gets all permutations of all possible sizes. I think an example would be the best way to start off: $my_array = array(1,1,2,3); Possible permutations of varying size: 1 1 // * See Note 2 3 1,1 1,2 1,3 // And so forth, for all the sets of size 2 1,1,2 1,1,3 1,2,1 // And so forth, for all the sets of size 3 1,1,2,3 1,1,3,2 // And so forth, for all the sets of size 4 Note: I don't care if there's a duplicate or not. For the purposes of this example, all future duplicates have been omitted. What I have so far in PHP: function getPermutations($my_array){ $permutation_length = 1; $keep_going = true; while($keep_going){ while($there_are_still_permutations_with_this_length){ // Generate the next permutation and return it into an array // Of course, the actual important part of the code is what I'm having trouble with. } $permutation_length++; if($permutation_length>count($my_array)){ $keep_going = false; } else{ $keep_going = true; } } return $return_array; } The closest thing I can think of is shuffling the array, picking the first n elements, seeing if it's already in the results array, and if it's not, add it in, and then stop when there are mathematically no more possible permutations for that length. But it's ugly and resource-inefficient. Any pseudocode algorithms would be greatly appreciated. Also, for super-duper (worthless) bonus points, is there a way to get just 1 permutation with the function but make it so that it doesn't have to recalculate all previous permutations to get the next? For example, I pass it a parameter 3, which means it's already done 3 permutations, and it just generates number 4 without redoing the previous 3? (Passing it the parameter is not necessary, it could keep track in a global or static). The reason I ask this is because as the array grows, so does the number of possible combinations. Suffice it to say that one small data set with only a dozen elements grows quickly into the trillions of possible combinations and I don't want to task PHP with holding trillions of permutations in its memory at once.

    Read the article

  • Algorithm to Render a Horizontal Binary-ish Tree in Text/ASCII form

    - by Justin L.
    It's a pretty normal binary tree, except for the fact that one of the nodes may be empty. I'd like to find a way to output it in a horizontal way (that is, the root node is on the left and expands to the right). I've had some experience expanding trees vertically (root node at the top, expanding downwards), but I'm not sure where to start, in this case. Preferably, it would follow these couple of rules: If a node has only one child, it can be skipped as redundant (an "end node", with no children, is always displayed) All nodes of the same depth must be aligned vertically; all nodes must be to the right of all less-deep nodes and to the left of all deeper nodes. Nodes have a string representation which includes their depth. Each "end node" has its own unique line; that is, the number of lines is the number of end nodes in the tree, and when an end node is on a line, there may be nothing else on that line after that end node. As a consequence of the last rule, the root node should be in either the top left or the bottom left corner; top left is preferred. For example, this is a valid tree, with six end nodes (node is represented by a name, and its depth): [a0]------------[b3]------[c5]------[d8] \ \ \----------[e9] \ \----[f5] \--[g1]--------[h4]------[i6] \ \--------------------[j10] \-[k3] Which represents the horizontal, explicit binary tree: 0 a / \ 1 g * / \ \ 2 * * * / \ \ 3 k * b / / \ 4 h * * / \ \ \ 5 * * f c / \ / \ 6 * i * * / / \ 7 * * * / / \ 8 * * d / / 9 * e / 10 j (branches folded for compactness; * representing redundant, one-child nodes; note that *'s are actual nodes, storing one child each, just with names omitted here for presentation sake) (also, to clarify, I'd like to generate the first, horizontal tree; not this vertical tree) I say language-agnostic because I'm just looking for an algorithm; I say ruby because I'm eventually going to have to implement it in ruby anyway. Assume that each Node data structure stores only its id, a left node, and a right node. A master Tree class keeps tracks of all nodes and has adequate algorithms to find: A node's nth ancestor A node's nth descendant The generation of a node The lowest common ancestor of two given nodes Anyone have any ideas of where I could start? Should I go for the recursive approach? Iterative?

    Read the article

  • Classifying captured data in unknown format?

    - by monch1962
    I've got a large set of captured data (potentially hundreds of thousands of records), and I need to be able to break it down so I can both classify it and also produce "typical" data myself. Let me explain further... If I have the following strings of data: 132T339G1P112S 164T897F5A498S 144T989B9B223T 155T928X9Z554T ... you might start to infer the following: possibly all strings are 14 characters long the 4th, 8th, 10th and 14th characters may always be alphas, while the rest are numeric the first character may always be a '1' the 4th character may always be the letter 'T' the 14th character may be limited to only being 'S' or 'T' and so on... As you get more and more samples of real data, some of these "rules" might disappear; if you see a 15 character long string, then you have evidence that the 1st "rule" is incorrect. However, given a sufficiently large sample of strings that are exactly 14 characters long, you can start to assume that "all strings are 14 characters long" and assign a numeric figure to your degree of confidence (with an appropriate set of assumptions around the fact that you're seeing a suitably random set of all possible captured data). As you can probably tell, a human can do a lot of this classification by eye, but I'm not aware of libraries or algorithms that would allow a computer to do it. Given a set of captured data (significantly more complex than the above...), are there libraries that I can apply in my code to do this sort of classification for me, that will identify "rules" with a given degree of confidence? As a next step, I need to be able to take those rules, and use them to create my own data that conforms to these rules. I assume this is a significantly easier step than the classification, but I've never had to perform a task like this before so I'm really not sure how complex it is. At a guess, Python or Java (or possibly Perl or R) are possibly the "common" languages most likely to have these sorts of libraries, and maybe some of the bioinformatic libraries do this sort of thing. I really don't care which language I have to use; I need to solve the problem in whatever way I can. Any sort of pointer to information would be very useful. As you can probably tell, I'm struggling to describe this problem clearly, and there may be a set of appropriate keywords I can plug into Google that will point me towards the solution. Thanks in advance

    Read the article

  • Why is it still so hard to write software?

    - by nornagon
    Writing software, I find, is composed of two parts: the Idea, and the Implementation. The Idea is about thinking: "I have this problem; how do I solve it?" and further, "how do I solve it elegantly?" The answers to these questions are obtainable by thinking about algorithms and architecture. The ideas come partially through analysis and partially through insight and intuition. The Idea is usually the easy part. You talk to your friends and co-workers and you nut it out in a meeting or over coffee. It takes an hour or two, plus revisions as you implement and find new problems. The Implementation phase of software development is so difficult that we joke about it. "Oh," we say, "the rest is a Simple Matter of Code." Because it should be simple, but it never is. We used to write our code on punch cards, and that was hard: mistakes were very difficult to spot, so we had to spend extra effort making sure every line was perfect. Then we had serial terminals: we could see all our code at once, search through it, organise it hierarchically and create things abstracted from raw machine code. First we had assemblers, one level up from machine code. Mnemonics freed us from remembering the machine code. Then we had compilers, which freed us from remembering the instructions. We had virtual machines, which let us step away from machine-specific details. And now we have advanced tools like Eclipse and Xcode that perform analysis on our code to help us write code faster and avoid common pitfalls. But writing code is still hard. Writing code is about understanding large, complex systems, and tools we have today simply don't go very far to help us with that. When I click "find all references" in Eclipse, I get a list of them at the bottom of the window. I click on one, and I'm torn away from what I was looking at, forced to context switch. Java architecture is usually several levels deep, so I have to switch and switch and switch until I find what I'm really looking for -- by which time I've forgotten where I came from. And I do that all day until I've understood a system. It's taxing mentally, and Eclipse doesn't do much that couldn't be done in 1985 with grep, except eat hundreds of megs of RAM. Writing code has barely changed since we were staring at amber on black. We have the theoretical groundwork for much more advanced tools, tools that actually work to help us comprehend and extend the complex systems we work with every day. So why is writing code still so hard?

    Read the article

  • Recursive N-way merge/diff algorithm for directory trees?

    - by BobMcGee
    What algorithms or Java libraries are available to do N-way, recursive diff/merge of directories? I need to be able to generate a list of folder trees that have many identical files, and have subdirectories with many similar files. I want to be able to use 2-way merge operations to quickly remove as much redundancy as possible. Goals: Find pairs of directories that have many similar files between them. Generate short list of directory pairs that can be synchronized with 2-way merge to eliminate duplicates Should operate recursively (there may be nested duplicates of higher-level directories) Run time and storage should be O(n log n) in numbers of directories and files Should be able to use an embedded DB or page to disk for processing more files than fit in memory (100,000+). Optional: generate an ancestry and change-set between folders Optional: sort the merge operations by how many duplicates they can elliminate I know how to use hashes to find duplicate files in roughly O(n) space, but I'm at a loss for how to go from this to finding partially overlapping sets between folders and their children. EDIT: some clarification The tricky part is the difference between "exact same" contents (otherwise hashing file hashes would work) and "similar" (which will not). Basically, I want to feed this algorithm at a set of directories and have it return a set of 2-way merge operations I can perform in order to reduce duplicates as much as possible with as few conflicts possible. It's effectively constructing an ancestry tree showing which folders are derived from each other. The end goal is to let me incorporate a bunch of different folders into one common tree. For example, I may have a folder holding programming projects, and then copy some of its contents to another computer to work on it. Then I might back up and intermediate version to flash drive. Except I may have 8 or 10 different versions, with slightly different organizational structures or folder names. I need to be able to merge them one step at a time, so I can chose how to incorporate changes at each step of the way. This is actually more or less what I intend to do with my utility (bring together a bunch of scattered backups from different points in time). I figure if I can do it right I may as well release it as a small open source util. I think the same tricks might be useful for comparing XML trees though.

    Read the article

  • Combinations and Permutations in F#

    - by Noldorin
    I've recently written the following combinations and permutations functions for an F# project, but I'm quite aware they're far from optimised. /// Rotates a list by one place forward. let rotate lst = List.tail lst @ [List.head lst] /// Gets all rotations of a list. let getRotations lst = let rec getAll lst i = if i = 0 then [] else lst :: (getAll (rotate lst) (i - 1)) getAll lst (List.length lst) /// Gets all permutations (without repetition) of specified length from a list. let rec getPerms n lst = match n, lst with | 0, _ -> seq [[]] | _, [] -> seq [] | k, _ -> lst |> getRotations |> Seq.collect (fun r -> Seq.map ((@) [List.head r]) (getPerms (k - 1) (List.tail r))) /// Gets all permutations (with repetition) of specified length from a list. let rec getPermsWithRep n lst = match n, lst with | 0, _ -> seq [[]] | _, [] -> seq [] | k, _ -> lst |> Seq.collect (fun x -> Seq.map ((@) [x]) (getPermsWithRep (k - 1) lst)) // equivalent: | k, _ -> lst |> getRotations |> Seq.collect (fun r -> List.map ((@) [List.head r]) (getPermsWithRep (k - 1) r)) /// Gets all combinations (without repetition) of specified length from a list. let rec getCombs n lst = match n, lst with | 0, _ -> seq [[]] | _, [] -> seq [] | k, (x :: xs) -> Seq.append (Seq.map ((@) [x]) (getCombs (k - 1) xs)) (getCombs k xs) /// Gets all combinations (with repetition) of specified length from a list. let rec getCombsWithRep n lst = match n, lst with | 0, _ -> seq [[]] | _, [] -> seq [] | k, (x :: xs) -> Seq.append (Seq.map ((@) [x]) (getCombsWithRep (k - 1) lst)) (getCombsWithRep k xs) Does anyone have any suggestions for how these functions (algorithms) can be sped up? I'm particularly interested in how the permutation (with and without repetition) ones can be improved. The business involving rotations of lists doesn't look too efficient to me in retrospect. Update Here's my new implementation for the getPerms function, inspired by Tomas's answer. Unfortunately, it's not really any fast than the existing one. Suggestions? let getPerms n lst = let rec getPermsImpl acc n lst = seq { match n, lst with | k, x :: xs -> if k > 0 then for r in getRotations lst do yield! getPermsImpl (List.head r :: acc) (k - 1) (List.tail r) if k >= 0 then yield! getPermsImpl acc k [] | 0, [] -> yield acc | _, [] -> () } getPermsImpl List.empty n lst

    Read the article

  • Are there programs that iteratively write new programs?

    - by chris
    For about a year I have been thinking about writing a program that writes programs. This would primarily be a playful exercise that might teach me some new concepts. My inspiration came from negentropy and the ability for order to emerge from chaos and new chaos to arise out of order in infinite succession. To be more specific, the program would start by writing a short random string. If the string compiles the programs will log it for later comparison. If the string does not compile the program will try to rewrite it until it does compile. As more strings (mini 'useless' programs) are logged they can be parsed for similarities and used to generate a grammar. This grammar can then be drawn on to write more strings that have a higher probability of compilation than purely random strings. This is obviously more than a little silly, but I thought it would be fun to try and grow a program like this. And as a byproduct I get a bunch of unique programs that I can visualize and call art. I'll probably write this in Ruby due to its simple syntax and dynamic compilation and then I will visualize in processing using ruby-processing. What I would like to know is: Is there a name for this type of programming? What currently exists in this field? Who are the primary contributors? BONUS! - In what ways can I procedurally assign value to output programs beyond compiles(y/n)? I may want to extend the functionality of this program to generate a program based on parameters, but I want the program to define those parameters through running the programs that compile and assigning meaning to the programs output. This question is probably more involved than reasonable for a bonus, but if you can think of a simple way to get something like this done in less than 23 lines or one hyperlink, please toss it into your response. I know that this is not quite meta-programming and from the little I know of AI and generative algorithms they are usually more goal oriented than what I am thinking. What would be optimal is a program that continually rewrites and improves itself so I don't have to ^_^

    Read the article

  • Checking if an int is prime more efficiently

    - by SipSop
    I recently was part of a small java programming competition at my school. My partner and I have just finished our first pure oop class and most of the questions were out of our league so we settled on this one (and I am paraphrasing somewhat): "given an input integer n return the next int that is prime and its reverse is also prime for example if n = 18 your program should print 31" because 31 and 13 are both prime. Your .class file would then have a test case of all the possible numbers from 1-2,000,000,000 passed to it and it had to return the correct answer within 10 seconds to be considered valid. We found a solution but with larger test cases it would take longer than 10 seconds. I am fairly certain there is a way to move the range of looping from n,..2,000,000,000 down as the likely hood of needing to loop that far when n is a low number is small, but either way we broke the loop when a number is prime under both conditions is found. At first we were looping from 2,..n no matter how large it was then i remembered the rule about only looping to the square root of n. Any suggestions on how to make my program more efficient? I have had no classes dealing with complexity analysis of algorithms. Here is our attempt. public class P3 { public static void main(String[] args){ long loop = 2000000000; long n = Integer.parseInt(args[0]); for(long i = n; i<loop; i++) { String s = i +""; String r = ""; for(int j = s.length()-1; j>=0; j--) r = r + s.charAt(j); if(prime(i) && prime(Long.parseLong(r))) { System.out.println(i); break; } } System.out.println("#"); } public static boolean prime(long p){ for(int i = 2; i<(int)Math.sqrt(p); i++) { if(p%i==0) return false; } return true; } } ps sorry if i did the formatting for code wrong this is my first time posting here. Also the output had to have a '#' after each line thats what the line after the loop is about Thanks for any help you guys offer!!!

    Read the article

  • Special scheduling Algorithm (pattern expansion)

    - by tovare
    Question Do you think genetic algorithms worth trying out for the problem below, or will I hit local-minima issues? I think maybe aspects of the problem is great for a generator / fitness-function style setup. (If you've botched a similar project I would love hear from you, and not do something similar) Thank you for any tips on how to structure things and nail this right. The problem I'm searching a good scheduling algorithm to use for the following real-world problem. I have a sequence with 15 slots like this (The digits may vary from 0 to 20) : 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 (And there are in total 10 different sequences of this type) Each sequence needs to expand into an array, where each slot can take 1 position. 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 The constraints on the matrix is that: [row-wise, i.e. horizontally] The number of ones placed, must either be 11 or 111 [row-wise] The distance between two sequences of 1 needs to be a minimum of 00 The sum of each column should match the original array. The number of rows in the matrix should be optimized. The array then needs to allocate one of 4 different matrixes, which may have different number of rows: A, B, C, D A, B, C and D are real-world departments. The load needs to be placed reasonably fair during the course of a 10-day period, not to interfere with other department goals. Each of the matrix is compared with expansion of 10 different original sequences so you have: A1, A2, A3, A4, A5, A6, A7, A8, A9, A10 B1, B2, B3, B4, B5, B6, B7, B8, B9, B10 C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 D1, D2, D3, D4, D5, D6, D7, D8, D9, D10 Certain spots on these may be reserved (Not sure if I should make it just reserved/not reserved or function-based). The reserved spots might be meetings and other events The sum of each row (for instance all the A's) should be approximately the same within 2%. i.e. sum(A1 through A10) should be approximately the same as (B1 through B10) etc. The number of rows can vary, so you have for instance: A1: 5 rows A2: 5 rows A3: 1 row, where that single row could for instance be: 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 etc.. Sub problem* I'de be very happy to solve only part of the problem. For instance being able to input: 1 1 2 3 4 2 2 3 4 2 2 3 3 2 3 And get an appropriate array of sequences with 1's and 0's minimized on the number of rows following th constraints above.

    Read the article

  • Using boost::iterator

    - by Neil G
    I wrote a sparse vector class (see #1, #2.) I would like to provide two kinds of iterators: The first set, the regular iterators, can point any element, whether set or unset. If they are read from, they return either the set value or value_type(), if they are written to, they create the element and return the lvalue reference. Thus, they are: Random Access Traversal Iterator and Readable and Writable Iterator The second set, the sparse iterators, iterate over only the set elements. Since they don't need to lazily create elements that are written to, they are: Random Access Traversal Iterator and Readable and Writable and Lvalue Iterator I also need const versions of both, which are not writable. I can fill in the blanks, but not sure how to use boost::iterator_adaptor to start out. Here's what I have so far: template<typename T> class sparse_vector { public: typedef size_t size_type; typedef T value_type; private: typedef T& true_reference; typedef const T* const_pointer; typedef sparse_vector<T> self_type; struct ElementType { ElementType(size_type i, T const& t): index(i), value(t) {} ElementType(size_type i, T&& t): index(i), value(t) {} ElementType(size_type i): index(i) {} ElementType(ElementType const&) = default; size_type index; value_type value; }; typedef vector<ElementType> array_type; public: typedef T* pointer; typedef T& reference; typedef const T& const_reference; private: size_type size_; mutable typename array_type::size_type sorted_filled_; mutable array_type data_; // lots of code for various algorithms... public: class sparse_iterator : public boost::iterator_adaptor< sparse_iterator // Derived , array_type::iterator // Base (the internal array) (this paramater does not compile! -- says expected a type, got 'std::vector::iterator'???) , boost::use_default // Value , boost::random_access_traversal_tag? // CategoryOrTraversal > class iterator_proxy { ??? }; class iterator : public boost::iterator_facade< iterator // Derived , ????? // Base , ????? // Value , boost::?????? // CategoryOrTraversal > { }; };

    Read the article

  • How to avoid repetition when working with primitive types?

    - by I82Much
    I have the need to perform algorithms on various primitive types; the algorithm is essentially the same with the exception of which type the variables are. So for instance, /** * Determine if <code>value</code> is the bitwise OR of elements of <code>validValues</code> array. * For instance, our valid choices are 0001, 0010, and 1000. * We are given a value of 1001. This is valid because it can be made from * ORing together 0001 and 1000. * On the other hand, if we are given a value of 1111, this is invalid because * you cannot turn on the second bit from left by ORing together those 3 * valid values. */ public static boolean isValid(long value, long[] validValues) { for (long validOption : validValues) { value &= ~validOption; } return value != 0; } public static boolean isValid(int value, int[] validValues) { for (int validOption : validValues) { value &= ~validOption; } return value != 0; } How can I avoid this repetition? I know there's no way to genericize primitive arrays, so my hands seem tied. I have instances of primitive arrays and not boxed arrays of say Number objects, so I do not want to go that route either. I know there are a lot of questions about primitives with respect to arrays, autoboxing, etc., but I haven't seen it formulated in quite this way, and I haven't seen a decisive answer on how to interact with these arrays. I suppose I could do something like: public static<E extends Number> boolean isValid(E value, List<E> numbers) { long theValue = value.longValue(); for (Number validOption : numbers) { theValue &= ~validOption.longValue(); } return theValue != 0; } and then public static boolean isValid(long value, long[] validValues) { return isValid(value, Arrays.asList(ArrayUtils.toObject(validValues))); } public static boolean isValid(int value, int[] validValues) { return isValid(value, Arrays.asList(ArrayUtils.toObject(validValues))); } Is that really much better though? Any thoughts in this matter would be appreciated.

    Read the article

  • Which programming language to choose? (for a specific problem/domain, details inside)

    - by Bijan
    I am building a trading portfolio management system that is responsible for production, optimization, and simulation of non-high frequency trading portfolios (dealing with 1min or 3min bars of data, not tick data). I plan on employing Amazon web services to take on the entire load of the application. I have four choices that I am considering as language. a) Java b) C++ c) C# d) Python Here is the scope of the extremes of the project scope. This isn't how it will be, maybe ever, but it's within the scope of the requirements: Weekly simulation of 10,000,000 trading systems. (Each trading system is expected to have its own data mining methods, including feature selection algorithms which are extremely computationally-expensive. Imagine 500-5000 features using wrappers. These are not run often by any means, but it's still a consideration) Real-time production of portfolio w/ 100,000 trading strategies Taking in 1 min or 3 min data from every stock/futures market around the globe (approx 100,000) Portfolio optimization of portfolios with up to 100,000 strategies. (rather intensive algorithm) Speed is a concern, but I believe that Java can handle the load. I just want to make sure that Java CAN handle the above requirements comfortably. I don't want to do the project in C++, but I will if it's required. The reason C# is on there is because I thought it was a good alternative to Java, even though I don't like Windows at all and would prefer Java if all things are the same. Python - I've read somethings on PyPy and pyscho that claim python can be optimized with JIT compiling to run at near C-like speeds.... That's pretty much the only reason it is on this list, besides that fact that Python is a great language and would probably be the most enjoyable language to code in, which is not a factor at all for this project, but a perk. To sum up: - real time production - weekly simulations of a large number of systems - weekly/monthly optimizations of portfolios - large numbers of connections to collect data from There is no dealing with millisecond or even second based trades. The only consideration is if Java can possibly deal with this kind of load when spread out of a necessary amount of EC2 servers. Thank you guys so much for your wisdom.

    Read the article

  • Finding N contiguous zero bits in an integer to the left of the MSB position of another integer

    - by James Morris
    The problem is: given an integer val1 find the position of the highest bit set (Most Significant Bit) then, given a second integer val2 find a contiguous region of unset bits, with the minimum number of zero bits given by width to the left of the position (ie, in the higher bits). Here is the C code for my solution: typedef unsigned int t; unsigned const t_bits = sizeof(t) * CHAR_BIT; _Bool test_fit_within_left_of_msb( unsigned width, t val1, t val2, unsigned* offset_result) { unsigned offbit = 0; unsigned msb = 0; t mask; t b; while(val1 >>= 1) ++msb; while(offbit + width < t_bits - msb) { mask = (((t)1 << width) - 1) << (t_bits - width - offbit); b = val2 & mask; if (!b) { *offset_result = offbit; return true; } if (offbit++) /* this conditional bothers me! */ b <<= offbit - 1; while(b <<= 1) offbit++; } return false; } Aside from faster ways of finding the MSB of the first integer, the commented test for a zero offbit seems a bit extraneous, but necessary to skip the highest bit of type t if it is set. I have also implemented similar algorithms but working to the right of the MSB of the first number, so they don't require this seemingly extra condition. How can I get rid of this extra condition, or even, are there far more optimal solutions? Edit: Some background not strictly required. The offset result is a count of bits from the high bit, not from the low bit as maybe expected. This will be part of a wider algorithm which scans a 2D array for a 2D area of zero bits. Here, for testing, the algorithm has been simplified. val1 represents the first integer which does not have all bits set found in a row of the 2D array. From this the 2D version would scan down which is what val2 represents. Here's some output showing success and failure: t_bits:32 t_high: 10000000000000000000000000000000 ( 2147483648 ) --------- ----------------------------------- *** fit within left of msb test *** ----------------------------------- val1: 00000000000000000000000010000000 ( 128 ) val2: 01000001000100000000100100001001 ( 1091569929 ) msb: 7 offbit:0 + width: 8 = 8 mask: 11111111000000000000000000000000 ( 4278190080 ) b: 01000001000000000000000000000000 ( 1090519040 ) offbit:8 + width: 8 = 16 mask: 00000000111111110000000000000000 ( 16711680 ) b: 00000000000100000000000000000000 ( 1048576 ) offbit:12 + width: 8 = 20 mask: 00000000000011111111000000000000 ( 1044480 ) b: 00000000000000000000000000000000 ( 0 ) offbit:12 iters:10 ***** found room for width:8 at offset: 12 ***** ----------------------------------- *** fit within left of msb test *** ----------------------------------- val1: 00000000000000000000000001000000 ( 64 ) val2: 00010000000000001000010001000001 ( 268469313 ) msb: 6 offbit:0 + width: 13 = 13 mask: 11111111111110000000000000000000 ( 4294443008 ) b: 00010000000000000000000000000000 ( 268435456 ) offbit:4 + width: 13 = 17 mask: 00001111111111111000000000000000 ( 268402688 ) b: 00000000000000001000000000000000 ( 32768 ) ***** mask: 00001111111111111000000000000000 ( 268402688 ) offbit:17 iters:15 ***** no room found for width:13 ***** (iters is the count of iterations of the inner while loop)

    Read the article

  • Looking for an Open Source Project in need of help

    - by hvidgaard
    Hi StackOverflow! I'm a CS student on well on my way to graduate. I have had a difficult time of finding relevant student jobs (they seems to be taken merely hours after the notice gets on the board) , so instead I'm looking for an open source project in need of help. I'm aware that I should choose one that I use, but I'm not aware of any OS-project that I use that needs help. That's why I'm asking you. I don't have any deep experience, but I here are some of my biggest projects so far: BitTorrent-ish client in Python (a subset of BitTorrent) HTTP 1.1 webserver in Java Compiler from a subset of Java to run on JRE Flash-framework project to model an iPad look and feel (not to run actual iPad programs) complete with an API for programs. Complete MySQL database for a booking system, with departure and arrival times, so you could only book valid tickets (with a Java frontend). I know, Java and languages like AS3 and C# feels natural per se, Python, and have done a fair bit of hacking around in C, but I don't feel very comfortable with it. Mostly I'm afraid to make a fuckup because I have such a high degree of control. I would like to think I'm well aware of good software design practices, but in reality what I do is ask myself "would I like to use/maintain this?", and I love to refactor my code because I see optimizations. I love algorithms and to make them run in the best possible time. I don't have any preferred domain to work in, but I wouldn't mind it to be graphics or math heavy. Ideally I'm looking for a project in C++ to learn the in's and out's of it, but I'm well aware that I don't know that language very well. I would like to have a mentor-like figure until I'm confident enough to stand on my own, not one to review all my code (I'm sure someone will to start with anyway), but to ask questions about the project and language in question. I do have a wife and two children, so don't expect me to put in 10+ hours every week. In return I can work on my own, I strive to program modular and maintainable code. Know how to read an API, use Google, StackOverflow and online resources in general. If you have any questions, shoot. I'm looking forward to your suggestions.

    Read the article

  • How to check for palindrome using Python logic

    - by DrOnline
    My background is only a 6 month college class in basic C/C++, and I'm trying to convert to Python. I may be talking nonsense, but it seems to me C, at least at my level, is very for-loop intensive. I solve most problems with these loops. And it seems to me the biggest mistake people do when going from C to Python is trying to implement C logic using Python, which makes things run slowly, and it's just not making the most of the language. I see on this website: http://hyperpolyglot.org/scripting (serach for "c-style for", that Python doesn't have C-style for loops. Might be outdated, but I interpret it to mean Python has its own methods for this. I've tried looking around, I can't find much up to date (Python 3) advice for this. How can I solve a palindrome challenge in Python, without using the for loop? I've done this in C in class, but I want to do it in Python, on a personal basis. The problem is from the Euler Project, great site btw. def isPalindrome(n): lst = [int(n) for n in str(n)] l=len(lst) if l==0 || l==1: return True elif len(lst)%2==0: for k in range (l) ##### else: while (k<=((l-1)/2)): if (list[]): ##### for i in range (999, 100, -1): for j in range (999,100, -1): if isPalindrome(i*j): print(i*j) break I'm missing a lot of code here. The five hashes are just reminders for myself. Concrete questions: 1) In C, I would make a for loop comparing index 0 to index max, and then index 0+1 with max-1, until something something. How to best do this in Python? 2) My for loop (in in range (999, 100, -1), is this a bad way to do it in Python? 3) Does anybody have any good advice, or good websites or resources for people in my position? I'm not a programmer, I don't aspire to be one, I just want to learn enough so that when I write my bachelor's degree thesis (electrical engineering), I don't have to simultaneously LEARN an applicable programming language while trying to obtain good results in the project. "How to go from basic C to great application of Python", that sort of thing. 4) Any specific bits of code to make a great solution to this problem would also be appreciated, I need to learn good algorithms.. I am envisioning 3 situations. If the value is zero or single digit, if it is of odd length, and if it is of even length. I was planning to write for loops... PS: The problem is: Find the highest value product of two 3 digit integers that is also a palindrome.

    Read the article

  • Android library to get pitch from WAV file

    - by Sakura
    I have a list of sampled data from the WAV file. I would like to pass in these values into a library and get the frequency of the music played in the WAV file. For now, I will have 1 frequency in the WAV file and I would like to find a library that is compatible with Android. I understand that I need to use FFT to get the frequency domain. Is there any good libraries for that? I found that [KissFFT][1] is quite popular but I am not very sure how compatible it is on Android. Is there an easier and good library that can perform the task I want? EDIT: I tried to use JTransforms to get the FFT of the WAV file but always failed at getting the correct frequency of the file. Currently, the WAV file contains sine curve of 440Hz, music note A4. However, I got the result as 441. Then I tried to get the frequency of G4, I got the result as 882Hz which is incorrect. The frequency of G4 is supposed to be 783Hz. Could it be due to not enough samples? If yes, how much samples should I take? //DFT DoubleFFT_1D fft = new DoubleFFT_1D(numOfFrames); double max_fftval = -1; int max_i = -1; double[] fftData = new double[numOfFrames * 2]; for (int i = 0; i < numOfFrames; i++) { // copying audio data to the fft data buffer, imaginary part is 0 fftData[2 * i] = buffer[i]; fftData[2 * i + 1] = 0; } fft.complexForward(fftData); for (int i = 0; i < fftData.length; i += 2) { // complex numbers -> vectors, so we compute the length of the vector, which is sqrt(realpart^2+imaginarypart^2) double vlen = Math.sqrt((fftData[i] * fftData[i]) + (fftData[i + 1] * fftData[i + 1])); //fd.append(Double.toString(vlen)); // fd.append(","); if (max_fftval < vlen) { // if this length is bigger than our stored biggest length max_fftval = vlen; max_i = i; } } //double dominantFreq = ((double)max_i / fftData.length) * sampleRate; double dominantFreq = (max_i/2.0) * sampleRate / numOfFrames; fd.append(Double.toString(dominantFreq)); Can someone help me out? EDIT2: I manage to fix the problem mentioned above by increasing the number of samples to 100000, however, sometimes I am getting the overtones as the frequency. Any idea how to fix it? Should I use Harmonic Product Frequency or Autocorrelation algorithms?

    Read the article

  • Finding the most frequent subtrees in a collection of (parse) trees

    - by peter.murray.rust
    I have a collection of trees whose nodes are labelled (but not uniquely). Specifically the trees are from a collection of parsed sentences (see http://en.wikipedia.org/wiki/Treebank). I wish to extract the most common subtrees from the collection - performance is not (yet) an issue. I'd be grateful for algorithms (ideally Java) or pointers to tools which do this for treebanks. Note that order of child nodes is important. EDIT @mjv. We are working in a limited domain (chemistry) which has a stylised language so the varirty of the trees is not huge - probably similar to children's readers. Simple tree for "the cat sat on the mat". <sentence> <nounPhrase> <article/> <noun/> </nounPhrase> <verbPhrase> <verb/> <prepositionPhrase> <preposition/> <nounPhrase> <article/> <noun/> </nounPhrase> </prepositionPhrase> </verbPhrase> </sentence> Here the sentence contains two identical part-of-speech subtrees (the actual tokens "cat". "mat" are not important in matching). So the algorithm would need to detect this. Note that not all nounPhrases are identical - "the big black cat" could be: <nounPhrase> <article/> <adjective/> <adjective/> <noun/> </nounPhrase> The length of sentences will be longer - between 15 to 30 nodes. I would expect to get useful results from 1000 trees. If this does not take more than a day or so that's acceptable. Obviously the shorter the tree the more frequent, so nounPhrase will be very common. EDIT If this is to be solved by flattening the tree then I think it would be related to Longest Common Substring, not Longest Common Sequence. But note that I don't necessarily just want the longest - I want a list of all those long enough to be "interesting" (criterion yet to be decided).

    Read the article

< Previous Page | 67 68 69 70 71 72 73 74 75 76  | Next Page >