Search Results

Search found 32453 results on 1299 pages for 'osr wls oracle service re'.

Page 710/1299 | < Previous Page | 706 707 708 709 710 711 712 713 714 715 716 717  | Next Page >

  • Beyond S&OP: Integrated Business Planning

    - by Paul Homchick
    In most corporations, planning is done at the department level — leaving disconnects and gaps across different departments. Finance sets revenue and profit goals with minimum validation from Manufacturing that the company has the resources, material, capacity, or demand to reach these goals. On the operations side, Manufacturing is developing plans to balance demand and supply but seldom knows if the resulting "plan" will meet the budgets on which the company's revenue and profit goals are based. The Sales department agrees to quotas that meet Finance's revenue goals without a complete understanding of what manufacturing can deliver. Integrated Business Planning (IBP) bridges these gaps in corporate planning systems. Integrated Business Planning integrates the financial planning provided by EPM systems with operations planning provided by Sales and Operations Planning solutions. This means that revenue goals and budgets are validated against a bottom-up operating plan, and that the operating plan is reconciled against financial goals. When detailed changes are made to the operations plan, planners can immediately see the big picture impact of the changes. IBP also addresses one the CFO's big concerns—the reliability of the revenue forecast. Operating plans are updated daily or weekly from a precise forecast based on current market conditions. These updated plans are then made available so that financial analysts are working with data that best represents what is going to happen - not what they projected would happen based on last quarter's data. For a discussion in more depth, see my article: Improve Reliability of Financial Forecasts with Integrated Business Planning in Supply & Demand Chain-Executive Magazine.

    Read the article

  • The Information Driven Value Chain - Part 1

    - by Paul Homchick
    One hundred years ago, there were places on Earth that no man had ever seen.  Today, a man standing in one of those places can instantaneously communicate with someone who may be strolling down the street on his way to lunch half way around the globe.  Our world is shrinking and becoming virtual. It is a world of incredible bounty and speed where we can get a product delivered to us anywhere on earth within a day or two. However, this world is also one of challenge where volatility, uncertainty, risk and chaos are our daily companions. To prosper amid the realities of this new world, the enterprise needs a business model. Globalization and instant communications demand greater operational flexibility than ever before. Extended supply chains have elevated the management of risk to a central concern, and regulatory demands from multiple governments place an increasing burden of compliance on companies. Finally, the speed of today's business requires continuous innovation to keep from falling behind the global competition.

    Read the article

  • QotD: Sharat Chander on Java Embedded @ JavaOne

    - by $utils.escapeXML($entry.author)
    This year, JavaOne is expanding to offer business leaders a chance to participate, as well. I'm very proud to announce the deployment of "Java Embedded @ JavaOne." With the explosion of new unconnected devices and data creation, a new IT revolution is taking place in the embedded space. This net-new conference will specifically contain business content addressing the growing embedded ecosystem.As part of the "Java Embedded @ JavaOne" call-for-papers (CFP), interested speakers can continue forward and make business submissions, and due to high interest they also have the additional opportunity to make technical submissions for the flagship JavaOne conference, but _*ONLY*_ for the "Java ME, Java Card, Embedded and Devices" track. Sharat Chander in a set of posts on Java Embedded @ JavaOne to the JUG Leaders mailing list.

    Read the article

  • Should one generally develop a client library for REST services to help prevent API breakages?

    - by BestPractices
    We have a project where UI code will be developed by the same team but in a different language (Python/Django) from the services layer (REST/Java). The code for each layer exits in different code repositories and which can follow different release cycles. I'm trying to come up with a process that will prevent/reduce breaking changes in the services layer from the perspective of the UI layer. I've thought to write integration tests at the UI layer level that we'll run whenever we build the UI or the services layer (we're using Jenkins as our CI tool to build the code which is in two Git repos) and if there are failures then something in the services layer broke and the commit is not accepted. Would it also be a good idea (is it a best practice?) to have the developer of the services layer create and maintain a client library for the REST service that exists in the UI layer that they will update whenever there is a breaking change in their Service API? Conceivably, we would then have the advantage of a statically-typed API that the UI code builds against. If the client library API changes, then the UI code won't compile (so we'll know sooner that there was a breaking change). I'd also still run the integration tests upon building the UI or services layer to further validate that the integration between UI and the service(s) still works.

    Read the article

  • Combining Multiple Queries and Parameters into One Operation

    - by shay.shmeltzer
    This question came up twice this week and while the solution is explained in a couple of previous blog entries I did, I thought that showing off the complete solution in a single video would be nice. The scenario is that you have two VOs with queries that are based on a parameter, I showed in the past how to create a parameter form that executes the query - and you can do this for both. But what if you actually need just one value to drive both queries? How do you combine two parameter forms and two buttons into one? This is what this video shows you. The steps are: Creating two parameter forms Setting the value of a parameter in the binding tab Creating a backing bean to execute the code for one button Adding the code to execute another operation Remarking the parts that can be dropped from the screen Check it out here:

    Read the article

  • OWB 11gR2 &ndash; Parallel DML and Query

    - by David Allan
    A quick post illustrating conventional (non direct path) parallel inserts and query using OWB following on from some recent posts from Jean-Pierre and Randolf on this topic. The mapping configuration properties is where you can define these hints in OWB, taking JP’s simplistic illustration, the parallel query hints in OWB are defined on the ‘Extraction hint’ property for the source, and the parallel DML hints are defined on the ‘Loading hint’ property on the target table operator. If we then generate the code you can see the intermediate code generated below… Finally…remember the parallel enabled session for this all to fly… Anyway, hope this helps join a few dots….

    Read the article

  • After 10 Years, MySQL Still the Right Choice for ScienceLogic's "Best Network Monitoring System on the Planet"

    - by Rebecca Hansen
    ScienceLogic has a pretty fantastic network monitoring appliance.  So good in fact that InfoWorld gave it their "2013 Best Network Monitoring System on the Planet" award.  Inside their "ultraflexible, ultrascalable, carrier-grade" enterprise appliance, ScienceLogic relies on MySQL and has since their start in 2003.  Check out some of the things they've been able to do with MySQL and their reasons for continuing to use MySQL in these highlights from our new MySQL ScienceLogic case study. Science Logic's larger customers use their appliance to monitor and manage  20,000+ devices, each of which generates a steady stream of data and a workload that is 85% write. On a large system, the MySQL database: Averages 8,000 queries every second or about 1 billion queries a day Can reach 175,000 tables and up to 20 million rows in a single table Is 2 terabytes on average and up to 6 terabytes "We told our customers they could add more and more devices. With MySQL, we haven't had any problems. When our customers have problems, we get calls. Not getting calls is a huge benefit." Matt Luebke, ScienceLogic Chief Software Architect.? ScienceLogic was approached by a number of Big Data / NoSQL vendors, but decided against using a NoSQL-only solution. Said Matt, "There are times when you really need SQL. NoSQL can't show me the top 10 users of CPU, or show me the bottom ten consumer of hard disk. That's why we weren't interested in changing and why we are very interested in MySQL 5.6. It's great that it can do relational and key-value using memcached." The ScienceLogic team is very cautious about putting only very stable technology into their product, and according to Matt, MySQL has been very stable: "We've been using MySQL for 10 years and we have never had any reliability problems. Ever." ScienceLogic now uses SSDs for their write-intensive appliance and that change alone has helped them achieve a 5x performance increase. Learn more>> ScienceLogic MySQL Case Study MySQL 5.6 InnoDB Compression options for better SSD performance Tuning MySQL 5.6 for Great Product Performance - on demand webinar Developer and DBA Guide to MySQL 5.6 white paper Guide to MySQL and NoSQL: The Best of Both Worlds white paper

    Read the article

  • AWR Performance Report and Read by Other Session Waits

    - by user702295
    For the questions regarding "read by other session" and its relation to "db file sequential/scattered read", the logic is like this: When a "db file sequential/scattered read" is done, the blocks are either already in the cache or on the disk.  Since any operation on blocks is done in the cache and since and the issue is "read by other session" I will relate to the case the blocks are on the disk. Process A is reading the needed block from the disk to the cache.  During that time, if process B (and C and others) need the same block, it will wait on "read by other session".  A and B can be threads of the same process running in parallel or unrelated processes.  For example two processes doing full table scan on mdp_matrix etc. Solutions for that can be lowering the number of processes competing on the same blocks, increasing PCTFREE.  If it is a full table scan, maybe an index is missing that can result in less blocks being read from the cache and so on.

    Read the article

  • IPsec Policy Agent flip-flopping demand start/auto start in Windows Server 2008?

    - by Steve Wortham
    Looking through the event logs on my web server I noticed a strange pattern. The following events have been occurring over and over again, always back to back: The start type of the IPsec Policy Agent service was changed from demand start to auto start. The start type of the IPsec Policy Agent service was changed from auto start to demand start. Each one produces event id 7040 from the Service Control Manager. And sometimes this will happen 20 times in one minute. Any idea what would cause this? I've been trying to pinpoint an intermittent performance problem for the past several days and this is the most peculiar thing I've found so far. I'm running Windows Server 2008, SQL Server 2008, and ASP.NET 3.5 w/ MVC 1.

    Read the article

  • IoT? Time for Enterprise Architecture

    - by OTN ArchBeat
    Of course you've been listening to the latest OTN ArchBeat Podcast on the challenges and opportunities in the Internet of Things. If so, you'll also be interested in ZDNet blogger Joe McKendricks' recent post, Will the 'Internet of Things' make CIOs' jobs harder?. In that post McKendrick offers this important bit of advice that will certainly have architects saying "I told you so." Enterprises need to develop architectural approaches to the management of data. Meaning the development of repeatable processes to source, ingest, transform and store information. For years, IT managers simply bought more hardware and addressed data with on-off integration projects. Now it's time for enterprise architecture. IoT is an important new phase in the evolution of enterprise IT. Challenging? You bet! But meeting any such challenge requires big, broad thinking and planning. In that context Enterprise Architecture has always been important. But as IoT gains traction and speed, enterprise architecture should be top of mind for all concerned.

    Read the article

  • Identify memory leak in Java app

    - by Vincent Ma
    One important advantage of java is programer don't care memory management and GC handle it well. Maybe this is one reason why java is more popular. As Java programer you real dont care it? After you meet Out of memory you will realize it it’s not true. Java GC and memory is big topic you can get some information in here Today just let me show how to identify memory leak quickly. Let quickly review demo java code, it’s one kind of memory leak in our code, using static collection and always add some object. import java.util.ArrayList;import java.util.List; public class MemoryTest { public static void main(String[] args) { new Thread(new MemoryLeak(), "MemoryLeak").start(); }} class MemoryLeak implements Runnable { public static List<Integer> leakList = new ArrayList<Integer>(); public void run() { int num =0; while(true) { try { Thread.sleep(1); } catch (InterruptedException e) { } num++; Integer i = new Integer(num); leakList.add(i); } }} run it with java -verbose:gc -XX:+PrintGCDetails -Xmx60m -XX:MaxPermSize=160m MemoryTest after about some minuts you will get Exception in thread "MemoryLeak" java.lang.OutOfMemoryError: Java heap space at java.util.Arrays.copyOf(Arrays.java:2760) at java.util.Arrays.copyOf(Arrays.java:2734) at java.util.ArrayList.ensureCapacity(ArrayList.java:167) at java.util.ArrayList.add(ArrayList.java:351) at MemoryLeak.run(MemoryTest.java:25) at java.lang.Thread.run(Thread.java:619)Heap def new generation total 18432K, used 3703K [0x045e0000, 0x059e0000, 0x059e0000) eden space 16384K, 22% used [0x045e0000, 0x0497dde0, 0x055e0000) from space 2048K, 0% used [0x055e0000, 0x055e0000, 0x057e0000) to space 2048K, 0% used [0x057e0000, 0x057e0000, 0x059e0000) tenured generation total 40960K, used 40959K [0x059e0000, 0x081e0000, 0x081e0000) the space 40960K, 99% used [0x059e0000, 0x081dfff8, 0x081e0000, 0x081e0000) compacting perm gen total 12288K, used 2083K [0x081e0000, 0x08de0000, 0x10de0000) the space 12288K, 16% used [0x081e0000, 0x083e8c50, 0x083e8e00, 0x08de0000)No shared spaces configured. OK let us quickly identify it using JProfile Download JProfile in here  Run JProfile and attach MemoryTest get largest size of  Objects in Memory View in here is Integer then select Integer and go to Heap Walker. get GC Graph for this object  Then you get detail code raise this issue quickly now.  That is enjoy it.

    Read the article

  • RTFMobile

    - by ultan o'broin
    It may seem obvious but it’s worth stating again. The idea that mobile users are going to read lots of user assistance on their devices is just wrong. So, Jakob Nielsen’s post Mobile Content Is Twice as Difficult serves as a timely reminder for anyone thinking of putting manuals as a form of user assistance onto mobile phones. There is also an excellent post on UXMag.com, explaining that one of the ways to screw up with your iPhone app is to throw an old-style user manual into the user experience: 10 Surefire Ways to Screw Up Your iPhone App.   (Image copyright and referenced from UX Magazine 2010)   Instead, user assistance  alternatives—if any at all—include one-time tours, graphics, in-context instructions, and so on. Not so sure that importing “humor” and “personality” work so well in the enterprise app space, myself. However, the message is clear: iPhone users don’t read manuals. Great message. Users will figure it out, and if they can’t, well then your app’s UX is a problem and the app will fail. Shame some teams are obsessed with figuring out ways to port existing manuals to mobile platforms without any thought for the UX. Razorfish’s Scatter/Gather blog says it all: One thing that is particularly discouraging, most material currently available on “Creating Content for the iPad” or similar themes turns out to be about getting traditional content onto, or into, the iPad. Now, manuals for non-end users in PDF format on eReaders is a different matter. I have research on that, but it’s for another post. Technorati Tags: mobile,user assistance,UX,user experience,manuals,documentation

    Read the article

  • Configuring UCM content cache invalidation for a custom portal application

    - by Martin Deh
    Recently, I had blogged about enabling the UCM content cache invalidator for Spaces (found here).  This can also be enabled for a WebCenter Custom Portal application as well.  The much overlooked setting is done through the Content Repository connection definition in the JDeveloper Application Resources section.   Enabling the cache invalidator "sweeper" can be invaluable, where UCM content is being updated from within UCM (console) and not within the portal.

    Read the article

  • If You Include the Groovy Editor...

    - by Geertjan
    ...in a NetBeans RCP application, what additional JARs will you need to include for the Groovy Editor to work? Leaving aside the debate on the current state & quality of the NetBeans Groovy Editor, so, assuming you need the Groovy support that the NetBeans Groovy Editor provides, you would check the Groovy Editor checkbox in the Project Properties dialog of your application: As you can see, however, the Groovy Editor depends on other modules, some of which, in turn, depend on yet other modules, and so on. So, I clicked the "Resolve" button above and then created a ZIP distribution, to see which additional JARs had been included. Until that point, I had only been using the "platform" cluster, which means that absolutely everything found in the ZIP's "ide" cluster and "java" cluster have only been included so that the Groovy Editor could be included, i.e., all thanks to clicking the "Resolve" button above. Let's first look at what that means for the "java" cluster: That's not so bad and kind of a side effect of Groovy being Java, i.e., a lot of Java functionality is needed. Now let's look at the "ide" cluster: So, in answer to the original question, if all you want in your NetBeans Platform application, in terms of editor functionality, is the Groovy Editor, then you have a pretty high price to pay. At the very least, I would have assumed that the project support JARs and the debugger support JARs would not be so tightly coupled with the Groovy Editor. That would be a cool thing to separate out from the editor support.

    Read the article

  • Mobile apps suck time with the help of Java ME tech

    - by hinkmond
    Here's a new Flurry Mobile report on how Mobile Apps are sucking up more of our precious minutes in a day, even more than the Mobile Web. See: Mobile Apps suck more than Web Here's a quote: Flurry tracked 85,000 apps on [blah-blah-blah], BlackBerry, [yadda-yadda-yadda] and J2ME mobile devices, and their report includes a breakdown on how users spend their time. Greeeaaaaat... People are spending more time on mobile games and doing more Facebook and Twitter from their cell phones. Just what the world needed. Well, you know what they say: "Time == Money". So, the more time you spend, the more money someone, somewhere is getting... Hinkmond

    Read the article

  • Pensez à notre site de web tv pour les partenaires !

    - by swalker
    Nous souhaitons vous remercier chaleureusement pour votre forte mobilisation autour du projet « Mini Studio ITPlace.tv ». Merci d’avoir répondu présent ! 14 Interviews Partenaires Des IA Channel dignes des plus grands journalistes du 20h Des partenaires ravis de pouvoir s’exprimer Des contenus de valeurs autour de nombreuses thématiques Un remerciement tout spécial pour Loïc qui a su mobiliser 5 de ses partenaires autour de thématiques que nous avons peu l’habitude d’adresser (solutions cross Apps/Tech, Sécurité, etc…). Nous reviendrons vers vous rapidement pour vous présenter les montages vidéos finaux, et voir avec vos partenaires comment utiliser au mieux ces médias. Pour vous connecter : http://www.itplace.tv

    Read the article

  • Superclass Sensitive Actions

    - by Geertjan
    I've created a small piece of functionality that enables you to create actions for Java classes in the IDE. When the user right-clicks on a Java class, they will see one or more actions depending on the superclass of the selected class. To explain this visually, here I have "BlaTopComponent.java". I right-click on its node in the Projects window and I see "This is a TopComponent": Indeed, when you look at the source code of "BlaTopComponent.java", you'll see that it implements the TopComponent class. Next, in the screenshot below, you see that I have right-click a different class. In this case, there's an action available because the selected class implements the ActionListener class. Then, take a look at this one. Here both TopComponent and ActionListener are superclasses of the current class, hence both the actions are available to be invoked: Finally, here's a class that subclasses neither TopComponent nor ActionListener, hence neither of the actions that I created for doing something that relates to TopComponents or ActionListeners is available, since those actions are irrelevant in this context: How does this work? Well, it's a combination of my blog entries "Generic Node Popup Registration Solution" and "Showing an Action on a TopComponent Node". The cool part is that the definition of the two actions that you see above is remarkably trivial: import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import javax.swing.JOptionPane; import org.openide.loaders.DataObject; import org.openide.util.Utilities; public class TopComponentSensitiveAction implements ActionListener { private final DataObject context; public TopComponentSensitiveAction() { context = Utilities.actionsGlobalContext().lookup(DataObject.class); } @Override public void actionPerformed(ActionEvent ev) { //Do something with the context: JOptionPane.showMessageDialog(null, "TopComponent: " + context.getNodeDelegate().getDisplayName()); } } The above is the action that will be available if you right-click a Java class that extends TopComponent. This, in turn, is the action that will be available if you right-click a Java class that implements ActionListener: import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import javax.swing.JOptionPane; import org.openide.loaders.DataObject; import org.openide.util.Utilities; public class ActionListenerSensitiveAction implements ActionListener { private final DataObject context; public ActionListenerSensitiveAction() { context = Utilities.actionsGlobalContext().lookup(DataObject.class); } @Override public void actionPerformed(ActionEvent ev) { //Do something with the context: JOptionPane.showMessageDialog(null, "ActionListener: " + context.getNodeDelegate().getDisplayName()); } } Indeed, the classes, at this stage are the same. But, depending on what I want to do with TopComponents or ActionListeners, I now have a starting point, which includes access to the DataObject, from where I can get down into the source code, as shown here. This is how the two ActionListeners that you see defined above are registered in the layer, which could ultimately be done via annotations on the ActionListeners, of course: <folder name="Actions"> <folder name="Tools"> <file name="org-netbeans-sbas-impl-TopComponentSensitiveAction.instance"> <attr stringvalue="This is a TopComponent" name="displayName"/> <attr name="instanceCreate" methodvalue="org.netbeans.sbas.SuperclassSensitiveAction.create"/> <attr name="type" stringvalue="org.openide.windows.TopComponent"/> <attr name="delegate" newvalue="org.netbeans.sbas.impl.TopComponentSensitiveAction"/> </file> <file name="org-netbeans-sbas-impl-ActionListenerSensitiveAction.instance"> <attr stringvalue="This is an ActionListener" name="displayName"/> <attr name="instanceCreate" methodvalue="org.netbeans.sbas.SuperclassSensitiveAction.create"/> <attr name="type" stringvalue="java.awt.event.ActionListener"/> <attr name="delegate" newvalue="org.netbeans.sbas.impl.ActionListenerSensitiveAction"/> </file> </folder> </folder> <folder name="Loaders"> <folder name="text"> <folder name="x-java"> <folder name="Actions"> <file name="org-netbeans-sbas-impl-TopComponentSensitiveAction.shadow"> <attr name="originalFile" stringvalue="Actions/Tools/org-netbeans-sbas-impl-TopComponentSensitiveAction.instance"/> <attr intvalue="150" name="position"/> </file> <file name="org-netbeans-sbas-impl-ActionListenerSensitiveAction.shadow"> <attr name="originalFile" stringvalue="Actions/Tools/org-netbeans-sbas-impl-ActionListenerSensitiveAction.instance"/> <attr intvalue="160" name="position"/> </file> </folder> </folder> </folder> </folder> The most important parts of the layer registration are the lines that are highlighted above. Those lines connect the layer to the generic action that delegates back to the action listeners defined above, as follows: public final class SuperclassSensitiveAction extends AbstractAction implements ContextAwareAction { private final Map map; //This method is called from the layer, via "instanceCreate", //magically receiving a map, which contains all the attributes //that are defined in the layer for the file: static SuperclassSensitiveAction create(Map map) { return new SuperclassSensitiveAction(Utilities.actionsGlobalContext(), map); } public SuperclassSensitiveAction(Lookup context, Map m) { super(m.get("displayName").toString()); this.map = m; String superclass = m.get("type").toString(); //Enable the menu item only if //we're dealing with a class of type superclass: JavaSource javaSource = JavaSource.forFileObject( context.lookup(DataObject.class).getPrimaryFile()); try { javaSource.runUserActionTask(new ScanTask(this, superclass), true); } catch (IOException ex) { Exceptions.printStackTrace(ex); } //Hide the menu item if it isn't enabled: putValue(DynamicMenuContent.HIDE_WHEN_DISABLED, true); } @Override public void actionPerformed(ActionEvent ev) { ActionListener delegatedAction = (ActionListener)map.get("delegate"); delegatedAction.actionPerformed(ev); } @Override public Action createContextAwareInstance(Lookup actionContext) { return new SuperclassSensitiveAction(actionContext, map); } private class ScanTask implements Task<CompilationController> { private SuperclassSensitiveAction action = null; private String superclass; private ScanTask(SuperclassSensitiveAction action, String superclass) { this.action = action; this.superclass = superclass; } @Override public void run(final CompilationController info) throws Exception { info.toPhase(Phase.ELEMENTS_RESOLVED); new EnableIfGivenSuperclassMatches(info, action, superclass).scan( info.getCompilationUnit(), null); } } private static class EnableIfGivenSuperclassMatches extends TreePathScanner<Void, Void> { private CompilationInfo info; private final AbstractAction action; private final String superclassName; public EnableIfGivenSuperclassMatches(CompilationInfo info, AbstractAction action, String superclassName) { this.info = info; this.action = action; this.superclassName = superclassName; } @Override public Void visitClass(ClassTree t, Void v) { Element el = info.getTrees().getElement(getCurrentPath()); if (el != null) { TypeElement te = (TypeElement) el; List<? extends TypeMirror> interfaces = te.getInterfaces(); if (te.getSuperclass().toString().equals(superclassName)) { action.setEnabled(true); } else { action.setEnabled(false); } for (TypeMirror typeMirror : interfaces) { if (typeMirror.toString().equals(superclassName)){ action.setEnabled(true); } } } return null; } } } This is a pretty cool solution and, as you can see, very generic. Create a new ActionListener, register it in the layer so that it maps to the generic class above, and make sure to set the type attribute, which defines the superclass to which the action should be sensitive.

    Read the article

  • Essbase 11.1.2 - AgtSvrConnections Essbase Configuration Setting

    - by Ann Donahue
    AgtSvrConnections is a documented Essbase configuration setting used in conjunction with the AgentThreads and ServerThreads settings. Basically, when a user logs into Essbase, the AgentThreads connects to the ESSBASE process then the AgtSvrConnections will connect the ESSBASE process to the ESSSVR application process which then the ServerThreads are used for end user activities. In Essbase 11.1.2, the default value of the AgtSvrConnections setting was changed to 5. In previous Essbase releases, the AgtSvrConnections setting default value is 1. It is recommended that tuning the AgtSvrConnections settings be done incrementally by 1 or 2 maximum and based on the number of concurrent Set Active/Clear Active calls. In the Essbase DBA Guide and Technical Reference, the maximum setting recommended is to not exceed what is set for AgentThreads, however, we have found that most customers do not need to exceed a setting of 10. In general, it is ok to set AgtSvrConnections close to the AgentThreads setting, however, there have been customers that needed an AgentThread setting greater than 10 and we have found that the AgtSvrConnections setting higher than 5-10 could have a negative impact on Essbase due to too many TCP ports used unnecessarily. As with all Essbase.cfg settings, it is best to set values to what is needed based on process load and not arbitrarily set to high values. In order to monitor and tune the AgtSvrConnections setting, monitor the application log for logins and Set Active/Clear Active messages. If there are a lot of logins and Set Active/Clear Active messages happening in a short period of time making it appear that the login is taking longer, incrementally increase the AgtSvrConnections setting by 1 or 2, which can then help with login speed. The login performance tolerance is different from one customer environment to another since there are other factors that can impact this performance i.e. network latency. What is happening in Essbase when a user logs in: ESSBASE issues a Set Active to the ESSSVR process. Each application has its own ESSSVR process. Set Active then calls MultipleAsyncLogout and waits on the pipe connection. MultipleAsyncLogout goes back to ESSBASE. ESSBASE then needs to send the logout back to the ESSSVR process. When the AgtSvrConnections setting needs to be increased from the default of 5, it is because Essbase cannot find a connection since the previous connections are used by ESSBASE-ESSSVR. In this example, we may want to increase AgtSvrConnections from 5 to 7 to improve the login performance. Again, it is best to set Essbase settings to what is needed based on process load and not arbitrarily set to high values. In general, stress or performance testing environments using automated tools may need higher than normal settings. This is because automated processes run at high speeds for logging in and logging out. Typically, in a real life production environment, the settings are much closer to default values.

    Read the article

  • InnoDB Compression Improvements in MySQL 5.6

    - by Inaam Rana
    MySQL 5.6 comes with significant improvements for the compression support inside InnoDB. The enhancements that we'll talk about in this piece are also a good example of community contributions. The work on these was conceived, implemented and contributed by the engineers at Facebook. Before we plunge into the details let us familiarize ourselves with some of the key concepts surrounding InnoDB compression. In InnoDB compressed pages are fixed size. Supported sizes are 1, 2, 4, 8 and 16K. The compressed page size is specified at table creation time. InnoDB uses zlib for compression. InnoDB buffer pool will attempt to cache compressed pages like normal pages. However, whenever a page is actively used by a transaction, we'll always have the uncompressed version of the page as well i.e.: we can have a page in the buffer pool in compressed only form or in a state where we have both the compressed page and uncompressed version but we'll never have a page in uncompressed only form. On-disk we'll always only have the compressed page. When both compressed and uncompressed images are present in the buffer pool they are always kept in sync i.e.: changes are applied to both atomically. Recompression happens when changes are made to the compressed data. In order to minimize recompressions InnoDB maintains a modification log within a compressed page. This is the extra space available in the page after compression and it is used to log modifications to the compressed data thus avoiding recompressions. DELETE (and ROLLBACK of DELETE) and purge can be performed without recompressing the page. This is because the delete-mark bit and the system fields DB_TRX_ID and DB_ROLL_PTR are stored in uncompressed format on the compressed page. A record can be purged by shuffling entries in the compressed page directory. This can also be useful for updates of indexed columns, because UPDATE of a key is mapped to INSERT+DELETE+purge. A compression failure happens when we attempt to recompress a page and it does not fit in the fixed size. In such case, we first try to reorganize the page and attempt to recompress and if that fails as well then we split the page into two and recompress both pages. Now lets talk about the three major improvements that we made in MySQL 5.6.Logging of Compressed Page Images:InnoDB used to log entire compressed data on the page to the redo logs when recompression happens. This was an extra safety measure to guard against the rare case where an attempt is made to do recovery using a different zlib version from the one that was used before the crash. Because recovery is a page level operation in InnoDB we have to be sure that all recompress attempts must succeed without causing a btree page split. However, writing entire compressed data images to the redo log files not only makes the operation heavy duty but can also adversely affect flushing activity. This happens because redo space is used in a circular fashion and when we generate much more than normal redo we fill up the space much more quickly and in order to reuse the redo space we have to flush the corresponding dirty pages from the buffer pool.Starting with MySQL 5.6 a new global configuration parameter innodb_log_compressed_pages. The default value is true which is same as the current behavior. If you are sure that you are not going to attempt to recover from a crash using a different version of zlib then you should set this parameter to false. This is a dynamic parameter.Compression Level:You can now set the compression level that zlib should choose to compress the data. The global parameter is innodb_compression_level - the default value is 6 (the zlib default) and allowed values are 1 to 9. Again the parameter is dynamic i.e.: you can change it on the fly.Dynamic Padding to Reduce Compression Failures:Compression failures are expensive in terms of CPU. We go through the hoops of recompress, failure, reorganize, recompress, failure and finally page split. At the same time, how often we encounter compression failure depends largely on the compressibility of the data. In MySQL 5.6, courtesy of Facebook engineers, we have an adaptive algorithm based on per-index statistics that we gather about compression operations. The idea is that if a certain index/table is experiencing too many compression failures then we should try to pack the 16K uncompressed version of the page less densely i.e.: we let some space in the 16K page go unused in an attempt that the recompression won't end up in a failure. In other words, we dynamically keep adding 'pad' to the 16K page till we get compression failures within an agreeable range. It works the other way as well, that is we'll keep removing the pad if failure rate is fairly low. To tune the padding effort two configuration variables are exposed. innodb_compression_failure_threshold_pct: default 5, range 0 - 100,dynamic, implies the percentage of compress ops to fail before we start using to padding. Value 0 has a special meaning of disabling the padding. innodb_compression_pad_pct_max: default 50, range 0 - 75, dynamic, the  maximum percentage of uncompressed data page that can be reserved as pad.

    Read the article

  • Hosting WCF over internet

    - by user1876804
    I am pretty new to exposing the WCF services hosted on IIS over internet. I will be deploying a WCF service over IIS(6 or 7) and would like to expose this service over the internet. This will be hosted in a corporate network having firewall, I want this service to be accessible over the internet(should be able to pass through the firewall) I did some research on this and some of the pointers I got: 1. I could use wsHTTPBinding or nettcpbinding (the client is intended to be .net client). Which of the bindings is preferable. 2. To overcome the corporate I came across DMZ server, what is the purpose of this and do I really need to use this). 3. I will be passing some files between the client and server, and the client needs to know the progress of the processing on server and the end result. I know this is a very broad question to ask, but could anyone give me pointers where I could start on this and what approach to take for this problem.

    Read the article

  • Jung Meets the NetBeans Platform

    - by Geertjan
    Here's a small Jung diagram in a NetBeans Platform application: And the code, copied directly from the Jung 2.0 Tutorial:  public final class JungTopComponent extends TopComponent { public JungTopComponent() { initComponents(); setName(Bundle.CTL_JungTopComponent()); setToolTipText(Bundle.HINT_JungTopComponent()); setLayout(new BorderLayout()); Graph sgv = getGraph(); Layout<Integer, String> layout = new CircleLayout(sgv); layout.setSize(new Dimension(300, 300)); BasicVisualizationServer<Integer, String> vv = new BasicVisualizationServer<Integer, String>(layout); vv.setPreferredSize(new Dimension(350, 350)); add(vv, BorderLayout.CENTER); } public Graph getGraph() { Graph<Integer, String> g = new SparseMultigraph<Integer, String>(); g.addVertex((Integer) 1); g.addVertex((Integer) 2); g.addVertex((Integer) 3); g.addEdge("Edge-A", 1, 2); g.addEdge("Edge-B", 2, 3); Graph<Integer, String> g2 = new SparseMultigraph<Integer, String>(); g2.addVertex((Integer) 1); g2.addVertex((Integer) 2); g2.addVertex((Integer) 3); g2.addEdge("Edge-A", 1, 3); g2.addEdge("Edge-B", 2, 3, EdgeType.DIRECTED); g2.addEdge("Edge-C", 3, 2, EdgeType.DIRECTED); g2.addEdge("Edge-P", 2, 3); return g; } And here's what someone who attended a NetBeans Platform training course in Poland has done with Jung and the NetBeans Platform: The source code for the above is on Git: git://gitorious.org/j2t/j2t.git

    Read the article

  • CRM Is A Long Term Strategy

    - by ruth.donohue
    With the array of CRM solutions out there, it's sometimes easy to forget that CRM is more than just technology with fancy bells and whistles -- it's a long-term strategy that involves people and processes as well. The Wise Marketer summarizes a Gartner report outlining three key steps necessary to create and execute a successful CRM stratetegy that is linked with overall corporate strategy.

    Read the article

  • Polite busy-waiting with WRPAUSE on SPARC

    - by Dave
    Unbounded busy-waiting is an poor idea for user-space code, so we typically use spin-then-block strategies when, say, waiting for a lock to be released or some other event. If we're going to spin, even briefly, then we'd prefer to do so in a manner that minimizes performance degradation for other sibling logical processors ("strands") that share compute resources. We want to spin politely and refrain from impeding the progress and performance of other threads — ostensibly doing useful work and making progress — that run on the same core. On a SPARC T4, for instance, 8 strands will share a core, and that core has its own L1 cache and 2 pipelines. On x86 we have the PAUSE instruction, which, naively, can be thought of as a hardware "yield" operator which temporarily surrenders compute resources to threads on sibling strands. Of course this helps avoid intra-core performance interference. On the SPARC T2 our preferred busy-waiting idiom was "RD %CCR,%G0" which is a high-latency no-nop. The T4 provides a dedicated and extremely useful WRPAUSE instruction. The processor architecture manuals are the authoritative source, but briefly, WRPAUSE writes a cycle count into the the PAUSE register, which is ASR27. Barring interrupts, the processor then delays for the requested period. There's no need for the operating system to save the PAUSE register over context switches as it always resets to 0 on traps. Digressing briefly, if you use unbounded spinning then ultimately the kernel will preempt and deschedule your thread if there are other ready threads than are starving. But by using a spin-then-block strategy we can allow other ready threads to run without resorting to involuntary time-slicing, which operates on a long-ish time scale. Generally, that makes your application more responsive. In addition, by blocking voluntarily we give the operating system far more latitude regarding power management. Finally, I should note that while we have OS-level facilities like sched_yield() at our disposal, yielding almost never does what you'd want or naively expect. Returning to WRPAUSE, it's natural to ask how well it works. To help answer that question I wrote a very simple C/pthreads benchmark that launches 8 concurrent threads and binds those threads to processors 0..7. The processors are numbered geographically on the T4, so those threads will all be running on just one core. Unlike the SPARC T2, where logical CPUs 0,1,2 and 3 were assigned to the first pipeline, and CPUs 4,5,6 and 7 were assigned to the 2nd, there's no fixed mapping between CPUs and pipelines in the T4. And in some circumstances when the other 7 logical processors are idling quietly, it's possible for the remaining logical processor to leverage both pipelines. Some number T of the threads will iterate in a tight loop advancing a simple Marsaglia xor-shift pseudo-random number generator. T is a command-line argument. The main thread loops, reporting the aggregate number of PRNG steps performed collectively by those T threads in the last 10 second measurement interval. The other threads (there are 8-T of these) run in a loop busy-waiting concurrently with the T threads. We vary T between 1 and 8 threads, and report on various busy-waiting idioms. The values in the table are the aggregate number of PRNG steps completed by the set of T threads. The unit is millions of iterations per 10 seconds. For the "PRNG step" busy-waiting mode, the busy-waiting threads execute exactly the same code as the T worker threads. We can easily compute the average rate of progress for individual worker threads by dividing the aggregate score by the number of worker threads T. I should note that the PRNG steps are extremely cycle-heavy and access almost no memory, so arguably this microbenchmark is not as representative of "normal" code as it could be. And for the purposes of comparison I included a row in the table that reflects a waiting policy where the waiting threads call poll(NULL,0,1000) and block in the kernel. Obviously this isn't busy-waiting, but the data is interesting for reference. _table { border:2px black dotted; margin: auto; width: auto; } _tr { border: 2px red dashed; } _td { border: 1px green solid; } _table { border:2px black dotted; margin: auto; width: auto; } _tr { border: 2px red dashed; } td { background-color : #E0E0E0 ; text-align : right ; } th { text-align : left ; } td { background-color : #E0E0E0 ; text-align : right ; } th { text-align : left ; } Aggregate progress T = #worker threads Wait Mechanism for 8-T threadsT=1T=2T=3T=4T=5T=6T=7T=8 Park thread in poll() 32653347334833483348334833483348 no-op 415 831 124316482060249729303349 RD %ccr,%g0 "pause" 14262429269228623013316232553349 PRNG step 412 829 124616702092251029303348 WRPause(8000) 32443361333133483349334833483348 WRPause(4000) 32153308331533223347334833473348 WRPause(1000) 30853199322432513310334833483348 WRPause(500) 29173070315032223270330933483348 WRPause(250) 26942864294930773205338833483348 WRPause(100) 21552469262227902911321433303348

    Read the article

  • Crawling a Content Folio

    - by Kyle Hatlestad
    Content Folios in WebCenter Content allow you to assemble, track, and access a logical group of documents and/or links.  It allows you to manage them as just a list of items (simple folio) or organized as a hierarchy (advanced folio).  The built-in UI in content server allows you to work with these folios, but publishing them or consuming them externally can be a bit of a challenge.   [Read More]

    Read the article

  • OT: Fixing choppy video playback on OS X

    - by terrencebarr
    This is a bit off-topic but I wanted to share because it seems a lot of people are running into issues with choppy video playback and stutter on Mac OS X. I am using a Mac Mini with Snow Leopard (10.6.8) as a home media center and it has worked great in the past, playing back music and videos from multiple sources (web, quicktime, VLC, EyeTV). A few weeks ago the video playback from all my sources started to become choppy, to stutter, and often the picture would hang for seconds at a time. Totally unusable. Drove me nuts for two weeks. After much research and trial-and-error it turns out the problem was an outdated Flash Player which seems to have messed up the video pipeline for the entire system. The short is, I updated the Flash Player to version 11 directly from the Adobe web site, rebooted the Mac Mini, and all is well again! Judging from the various posts across the web, video playback appears to be a fairly widespread problem for Mac users and I hope this helps some of you out there! And I can’t wait to get rid of Flash altogether – I can’t remember the times it has crashed my browser, hung my system, and screwed up things. Thanks Adobe ;-( Cheers, – Terrence Filed under: Uncategorized Tagged: Adobe Flash, Mac OS X

    Read the article

< Previous Page | 706 707 708 709 710 711 712 713 714 715 716 717  | Next Page >