Search Results

Search found 11680 results on 468 pages for 'convenience methods'.

Page 72/468 | < Previous Page | 68 69 70 71 72 73 74 75 76 77 78 79  | Next Page >

  • Java Dynamic Binding

    - by Chris Okyen
    I am having trouble understanding the OOP Polymorphic principl of Dynamic Binding ( Late Binding ) in Java. I looked for question pertaining to java, and wasn't sure if a overall answer to how dynamic binding works would pertain to Java Dynamic Binding, I wrote this question. Given: class Person { private String name; Person(intitialName) { name = initialName; } // irrelevant methods is here. // Overides Objects method public void writeOutput() { println(name); } } class Student extends Person { private int studentNumber; Student(String intitialName, int initialStudentNumber) { super(intitialName); studentNumber = initialStudentNumber; } // irrellevant methods here... // overides Person, Student and Objects method public void writeOutput() { super.writeOutput(); println(studentNumber); } } class Undergaraduate extends Student { private int level; Undergraduate(String intitialName, int initialStudentNumber,int initialLevel) { super(intitialName,initialStudentNumber); level = initialLevel; } // irrelevant methods is here. // overides Person, Student and Objects method public void writeOutput() { super.writeOutput(); println(level); } } I am wondering. if I had an array called person declared to contain objects of type Person: Person[] people = new Person[2]; person[0] = new Undergraduate("Cotty, Manny",4910,1); person[1] = new Student("DeBanque, Robin", 8812); Given that person[] is declared to be of type Person, you would expect, for example, in the third line where person[0] is initialized to a new Undergraduate object,to only gain the instance variable from Person and Persons Methods since doesn't the assignment to a new Undergraduate to it's ancestor denote the Undergraduate object to access Person - it's Ancestors, methods and isntance variables... Thus ...with the following code I would expect person[0].writeOutput(); // calls Undergraduate::writeOutput() person[1].writeOutput(); // calls Student::writeOutput() person[0] to not have Undergraduate's writeOutput() overidden method, nor have person[1] to have Student's overidden method - writeOutput(). If I had Person mikeJones = new Student("Who?,MikeJones",44,4); mikeJones.writeOutput(); The Person::writeOutput() method would be called. Why is this not so? Does it have to do with something I don't understand about relating to arrays? Does the declaration Person[] people = new Person[2] not bind the method like the previous code would?

    Read the article

  • Profiling Startup Of VS2012 &ndash; Ants Profiler

    - by Alois Kraus
    I just downloaded ANTS Profiler 7.4 to check how fast it is and how deep I can analyze the startup of Visual Studio 2012. The Pro version which is useful does cost 445€ which is ok. To measure a complex system I decided to simply profile VS2012 (Update 1) on my older Intel 6600 2,4GHz with 3 GB RAM and a 32 bit Windows 7. Ants Profiler is really easy to use. So lets try it out. The Ants Profiler does want to start the profiled application by its own which seems to be rather common. I did choose Method Level timing of all managed methods. In the configuration menu I did want to get all call stacks to get full details. Once this is configured you are ready to go.   After that you can select the Method Grid to view Wall Clock Time in ms. I hate percentages which are on by default because I do want to look where absolute time is spent and not something else.   From the Method Grid I can drill down to see where time is spent in a nice and I can look at the decompiled methods where the time is spent. This does really look nice. But did you see the size of the scroll bar in the method grid? Although I wanted all call stacks I do get only about 4 pages of methods to drill down. From the scroll bar count I would guess that the profiler does show me about 150 methods for the complete VS startup. This is nonsense. I will never find a bottleneck in VS when I am presented only a fraction of the methods that were actually executed. I have also tried in the configuration window to also profile the extremely trivial functions but there was no noticeable difference. It seems that the Ants Profiler does filter away way too many details to be useful for bigger systems. If you want to optimize a CPU bound operation inside NUnit then Ants Profiler is with its line level timings a very nice tool to work with. But for bigger stuff it is certainly not usable. I also do not like that I must start the profiled application from the profiler UI. This makes it hard to profile processes which are started by some other process. Next: JetBrains dotTrace

    Read the article

  • What is the most appropriate testing method in this scenario?

    - by Daniel Bruce
    I'm writing some Objective-C apps (for OS X/iOS) and I'm currently implementing a service to be shared across them. The service is intended to be fairly self-contained. For the current functionality I'm envisioning there will be only one method that clients will call to do a fairly complicated series of steps both using private methods on the class, and passing data through a bunch of "data mangling classes" to arrive at an end result. The gist of the code is to fetch a log of changes, stored in a service-internal data store, that has occurred since a particular time, simplify the log to only include the last applicable change for each object, attach the serialized values for the affected objects and return this all to the client. My question then is, how do I unit-test this entry point method? Obviously, each class would have thorough unit tests to ensure that their functionality works as expected, but the entry point seems harder to "disconnect" from the rest of the world. I would rather not send in each of these internal classes IoC-style, because they're small and are only made classes to satisfy the single-responsibility principle. I see a couple possibilities: Create a "private" interface header for the tests with methods that call the internal classes and test each of these methods separately. Then, to test the entry point, make a partial mock of the service class with these private methods mocked out and just test that the methods are called with the right arguments. Write a series of fatter tests for the entry point without mocking out anything, testing the entire functionality in one go. This looks, to me, more like "integration testing" and seems brittle, but it does satisfy the "only test via the public interface" principle. Write a factory that returns these internal services and take that in the initializer, then write a factory that returns mocked versions of them to use in tests. This has the downside of making the construction of the service annoying, and leaks internal details to the client. Write a "private" initializer that take these services as extra parameters, use that to provide mocked services, and have the public initializer back-end to this one. This would ensure that the client code still sees the easy/pretty initializer and no internals are leaked. I'm sure there's more ways to solve this problem that I haven't thought of yet, but my question is: what's the most appropriate approach according to unit testing best practices? Especially considering I would prefer to write this test-first, meaning I should preferably only create these services as the code indicates a need for them.

    Read the article

  • Why default constructor does not appear for value types?

    - by Arun
    The below snippet gives me a list of constructors and methods of a type. static void ReflectOnType(Type type) { Console.WriteLine(type.FullName); Console.WriteLine("------------"); List<ConstructorInfo> constructors = type.GetConstructors(BindingFlags.Public | BindingFlags.Static | BindingFlags.NonPublic |BindingFlags.Instance | BindingFlags.Default).ToList(); List<MethodInfo> methods = type.GetMethods().ToList(); Type baseType = type.BaseType; while (baseType != null) { constructors.AddRange(baseType.GetConstructors(BindingFlags.Public | BindingFlags.Static | BindingFlags.NonPublic | BindingFlags.Instance | BindingFlags.Default)); methods.AddRange(baseType.GetMethods()); baseType = baseType.BaseType; } Console.WriteLine("Reflection on {0} type", type.Name); for (int i = 0; i < constructors.Count; i++) { Console.Write("Constructor: {0}.{1}", constructors[i].DeclaringType.Name, constructors[i].Name); Console.Write("("); ParameterInfo[] parameterInfos = constructors[i].GetParameters(); if (parameterInfos.Length > 0) { for (int j = 0; j < parameterInfos.Length; j++) { if (j > 0) { Console.Write(", "); } Console.Write("{0} {1}", parameterInfos[j].ParameterType, parameterInfos[j].Name); } } Console.Write(")"); if (constructors[i].IsSpecialName) { Console.Write(" has 'SpecialName' attribute"); } Console.WriteLine(); } Console.WriteLine(); for (int i = 0; i < methods.Count; i++) { Console.Write("Method: {0}.{1}", methods[i].DeclaringType.Name, methods[i].Name); // Determine whether or not each field is a special name. if (methods[i].IsSpecialName) { Console.Write(" has 'SpecialName' attribute"); } Console.WriteLine(); } } But when I pass an ‘int’ type to this method, why don’t I see the implicit constructor in the output? Or, how do I modify the above code to list the default constructor as well (in case I’m missing something in my code).

    Read the article

  • Drupal 7: File field causes error with Dependable Dropdowns

    - by LoneWolfPR
    I'm building a Form in a module using the Form API. I've had a couple of dependent dropdowns that have been working just fine. The code is as follows: $types = db_query('SELECT * FROM {touchpoints_metric_types}') -> fetchAllKeyed(0, 1); $types = array('0' => '- Select -') + $types; $selectedType = isset($form_state['values']['metrictype']) ? $form_state['values']['metrictype'] : 0; $methods = _get_methods($selectedType); $selectedMethod = isset($form_state['values']['measurementmethod']) ? $form_state['values']['measurementmethod'] : 0; $form['metrictype'] = array( '#type' => 'select', '#title' => t('Metric Type'), '#options' => $types, '#default_value' => $selectedType, '#ajax' => array( 'event' => 'change', 'wrapper' => 'method-wrapper', 'callback' => 'touchpoints_method_callback' ) ); $form['measurementmethod'] = array( '#type' => 'select', '#title' => t('Measurement Method'), '#prefix' => '<div id="method-wrapper">', '#suffix' => '</div>', '#options' => $methods, '#default_value' => $selectedMethod, ); Here are the _get_methods and touchpoints_method_callback functions: function _get_methods($selected) { if ($selected) { $methods = db_query("SELECT * FROM {touchpoints_m_methods} WHERE mt_id=$selected") -> fetchAllKeyed(0, 2); } else { $methods = array(); } $methods = array('0' => "- Select -") + $methods; return $methods; } function touchpoints_method_callback($form, &$form_state) { return $form['measurementmethod']; } This all worked fine until I added a file field to the form. Here is the code I used for that: $form['metricfile'] = array( '#type' => 'file', '#title' => 'Attach a File', ); Now that the file is added if I change the first dropdown it hangs with the 'Please wait' message next to it without ever loading the contents of the second dropdown. I also get the following error in my JavaScript console: "Uncaught TypeError: Object function (a,b){return new p.fn.init(a,b,c)} has no method 'handleError'" What am I doing wrong here?

    Read the article

  • Returning different data types C#

    - by user1810659
    i have create a class library (DLL) with many different methods. and the return different types of data(string string[] double double[]). Therefore i have created one class i called CustomDataType for all the methods containing different data types so each method in the Library can return object of the custom class and this way be able to return multiple data types I have done it like this: public class CustomDataType { public double Value; public string Timestamp; public string Description; public string Unit; // special for GetparamterInfo public string OpcItemUrl; public string Source; public double Gain; public double Offset; public string ParameterName; public int ParameterID; public double[] arrayOfValue; public string[] arrayOfTimestamp; // public string[] arrayOfParameterName; public string[] arrayOfUnit; public string[] arrayOfDescription; public int[] arrayOfParameterID; public string[] arrayOfItemUrl; public string[] arrayOfSource; public string[] arrayOfModBusRegister; public string[] arrayOfGain; public string[] arrayOfOffset; } The Library contains methods like these: public CustomDataType GetDeviceParameters(string deviceName) { ...................... code getDeviceParametersObj.arrayOfParameterName; return getDeviceParametersObj; } public CustomDataType GetMaxMin(string parameterName, string period, string maxMin) { .....................................code getMaxMingObj.Value = (double)reader["MaxMinValue"]; getMaxMingObj.Timestamp = reader["MeasurementDateTime"].ToString(); getMaxMingObj.Unit = reader["Unit"].ToString(); getMaxMingObj.Description = reader["Description"].ToString(); return getMaxMingObj; } public CustomDataType GetSelectedMaxMinData(string[] parameterName, string period, string mode) {................................code selectedMaxMinObj.arrayOfValue = MaxMinvalueList.ToArray(); selectedMaxMinObj.arrayOfTimestamp = MaxMintimeStampList.ToArray(); selectedMaxMinObj.arrayOfDescription = MaxMindescriptionList.ToArray(); selectedMaxMinObj.arrayOfUnit = MaxMinunitList.ToArray(); return selectedMaxMinObj; } As illustrated thi different methods returns different data types,and it works fine for me but when i import the DLL and want to use the methods Visual studio shwos all the data types in the CustomDataType class as suggestion for all the methods even though the return different data.This is illusrtated in the picture below. As we can see from the picture with the suggestion of all the different return data the user can get confused and choose wrong return data for some of the methods. So my question is how can i improve this. so Visual studio suggest just the belonging return data type for each method.

    Read the article

  • creating TAGS for Ruby and emacs

    - by hortitude
    I ran the following from my top level Ruby on Rails directory find . -name "*.rb" | etags - Then within emacs I visited that tag file. This works reasonably well to find some of the methods and most of the files, however it is having trouble finding some of the extra methods/classes that I use in my helpers directory. e.g. I have a file in my helpers dir called my_foo_helper.rb If I search my tags for that file, it finds it. However, if I try to find a tag for one of the methods within that module it doesn't find it at all. If I use Aptana or something like that it seems to be able to locate those methods. Any thoughts? Thanks!

    Read the article

  • CodePlex Daily Summary for Thursday, February 18, 2010

    CodePlex Daily Summary for Thursday, February 18, 2010New ProjectsASP .NET MVC CMS (Content Management System): Open source Content management system based on ASP.NET MVC platform.AutoFolders: AutoFolders package for Umbraco CMS This package auto creates folder structures for new and existing pages. The folders structures can be date bas...AutoPex: This project combines CCI with Pex by allowing the developer to run Pex on methods based on differences between two assemblies. Canvas VSDOC Intellisense: JavaScript VSDOC documentation for HTML5 Canvas element and 2d Context interface.CSUDH: California State University, Domguiez Hills Game projectsD-AMPS: System for Analysis of Microelectronic and Photonic StructuresDispX: Disease PredictorEmployee Info Starter Kit: This is a starter kit, which includes very simple user requirements, where we can create, read, update and delete (crud) the employee info of a com...Enhanced Discussion Board for SharePoint: Provide later... publishing project to share with Malaysians firstFlowPad: Flowpad is a light, fast and easy to use flow diagram editor. It helps you quickly pour your algorithms from your mind to 'paper'. It is written us...Henge3D Physics Library for XNA: Henge3D is a 3D physics library written in C# for XNA. It is implemented entirely in managed code and is compatible with the XBOX 360.Hybrid Windows Service: Abstracted design pattern for running a windows service interactively. Implemented as a base class to replace ServiceBase it will automatically pro...Image Cropper datatype for Umbraco: Stand alone version of the Image Cropper datatype in Umbraco. Listinator: A social wishlist application done in asp.net MVCMicrosoft Dynamics Ax User Group (AXUG) Code Repository: The goal of this project is to make it easier for customers of Microsoft Dynamics Ax to be able to share relevant source code. Code base should inc...Mobil Trials: Sebuah game sederhana yang dibuat di atas Silverlight 3.0 dengan bantuan Physics Helper 3.0 Demo : http://gameagam.co.cc/default.html Mirror link...NavigateTo Providers: This project is a collection of NavigateTo providers for Visual Studio 2010. NExtLib: NExtLib is a general-purpose extension library for .NET, which adds some useful features and addresses some alleged omissions.Nom - .NET object-mapper: Nom is a light-weight, storage-type agnostic persistence framework which is intended to provide an abstraction over both relational and non-relatio...Numerical Methods on Silverlight: Numerical Methods, Silverlight, Math Parser, Simple, EulerOpenGLViewController for Visual Basic .NET 2008: A single class in pure VB.NET code to create and control an OpenGL window by calling opengl32.dll directly without use of additional wrapper librar...RestaurantMIS: RestaurantMIS is a simple Restaurant management system developed in Visual C# 2008 with Chinese language.SmartKonnect: <project name>A WPF application for windows with shoutcast, twitter, facebook and etc.SSRS Excel file Sheet rename: SSRS wont support renaming excel reports sheet rename. This program support to generate the report and change the excel sheet nameSWENTRIZ.NET: SWENTRIZ.NET allows to build graphics of implicit functions via .NET functionality.TFT: Tropical forecast tracker is a web application. It will measure the error of the National Hurricane Center's forecast as compared to the actual tr...WCF Dynamic Client Proxy: A WCF Dynamic Client Proxy so you don't have to inherit from ClientBase all the time. The proxy also has fault tolerance so you don't have to dispo...Web.Config Role Provider: Stores ASP.NET Roles in web.config. Easy to set up and deploy. Works great for simple websites with authentication. The projects includes support ...WPF Line of Business App: Example WPF patterns for line of business applications. Includes navigation, animation, and visualization.YuBiS Framework: Silverlight and WF based a workflow RAD framework. New ReleasesASP .NET MVC CMS (Content Management System): AtomicCms 1.0: This is the first public release of AtomicCms. To get more information about this content management system, visit website http://atomiccms.com/Blogsprajeesh.Blogspot samples: Designing Modular Smart Clients using CAL: This whitepaper provides architectural guidance for designing and implementing enterprise WPF/ silverlight client applications based on the Composi...DB Ghost Build Tools: 1.0.2: Made a change to the datetime format per dewee.DotNetNuke® Community Edition: 05.02.03: Major HighlightsFixed the issue where LinkClick.aspx links were incorrect for child portals Fixed the issue with the PayPal URL settings. Fixed...Employee Directory webpart for sharepoint 2007 user profiles: Employee Directory Source V2.0: Features: 1. Displays a complete list of all Active Directory profiles imported by the SSP into SharePoint 2007. 2. Displays the following fields ...Enhanced Discussion Board for SharePoint: Alpha Release: Meant for those who attended my presentation. Not cleaned upESPEHA: Espeha 9 PFR: Some small issues fixedFlowPad: FlowPad 0.1: FlowPad 0.1 build. Run it to get fammiliar with major concepts of easy diagramming :)Fluent Ribbon Control Suite: Fluent Ribbon Control Suite BETA2: Fluent Ribbon Control Suite BETA2 Includes: - Fluent.dll (with .pdb and .xml) - Demo Application - Samples - Foundation (Tabs, Groups, Contextu...Henge3D Physics Library for XNA: Henge3D Source (2010-02): This is the initial 2010-02 release.Highlight: Highlight 2.5: This release is primarily a maintenance release of the library and is functionally equivalent to version 2.3 that was released in 2004.Magiq: Magiq 0.3.0: Magiq 0.3.0 contains: Magiq-to-objects: Full support to Linq-to-objects Magiq-to-sql: Full support to Linq-to-sql New features: Plugin model Bu...Microsoft Points Converter: Pre-Alpha ClickOnce Installer v0.03: This release builds on the 0.02 release by adding more thorough validation checks for the amount to convert from as well as adding several currency...Mobil Trials: Mobil Trials Source Code: Sebuah game sederhana yang dibuat di atas Silverlight 3.0 dengan bantuan Physics Helper 3.0 Game ini masih perlu dikembangkan lebih jauh lagi! Si...Numerical Methods on Silverlight: Numerical Methods on Silverlight 1.00: This a new version of Numerical Methods on Silverlight.OAuthLib: OAuthLib (1.5.0.0): Changed point is as next. 7037 Fix spell miss of RequestFactoryMedthodSharePoint Outlook Connector: Version 1.0.1.0: Now it supports simply attaching SharePoint documents feature.Sharpy: Sharpy 1.1 Alpha: This is the second Sharpy release. Only a single change has been made - the foreach function now uses IEnumerable as a source instead of IList. Th...SkinDroidCreator: SkinDroidCreator ALPHA 1: Primera releaseTan solo carga mapas, ya sea de un zip o de un directorio. Para probarlo se pueden cargar temas Metamorph o temas flasheables, ya se...SkyDrive .Net API Client: SkyDrive .Net API Client 0.8.9: SkyDrive .Net API Client assembly version 0.8.9. Changes/improvements: - Added Web Proxy support - Introduced WebDriveInfo - Introduced DownloadUrl...spikes: Salient.Web.Administration 1.0: WebAdmin is simply the built in ASP.NetWebAdministrationFiles application cleaned up with codebehinds to make customization and refactoring possibl...SSRS Excel file Sheet rename: Change SSRS excel file sheet name: Create stored procedure from the attached file in sql server 2005/2008SWENTRIZ.NET: Approach 1: First approachTortoiseSVN Addin for Visual Studio: TortoiseSVN Addin 1.0.4: Visual Studio 2005 support Custom working root bug fixingTotal Commander SkyDrive File System Plugin (.wfx): Total Commander SkyDrive File System Plugin 0.8.4: Total Commander SkyDrive File System Plugin version 0.8.4. Bug fixes: - Upgraded SkyDriveWebClient to version 0.8.9 Please do not forget to expres...UnOfficial AW Wrapper dot Net: UAWW.Net 0.1.5.85 Béta 2: Fixed and Added SomethingVr30 OS: Space Brick Break 1.1: A brick breaker. ADD Level 3, 4, 5Web.Config Role Provider: First release: Three downloads are available: A compiled dll ready to use. The schema to enable intellisense The complete source (zipped)WI Assistant: WI Assistant 2.1: This release improves the work item selection functionality. These selection methods are now supported (some require at least one item selected): ...WI Assistant: WI Assistant 2.2: Improved error handling and fix for linking several times in a row. DISCLAIMER: While I have tested this app on my TFS Server, by downloading and...ZipStorer - A Pure C# Class to Store Files in Zip: ZipStorer 2.30: Added stream-oriented methods Improved support for ePUB & Open Container Format specification (OCF) Automatic switch from Deflate to Store algo...Most Popular ProjectsRawrDotNetNuke® Community EditionASP.NET Ajax LibraryFacebook Developer ToolkitWindows 7 USB/DVD Download ToolWSPBuilder (SharePoint WSP tool)Virtual Router - Wifi Hot Spot for Windows 7 / 2008 R2Json.NETPerformance Analysis of Logs (PAL) ToolQuickGraph, Graph Data Structures And Algorithms for .NetMost Active ProjectsDinnerNow.netRawrSharpyBlogEngine.NETSimple SavantjQuery Library for SharePoint Web ServicesNB_Store - Free DotNetNuke Ecommerce Catalog Modulepatterns & practices – Enterprise LibraryPHPExcelFacebook Developer Toolkit

    Read the article

  • Do Repeat Yourself in Unit Tests

    - by João Angelo
    Don’t get me wrong I’m a big supporter of the DRY (Don’t Repeat Yourself) Principle except however when it comes to unit tests. Why? Well, in my opinion a unit test should be a self-contained group of actions with the intent to test a very specific piece of code and should not depend on externals shared with other unit tests. In a typical unit test we can divide its code in two major groups: Preparation of preconditions for the code under test; Invocation of the code under test. It’s in the first group that you are tempted to refactor common code in several unit tests into helper methods that can then be called in each one of them. Another way to not duplicate code is to use the built-in infrastructure of some unit test frameworks such as SetUp/TearDown methods that automatically run before and after each unit test. I must admit that in the past I was guilty of both charges but what at first seemed a good idea since I was removing code duplication turnout to offer no added value and even complicate the process when a given test fails. We love unit tests because of their rapid feedback when something goes wrong. However, this feedback requires most of the times reading the code for the failed test. Given this, what do you prefer? To read a single method or wander through several methods like SetUp/TearDown and private common methods. I say it again, do repeat yourself in unit tests. It may feel wrong at first but I bet you won’t regret it later.

    Read the article

  • Advantages of Singleton Class over Static Class?

    Point 1)Singleton We can get the object of singleton and then pass to other methods.Static Class We can not pass static class to other methods as we pass objectsPoint 2) Singleton In future, it is easy to change the logic of of creating objects to some pooling mechanism. Static Class Very difficult to implement some pooling logic in case of static class. We would need to make that class as non-static and then make all the methods non-static methods, So entire your code needs to be changed.Point3:) Singleton Can Singletone class be inherited to subclass? Singleton class does not say any restriction of Inheritence. So we should be able to do this as long as subclass is also inheritence.There's nothing fundamentally wrong with subclassing a class that is intended to be a singleton. There are many reasons you might want to do it. and there are many ways to accomplish it. It depends on language you use.Static Class We can not inherit Static class to another Static class in C#. Think about it this way: you access static members via type name, like this: MyStaticType.MyStaticMember(); Were you to inherit from that class, you would have to access it via the new type name: MyNewType.MyStaticMember(); Thus, the new item bears no relationships to the original when used in code. There would be no way to take advantage of any inheritance relationship for things like polymorphism. span.fullpost {display:none;}

    Read the article

  • Meaningful concise method naming guidelines

    - by Sam
    Recently I started releasing an open source project, while I was the only user of the library I did not care about the names, but know I want to assign clever names to each methods to make it easier to learn, but I also need to use concise names so they are easy to write as well. I was thinking about some guidelines about the naming, I am aware of lots of guidelines that only care about letters casing or some simple notes. Here, I am looking after guidelines for meaningful concise naming. For example, this could be part of the guidelines I am looking after: Use Add when an existing item is going to be added to a target, Use Create when a new item is being created and added to a target. Use Remove when an existing item is going to be removed from a target, Use delete when an item is going to be removed permanently. Pair AddXXX methods with RemoveXXX and Pair CreateXXX methods with DeleteXXX methods, but do not mix them. The above guidance may be intuitive for native English speakers, but for me that English is my second language I need to be told about things like this.

    Read the article

  • Advantages of Singleton Class over Static Class?

    Point 1) Singleton We can get the object of singleton and then pass to other methods. Static Class We can not pass static class to other methods as we pass objects Point 2) Singleton In future, it is easy to change the logic of of creating objects to some pooling mechanism. Static Class Very difficult to implement some pooling logic in case of static class. We would need to make that class as non-static and then make all the methods non-static methods, So entire your code needs to be changed. Point3:) Singleton Can Singletone class be inherited to subclass? Singleton class does not say any restriction of Inheritence. So we should be able to do this as long as subclass is also inheritence.There's nothing fundamentally wrong with subclassing a class that is intended to be a singleton. There are many reasons you might want to do it. and there are many ways to accomplish it. It depends on language you use. Static Class We can not inherit Static class to another Static class in C#. Think about it this way: you access static members via type name, like this: MyStaticType.MyStaticMember(); Were you to inherit from that class, you would have to access it via the new type name: MyNewType.MyStaticMember(); Thus, the new item bears no relationships to the original when used in code. There would be no way to take advantage of any inheritance relationship for things like polymorphism. span.fullpost {display:none;}

    Read the article

  • Mutating Programming Language?

    - by MattiasK
    For fun I was thinking about how one could build a programming language that differs from OOP and came up with this concept. I don't have a strong foundation in computer science so it might be common place without me knowing it (more likely it's just a stupid idea :) I apologize in advance for this somewhat rambling question :) Anyways here goes: In normal OOP methods and classes are variant only upon parameters, meaning if two different classes/methods call the same method they get the same output. My, perhaps crazy idea, is that the calling method and class could be an "invisible" part of it's signature and the response could vary depending on who call's an method. Say that we have a Window object with a Break() method, now anyone (who has access) could call this method on Window with the same result. Now say that we have two different objects, Hammer and SledgeHammer. If Break need to produce different results based on these we'd pass them as parameters Break(IBluntObject bluntObject) With a mutating programming language (mpl) the operating objects on the method would be visible to the Break Method without begin explicitly defined and it could adopt itself based on them). So if SledgeHammer calls Window.Break() it would generate vastly different results than if Hammer did so. If OOP classes are black boxes then MPL are black boxes that knows who's (trying) to push it's buttons and can adapt accordingly. You could also have different permission sets on methods depending who's calling them rather than having absolute permissions like public and private. Does this have any advantage over OOP? Or perhaps I should say, would it add anything to it since you should be able to simply add this aspect to methods (just give access to a CallingMethod and CallingClass variable in context) I'm not sure, might be to hard to wrap one's head around, it would be kinda interesting to have classes that adopted themselves to who uses them though. Still it's an interesting concept, what do you think, is it viable?

    Read the article

  • Self-referencing anonymous closures: is JavaScript incomplete?

    - by Tom Auger
    Does the fact that anonymous self-referencing function closures are so prevelant in JavaScript suggest that JavaScript is an incomplete specification? We see so much of this: (function () { /* do cool stuff */ })(); and I suppose everything is a matter of taste, but does this not look like a kludge, when all you want is a private namespace? Couldn't JavaScript implement packages and proper classes? Compare to ActionScript 3, also based on EMACScript, where you get package com.tomauger { import bar; class Foo { public function Foo(){ // etc... } public function show(){ // show stuff } public function hide(){ // hide stuff } // etc... } } Contrast to the convolutions we perform in JavaScript (this, from the jQuery plugin authoring documentation): (function( $ ){ var methods = { init : function( options ) { // THIS }, show : function( ) { // IS }, hide : function( ) { // GOOD }, update : function( content ) { // !!! } }; $.fn.tooltip = function( method ) { // Method calling logic if ( methods[method] ) { return methods[ method ].apply( this, Array.prototype.slice.call( arguments, 1 )); } else if ( typeof method === 'object' || ! method ) { return methods.init.apply( this, arguments ); } else { $.error( 'Method ' + method + ' does not exist on jQuery.tooltip' ); } }; })( jQuery ); I appreciate that this question could easily degenerate into a rant about preferences and programming styles, but I'm actually very curious to hear how you seasoned programmers feel about this and whether it feels natural, like learning different idiosyncrasies of a new language, or kludgy, like a workaround to some basic programming language components that are just not implemented?

    Read the article

  • Should I modify an entity with many parameters or with the entity itself?

    - by Saeed Neamati
    We have a SOA-based system. The service methods are like: UpdateEntity(Entity entity) For small entities, it's all fine. However, when entities get bigger and bigger, to update one property we should follow this pattern in UI: Get parameters from UI (user) Create an instance of the Entity, using those parameters Get the entity from service Write code to fill the unchanged properties Give the result entity to the service Another option that I've experienced in previous experiences is to create semantic update methods for each update scenario. In other words instead of having one global all-encompasing update method, we had many ad-hoc parametric methods. For example, for the User entity, instead of having UpdateUser (User user) method, we had these methods: ChangeUserPassword(int userId, string newPassword) AddEmailToUserAccount(int userId, string email) ChangeProfilePicture(int userId, Image image) ... Now, I don't know which method is truly better, and for each approach, we encounter problems. I mean, I'm going to design the infrastructure for a new system, and I don't have enough reasons to pick any of these approaches. I couldn't find good resources on the Internet, because of the lack of keywords I could provide. What approach is better? What pitfalls each has? What benefits can we get from each one?

    Read the article

  • When to use each user research method

    - by user12277104
    There are a lot of user research methods out there, but sometimes we get stuck in a rut, conducting all formative usability testing before coding, or running surveys to gather satisfaction data. I'll be the first to admit that it happens to me, but to get out of a rut, it just takes a minute to look at where I am in the design & development cycle, what kind(s) of data I need, and what methods are available to me. We need reminders, or refreshers, every once in a while. One tool I've found useful is a graphic organizer that I created many years ago. It's been through several revisions, as I've adapted it to the product cycles of the places I've worked, changed my mind about how to categorize it, and added methods that I've used or created over time. I shared a version of this table at the 2012 International UPA conference, and I was contacted by someone yesterday who wanted to use it in a university course on user-center design. I was flattered at the the thought, but embarrassed, because I was sure it needed updating -- that was a year ago, after all. But I opened it today, and really, there's not much I'd change -- sure, I could add some nuance regarding what types of formative testing, such as modality (remote, unmoderated remote, or in-person) or flavor of testing (RITE, RITE-Krug, comparative, performance), but I think it's pretty much ok as is. Click on the image below, to get the full-size PDF. And whether it's entirely "right" or "wrong" isn't the whole value of looking at these methods across the product lifecycle. The real value lies in the reminder that I have options. And what those options are change as the field changes, so while I don't expect this graphic to have an eternal shelf life, it's still ok a year after I last updated it. That said, if you find something missing or out of place, let me know :) 

    Read the article

  • Do you leverage the benefits of the open-closed principle?

    - by Kaleb Pederson
    The open-closed principle (OCP) states that an object should be open for extension but closed for modification. I believe I understand it and use it in conjunction with SRP to create classes that do only one thing. And, I try to create many small methods that make it possible to extract out all the behavior controls into methods that may be extended or overridden in some subclass. Thus, I end up with classes that have many extension points, be it through: dependency injection and composition, events, delegation, etc. Consider the following a simple, extendable class: class PaycheckCalculator { // ... protected decimal GetOvertimeFactor() { return 2.0M; } } Now say, for example, that the OvertimeFactor changes to 1.5. Since the above class was designed to be extended, I can easily subclass and return a different OvertimeFactor. But... despite the class being designed for extension and adhering to OCP, I'll modify the single method in question, rather than subclassing and overridding the method in question and then re-wiring my objects in my IoC container. As a result I've violated part of what OCP attempts to accomplish. It feels like I'm just being lazy because the above is a bit easier. Am I misunderstanding OCP? Should I really be doing something different? Do you leverage the benefits of OCP differently? Update: based on the answers it looks like this contrived example is a poor one for a number of different reasons. The main intent of the example was to demonstrate that the class was designed to be extended by providing methods that when overridden would alter the behavior of public methods without the need for changing internal or private code. Still, I definitely misunderstood OCP.

    Read the article

  • What is a good way to share internal helpers?

    - by toplel32
    All my projects share the same base library that I have build up over quite some time. It contains utilities and static helper classes to assist them where .NET doesn't exactly offer what I want. Originally all the helpers were written mainly to serve an internal purpose and it has to stay that way, but sometimes they prove very useful to other assemblies. Now making them public in a reliable way is more complicated than most would think, for example all methods that assume nullable types must now contain argument checking while not charging internal utilities with the price of doing so. The price might be negligible, but it is far from right. While refactoring, I have revised this case multiple times and I've come up with the following solutions so far: Have an internal and public class for each helper The internal class contains the actual code while the public class serves as an access point which does argument checking. Cons: The internal class requires a prefix to avoid ambiguity (the best presentation should be reserved for public types) It isn't possible to discriminate methods that don't need argument checking   Have one class that contains both internal and public members (as conventionally implemented in .NET framework). At first, this might sound like the best possible solution, but it has the same first unpleasant con as solution 1. Cons: Internal methods require a prefix to avoid ambiguity   Have an internal class which is implemented by the public class that overrides any members that require argument checking. Cons: Is non-static, atleast one instantiation is required. This doesn't really fit into the helper class idea, since it generally consists of independent fragments of code, it should not require instantiation. Non-static methods are also slower by a negligible degree, which doesn't really justify this option either. There is one general and unavoidable consequence, alot of maintenance is necessary because every internal member will require a public counterpart. A note on solution 1: The first consequence can be avoided by putting both classes in different namespaces, for example you can have the real helper in the root namespace and the public helper in a namespace called "Helpers".

    Read the article

  • @staticmethod vs module-level function

    - by darkfeline
    This is not about @staticmethod and @classmethod! I know how staticmethod works. What I want to know is the proper use cases for @staticmethod vs. a module-level function. I've googled this question, and it seems there's some general agreement that module-level functions are preferred over static methods because it's more pythonic. Static methods have the advantage of being bound to its class, which may make sense if only that class uses it. However, in Python functionality is usually organized by module not class, so usually making it a module function makes sense too. Static methods can also be overridden by subclasses, which is an advantage or disadvantage depending on how you look at it. Although, static methods are usually "functionally pure" so overriding it may not be smart, but it may be convenient sometimes (though this may be one of those "convenient, but NEVER DO IT" kind of things only experience can teach you). Are there any general rule-of-thumbs for using either staticmethod or module-level functions? What concrete advantages or disadvantages do they have (e.g. future extension, external extension, readability)? If possible, also provide a case example.

    Read the article

  • Should I always encapsulate an internal data structure entirely?

    - by Prog
    Please consider this class: class ClassA{ private Thing[] things; // stores data // stuff omitted public Thing[] getThings(){ return things; } } This class exposes the array it uses to store data, to any client code interested. I did this in an app I'm working on. I had a ChordProgression class that stores a sequence of Chords (and does some other things). It had a Chord[] getChords() method that returned the array of chords. When the data structure had to change (from an array to an ArrayList), all client code broke. This made me think - maybe the following approach is better: class ClassA{ private Thing[] things; // stores data // stuff omitted public Thing[] getThing(int index){ return things[index]; } public int getDataSize(){ return things.length; } public void setThing(int index, Thing thing){ things[index] = thing; } } Instead of exposing the data structure itself, all of the operations offered by the data structure are now offered directly by the class enclosing it, using public methods that delegate to the data structure. When the data structure changes, only these methods have to change - but after they do, all client code still works. Note that collections more complex than arrays might require the enclosing class to implement even more than three methods just to access the internal data structure. Is this approach common? What do you think of this? What downsides does it have other? Is it reasonable to have the enclosing class implement at least three public methods just to delegate to the inner data structure?

    Read the article

  • New <%: %> Syntax for HTML Encoding Output in ASP.NET 4 (and ASP.NET MVC 2)

    - by ScottGu
    [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] This is the nineteenth in a series of blog posts I’m doing on the upcoming VS 2010 and .NET 4 release. Today’s post covers a small, but very useful, new syntax feature being introduced with ASP.NET 4 – which is the ability to automatically HTML encode output within code nuggets.  This helps protect your applications and sites against cross-site script injection (XSS) and HTML injection attacks, and enables you to do so using a nice concise syntax. HTML Encoding Cross-site script injection (XSS) and HTML encoding attacks are two of the most common security issues that plague web-sites and applications.  They occur when hackers find a way to inject client-side script or HTML markup into web-pages that are then viewed by other visitors to a site.  This can be used to both vandalize a site, as well as enable hackers to run client-script code that steals cookie data and/or exploits a user’s identity on a site to do bad things. One way to help mitigate against cross-site scripting attacks is to make sure that rendered output is HTML encoded within a page.  This helps ensures that any content that might have been input/modified by an end-user cannot be output back onto a page containing tags like <script> or <img> elements.  ASP.NET applications (especially those using ASP.NET MVC) often rely on using <%= %> code-nugget expressions to render output.  Developers today often use the Server.HtmlEncode() or HttpUtility.Encode() helper methods within these expressions to HTML encode the output before it is rendered.  This can be done using code like below: While this works fine, there are two downsides of it: It is a little verbose Developers often forget to call the HtmlEncode method New <%: %> Code Nugget Syntax With ASP.NET 4 we are introducing a new code expression syntax (<%:  %>) that renders output like <%= %> blocks do – but which also automatically HTML encodes it before doing so.  This eliminates the need to explicitly HTML encode content like we did in the example above.  Instead you can just write the more concise code below to accomplish the same thing: We chose the <%: %> syntax so that it would be easy to quickly replace existing instances of <%= %> code blocks.  It also enables you to easily search your code-base for <%= %> elements to find and verify any cases where you are not using HTML encoding within your application to ensure that you have the correct behavior. Avoiding Double Encoding While HTML encoding content is often a good best practice, there are times when the content you are outputting is meant to be HTML or is already encoded – in which case you don’t want to HTML encode it again.  ASP.NET 4 introduces a new IHtmlString interface (along with a concrete implementation: HtmlString) that you can implement on types to indicate that its value is already properly encoded (or otherwise examined) for displaying as HTML, and that therefore the value should not be HTML-encoded again.  The <%: %> code-nugget syntax checks for the presence of the IHtmlString interface and will not HTML encode the output of the code expression if its value implements this interface.  This allows developers to avoid having to decide on a per-case basis whether to use <%= %> or <%: %> code-nuggets.  Instead you can always use <%: %> code nuggets, and then have any properties or data-types that are already HTML encoded implement the IHtmlString interface. Using ASP.NET MVC HTML Helper Methods with <%: %> For a practical example of where this HTML encoding escape mechanism is useful, consider scenarios where you use HTML helper methods with ASP.NET MVC.  These helper methods typically return HTML.  For example: the Html.TextBox() helper method returns markup like <input type=”text”/>.  With ASP.NET MVC 2 these helper methods now by default return HtmlString types – which indicates that the returned string content is safe for rendering and should not be encoded by <%: %> nuggets.  This allows you to use these methods within both <%= %> code nugget blocks: As well as within <%: %> code nugget blocks: In both cases above the HTML content returned from the helper method will be rendered to the client as HTML – and the <%: %> code nugget will avoid double-encoding it. This enables you to default to always using <%: %> code nuggets instead of <%= %> code blocks within your applications.  If you want to be really hardcore you can even create a build rule that searches your application looking for <%= %> usages and flags any cases it finds as an error to enforce that HTML encoding always takes place. Scaffolding ASP.NET MVC 2 Views When you use VS 2010 (or the free Visual Web Developer 2010 Express) you’ll find that the views that are scaffolded using the “Add View” dialog now by default always use <%: %> blocks when outputting any content.  For example, below I’ve scaffolded a simple “Edit” view for an article object.  Note the three usages of <%: %> code nuggets for the label, textbox, and validation message (all output with HTML helper methods): Summary The new <%: %> syntax provides a concise way to automatically HTML encode content and then render it as output.  It allows you to make your code a little less verbose, and to easily check/verify that you are always HTML encoding content throughout your site.  This can help protect your applications against cross-site script injection (XSS) and HTML injection attacks.  Hope this helps, Scott

    Read the article

  • Anatomy of a .NET Assembly - CLR metadata 1

    - by Simon Cooper
    Before we look at the bytes comprising the CLR-specific data inside an assembly, we first need to understand the logical format of the metadata (For this post I only be looking at simple pure-IL assemblies; mixed-mode assemblies & other things complicates things quite a bit). Metadata streams Most of the CLR-specific data inside an assembly is inside one of 5 streams, which are analogous to the sections in a PE file. The name of each section in a PE file starts with a ., and the name of each stream in the CLR metadata starts with a #. All but one of the streams are heaps, which store unstructured binary data. The predefined streams are: #~ Also called the metadata stream, this stream stores all the information on the types, methods, fields, properties and events in the assembly. Unlike the other streams, the metadata stream has predefined contents & structure. #Strings This heap is where all the namespace, type & member names are stored. It is referenced extensively from the #~ stream, as we'll be looking at later. #US Also known as the user string heap, this stream stores all the strings used in code directly. All the strings you embed in your source code end up in here. This stream is only referenced from method bodies. #GUID This heap exclusively stores GUIDs used throughout the assembly. #Blob This heap is for storing pure binary data - method signatures, generic instantiations, that sort of thing. Items inside the heaps (#Strings, #US, #GUID and #Blob) are indexed using a simple binary offset from the start of the heap. At that offset is a coded integer giving the length of that item, then the item's bytes immediately follow. The #GUID stream is slightly different, in that GUIDs are all 16 bytes long, so a length isn't required. Metadata tables The #~ stream contains all the assembly metadata. The metadata is organised into 45 tables, which are binary arrays of predefined structures containing information on various aspects of the metadata. Each entry in a table is called a row, and the rows are simply concatentated together in the file on disk. For example, each row in the TypeRef table contains: A reference to where the type is defined (most of the time, a row in the AssemblyRef table). An offset into the #Strings heap with the name of the type An offset into the #Strings heap with the namespace of the type. in that order. The important tables are (with their table number in hex): 0x2: TypeDef 0x4: FieldDef 0x6: MethodDef 0x14: EventDef 0x17: PropertyDef Contains basic information on all the types, fields, methods, events and properties defined in the assembly. 0x1: TypeRef The details of all the referenced types defined in other assemblies. 0xa: MemberRef The details of all the referenced members of types defined in other assemblies. 0x9: InterfaceImpl Links the types defined in the assembly with the interfaces that type implements. 0xc: CustomAttribute Contains information on all the attributes applied to elements in this assembly, from method parameters to the assembly itself. 0x18: MethodSemantics Links properties and events with the methods that comprise the get/set or add/remove methods of the property or method. 0x1b: TypeSpec 0x2b: MethodSpec These tables provide instantiations of generic types and methods for each usage within the assembly. There are several ways to reference a single row within a table. The simplest is to simply specify the 1-based row index (RID). The indexes are 1-based so a value of 0 can represent 'null'. In this case, which table the row index refers to is inferred from the context. If the table can't be determined from the context, then a particular row is specified using a token. This is a 4-byte value with the most significant byte specifying the table, and the other 3 specifying the 1-based RID within that table. This is generally how a metadata table row is referenced from the instruction stream in method bodies. The third way is to use a coded token, which we will look at in the next post. So, back to the bytes Now we've got a rough idea of how the metadata is logically arranged, we can now look at the bytes comprising the start of the CLR data within an assembly: The first 8 bytes of the .text section are used by the CLR loader stub. After that, the CLR-specific data starts with the CLI header. I've highlighted the important bytes in the diagram. In order, they are: The size of the header. As the header is a fixed size, this is always 0x48. The CLR major version. This is always 2, even for .NET 4 assemblies. The CLR minor version. This is always 5, even for .NET 4 assemblies, and seems to be ignored by the runtime. The RVA and size of the metadata header. In the diagram, the RVA 0x20e4 corresponds to the file offset 0x2e4 Various flags specifying if this assembly is pure-IL, whether it is strong name signed, and whether it should be run as 32-bit (this is how the CLR differentiates between x86 and AnyCPU assemblies). A token pointing to the entrypoint of the assembly. In this case, 06 (the last byte) refers to the MethodDef table, and 01 00 00 refers to to the first row in that table. (after a gap) RVA of the strong name signature hash, which comes straight after the CLI header. The RVA 0x2050 corresponds to file offset 0x250. The rest of the CLI header is mainly used in mixed-mode assemblies, and so is zeroed in this pure-IL assembly. After the CLI header comes the strong name hash, which is a SHA-1 hash of the assembly using the strong name key. After that comes the bodies of all the methods in the assembly concatentated together. Each method body starts off with a header, which I'll be looking at later. As you can see, this is a very small assembly with only 2 methods (an instance constructor and a Main method). After that, near the end of the .text section, comes the metadata, containing a metadata header and the 5 streams discussed above. We'll be looking at this in the next post. Conclusion The CLI header data doesn't have much to it, but we've covered some concepts that will be important in later posts - the logical structure of the CLR metadata and the overall layout of CLR data within the .text section. Next, I'll have a look at the contents of the #~ stream, and how the table data is arranged on disk.

    Read the article

  • Profiling Startup Of VS2012 &ndash; SpeedTrace Profiler

    - by Alois Kraus
    SpeedTrace is a relatively unknown profiler made a company called Ipcas. A single professional license does cost 449€+VAT. For the test I did use SpeedTrace 4.5 which is currently Beta. Although it is cheaper than dotTrace it has by far the most options to influence how profiling does work. First you need to create a tracing project which does configure tracing for one process type. You can start the application directly from the profiler or (much more interesting) it does attach to a specific process when it is started. For this you need to check “Trace the specified …” radio button and enter the process name in the “Process Name of the Trace” edit box. You can even selectively enable tracing for processes with a specific command line. Then you need to activate the trace project by pressing the Activate Project button and you are ready to start VS as usual. If you want to profile the next 10 VS instances that you start you can set the Number of Processes counter to e.g. 10. This is immensely helpful if you are trying to profile only the next 5 started processes. As you can see there are many more tabs which do allow to influence tracing in a much more sophisticated way. SpeedTrace is the only profiler which does not rely entirely on the profiling Api of .NET. Instead it does modify the IL code (instrumentation on the fly) to write tracing information to disc which can later be analyzed. This approach is not only very fast but it does give you unprecedented analysis capabilities. Once the traces are collected they do show up in your workspace where you can open the trace viewer. I do skip the other windows because this view is by far the most useful one. You can sort the methods not only by Wall Clock time but also by CPU consumption and wait time which none of the other products support in their views at the same time. If you want to optimize for CPU consumption sort by CPU time. If you want to find out where most time is spent you need Clock Total time and Clock Waiting. There you can directly see if the method did take long because it did wait on something or it did really execute stuff that did take so long. Once you have found a method you want to drill deeper you can double click on a method to get to the Caller/Callee view which is similar to the JetBrains Method Grid view. But this time you do see much more. In the middle is the clicked method. Above are the methods that call you and below are the methods that you do directly call. Normally you would then start digging deeper to find the end of the chain where the slow method worth optimizing is located. But there is a shortcut. You can press the magic   button to calculate the aggregation of all called methods. This is displayed in the lower left window where you can see each method call and how long it did take. There you can also sort to see if this call stack does only contain methods (e.g. WCF connect calls which you cannot make faster) not worth optimizing. YourKit has a similar feature where it is called Callees List. In the Functions tab you have in the context menu also many other useful analysis options One really outstanding feature is the View Call History Drilldown. When you select this one you get not a sum of all method invocations but a list with the duration of each method call. This is not surprising since SpeedTrace does use tracing to get its timings. There you can get many useful graphs how this method did behave over time. Did it become slower at some point in time or was only the first call slow? The diagrams and the list will tell you that. That is all fine but what should I do when one method call was slow? I want to see from where it was coming from. No problem select the method in the list hit F10 and you get the call stack. This is a life saver if you e.g. search for serialization problems. Today Serializers are used everywhere. You want to find out from where the 5s XmlSerializer.Deserialize call did come from? Hit F10 and you get the call stack which did invoke the 5s Deserialize call. The CPU timeline tab is also useful to find out where long pauses or excessive CPU consumption did happen. Click in the graph to get the Thread Stacks window where you can get a quick overview what all threads were doing at this time. This does look like the Stack Traces feature in YourKit. Only this time you get the last called method first which helps to quickly see what all threads were executing at this moment. YourKit does generate a rather long list which can be hard to go through when you have many threads. The thread list in the middle does not give you call stacks or anything like that but you see which methods were found most often executing code by the profiler which is a good indication for methods consuming most CPU time. This does sound too good to be true? I have not told you the best part yet. The best thing about this profiler is the staff behind it. When I do see a crash or some other odd behavior I send a mail to Ipcas and I do get usually the next day a mail that the problem has been fixed and a download link to the new version. The guys at Ipcas are even so helpful to log in to your machine via a Citrix Client to help you to get started profiling your actual application you want to profile. After a 2h telco I was converted from a hater to a believer of this tool. The fast response time might also have something to do with the fact that they are actively working on 4.5 to get out of the door. But still the support is by far the best I have encountered so far. The only downside is that you should instrument your assemblies including the .NET Framework to get most accurate numbers. You can profile without doing it but then you will see very high JIT times in your process which can severely affect the correctness of the measured timings. If you do not care about exact numbers you can also enable in the main UI in the Data Trace tab logging of method arguments of primitive types. If you need to know what files at which times were opened by your application you can find it out without a debugger. Since SpeedTrace does read huge trace files in its reader you should perhaps use a 64 bit machine to be able to analyze bigger traces as well. The memory consumption of the trace reader is too high for my taste. But they did promise for the next version to come up with something much improved.

    Read the article

  • Custom ASP.NET Routing to an HttpHandler

    - by Rick Strahl
    As of version 4.0 ASP.NET natively supports routing via the now built-in System.Web.Routing namespace. Routing features are automatically integrated into the HtttpRuntime via a few custom interfaces. New Web Forms Routing Support In ASP.NET 4.0 there are a host of improvements including routing support baked into Web Forms via a RouteData property available on the Page class and RouteCollection.MapPageRoute() route handler that makes it easy to route to Web forms. To map ASP.NET Page routes is as simple as setting up the routes with MapPageRoute:protected void Application_Start(object sender, EventArgs e) { RegisterRoutes(RouteTable.Routes); } void RegisterRoutes(RouteCollection routes) { routes.MapPageRoute("StockQuote", "StockQuote/{symbol}", "StockQuote.aspx"); routes.MapPageRoute("StockQuotes", "StockQuotes/{symbolList}", "StockQuotes.aspx"); } and then accessing the route data in the page you can then use the new Page class RouteData property to retrieve the dynamic route data information:public partial class StockQuote1 : System.Web.UI.Page { protected StockQuote Quote = null; protected void Page_Load(object sender, EventArgs e) { string symbol = RouteData.Values["symbol"] as string; StockServer server = new StockServer(); Quote = server.GetStockQuote(symbol); // display stock data in Page View } } Simple, quick and doesn’t require much explanation. If you’re using WebForms most of your routing needs should be served just fine by this simple mechanism. Kudos to the ASP.NET team for putting this in the box and making it easy! How Routing Works To handle Routing in ASP.NET involves these steps: Registering Routes Creating a custom RouteHandler to retrieve an HttpHandler Attaching RouteData to your HttpHandler Picking up Route Information in your Request code Registering routes makes ASP.NET aware of the Routes you want to handle via the static RouteTable.Routes collection. You basically add routes to this collection to let ASP.NET know which URL patterns it should watch for. You typically hook up routes off a RegisterRoutes method that fires in Application_Start as I did in the example above to ensure routes are added only once when the application first starts up. When you create a route, you pass in a RouteHandler instance which ASP.NET caches and reuses as routes are matched. Once registered ASP.NET monitors the routes and if a match is found just prior to the HttpHandler instantiation, ASP.NET uses the RouteHandler registered for the route and calls GetHandler() on it to retrieve an HttpHandler instance. The RouteHandler.GetHandler() method is responsible for creating an instance of an HttpHandler that is to handle the request and – if necessary – to assign any additional custom data to the handler. At minimum you probably want to pass the RouteData to the handler so the handler can identify the request based on the route data available. To do this you typically add  a RouteData property to your handler and then assign the property from the RouteHandlers request context. This is essentially how Page.RouteData comes into being and this approach should work well for any custom handler implementation that requires RouteData. It’s a shame that ASP.NET doesn’t have a top level intrinsic object that’s accessible off the HttpContext object to provide route data more generically, but since RouteData is directly tied to HttpHandlers and not all handlers support it it might cause some confusion of when it’s actually available. Bottom line is that if you want to hold on to RouteData you have to assign it to a custom property of the handler or else pass it to the handler via Context.Items[] object that can be retrieved on an as needed basis. It’s important to understand that routing is hooked up via RouteHandlers that are responsible for loading HttpHandler instances. RouteHandlers are invoked for every request that matches a route and through this RouteHandler instance the Handler gains access to the current RouteData. Because of this logic it’s important to understand that Routing is really tied to HttpHandlers and not available prior to handler instantiation, which is pretty late in the HttpRuntime’s request pipeline. IOW, Routing works with Handlers but not with earlier in the pipeline within Modules. Specifically ASP.NET calls RouteHandler.GetHandler() from the PostResolveRequestCache HttpRuntime pipeline event. Here’s the call stack at the beginning of the GetHandler() call: which fires just before handler resolution. Non-Page Routing – You need to build custom RouteHandlers If you need to route to a custom Http Handler or other non-Page (and non-MVC) endpoint in the HttpRuntime, there is no generic mapping support available. You need to create a custom RouteHandler that can manage creating an instance of an HttpHandler that is fired in response to a routed request. Depending on what you are doing this process can be simple or fairly involved as your code is responsible based on the route data provided which handler to instantiate, and more importantly how to pass the route data on to the Handler. Luckily creating a RouteHandler is easy by implementing the IRouteHandler interface which has only a single GetHttpHandler(RequestContext context) method. In this method you can pick up the requestContext.RouteData, instantiate the HttpHandler of choice, and assign the RouteData to it. Then pass back the handler and you’re done.Here’s a simple example of GetHttpHandler() method that dynamically creates a handler based on a passed in Handler type./// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } Note that this code checks for a specific type of handler and if it matches assigns the RouteData to this handler. This is optional but quite a common scenario if you want to work with RouteData. If the handler you need to instantiate isn’t under your control but you still need to pass RouteData to Handler code, an alternative is to pass the RouteData via the HttpContext.Items collection:IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; requestContext.HttpContext.Items["RouteData"] = requestContext.RouteData; return handler; } The code in the handler implementation can then pick up the RouteData from the context collection as needed:RouteData routeData = HttpContext.Current.Items["RouteData"] as RouteData This isn’t as clean as having an explicit RouteData property, but it does have the advantage that the route data is visible anywhere in the Handler’s code chain. It’s definitely preferable to create a custom property on your handler, but the Context work-around works in a pinch when you don’t’ own the handler code and have dynamic code executing as part of the handler execution. An Example of a Custom RouteHandler: Attribute Based Route Implementation In this post I’m going to discuss a custom routine implementation I built for my CallbackHandler class in the West Wind Web & Ajax Toolkit. CallbackHandler can be very easily used for creating AJAX, REST and POX requests following RPC style method mapping. You can pass parameters via URL query string, POST data or raw data structures, and you can retrieve results as JSON, XML or raw string/binary data. It’s a quick and easy way to build service interfaces with no fuss. As a quick review here’s how CallbackHandler works: You create an Http Handler that derives from CallbackHandler You implement methods that have a [CallbackMethod] Attribute and that’s it. Here’s an example of an CallbackHandler implementation in an ashx.cs based handler:// RestService.ashx.cs public class RestService : CallbackHandler { [CallbackMethod] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } } CallbackHandler makes it super easy to create a method on the server, pass data to it via POST, QueryString or raw JSON/XML data, and then retrieve the results easily back in various formats. This works wonderful and I’ve used these tools in many projects for myself and with clients. But one thing missing has been the ability to create clean URLs. Typical URLs looked like this: http://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuote&symbol=msfthttp://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuotes&symbolList=msft,intc,gld,slw,mwe&format=xml which works and is clear enough, but also clearly very ugly. It would be much nicer if URLs could look like this: http://www.west-wind.com//WestwindWebtoolkit/Samples/StockQuote/msfthttp://www.west-wind.com/WestwindWebtoolkit/Samples/StockQuotes/msft,intc,gld,slw?format=xml (the Virtual Root in this sample is WestWindWebToolkit/Samples and StockQuote/{symbol} is the route)(If you use FireFox try using the JSONView plug-in make it easier to view JSON content) So, taking a clue from the WCF REST tools that use RouteUrls I set out to create a way to specify RouteUrls for each of the endpoints. The change made basically allows changing the above to: [CallbackMethod(RouteUrl="RestService/StockQuote/{symbol}")] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod(RouteUrl = "RestService/StockQuotes/{symbolList}")] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } where a RouteUrl is specified as part of the Callback attribute. And with the changes made with RouteUrls I can now get URLs like the second set shown earlier. So how does that work? Let’s find out… How to Create Custom Routes As mentioned earlier Routing is made up of several steps: Creating a custom RouteHandler to create HttpHandler instances Mapping the actual Routes to the RouteHandler Retrieving the RouteData and actually doing something useful with it in the HttpHandler In the CallbackHandler routing example above this works out to something like this: Create a custom RouteHandler that includes a property to track the method to call Set up the routes using Reflection against the class Looking for any RouteUrls in the CallbackMethod attribute Add a RouteData property to the CallbackHandler so we can access the RouteData in the code of the handler Creating a Custom Route Handler To make the above work I created a custom RouteHandler class that includes the actual IRouteHandler implementation as well as a generic and static method to automatically register all routes marked with the [CallbackMethod(RouteUrl="…")] attribute. Here’s the code:/// <summary> /// Route handler that can create instances of CallbackHandler derived /// callback classes. The route handler tracks the method name and /// creates an instance of the service in a predictable manner /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler type</typeparam> public class CallbackHandlerRouteHandler : IRouteHandler { /// <summary> /// Method name that is to be called on this route. /// Set by the automatically generated RegisterRoutes /// invokation. /// </summary> public string MethodName { get; set; } /// <summary> /// The type of the handler we're going to instantiate. /// Needed so we can semi-generically instantiate the /// handler and call the method on it. /// </summary> public Type CallbackHandlerType { get; set; } /// <summary> /// Constructor to pass in the two required components we /// need to create an instance of our handler. /// </summary> /// <param name="methodName"></param> /// <param name="callbackHandlerType"></param> public CallbackHandlerRouteHandler(string methodName, Type callbackHandlerType) { MethodName = methodName; CallbackHandlerType = callbackHandlerType; } /// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } /// <summary> /// Generic method to register all routes from a CallbackHandler /// that have RouteUrls defined on the [CallbackMethod] attribute /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler Type</typeparam> /// <param name="routes"></param> public static void RegisterRoutes<TCallbackHandler>(RouteCollection routes) { // find all methods var methods = typeof(TCallbackHandler).GetMethods(BindingFlags.Instance | BindingFlags.Public); foreach (var method in methods) { var attrs = method.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (attrs.Length < 1) continue; CallbackMethodAttribute attr = attrs[0] as CallbackMethodAttribute; if (string.IsNullOrEmpty(attr.RouteUrl)) continue; // Add the route routes.Add(method.Name, new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler)))); } } } The RouteHandler implements IRouteHandler, and its responsibility via the GetHandler method is to create an HttpHandler based on the route data. When ASP.NET calls GetHandler it passes a requestContext parameter which includes a requestContext.RouteData property. This parameter holds the current request’s route data as well as an instance of the current RouteHandler. If you look at GetHttpHandler() you can see that the code creates an instance of the handler we are interested in and then sets the RouteData property on the handler. This is how you can pass the current request’s RouteData to the handler. The RouteData object also has a  RouteData.RouteHandler property that is also available to the Handler later, which is useful in order to get additional information about the current route. In our case here the RouteHandler includes a MethodName property that identifies the method to execute in the handler since that value no longer comes from the URL so we need to figure out the method name some other way. The method name is mapped explicitly when the RouteHandler is created and here the static method that auto-registers all CallbackMethods with RouteUrls sets the method name when it creates the routes while reflecting over the methods (more on this in a minute). The important point here is that you can attach additional properties to the RouteHandler and you can then later access the RouteHandler and its properties later in the Handler to pick up these custom values. This is a crucial feature in that the RouteHandler serves in passing additional context to the handler so it knows what actions to perform. The automatic route registration is handled by the static RegisterRoutes<TCallbackHandler> method. This method is generic and totally reusable for any CallbackHandler type handler. To register a CallbackHandler and any RouteUrls it has defined you simple use code like this in Application_Start (or other application startup code):protected void Application_Start(object sender, EventArgs e) { // Register Routes for RestService CallbackHandlerRouteHandler.RegisterRoutes<RestService>(RouteTable.Routes); } If you have multiple CallbackHandler style services you can make multiple calls to RegisterRoutes for each of the service types. RegisterRoutes internally uses reflection to run through all the methods of the Handler, looking for CallbackMethod attributes and whether a RouteUrl is specified. If it is a new instance of a CallbackHandlerRouteHandler is created and the name of the method and the type are set. routes.Add(method.Name,           new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler) )) ); While the routing with CallbackHandlerRouteHandler is set up automatically for all methods that use the RouteUrl attribute, you can also use code to hook up those routes manually and skip using the attribute. The code for this is straightforward and just requires that you manually map each individual route to each method you want a routed: protected void Application_Start(objectsender, EventArgs e){    RegisterRoutes(RouteTable.Routes);}void RegisterRoutes(RouteCollection routes) { routes.Add("StockQuote Route",new Route("StockQuote/{symbol}",                     new CallbackHandlerRouteHandler("GetStockQuote",typeof(RestService) ) ) );     routes.Add("StockQuotes Route",new Route("StockQuotes/{symbolList}",                     new CallbackHandlerRouteHandler("GetStockQuotes",typeof(RestService) ) ) );}I think it’s clearly easier to have CallbackHandlerRouteHandler.RegisterRoutes() do this automatically for you based on RouteUrl attributes, but some people have a real aversion to attaching logic via attributes. Just realize that the option to manually create your routes is available as well. Using the RouteData in the Handler A RouteHandler’s responsibility is to create an HttpHandler and as mentioned earlier, natively IHttpHandler doesn’t have any support for RouteData. In order to utilize RouteData in your handler code you have to pass the RouteData to the handler. In my CallbackHandlerRouteHandler when it creates the HttpHandler instance it creates the instance and then assigns the custom RouteData property on the handler:IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; Again this only works if you actually add a RouteData property to your handler explicitly as I did in my CallbackHandler implementation:/// <summary> /// Optionally store RouteData on this handler /// so we can access it internally /// </summary> public RouteData RouteData {get; set; } and the RouteHandler needs to set it when it creates the handler instance. Once you have the route data in your handler you can access Route Keys and Values and also the RouteHandler. Since my RouteHandler has a custom property for the MethodName to retrieve it from within the handler I can do something like this now to retrieve the MethodName (this example is actually not in the handler but target is an instance pass to the processor): // check for Route Data method name if (target is CallbackHandler) { var routeData = ((CallbackHandler)target).RouteData; if (routeData != null) methodToCall = ((CallbackHandlerRouteHandler)routeData.RouteHandler).MethodName; } When I need to access the dynamic values in the route ( symbol in StockQuote/{symbol}) I can retrieve it easily with the Values collection (RouteData.Values["symbol"]). In my CallbackHandler processing logic I’m basically looking for matching parameter names to Route parameters: // look for parameters in the routeif(routeData != null){    string parmString = routeData.Values[parameter.Name] as string;    adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType);} And with that we’ve come full circle. We’ve created a custom RouteHandler() that passes the RouteData to the handler it creates. We’ve registered our routes to use the RouteHandler, and we’ve utilized the route data in our handler. For completeness sake here’s the routine that executes a method call based on the parameters passed in and one of the options is to retrieve the inbound parameters off RouteData (as well as from POST data or QueryString parameters):internal object ExecuteMethod(string method, object target, string[] parameters, CallbackMethodParameterType paramType, ref CallbackMethodAttribute callbackMethodAttribute) { HttpRequest Request = HttpContext.Current.Request; object Result = null; // Stores parsed parameters (from string JSON or QUeryString Values) object[] adjustedParms = null; Type PageType = target.GetType(); MethodInfo MI = PageType.GetMethod(method, BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic); if (MI == null) throw new InvalidOperationException("Invalid Server Method."); object[] methods = MI.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (methods.Length < 1) throw new InvalidOperationException("Server method is not accessible due to missing CallbackMethod attribute"); if (callbackMethodAttribute != null) callbackMethodAttribute = methods[0] as CallbackMethodAttribute; ParameterInfo[] parms = MI.GetParameters(); JSONSerializer serializer = new JSONSerializer(); RouteData routeData = null; if (target is CallbackHandler) routeData = ((CallbackHandler)target).RouteData; int parmCounter = 0; adjustedParms = new object[parms.Length]; foreach (ParameterInfo parameter in parms) { // Retrieve parameters out of QueryString or POST buffer if (parameters == null) { // look for parameters in the route if (routeData != null) { string parmString = routeData.Values[parameter.Name] as string; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // GET parameter are parsed as plain string values - no JSON encoding else if (HttpContext.Current.Request.HttpMethod == "GET") { // Look up the parameter by name string parmString = Request.QueryString[parameter.Name]; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // POST parameters are treated as methodParameters that are JSON encoded else if (paramType == CallbackMethodParameterType.Json) //string newVariable = methodParameters.GetValue(parmCounter) as string; adjustedParms[parmCounter] = serializer.Deserialize(Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject( Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); } else if (paramType == CallbackMethodParameterType.Json) adjustedParms[parmCounter] = serializer.Deserialize(parameters[parmCounter], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject(parameters[parmCounter], parameter.ParameterType); parmCounter++; } Result = MI.Invoke(target, adjustedParms); return Result; } The code basically uses Reflection to loop through all the parameters available on the method and tries to assign the parameters from RouteData, QueryString or POST variables. The parameters are converted into their appropriate types and then used to eventually make a Reflection based method call. What’s sweet is that the RouteData retrieval is just another option for dealing with the inbound data in this scenario and it adds exactly two lines of code plus the code to retrieve the MethodName I showed previously – a seriously low impact addition that adds a lot of extra value to this endpoint callback processing implementation. Debugging your Routes If you create a lot of routes it’s easy to run into Route conflicts where multiple routes have the same path and overlap with each other. This can be difficult to debug especially if you are using automatically generated routes like the routes created by CallbackHandlerRouteHandler.RegisterRoutes. Luckily there’s a tool that can help you out with this nicely. Phill Haack created a RouteDebugging tool you can download and add to your project. The easiest way to do this is to grab and add this to your project is to use NuGet (Add Library Package from your Project’s Reference Nodes):   which adds a RouteDebug assembly to your project. Once installed you can easily debug your routes with this simple line of code which needs to be installed at application startup:protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); // Debug your routes RouteDebug.RouteDebugger.RewriteRoutesForTesting(RouteTable.Routes); } Any routed URL then displays something like this: The screen shows you your current route data and all the routes that are mapped along with a flag that displays which route was actually matched. This is useful – if you have any overlap of routes you will be able to see which routes are triggered – the first one in the sequence wins. This tool has saved my ass on a few occasions – and with NuGet now it’s easy to add it to your project in a few seconds and then remove it when you’re done. Routing Around Custom routing seems slightly complicated on first blush due to its disconnected components of RouteHandler, route registration and mapping of custom handlers. But once you understand the relationship between a RouteHandler, the RouteData and how to pass it to a handler, utilizing of Routing becomes a lot easier as you can easily pass context from the registration to the RouteHandler and through to the HttpHandler. The most important thing to understand when building custom routing solutions is to figure out how to map URLs in such a way that the handler can figure out all the pieces it needs to process the request. This can be via URL routing parameters and as I did in my example by passing additional context information as part of the RouteHandler instance that provides the proper execution context. In my case this ‘context’ was the method name, but it could be an actual static value like an enum identifying an operation or category in an application. Basically user supplied data comes in through the url and static application internal data can be passed via RouteHandler property values. Routing can make your application URLs easier to read by non-techie types regardless of whether you’re building Service type or REST applications, or full on Web interfaces. Routing in ASP.NET 4.0 makes it possible to create just about any extensionless URLs you can dream up and custom RouteHanmdler References Sample ProjectIncludes the sample CallbackHandler service discussed here along with compiled versionsof the Westwind.Web and Westwind.Utilities assemblies.  (requires .NET 4.0/VS 2010) West Wind Web Toolkit includes full implementation of CallbackHandler and the Routing Handler West Wind Web Toolkit Source CodeContains the full source code to the Westwind.Web and Westwind.Utilities assemblies usedin these samples. Includes the source described in the post.(Latest build in the Subversion Repository) CallbackHandler Source(Relevant code to this article tree in Westwind.Web assembly) JSONView FireFoxPluginA simple FireFox Plugin to easily view JSON data natively in FireFox.For IE you can use a registry hack to display JSON as raw text.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  HTTP  

    Read the article

< Previous Page | 68 69 70 71 72 73 74 75 76 77 78 79  | Next Page >