Search Results

Search found 9181 results on 368 pages for 'easing functions'.

Page 72/368 | < Previous Page | 68 69 70 71 72 73 74 75 76 77 78 79  | Next Page >

  • ODI 11g – Expert Accelerator for Model Creation

    - by David Allan
    Following on from my post earlier this morning on scripting model and topology creation tonight I thought I’d add a little UI to make those groovy functions a little more palatable. In OWB we have experts for capturing user input, with the groovy console we open up opportunities to build UI around the scripts in a very easy way – even I can do it;-) After a little googling around I found some useful posts on SwingBuilder, the most useful one that I used for the dialog below was this one here. This dialog captures user input for the technology and context for the model and logical schema etc to be created. You can see there are a variety of interesting controls, and its really easy to do. The dialog captures the users input, then when OK is pressed I call the functions from the earlier post to create the logical schema (plus all the other objects) and model. The image below shows what was created, you can see the model (with typo in name), the model is Oracle technology and references the logical schema ORACLE_SCOTT (that I named in dialog above), the logical schema is mapped via the GLOBAL context to the data server ORACLE_SCOTT_DEV (that I named in dialog above), and the physical schema used was just the user name that I connected with – so if you wanted a different user the schema name could be added to the dialog. In a nutshell, one dialog that encapsulates a simpler mechanism for creating a model. You can create your own scripts that use dialogs like this, capture input and process. You can find the groovy script for this is here odi_create_model.groovy, again I wrapped the user capture code in a groovy function and return the result in a variable and then simply call the createLogicalSchema and createModel functions from the previous posting. The script I supplied above has everything you will need. To execute use Tools->Groovy->Open Script and then execute the green play button on the toolbar. Have fun.

    Read the article

  • Organizations &amp; Architecture UNISA Studies &ndash; Chap 7

    - by MarkPearl
    Learning Outcomes Name different device categories Discuss the functions and structure of I/.O modules Describe the principles of Programmed I/O Describe the principles of Interrupt-driven I/O Describe the principles of DMA Discuss the evolution characteristic of I/O channels Describe different types of I/O interface Explain the principles of point-to-point and multipoint configurations Discuss the way in which a FireWire serial bus functions Discuss the principles of InfiniBand architecture External Devices An external device attaches to the computer by a link to an I/O module. The link is used to exchange control, status, and data between the I/O module and the external device. External devices can be classified into 3 categories… Human readable – e.g. video display Machine readable – e.g. magnetic disk Communications – e.g. wifi card I/O Modules An I/O module has two major functions… Interface to the processor and memory via the system bus or central switch Interface to one or more peripheral devices by tailored data links Module Functions The major functions or requirements for an I/O module fall into the following categories… Control and timing Processor communication Device communication Data buffering Error detection I/O function includes a control and timing requirement, to coordinate the flow of traffic between internal resources and external devices. Processor communication involves the following… Command decoding Data Status reporting Address recognition The I/O device must be able to perform device communication. This communication involves commands, status information, and data. An essential task of an I/O module is data buffering due to the relative slow speeds of most external devices. An I/O module is often responsible for error detection and for subsequently reporting errors to the processor. I/O Module Structure An I/O module functions to allow the processor to view a wide range of devices in a simple minded way. The I/O module may hide the details of timing, formats, and the electro mechanics of an external device so that the processor can function in terms of simple reads and write commands. An I/O channel/processor is an I/O module that takes on most of the detailed processing burden, presenting a high-level interface to the processor. There are 3 techniques are possible for I/O operations Programmed I/O Interrupt[t I/O DMA Access Programmed I/O When a processor is executing a program and encounters an instruction relating to I/O it executes that instruction by issuing a command to the appropriate I/O module. With programmed I/O, the I/O module will perform the requested action and then set the appropriate bits in the I/O status register. The I/O module takes no further actions to alert the processor. I/O Commands To execute an I/O related instruction, the processor issues an address, specifying the particular I/O module and external device, and an I/O command. There are four types of I/O commands that an I/O module may receive when it is addressed by a processor… Control – used to activate a peripheral and tell it what to do Test – Used to test various status conditions associated with an I/O module and its peripherals Read – Causes the I/O module to obtain an item of data from the peripheral and place it in an internal buffer Write – Causes the I/O module to take an item of data form the data bus and subsequently transmit that data item to the peripheral The main disadvantage of this technique is it is a time consuming process that keeps the processor busy needlessly I/O Instructions With programmed I/O there is a close correspondence between the I/O related instructions that the processor fetches from memory and the I/O commands that the processor issues to an I/O module to execute the instructions. Typically there will be many I/O devices connected through I/O modules to the system – each device is given a unique identifier or address – when the processor issues an I/O command, the command contains the address of the address of the desired device, thus each I/O module must interpret the address lines to determine if the command is for itself. When the processor, main memory and I/O share a common bus, two modes of addressing are possible… Memory mapped I/O Isolated I/O (for a detailed explanation read page 245 of book) The advantage of memory mapped I/O over isolated I/O is that it has a large repertoire of instructions that can be used, allowing more efficient programming. The disadvantage of memory mapped I/O over isolated I/O is that valuable memory address space is sued up. Interrupts driven I/O Interrupt driven I/O works as follows… The processor issues an I/O command to a module and then goes on to do some other useful work The I/O module will then interrupts the processor to request service when is is ready to exchange data with the processor The processor then executes the data transfer and then resumes its former processing Interrupt Processing The occurrence of an interrupt triggers a number of events, both in the processor hardware and in software. When an I/O device completes an I/O operations the following sequence of hardware events occurs… The device issues an interrupt signal to the processor The processor finishes execution of the current instruction before responding to the interrupt The processor tests for an interrupt – determines that there is one – and sends an acknowledgement signal to the device that issues the interrupt. The acknowledgement allows the device to remove its interrupt signal The processor now needs to prepare to transfer control to the interrupt routine. To begin, it needs to save information needed to resume the current program at the point of interrupt. The minimum information required is the status of the processor and the location of the next instruction to be executed. The processor now loads the program counter with the entry location of the interrupt-handling program that will respond to this interrupt. It also saves the values of the process registers because the Interrupt operation may modify these The interrupt handler processes the interrupt – this includes examination of status information relating to the I/O operation or other event that caused an interrupt When interrupt processing is complete, the saved register values are retrieved from the stack and restored to the registers Finally, the PSW and program counter values from the stack are restored. Design Issues Two design issues arise in implementing interrupt I/O Because there will be multiple I/O modules, how does the processor determine which device issued the interrupt? If multiple interrupts have occurred, how does the processor decide which one to process? Addressing device recognition, 4 general categories of techniques are in common use… Multiple interrupt lines Software poll Daisy chain Bus arbitration For a detailed explanation of these approaches read page 250 of the textbook. Interrupt driven I/O while more efficient than simple programmed I/O still requires the active intervention of the processor to transfer data between memory and an I/O module, and any data transfer must traverse a path through the processor. Thus is suffers from two inherent drawbacks… The I/O transfer rate is limited by the speed with which the processor can test and service a device The processor is tied up in managing an I/O transfer; a number of instructions must be executed for each I/O transfer Direct Memory Access When large volumes of data are to be moved, an efficient technique is direct memory access (DMA) DMA Function DMA involves an additional module on the system bus. The DMA module is capable of mimicking the processor and taking over control of the system from the processor. It needs to do this to transfer data to and from memory over the system bus. DMA must the bus only when the processor does not need it, or it must force the processor to suspend operation temporarily (most common – referred to as cycle stealing). When the processor wishes to read or write a block of data, it issues a command to the DMA module by sending to the DMA module the following information… Whether a read or write is requested using the read or write control line between the processor and the DMA module The address of the I/O device involved, communicated on the data lines The starting location in memory to read from or write to, communicated on the data lines and stored by the DMA module in its address register The number of words to be read or written, communicated via the data lines and stored in the data count register The processor then continues with other work, it delegates the I/O operation to the DMA module which transfers the entire block of data, one word at a time, directly to or from memory without going through the processor. When the transfer is complete, the DMA module sends an interrupt signal to the processor, this the processor is involved only at the beginning and end of the transfer. I/O Channels and Processors Characteristics of I/O Channels As one proceeds along the evolutionary path, more and more of the I/O function is performed without CPU involvement. The I/O channel represents an extension of the DMA concept. An I/O channel ahs the ability to execute I/O instructions, which gives it complete control over I/O operations. In a computer system with such devices, the CPU does not execute I/O instructions – such instructions are stored in main memory to be executed by a special purpose processor in the I/O channel itself. Two types of I/O channels are common A selector channel controls multiple high-speed devices. A multiplexor channel can handle I/O with multiple characters as fast as possible to multiple devices. The external interface: FireWire and InfiniBand Types of Interfaces One major characteristic of the interface is whether it is serial or parallel parallel interface – there are multiple lines connecting the I/O module and the peripheral, and multiple bits are transferred simultaneously serial interface – there is only one line used to transmit data, and bits must be transmitted one at a time With new generation serial interfaces, parallel interfaces are becoming less common. In either case, the I/O module must engage in a dialogue with the peripheral. In general terms the dialog may look as follows… The I/O module sends a control signal requesting permission to send data The peripheral acknowledges the request The I/O module transfers data The peripheral acknowledges receipt of data For a detailed explanation of FireWire and InfiniBand technology read page 264 – 270 of the textbook

    Read the article

  • Extreme Optimization – Curves (Function Mapping) Part 1

    - by JoshReuben
    Overview ·        a curve is a functional map relationship between two factors (i.e. a function - However, the word function is a reserved word). ·        You can use the EO API to create common types of functions, find zeroes and calculate derivatives - currently supports constants, lines, quadratic curves, polynomials and Chebyshev approximations. ·        A function basis is a set of functions that can be combined to form a particular class of functions.   The Curve class ·        the abstract base class from which all other curve classes are derived – it provides the following methods: ·        ValueAt(Double) - evaluates the curve at a specific point. ·        SlopeAt(Double) - evaluates the derivative ·        Integral(Double, Double) - evaluates the definite integral over a specified interval. ·        TangentAt(Double) - returns a Line curve that is the tangent to the curve at a specific point. ·        FindRoots() - attempts to find all the roots or zeroes of the curve. ·        A particular type of curve is defined by a Parameters property, of type ParameterCollection   The GeneralCurve class ·        defines a curve whose value and, optionally, derivative and integrals, are calculated using arbitrary methods. A general curve has no parameters. ·        Constructor params:  RealFunction delegates – 1 for the function, and optionally another 2 for the derivative and integral ·        If no derivative  or integral function is supplied, they are calculated via the NumericalDifferentiation  and AdaptiveIntegrator classes in the Extreme.Mathematics.Calculus namespace. // the function is 1/(1+x^2) private double f(double x) {     return 1 / (1 + x*x); }   // Its derivative is -2x/(1+x^2)^2 private double df(double x) {     double y = 1 + x*x;     return -2*x* / (y*y); }   // The integral of f is Arctan(x), which is available from the Math class. var c1 = new GeneralCurve (new RealFunction(f), new RealFunction(df), new RealFunction(System.Math.Atan)); // Find the tangent to this curve at x=1 (the Line class is derived from Curve) Line l1 = c1.TangentAt(1);

    Read the article

  • Do you want to know more about Oracle Learning Management 12.1?

    - by anders.northeved
    Many of you have upgraded to OLM 12.1 or are in the process of doing so. We have been asked if it was possible to arrange a couple of webcast describing the new functions and features in OLM 12.1 – and of course it is. We will do two webcasts: One on the new features and functions in OLM 12.1.1 and another one on the new features and functions in OLM 12.1.2 + 12.1.3. Each webcast will last for approx. 45 min and afterwards there will be a Q&A session for as long as you have questions! Everybody interested in participating is very welcome to join. Just send an e-mail with the following information to [email protected]: List of participants from your organization Your organization’s current status: Which OLM version you are on and if you have current upgrade plans then we’ll send you a mail with information on how to join. Webcast on OLM 12.1.1 new features: Monday 28th March 5pm CET (8.30pm IST; 4pm UK; 11am EST; 8am PST) Webcast on OLM 12.1.2+OLM 12.1.3 new features: Tuesday 29th March 5pm CET (8.30pm IST; 4pm UK; 11am EST; 8am PST) We are looking forward to your participation!

    Read the article

  • Rendering Text with the HTML5 Canvas

    - by dwahlin
    In a previous post I walked through the fundamentals of rendering shapes such as squares and circles using the HTML5 Canvas API. In this post I’ll provide a simple example of rendering and rotating text. To render text you can use the fillText() or strokeText() functions which take the text to render as well as the x and y coordinates of where to render it. To rotate text you can use the transform functions available with the HTML5 Canvas such as save(), rotate(), and restore(). To run the live demos that follow click the Result tab in the blue bar of each demo.   Rendering Text This example provides a simple look at how text can be rendered using the HTML5 Canvas. It iterates through a loop, updates the text and font size dynamically, measures the width of the text using the measureText() function, and then calls fillText() to render the text with the desired font size to the screen.   Here’s what the code above renders:   Rotating Text This example shows how text can be rendered and even rotated by using transform functions built into the HTML5 Canvas. The code starts by rendering text the standard way using fillText(). It then saves the state of the canvas performs an x,y coordinate transform (moves to 100, 300 respectively) and then rotates the canvas –90 degrees using the rotate() function. After the text is rendered, the canvas is reverted back to it’s existing state (saved by calling the save() function) by calling the restore() function. An additional line of text is then rendered.   Here’s what the code above renders:   If you’re interested in learning more about the HTML5 Canvas and how it can be used in your Web or Windows 8 applications, check out my HTML5 Canvas Fundamentals course from Pluralsight.

    Read the article

  • Is there a process-oriented IDE ?

    - by Raveline
    My problem is simple : when I'm programming in an OO paradigm, I'm often having part of a main business process divided in many classes. Which means, if I want to examine the whole functional chain that leads to the output, for debugging or for optimization research, it can be a bit painful. So I was wondering : is there an IDE that let you put a "process tag" on functions coming from different objects, and give you a view of all those functions having the same tag ? edit : To give an example (that I'm making up completely, sorry if it doesn't sound very realistic). Let's say we have the following business process for a HR application : receive a holiday-request by an employee, check the validity of the request, then give an alert to his boss ("one of those lazy programmer wants another day off"); at the same time, let's say the boss will want to have a table of all employee's timetable during the time the employee wants his vacations; then handle the answer of the boss, send a nice little mail to the employee ("No way, lazy bones"). Even if we get rid of everything not purely business-related (mail sending process, db handling to get the useful info, GUI functionalities, and so on), we still have something that doesn't really fit in "one class". I'd like to have an IDE that would give me the opportunity to embrace quickly, at the very least : The function handling the validation of the request by the employee; The function preparing the "timetable" for the boss; The function handling the validation of the request by the boss; I wouldn't put all those functions in the same class (but perhaps that's my mistake ?). This is where my dreamed IDE could be helpful.

    Read the article

  • When does the "Do One Thing" paradigm become harmful?

    - by Petr
    For the sake of argument here's a sample function that prints contents of a given file line-by-line. Version 1: void printFile(const string & filePath) { fstream file(filePath, ios::in); string line; while (file.good()) { getline(file, line); cout << line << endl; } } I know it is recommended that functions do one thing at one level of abstraction. To me, though code above does pretty much one thing and is fairly atomic. Some books (such as Robert C. Martin's Clean Code) seem to suggest breaking the above code into separate functions. Version 2: void printLine(const string & line) { cout << line << endl; } void printLines(fstream & file) { string line; while (file.good()) { getline(file, line); printLine(line); } } void printFile(const string & filePath) { fstream file(filePath, ios::in); printLines(file); } I understand what they want to achieve (open file / read lines / print line), but isn't it a bit of overkill? The original version is simple and in some sense already does one thing - prints a file. The second version will lead to a large number of really small functions which may be far less legible than the first version. Wouldn't it be, in this case, better to have the code at one place? At which point does the "Do One Thing" paradigm become harmful?

    Read the article

  • Old programmer disappeared. About to hire another programmer. How do I approach this?

    - by pocto
    After spending over one year working on a social network project for me using WordPress and BuddyPress, my programmer has disappeared, even though he got paid every single week, for the whole period. Yes, he's not dead as I used an email tracker to confirm and see he opens my emails, but he doesn't respond. It seems he got another job. I wonder why he just couldn't say so. And I even paid him an advance salary for work he hasn't done. The problem is that I never asked for full documentation for most of the functions he coded in. And there were MANY functions for this 1+ year period, and some of them have bugs that he still didn't fix. Now it seems all confusing. What's the first thing I should do now? How do I proceed? I guess the first thing to do will be to get another programmer, but I want to start on the right foot by having all the current code documented so that any programmer can work on all the functions without issues. Is that the first thing I should do? If yes, how do I go about it? What's the standard type of documentation required for something like this? Can I get a programmer that will just do the documentation for all the codes and fix the bugs or is documentation not really important? Also, do you think getting another "individual" programmer is better or get a company that has programmers working for them, so that if the programmer assigned to my project disappears, another can replace him, without my involvement? I feel this is the approach I should have taken in the beginning.

    Read the article

  • Benchmarking ORM associations

    - by barerd
    I am trying to benchmark two cases of self referential many to many as described in datamapper associations. Both cases consist of an Item clss, which may require many other items. In both cases, I required the ruby benchmark library and source file, created two items and benchmarked require/unrequie functions as below: Benchmark.bmbm do |x| x.report("require:") { item_1.require_item item_2, 10 } x.report("unrequire:") { item_1.unrequire_item item_2 } end To be clear, both functions are datamapper add/modify functions like: componentMaps.create :component_id => item.id, :quantity => quantity componentMaps.all(:component_id => item.id).destroy! and links_to_components.create :component_id => item.id, :quantity => quantity links_to_components.all(:component_id => item.id).destroy! The results are variable and in the range of 0.018001 to 0.022001 for require function in both cases, and 0.006 to 0.01 for unrequire function in both cases. This made me suspicious about the correctness of my test method. Edit I went ahead and compared a "get by primary key case" to a "finding first matching record case" by: (1..10000).each do |i| Item.create :name => "item_#{i}" end Benchmark.bmbm do |x| x.report("Get") { item = Item.get 9712 } x.report("First") { item = Item.first :name => "item_9712" } end where the results were very different like 0 sec compared to 0.0312, as expected. This suggests that the benchmarking works. I wonder whether I benchmarked the two types of associations correctly, and whether a difference between 0.018 and 0.022 sec significant?

    Read the article

  • Information about how much time in spent in a function, based on the input of this function

    - by olchauvin
    Is there a (quantitative) tool to measure performance of functions based on its input? So far, the tools I used to measure performance of my code, tells me how much time I spent in functions (like Jetbrain Dottrace for .Net), but I'd like to have more information about the parameters passed to the function in order to know which parameters impact the most the performance. Let's say that I have function like that: int myFunction(int myParam1, int myParam 2) { // Do and return something based on the value of myParam1 and myParam2. // The code is likely to use if, for, while, switch, etc.... } If would like a tool that would allow me to tell me how much time is spent in myFunction based on the value of myParam1 and myParam2. For example, the tool would give me a result looking like this: For "myFunction" : value | value | Number of | Average myParam1 | myParam2 | call | time ---------|----------|-----------|-------- 1 | 5 | 500 | 301 ms 2 | 5 | 250 | 1253 ms 3 | 7 | 1268 | 538 ms ... That would mean that myFunction has been call 500 times with myParam1=1 and myParam2=5, and that with those parameters, it took on average 301ms to return a value. The idea behind that is to do some statistical optimization by organizing my code such that, the blocs of codes that are the most likely to be executed are tested before the one that are less likely to be executed. To put it bluntly, if I know which values are used the most, I can reorganize the if/while/for etc.. structure of the function (and the whole program) to optimize it. I'd like to find such tools for C++, Java or.Net. Note: I am not looking for technical tips to optimize the code (like passing parameters as const, inlining functions, initializing the capacity of vectors and the like).

    Read the article

  • If a library doesn't provide all my needs, how should I proceed?

    - by 9a3eedi
    I'm developing an application involving math and physics models, and I'd like to use a Math library for things like Matrices. I'm using C#, and so I was looking for some libraries and found Math.NET. I'm under the impression, from past experience, that for math, using a robust and industry-approved third party library is much better than writing your own code. It seems good for many purposes, but it does not provide support for Quaternions, which I need to use as a type. Also, I need some functions in Vector and Matrix that also aren't provided, such as rotation matrices and vector rotation functions, and calculating cross products. At the same time, it provides a lot of functions/classes that I simply do not need, which might mean a lot of unnecessary bloat and complexity. At this rate, should I even bother using the library? Should I write my own math library? Or is it a better idea to stick to the third party library and somehow wrap around it? Perhaps I should make a subclass of the Matrix and Vector type of the library? But isn't that considered bad style? I've also tried looking for other libraries but unfortunately I couldn't find anything suitable.

    Read the article

  • What is the best way to handle dynamic content?

    - by user1561753
    So we run a site where there are elements of the interface that could potentially be changed at any moment in the backend. Specifically we run a web service where certain functions are loaded dynamically. However, there are times where we remove certian functions and we want the experience to be as seamless for the user as possible. Now we've considered a few methods of solving this Ping the server every few seconds. If the functions are outdated/no longer available refresh the users page. While this would work the best, I feel like having that much IO can't be too good When the user clicks a function, if it's outdated/no longer available, alert them in the response and refresh the page. This would also work fairly well. I guess I'm more wondering how web apps like Google Docs work where you have content that has to be synced up across multiple users and that isn't more than a few seconds outdated Sorry if this isn't the best place to ask this. I figured this was more of a site architecture question and that this might be the place to ask it over SO.

    Read the article

  • Handling Types for Real and Complex Matrices in a BLAS Wrapper

    - by mga
    I come from a C background and I'm now learning OOP with C++. As an exercise (so please don't just say "this already exists"), I want to implement a wrapper for BLAS that will let the user write matrix algebra in an intuitive way (e.g. similar to MATLAB) e.g.: A = B*C*D.Inverse() + E.Transpose(); My problem is how to go about dealing with real (R) and complex (C) matrices, because of C++'s "curse" of letting you do the same thing in N different ways. I do have a clear idea of what it should look like to the user: s/he should be able to define the two separately, but operations would return a type depending on the types of the operands (R*R = R, C*C = C, R*C = C*R = C). Additionally R can be cast into C and vice versa (just by setting the imaginary parts to 0). I have considered the following options: As a real number is a special case of a complex number, inherit CMatrix from RMatrix. I quickly dismissed this as the two would have to return different types for the same getter function. Inherit RMatrix and CMatrix from Matrix. However, I can't really think of any common code that would go into Matrix (because of the different return types). Templates. Declare Matrix<T> and declare the getter function as T Get(int i, int j), and operator functions as Matrix *(Matrix RHS). Then specialize Matrix<double> and Matrix<complex>, and overload the functions. Then I couldn't really see what I would gain with templates, so why not just define RMatrix and CMatrix separately from each other, and then overload functions as necessary? Although this last option makes sense to me, there's an annoying voice inside my head saying this is not elegant, because the two are clearly related. Perhaps I'm missing an appropriate design pattern? So I guess what I'm looking for is either absolution for doing this, or advice on how to do better.

    Read the article

  • Can't find new.h - getting gcc-4.2 on Quantal?

    - by Suyo
    I've been trying to compile the Valve Source SDK (2007) on my machine, but I keep running into the same error: In file included from ../public/tier1/interface.h:50:0, from ../utils/serverplugin_sample/serverplugin_empty.cpp:13: ../public/tier0/platform.h:46:17: new.h: No such file or directory I'm pretty new to C++ coding and compiling, but using apt-file search I tried to use every single suggestion for the required files in the Makefile (libstdc++.a and libgcc_eh.a), and none worked. I then found a note in the Makefile saying gcc 4.2.2 is recommended - I assume the older code won't work with the newer version, but gcc-4.2 is unavailable in 12.10. So my question/s is/are: If my assumption is right - how do I get gcc 4.2.2 on Quantal? If my assumption is wrong - what else could be the problem here? Relevant portion of the Makefile: # compiler options (gcc 3.4.1 will work - 4.2.2 recommended) CC=/usr/bin/gcc CPLUS=/usr/bin/g++ CLINK=/usr/bin/gcc CPP_LIB="/usr/lib/gcc/x86_64-w64-mingw32/4.6/libstdc++.a /usr/lib/gcc/x86_64-w64-mingw32/4.6/libgcc_eh.a" # GCC 4.2.2 optimization flags, if you're using anything below, don't use these! OPTFLAGS=-O1 -fomit-frame-pointer -ffast-math -fforce-addr -funroll-loops -fthread-jumps -fcrossjumping -foptimize-sibling-calls -fcse-follow-jumps -fcse-skip-blocks -fgcse -fgcse-lm -fexpensive-optimizations -frerun-cse-after-loop -fcaller-saves -fpeephole2 -fschedule-insns2 -fsched-interblock -fsched-spec -fregmove -fstrict-overflow -fdelete-null-pointer-checks -freorder-blocks -freorder-functions -falign-functions -falign-jumps -falign-loops -falign-labels -ftree-vrp -ftree-pre -finline-functions -funswitch-loops -fgcse-after-reload #OPTFLAGS= # put any compiler flags you want passed here USER_CFLAGS=-m32

    Read the article

  • Motivation for service layer (instead of just copying dlls)?

    - by BornToCode
    I'm creating an application which has 2 different UIs so I'm making it with a service layer which I understood is appropriate for such case. However I found myself just creating web methods for every single method I have in the BL layer, so the services basically built from methods that looks like this: return customers_bl.Get_Customer_Prices(customer_id); I understood that a main point of the service layer is to prevent duplication of code so I asked myself - well, why not just import the BL.dll (and the DAL.dll) to the other UI, and whenever making a change re-copy the dll files, it might not be so 'neat', but is the all purpose of the service layer to prevent this? {I know something is wrong in my approach, I'm probably missing the importance of service layer, I'd like to get more motivation to create another layer, especially because as it is I found that many of my BL functions ALREADY looks like: return customers_dal.Get_Customer_Prices(cust_id) which led me to ask: was it really necessary to create the BL just because on several functions I actually have LOGIC inside the BL?} so I'm looking for more motivation to creating ONE MORE layer, I'm sure it's not just to make it more convenient that I won't have to re-copy the dlls on changes? Am I grasping it wrong? Any simple guidelines on how to design service layer (corresponding to all the BL layer functions or not? any simple example?) any enlightenment on the subject?

    Read the article

  • Motivation for a service layer (instead of just copying dlls)?

    - by BornToCode
    I'm creating an application which has 2 different UIs so I'm making it with a service layer which I understood is appropriate for such scenario. However I found myself just creating web methods for every single method I have in the BL layer, so the services basically built from methods that looks like this: return customers_bl.Get_Customer_Prices(customer_id); I understood that a main point of the service layer is to prevent duplication of code so I asked myself - why not just import the BL.DLL (and the dal.dll) to the other UI, and whenever making a change re-copy the dlls, it might not be so 'neat', but still less hassle than one more layer? {I know something is wrong in my approach, I'm probably missing the importance of service layer, I'd like to get more motivation to create another layer, especially because as it is I found that many of my BL functions ALREADY looks like: return customers_dal.Get_Customer_Prices(cust_id) which led me to ask: was it really necessary to create the BL just because on several functions I actually have LOGIC inside the BL?} so I'm looking for more motivation to creating ONE MORE layer, I'm sure it's not just to make it more convenient that I won't have to re-copy the dlls on changes? Am I grasping it wrong? Any simple guidelines on how to design service layer (corresponding to all the BL layer functions or not? any simple example?) any enlightenment on the subject?

    Read the article

  • How to match responses from a server with their corresponding requests? [closed]

    - by Deele
    There is a server that responds to requests on a socket. The client has functions to emit requests and functions to handle responses from the server. The problem is that the request sending function and the response handling function are two unrelated functions. Given a server response X, how can I know whether it's a response to request X or some other request Y? I would like to make a construct that would ensure that response X is definitely the answer to request X and also to make a function requestX() that returns response X and not some other response Y. This question is mostly about the general programming approach and not about any specific language construct. Preferably, though, the answer would involve Ruby, TCP sockets, and PHP. My code so far: require 'socket' class TheConnection def initialize(config) @config = config end def send(s) toConsole("--> #{s}") @conn.send "#{s}\n", 0 end def connect() # Connect to the server begin @conn = TCPSocket.open(@config['server'], @config['port']) rescue Interrupt rescue Exception => detail toConsole('Exception: ' + detail.message()) print detail.backtrace.join('\n') retry end end def getSpecificAnswer(input) send "GET #{input}" end def handle_server_input(s) case s.strip when /^Hello. (.*)$/i toConsole "[ Server says hello ]" send "Hello to you too! #{$1}" else toConsole(s) end end def main_loop() while true ready = select([@conn, $stdin], nil, nil, nil) next if !ready for s in ready[0] if s == $stdin then return if $stdin.eof s = $stdin.gets send s elsif s == @conn then return if @conn.eof s = @conn.gets handle_server_input(s) end end end end def toConsole(msg) t = Time.new puts t.strftime("[%H:%M:%S]") + ' ' + msg end end @config = Hash[ 'server'=>'test.server.com', 'port'=>'2020' ] $conn = TheConnection.new(@config) $conn.connect() $conn.getSpecificAnswer('itemsX') begin $conn.main_loop() rescue Interrupt rescue Exception => detail $conn.toConsole('Exception: ' + detail.message()) print detail.backtrace.join('\n') retry end

    Read the article

  • Is there a better way to organize my module tests that avoids an explosion of new source files?

    - by luser droog
    I've got a neat (so I thought) way of having each of my modules produce a unit-test executable if compiled with the -DTESTMODULE flag. This flag guards a main() function that can access all static data and functions in the module, without #including a C file. From the README: -- Modules -- The various modules were written and tested separately before being coupled together to achieve the necessary basic functionality. Each module retains its unit-test, its main() function, guarded by #ifdef TESTMODULE. `make test` will compile and execute all the unit tests, producing copious output, but importantly exitting with an appropriate success or failure code, so the `make test` command will fail if any of the tests fail. Module TOC __________ test obj src header structures CONSTANTS ---- --- --- --- -------------------- m m.o m.c m.h mfile mtab TABSZ s s.o s.c s.h stack STACKSEGSZ v v.o v.c v.h saverec_ f.o f.c f.h file ob ob.o ob.c ob.h object ar ar.o ar.c ar.h array st st.o st.c st.h string di di.o di.c di.h dichead dictionary nm nm.o nm.c nm.h name gc gc.o gc.c gc.h garbage collector itp itp.c itp.h context osunix.o osunix.c osunix.h unix-dependent functions It's compile by a tricky bit of makefile, m:m.c ob.h ob.o err.o $(CORE) itp.o $(OP) cc $(CFLAGS) -DTESTMODULE $(LDLIBS) -o $@ $< err.o ob.o s.o ar.o st.o v.o di.o gc.o nm.o itp.o $(OP) f.o where the module is compiled with its own C file plus every other object file except itself. But it's creating difficulties for the kindly programmer who offered to write the Autotools files for me. So the obvious way to make it "less weird" would be to bust-out all the main functions into separate source files. But, but ... Do I gotta?

    Read the article

  • Non-linear regression models in PostgreSQL using R

    - by Dave Jarvis
    Background I have climate data (temperature, precipitation, snow depth) for all of Canada between 1900 and 2009. I have written a basic website and the simplest page allows users to choose category and city. They then get back a very simple report (without the parameters and calculations section): The primary purpose of the web application is to provide a simple user interface so that the general public can explore the data in meaningful ways. (A list of numbers is not meaningful to the general public, nor is a website that provides too many inputs.) The secondary purpose of the application is to provide climatologists and other scientists with deeper ways to view the data. (Using too many inputs, of course.) Tool Set The database is PostgreSQL with R (mostly) installed. The reports are written using iReport and generated using JasperReports. Poor Model Choice Currently, a linear regression model is applied against annual averages of daily data. The linear regression model is calculated within a PostgreSQL function as follows: SELECT regr_slope( amount, year_taken ), regr_intercept( amount, year_taken ), corr( amount, year_taken ) FROM temp_regression INTO STRICT slope, intercept, correlation; The results are returned to JasperReports using: SELECT year_taken, amount, year_taken * slope + intercept, slope, intercept, correlation, total_measurements INTO result; JasperReports calls into PostgreSQL using the following parameterized analysis function: SELECT year_taken, amount, measurements, regression_line, slope, intercept, correlation, total_measurements, execute_time FROM climate.analysis( $P{CityId}, $P{Elevation1}, $P{Elevation2}, $P{Radius}, $P{CategoryId}, $P{Year1}, $P{Year2} ) ORDER BY year_taken This is not an optimal solution because it gives the false impression that the climate is changing at a slow, but steady rate. Questions Using functions that take two parameters (e.g., year [X] and amount [Y]), such as PostgreSQL's regr_slope: What is a better regression model to apply? What CPAN-R packages provide such models? (Installable, ideally, using apt-get.) How can the R functions be called within a PostgreSQL function? If no such functions exist: What parameters should I try to obtain for functions that will produce the desired fit? How would you recommend showing the best fit curve? Keep in mind that this is a web app for use by the general public. If the only way to analyse the data is from an R shell, then the purpose has been defeated. (I know this is not the case for most R functions I have looked at so far.) Thank you!

    Read the article

  • How can you make an emacs macro wait for cscope query results?

    - by Sudhanshu
    I am trying to write a macro which calls cscope-find-functions-calling-this-function on each and every tag in a file displayed in the *Tags List* buffer (created by list-tags command). This should create a buffer which contains list of all functions calling a set of functions defined in a certain file. This is the sequence of keystrokes: 1. <f11> ;; cscope-find-functions-calling-this-function 2. RET ;; newline [shows results of cscope in a split window] 3. C-x C-p ;; mark-page 4. C-x C-x ;; icicle-exchange-point-and-mark 5. <up> ;; previous-line 6. <end> ;; end-of-line [region to copy has been marked] 7. <f7> ;; append-results-to-buffer 8. C-x ESC O ;; [move back to split window on the right] 9. C-x b ;; icicle-buffer [Switch back to *Tags List* buffer] 10. *Tags ;; self-insert-command * 5 11. SPC ;; self-insert-command 12. List* ;; self-insert-command * 5 13. RET ;; newline 14 . <down> ;; next-line [Position point on next tag in the list] Problem: I get no results in the buffer, and I found out that's because Step 3-7 execute even before cscope prints the results of query made on Steps 1-2. I can insert a pause in the macro by using C-x q, but I'd rather like the macro to wait after Step 2, until cscope has returned with the results and only then continue further. I suspect this is not possible through a macro, maybe a LISP function... I'm not a lisp expert myself. Can someone please help? Thanks! Details: I have Icicles installed so by default I get word at point in current buffer as input in minibuffer. F11 is bound to cscope-find-functions-calling-this-function windmove is installed and C-x (C-x ESC o - as shown below) takes you to the right window. F7 is bound to append-results-to-buffer which is defined as: (defun append-results-to-buffer () (interactive) (append-to-buffer (get-buffer-create "c1") (point) (mark))) This function just appends the currently marked region to a buffer named "c1".

    Read the article

  • Controlling the USB from Windows

    - by b-gen-jack-o-neill
    Hi, I know this probably is not the easiest thing to do, but I am trying to connect Microcontroller and PC using USB. I dont want to use internal USART of Microcontroller or USB to RS232 converted, its project indended to help me understand various principles. So, getting the communication done from the Microcontroller side is piece of cake - I mean, when I know he protocol, its relativelly easy to implement it on Micro, becouse I am in direct control of evrything, even precise timing. But this is not the case of PC. I am not very familiar with concept of Windows handling the devices connected. In one of my previous question I ask about how Windows works with devices thru drivers. I understood that for internal use of Windows, drivers must have some default set of functions available to OS. I mean, when OS wants to access HDD, it calls HDD driver (which is probably internal in OS), with specific "questions" so that means that HDD driver has to be written to cooperate with Windows, to have write function in the proper place to be called by the OS. Something similiar is for GPU, Even DirectX, I mean DirectX must call specific functions from drivers, so drivers must be written to work with DX. I know, many functions from WinAPI works on their own, but even "simple" window must be in the end written into framebuffer, using MMIO to adress specified by drivers. Am I right? So, I expected that Windows have internal functions, parts of WinAPI designed to work with certain comonly used things. To call manufacturer-designed drivers. But this seems to not be entirely true becouse Windows has no way to communicate thru Paralel port. I mean, there is no function in the WinAPI to work with serial port, but there are funcions to work with HDD,GPU and so. But now there comes the part I am getting very lost at. So, I think Windows must have some built-in functions to communicate thru USB, becouse for example it handles USB flash memory. So, is there any WinAPI function designed to let user to operate USB thru that function, or when I want to use USB myself, do I have to call desired USB-driver function myself? Becouse all you need to send to USB controller is device adress and the infromation right? I mean, I don´t have to write any new drivers, am I right? Just to call WinAPI function if there is such, or directly call original USB driver. Does any of this make some sense?

    Read the article

  • Question on the implementation of my Entity System

    - by miguel.martin
    I am currently creating an Entity System, in C++, it is almost completed (I have all the code there, I just have to add a few things and test it). The only thing is, I can't figure out how to implement some features. This Entity System is based off a bit from the Artemis framework, however it is different. I'm not sure if I'll be able to type this out the way my head processing it. I'm going to basically ask whether I should do something over something else. Okay, now I'll give a little detail on my Entity System itself. Here are the basic classes that my Entity System uses to actually work: Entity - An Id (and some methods to add/remove/get/etc Components) Component - An empty abstract class ComponentManager - Manages ALL components for ALL entities within a Scene EntitySystem - Processes entities with specific components Aspect - The class that is used to help determine what Components an Entity must contain so a specific EntitySystem can process it EntitySystemManager - Manages all EntitySystems within a Scene EntityManager - Manages entities (i.e. holds all Entities, used to determine whether an Entity has been changed, enables/disables them, etc.) EntityFactory - Creates (and destroys) entities and assigns an ID to them Scene - Contains an EntityManager, EntityFactory, EntitySystemManager and ComponentManager. Has functions to update and initialise the scene. Now in order for an EntitySystem to efficiently know when to check if an Entity is valid for processing (so I can add it to a specific EntitySystem), it must recieve a message from the EntityManager (after a call of activate(Entity& e)). Similarly the EntityManager must know when an Entity is destroyed from the EntityFactory in the Scene, and also the ComponentManager must know when an Entity is created AND destroyed. I do have a Listener/Observer pattern implemented at the moment, but with this pattern I may remove a Listener (which is this case is dependent on the method being called). I mainly have this implemented for specific things related to a game, i.e. Teams, Tagging of entities, etc. So... I was thinking maybe I should call a private method (using friend classes) to send out when an Entity has been activated, deleted, etc. i.e. taken from my EntityFactory void EntityFactory::killEntity(Entity& e) { // if the entity doesn't exsist in the entity manager within the scene if(!getScene()->getEntityManager().doesExsist(e)) { return; // go back to the caller! (should throw an exception or something..) } // tell the ComponentManager and the EntityManager that we killed an Entity getScene()->getComponentManager().doOnEntityWillDie(e); getScene()->getEntityManager().doOnEntityWillDie(e); // notify the listners for(Mouth::iterator i = getMouth().begin(); i != getMouth().end(); ++i) { (*i)->onEntityWillDie(*this, e); } _idPool.addId(e.getId()); // add the ID to the pool delete &e; // delete the entity } As you can see on the lines where I am telling the ComponentManager and the EntityManager that an Entity will die, I am calling a method to make sure it handles it appropriately. Now I realise I could do this without calling it explicitly, with the help of that for loop notifying all listener objects connected to the EntityFactory's Mouth (an object used to tell listeners that there's an event), however is this a good idea (good design, or what)? I've gone over the PROS and CONS, I just can't decide what I want to do. Calling Explicitly: PROS Faster? Since these functions are explicitly called, they can't be "removed" CONS Not flexible Bad design? (friend functions) Calling through Listener objects (i.e. ComponentManager/EntityManager inherits from a EntityFactoryListener) PROS More Flexible? Better Design? CONS Slower? (virtual functions) Listeners can be removed, i.e. may be removed and not get called again during the program, which could cause in a crash. P.S. If you wish to view my current source code, I am hosting it on BitBucket.

    Read the article

  • return the result of a query and the total number of rows in a single function

    - by csotelo
    This is a question as might be focused on working in the best way, if there are other alternatives or is the only way: Using Codeigniter ... I have the typical 2 functions of list records and show total number of records (using the page as an alternative). The problem is that they are rather large. Sample 2 functions in my model: count Rows: function get_all_count() { $this->db->select('u.id_user'); $this->db->from('user u'); if($this->session->userdata('detail') != '1') { $this->db->join('management m', 'm.id_user = u.id_user', 'inner'); $this->db->where('id_detail', $this->session->userdata('detail')); if($this->session->userdata('management') === '1') { $this->db->or_where('detail', 1); } else { $this->db->where("id_profile IN ( SELECT e2.id_profile FROM profile e, profile e2, profile_path p, profile_path p2 WHERE e.id_profile = " . $this->session->userdata('profile') . " AND p2.id_profile = e.id_profile AND p.path LIKE(CONCAT(p2.path,'%')) AND e2.id_profile = p.id_profile )", NULL, FALSE); $this->db->where('MD5(u.id_user) <>', $this->session->userdata('id_user')); } } $this->db->where('u.id_user <>', 1); $this->db->where('flag <>', 3); $query = $this->db->get(); return $query->num_rows(); } results per page function get_all($limit, $offset, $sort = '') { $this->db->select('u.id_user, user, email, flag'); $this->db->from('user u'); if($this->session->userdata('detail') != '1') { $this->db->join('management m', 'm.id_user = u.id_user', 'inner'); $this->db->where('id_detail', $this->session->userdata('detail')); if($this->session->userdata('management') === '1') { $this->db->or_where('detail', 1); } else { $this->db->where("id_profile IN ( SELECT e2.id_profile FROM profile e, profile e2, profile_path p, profile_path p2 WHERE e.id_profile = " . $this->session->userdata('profile') . " AND p2.id_profile = e.id_profile AND p.path LIKE(CONCAT(p2.path,'%')) AND e2.id_profile = p.id_profile )", NULL, FALSE); $this->db->where('MD5(u.id_user) <>', $this->session->userdata('id_user')); } } $this->db->where('u.id_user <>', 1); $this->db->where('flag <>', 3); if($sort) $this->db->order_by($sort); $this->db->limit($limit, $offset); $query = $this->db->get(); return $query->result(); } You see, I repeat the most of the functions, the difference is that only the number of fields and management pages. I wonder if there is any alternative to get as much results as the query in a single function. I have seen many tutorials, and all create 2 functions: one to count and another to show results ... Will there be more optimal?

    Read the article

  • Why to build own CMS?

    - by ile
    On my first job interview, I was asked why did I build my own CMS? Why not to use one of existing CMS, Wordpress, Joomla, Drupal...? At first, I was stunned. I couldn't immediately recall all of my reasons for building my own CMS, but this was definitely one of the main reasons: It's my code and if I want to change something in that CMS (which I often have to do, because each website I build needs CMS with different functions) it's not a big problem. For some time I've been using Wordpress and one of the main things that distracted me from using it was discovering bugs in code that wasn't written by me and this bugs were often, especially if I made some changes to CMS or added a plugin... Here, I can find these 8 reasons why NOT to build own CMS: It won’t meet users’ needs It’s too much work It won’t be a standard solution It won’t be extendible fast enough It won’t be tested well enough It won’t be easily changeable It won’t add any value Create content, not functionality Quote from the same page: So the main question to ask yourself is: ‘Why am I really trying to re-solve a problem that has already been solved before?’ Well, I definitely agree that it's hard to invent CMS that hasn't been already invented, but on other hand, I think every CMS is (or should be) individual... it maybe won't have a million of functions, it will have 3 functions but their usage will be clear (to a user) and do all that one site needs to have. I think also that it is not good to give to a client a CMS with a lot of functions that are never used and it looks probably more professional when website and CMS together look like one product. I would also like to comment some quote parts: "It’s too much work" - I agree, but when using existing CMS and customizing it to website needs and can sometimes be very hard job or mission impossible. "It won’t be easily changeable" - I disagree with this one. What is your opinion on this one, why did you develop or didn't develop your own CMS? Ile

    Read the article

  • I assume Row_Number doesn’t act only on rows of the window frame

    - by AspOnMyNet
    a) Quote is taken from http://www.postgresql.org/docs/current/static/tutorial-window.html for each row, there is a set of rows within its partition called its window frame. Many (but not all) window functions act only on the rows of the window frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame consists of all rows from the start of the partition up through the current row, plus any following rows that are equal to the current row according to the ORDER BY clause I assume Row_Number doesn’t act only on rows of the window frame, but instead always act on all rows of a partition? b) By default, if ORDER BY is supplied then the frame consists of all rows from the start of the partition up through the current row, plus any following rows that are equal to the current row according to the ORDER BY clause I assume that is only true for those window functions that act only on rows of the window frame ( thus above quote isn't true for ROW_NUMBER() function )? c) http://www.postgresql.org/docs/current/static/tutorial-window.html talks about PostgreSQL 8.4’s Windowing functions. Is everything in that article also true for Sql Server 2008’s Windowing functions thanx

    Read the article

< Previous Page | 68 69 70 71 72 73 74 75 76 77 78 79  | Next Page >