Search Results

Search found 19305 results on 773 pages for 'above the gods'.

Page 73/773 | < Previous Page | 69 70 71 72 73 74 75 76 77 78 79 80  | Next Page >

  • Constructor and Destructor of a singleton object called twice

    - by Bikram990
    I'm facing a problem in singleton object in c++. Here is the explanation: Problem info: I have a 4 shared libraries (say libA.so, libB.so, libC.so, libD.so) and 2 executable binary files each using one another shared library( say libE.so) which deals with files. The purpose of libE.so is to write data into a file and if the executable restarts or size of file exceeds a certain limit it is zipped and a new file is created with time stamp in name. It is using singleton object. It exports a handler class for getting and using singleton. Compressing only happens in the above said two cases. The user/loader executable can specify the starting name of file only no other control is provided by handler class. libA.so, libB.so, libC.so and libD.so have almost same behavior. They all have a class and declare and object of an handler which gets the instance of the singleton in libE.so and uses it for further purpose. All these libraries are linked to two executable binary files. If only one of the two executable runs then its fine, But if both executable runs one after other then the file of the first started executable gets compressed. Debug info: The constructor and destructor of the singleton object is called twice.(for each executable) The object of singleton is a static object and never deleted. The executable is not able to exit/return gives: glibc detected * (exe1 or exe2): double free or corruption (!prev): some_addr * Running with binaries valgrind gives that the above error is due to the destructor of the singleton object. Thanks

    Read the article

  • Proper Rules For SSL Redirect For Subdomains

    - by Zac Cleaves
    RewriteCond %{HTTP_HOST} ^(.*\.)*subexample.example.com$ [NC] RewriteCond %{SERVER_PORT} !^443$ RewriteRule ^(.*)$ https://subexample.example.com/$1 [R] Is what I have been using. It works as long as I go to a specific page, like subexample.example.com/orders.php. But if you try to go to the root of the subdomain, it adds the extra "/example" at the end. Any suggestion on a set of rules that will work? Thank you so much for your responces! Actually, this is what I am trying to do: http://support.mydomain.net >> https://support.mydomain.net AND(!) http://support.mydomain.net/anypage* >> https://support.mydomain.net/anypage* > RewriteCond %{HTTPS} off RewriteRule (.*) > https://%{HTTP_HOST}%{REQUEST_URI} Works, except I need it to only do it for the support.mydomain.net With the above set up, you get a certificate warning if you try to go just mydomain.net, which I do not have or need an SSL certificate installed on. UPDATE! The other issue with the rule I have written above, is that if you try to go to the root of the subdomain (i.e. support.mydomain.net) it goes to https://support.mydomain.net/support This is driving me crazy, help! =) Any help would be greatly appreciated!

    Read the article

  • Variable host IP address in iptables rule

    - by DrakeES
    I am running CentOS 6.4 with OpenVZ on my laptop. In order to provide Internet access for the VEs I have to apply the following rule on the laptop: iptables -t nat -A POSTROUTING -j SNAT --to-source <LAPTOP_IP> It works fine. However, I have to work in different places - office, home, partner's office etc. The IP of my laptop is different in those places, so have to alter the rule above each time I change place. I have created a workaround which basically determines the IP and applies the rule: #!/bin/bash IP=$(ifconfig | awk -F':' '/inet addr/&&!/127.0.0.1/{split($2,_," ");print _[1]}') iptables -t nat -A POSTROUTING -j SNAT --to-source $IP The workaround above works. I only still have to execute it manually. Perhaps I could make it a hook executing whenever my laptop obtains an IP address from DHCP - how can I do that? Also, I am just wondering if there is an elegant way of getting it done in the first place - iptables? Maybe there is a syntax allowing to specify "current hardware ip addres" in the rule?

    Read the article

  • Swapping RAID sets in and out of the same controller

    - by hazymat
    This is a really simple question, and the answer is probably encoded in various wikipedia articles, however my question is reasonably specific, and I need a bulletproof answer! I'm not sure if my question pertains to hardware RAID in general, or to the specific RAID controller I'm working on. Either way it is the Dell SAS 6/iR (this is an LSI sas1068e chipset). I simply want to: remove a set of striped (RAID 0) disks from this RAID controller in a server put in another set of disks, and create a RAID 1 array (or create a new 'virtual disk', as they call it in the SAS 6/iR manual) Do stuff with the new RAID 1 array Have the option of putting back the old set of disks (the RAID 0 striped ones) I am quite sure this is possible, but I need some form of reliable, evidence-based answer as it's for a client of mine, and I need to migrate their data safely. The question: can I actually do the above? Does the RAID configuration get stored on the disks themselves, or in the hardware controller? Is any data stored in the hardware controller? If there is any chance I cannot completely restore operation of the first set of disks I removed, then I need to know about it! The manual alludes to the answer to this question (see page 45 of this document), and talks about activating an array of disks. I just need someone to confirm I can definitely do the above. See, simple question, right? :)

    Read the article

  • how to export VARs from a subshell to a parent shell?

    - by webwesen
    I have a Korn shell script #!/bin/ksh # set the right ENV case $INPUT in abc) export BIN=${ABC_BIN} ;; def) export BIN=${DEF_BIN} ;; *) export BIN=${BASE_BIN} ;; esac # exit 0 <- bad idea for sourcing the file now these VARs are export'ed only in a subshell, but I want them to be set in my parent shell as well, so when I am at the prompt those vars are still set correctly. I know about . .myscript.sh but is there a way to do it without 'sourcing'? as my users often forget to 'source'. EDIT1: removing the "exit 0" part - this was just me typing without thinking first EDIT2: to add more detail on why do i need this: my developers write code for (for simplicity sake) 2 apps : ABC & DEF. every app is run in production by separate users usrabc and usrdef, hence have setup their $BIN, $CFG, $ORA_HOME, whatever - specific to their apps. so ABC's $BIN = /opt/abc/bin # $ABC_BIN in the above script DEF's $BIN = /opt/def/bin # $DEF_BIN etc. now, on the dev box developers can develop both ABC and DEF at the same time under their own user account 'justin_case', and I make them source the file (above) so that they can switch their ENV var settings back and forth. ($BIN should point to $ABC_BIN at one time and then I need to switch to $BIN=$DEF_BIN) now, the script should also create new sandboxes for parallel development of the same app, etc. this makes me to do it interactively, asking for sandbox name, etc. /home/justin_case/sandbox_abc_beta2 /home/justin_case/sandbox_abc_r1 /home/justin_case/sandbox_def_r1 the other option i have considered is writing aliases and add them to every users' profile alias 'setup_env=. .myscript.sh' and run it with setup_env parameter1 ... parameterX this makes more sense to me now

    Read the article

  • Raspberry Pi how to format HDD

    - by Speed
    Hi I am very new to Raspberry Pi environment, so looking for a bit of help to format a usb hard disk drive. I ran lsblk and got sda 8:0 0 37.3G 0 disk sda1 8:1 0 37.3G 0 part looking on web, if tried the following "sudo mkfs.ext4 /dev/sda1 -L USB40gb" it did something but when I tried to mount the drive again, it still showed the files that were there before and I can not create new file/folder "Error creating directory: Permission denied" I am writing this from my windows 8.1 pc so can not cut and paste from the pi. trying to format its output is a bit hard. Oh, there is Nothing written after the word "part" above. There use to be /media/USB40gb so I have done something because this has disappeared. I am using PCManFM 0.9.10 It does not have a format option, which would make life a lot easier, but then its not windows. I think I am running the basic linux os for the pi. It boots to a graphic environment, but I do not know how to advise what it is. I think its OpenBox 2.0.4 Thanks in advance Speed PS: I reran the format string above but this time I changed the label to read USB37gb. I did this to confirm that I was in fact formatting the right drive. Low and behold, it actually formatted the drive, wiping everything from it. Great ... testing it by creating a new folder on the drive and get error msg Permission Denied! So I have fixed the formatting issue by trial and error but still can't use the drive... Suggestions anyone?

    Read the article

  • Linux RHEL : Making disk image efficiently

    - by TheProfoundGeek
    I have a linux box having RHEL. Its disk (hda1) is having free space of about 25GB. I have an another disk (hda2) which is of 250GB having another RHEL instance, it's partitioned for 200GB. Data on the disk occupies about 21GB of data. The image of hda2 needs to be taken and restored on other disk of same specs. What is the best way to make image file of the hda2? Ideally the images size should be around 25GBs as the actual data on the disk is just 21GB. I am aware about the following two methods. Method 1 : Raw Image dd if=/dev/hda2 of=/path/to/image dd if=/path/to/image of=/dev/hda3 Question 1 : Will the above method make a gigantic image of 250GBs? Is it efficient? Method 2 : Compressed Image. dd if=/dev/hda2 | gzip > /path/to/image.gz gzip -dc /path/to/image.gz | dd of=/dev/hda2 Question 2 : I tried the method 2, its taking too long. What are the pit falls of this methods? Which of the above method id efficient and why? Is there any other Linux utility which can do the job? Third party tools are no no.

    Read the article

  • BYOD (accessing files) on a domain without joining?

    - by Philip White
    I run a Samba 4 instance at a small private school. This makes a regular Linux server appear as a directory controller. There are two relevant benefits to this: I have a Samba share for people's documents, and I use the Redirected Folders feature to allow any employee to sit down at any PC, log in with their domain credentials, and their My Documents points to network storage. Everyone has a mapped drive (using Group Policy Preferences) to a share specific to their account type. Students can access one share (one share for all students), teachers have another, and office staff have another. However, I would like to allow BYOD (Bring Your Own Device). Some employees are already asking for it with their personal laptops, and I know eventually most everyone will want to. Is there any way to replicate the two features above without having to join PCs to the domain? Joining personal PCs is impractical if only because only professional editions of Windows support this. Ideally, any operating system (including mobile) could access the relevant shares, but of course Windows is key. Offline caching is optional. (I could set up OpenVPN for teachers who want to access their files from home.) The problem with simply giving SSH access to the relevant shares is primarily that Samba 4 relies on ext4 ACLs and ext4 extended attributes to maintain NTFS permissions. Writing files directly to the Linux server would bypass this and would (probably) not be interoperable with Samba4. Right now I am completely flexible. I am even fine with scrapping the whole domain and using some other software for the two features above. How can I allow school employees and students freedom to securely share files without requiring everyone to have specific editions of Windows?

    Read the article

  • I need help on my C++ assignment using MS Visual C++

    - by krayzwytie
    Ok, so I don't want you to do my homework for me, but I'm a little lost with this final assignment and need all the help I can get. Learning about programming is tough enough, but doing it online is next to impossible for me... Now, to get to the program, I am going to paste what I have so far. This includes mostly //comments and what I have written so far. If you can help me figure out where all the errors are and how to complete the assignment, I will really appreciate it. Like I said, I don't want you to do my homework for me (it's my final), but any constructive criticism is welcome. This is my final assignment for this class and it is due tomorrow (Sunday before midnight, Arizona time). This is the assignment: Examine the following situation: o Your company, Datamax, Inc., is in the process of automating its payroll systems. Your manager has asked you to create a program that calculates overtime pay for all employees. Your program must take into account the employee’s salary, total hours worked, and hours worked more than 40 in a week, and then provide an output that is useful and easily understood by company management. • Compile your program utilizing the following background information and the code outline in Appendix D (included in the code section). • Submit your project as an attachment including the code and the output. Company Background: o Three employees: Mark, John, and Mary o The end user needs to be prompted for three specific pieces of input—name, hours worked, and hourly wage. o Calculate overtime if input is greater than 40 hours per week. o Provide six test plans to verify the logic within the program. o Plan 1 must display the proper information for employee #1 with overtime pay. o Plan 2 must display the proper information for employee #1 with no overtime pay. o Plans 3-6 are duplicates of plan 1 and 2 but for the other employees. Program Requirements: o Define a base class to use for the entire program. o The class holds the function calls and the variables related to the overtime pay calculations. o Define one object per employee. Note there will be three employees. o Your program must take the objects created and implement calculations based on total salaries, total hours, and the total number of overtime hours. See the Employee Summary Data section of the sample output. Logic Steps to Complete Your Program: o Define your base class. o Define your objects from your base class. o Prompt for user input, updating your object classes for all three users. o Implement your overtime pay calculations. o Display overtime or regular time pay calculations. See the sample output below. o Implement object calculations by summarizing your employee objects and display the summary information in the example below. And this is the code: // Final_Project.cpp : Defines the entry point for the console application. // #include "stdafx.h" #include <iostream> #include <string> #include <iomanip> using namespace std; // //CLASS DECLARATION SECTION // class CEmployee { public: void ImplementCalculations(string EmployeeName, double hours, double wage); void DisplayEmployInformation(void); void Addsomethingup (CEmployee, CEmployee, CEmployee); string EmployeeName ; int hours ; int overtime_hours ; int iTotal_hours ; int iTotal_OvertimeHours ; float wage ; float basepay ; float overtime_pay ; float overtime_extra ; float iTotal_salaries ; float iIndividualSalary ; }; int main() { system("cls"); cout << "Welcome to the Employee Pay Center"; /* Use this section to define your objects. You will have one object per employee. You have only three employees. The format is your class name and your object name. */ std::cout << "Please enter Employee's Name: "; std::cin >> EmployeeName; std::cout << "Please enter Total Hours for (EmployeeName): "; std::cin >> hours; std::cout << "Please enter Base Pay for(EmployeeName): "; std::cin >> basepay; /* Here you will prompt for the first employee’s information. Prompt the employee name, hours worked, and the hourly wage. For each piece of information, you will update the appropriate class member defined above. Example of Prompts Enter the employee name = Enter the hours worked = Enter his or her hourly wage = */ /* Here you will prompt for the second employee’s information. Prompt the employee name, hours worked, and the hourly wage. For each piece of information, you will update the appropriate class member defined above. Enter the employee name = Enter the hours worked = Enter his or her hourly wage = */ /* Here you will prompt for the third employee’s information. Prompt the employee name, hours worked, and the hourly wage. For each piece of information, you will update the appropriate class member defined above. Enter the employee name = Enter the hours worked = Enter his or her hourly wage = */ /* Here you will implement a function call to implement the employ calcuations for each object defined above. You will do this for each of the three employees or objects. The format for this step is the following: [(object name.function name(objectname.name, objectname.hours, objectname.wage)] ; */ /* This section you will send all three objects to a function that will add up the the following information: - Total Employee Salaries - Total Employee Hours - Total Overtime Hours The format for this function is the following: - Define a new object. - Implement function call [objectname.functionname(object name 1, object name 2, object name 3)] /* } //End of Main Function void CEmployee::ImplementCalculations (string EmployeeName, double hours, double wage){ //Initialize overtime variables overtime_hours=0; overtime_pay=0; overtime_extra=0; if (hours > 40) { /* This section is for the basic calculations for calculating overtime pay. - base pay = 40 hours times the hourly wage - overtime hours = hours worked – 40 - overtime pay = hourly wage * 1.5 - overtime extra pay over 40 = overtime hours * overtime pay - salary = overtime money over 40 hours + your base pay */ /* Implement function call to output the employee information. Function is defined below. */ } // if (hours > 40) else { /* Here you are going to calculate the hours less than 40 hours. - Your base pay is = your hours worked times your wage - Salary = your base pay */ /* Implement function call to output the employee information. Function is defined below. */ } // End of the else } //End of Primary Function void CEmployee::DisplayEmployInformation(); { // This function displays all the employee output information. /* This is your cout statements to display the employee information: Employee Name ............. = Base Pay .................. = Hours in Overtime ......... = Overtime Pay Amount........ = Total Pay ................. = */ } // END OF Display Employee Information void CEmployee::Addsomethingup (CEmployee Employ1, CEmployee Employ2) { // Adds two objects of class Employee passed as // function arguments and saves them as the calling object's data member values. /* Add the total hours for objects 1, 2, and 3. Add the salaries for each object. Add the total overtime hours. */ /* Then display the information below. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% EMPLOYEE SUMMARY DATA%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Total Employee Salaries ..... = 576.43 %%%% Total Employee Hours ........ = 108 %%%% Total Overtime Hours......... = 5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */ } // End of function

    Read the article

  • I need help on my C++ assignment using Microsoft Visual C++

    - by krayzwytie
    Ok, so I don't want you to do my homework for me, but I'm a little lost with this final assignment and need all the help I can get. Learning about programming is tough enough, but doing it online is next to impossible for me... Now, to get to the program, I am going to paste what I have so far. This includes mostly //comments and what I have written so far. If you can help me figure out where all the errors are and how to complete the assignment, I will really appreciate it. Like I said, I don't want you to do my homework for me (it's my final), but any constructive criticism is welcome. This is my final assignment for this class and it is due tomorrow (Sunday before midnight, Arizona time). This is the assignment: Examine the following situation: Your company, Datamax, Inc., is in the process of automating its payroll systems. Your manager has asked you to create a program that calculates overtime pay for all employees. Your program must take into account the employee’s salary, total hours worked, and hours worked more than 40 in a week, and then provide an output that is useful and easily understood by company management. Compile your program utilizing the following background information and the code outline in Appendix D (included in the code section). Submit your project as an attachment including the code and the output. Company Background: Three employees: Mark, John, and Mary The end user needs to be prompted for three specific pieces of input—name, hours worked, and hourly wage. Calculate overtime if input is greater than 40 hours per week. Provide six test plans to verify the logic within the program. Plan 1 must display the proper information for employee #1 with overtime pay. Plan 2 must display the proper information for employee #1 with no overtime pay. Plans 3-6 are duplicates of plan 1 and 2 but for the other employees. Program Requirements: Define a base class to use for the entire program. The class holds the function calls and the variables related to the overtime pay calculations. Define one object per employee. Note there will be three employees. Your program must take the objects created and implement calculations based on total salaries, total hours, and the total number of overtime hours. See the Employee Summary Data section of the sample output. Logic Steps to Complete Your Program: Define your base class. Define your objects from your base class. Prompt for user input, updating your object classes for all three users. Implement your overtime pay calculations. Display overtime or regular time pay calculations. See the sample output below. Implement object calculations by summarizing your employee objects and display the summary information in the example below. And this is the code: // Final_Project.cpp : Defines the entry point for the console application. // #include "stdafx.h" #include <iostream> #include <string> #include <iomanip> using namespace std; // //CLASS DECLARATION SECTION // class CEmployee { public: void ImplementCalculations(string EmployeeName, double hours, double wage); void DisplayEmployInformation(void); void Addsomethingup (CEmployee, CEmployee, CEmployee); string EmployeeName ; int hours ; int overtime_hours ; int iTotal_hours ; int iTotal_OvertimeHours ; float wage ; float basepay ; float overtime_pay ; float overtime_extra ; float iTotal_salaries ; float iIndividualSalary ; }; int main() { system("cls"); cout << "Welcome to the Employee Pay Center"; /* Use this section to define your objects. You will have one object per employee. You have only three employees. The format is your class name and your object name. */ std::cout << "Please enter Employee's Name: "; std::cin >> EmployeeName; std::cout << "Please enter Total Hours for (EmployeeName): "; std::cin >> hours; std::cout << "Please enter Base Pay for(EmployeeName): "; std::cin >> basepay; /* Here you will prompt for the first employee’s information. Prompt the employee name, hours worked, and the hourly wage. For each piece of information, you will update the appropriate class member defined above. Example of Prompts Enter the employee name = Enter the hours worked = Enter his or her hourly wage = */ /* Here you will prompt for the second employee’s information. Prompt the employee name, hours worked, and the hourly wage. For each piece of information, you will update the appropriate class member defined above. Enter the employee name = Enter the hours worked = Enter his or her hourly wage = */ /* Here you will prompt for the third employee’s information. Prompt the employee name, hours worked, and the hourly wage. For each piece of information, you will update the appropriate class member defined above. Enter the employee name = Enter the hours worked = Enter his or her hourly wage = */ /* Here you will implement a function call to implement the employ calcuations for each object defined above. You will do this for each of the three employees or objects. The format for this step is the following: [(object name.function name(objectname.name, objectname.hours, objectname.wage)] ; */ /* This section you will send all three objects to a function that will add up the the following information: - Total Employee Salaries - Total Employee Hours - Total Overtime Hours The format for this function is the following: - Define a new object. - Implement function call [objectname.functionname(object name 1, object name 2, object name 3)] /* } //End of Main Function void CEmployee::ImplementCalculations (string EmployeeName, double hours, double wage){ //Initialize overtime variables overtime_hours=0; overtime_pay=0; overtime_extra=0; if (hours > 40) { /* This section is for the basic calculations for calculating overtime pay. - base pay = 40 hours times the hourly wage - overtime hours = hours worked – 40 - overtime pay = hourly wage * 1.5 - overtime extra pay over 40 = overtime hours * overtime pay - salary = overtime money over 40 hours + your base pay */ /* Implement function call to output the employee information. Function is defined below. */ } // if (hours > 40) else { /* Here you are going to calculate the hours less than 40 hours. - Your base pay is = your hours worked times your wage - Salary = your base pay */ /* Implement function call to output the employee information. Function is defined below. */ } // End of the else } //End of Primary Function void CEmployee::DisplayEmployInformation(); { // This function displays all the employee output information. /* This is your cout statements to display the employee information: Employee Name ............. = Base Pay .................. = Hours in Overtime ......... = Overtime Pay Amount........ = Total Pay ................. = */ } // END OF Display Employee Information void CEmployee::Addsomethingup (CEmployee Employ1, CEmployee Employ2) { // Adds two objects of class Employee passed as // function arguments and saves them as the calling object's data member values. /* Add the total hours for objects 1, 2, and 3. Add the salaries for each object. Add the total overtime hours. */ /* Then display the information below. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% EMPLOYEE SUMMARY DATA%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%% Total Employee Salaries ..... = 576.43 %%%% Total Employee Hours ........ = 108 %%%% Total Overtime Hours......... = 5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% */ } // End of function

    Read the article

  • log in and send sms with java

    - by noobed
    I'm trying to log into a site and afterwards to send a SMS (you can do that for free by the site - it's nothing more than just enter some text into some fields and 'submit'). I've used wireshark to track some of the post/get requests that my machine has been exchanging with the server - when using the browser. I'd like to paste some of my Java code: URL url; String urlP = "maccount=myRawUserName7&" + "mpassword=myRawPassword&" + "redirect_http=http&" + "submit=........"; String urlParameters = URLEncoder.encode(urlP, "CP1251"); HttpURLConnection connection = null; // Create connection url = new URL("http://www.mtel.bg/1/mm/smscenter/mc/sendsms/ma/index/mo/1"); connection = (HttpURLConnection) url.openConnection(); connection.setRequestMethod("POST"); //I'm not really sure if these RequestProperties are necessary //so I'll leave them as a comment // connection.setRequestProperty("Content-Type", // "application/x-www-form-urlencoded"); // connection.setRequestProperty("Accept-Charset", "CP1251"); // connection.setRequestProperty("Content-Length", // "" + Integer.toString(urlParameters.getBytes().length)); // connection.setRequestProperty("Content-Language", "en-US"); connection.setUseCaches(false); connection.setDoInput(true); connection.setDoOutput(true); // Send request DataOutputStream wr = new DataOutputStream( connection.getOutputStream()); wr.writeBytes(urlParameters); wr.flush(); wr.close(); String headerName[] = new String[10]; int count = 0; for (int i = 1; (headerName[count] = connection.getHeaderFieldKey(i)) != null; i++) { if (headerName[count].equals("Set-Cookie")) { headerName[count++] = connection.getHeaderField(i); } } //I'm not sure if I have to close the connection here or not if (connection != null) { connection.disconnect(); } //the code above should be the login part //----------------------------------------- //this is copy-pasted from wireshark's info. String smsParam="from=men&" + "sender=0&" + "msisdn=359886737498&" + "tophone=0&" + "smstext=tova+e+proba%21+1.&" + "id=&" + "sendaction=&" + "direction=&" + "msgLen=84"; url = new URL("http://www.mtel.bg/moyat-profil-sms-tsentar_3004/" + "mm/smscenter/mc/sendsms/ma/index"); connection = (HttpURLConnection) url.openConnection(); connection.setRequestMethod("POST"); connection.setRequestProperty("Cookie", headerName[0]); connection.setRequestProperty("Cookie", headerName[1]); //conn urlParameters = URLEncoder.encode(urlP, "CP1251"); connection.setUseCaches(false); connection.setDoInput(true); connection.setDoOutput(true); wr = new DataOutputStream( connection.getOutputStream()); wr.writeBytes(urlParameters); wr.flush(); wr.close(); //I'm not rly sure what exactly to do with this response. // Get Response InputStream is = connection.getInputStream(); BufferedReader rd = new BufferedReader(new InputStreamReader(is, "CP1251")); String line; StringBuffer response = new StringBuffer(); while ((line = rd.readLine()) != null) { response.append(line); response.append('\r'); } rd.close(); System.out.println(response.toString()); if (connection != null) { connection.disconnect(); } so that's my code so far. When I execute it ... I don't receive any text on my phone - so it clearly doesn't work as supposed to. I would appreciate any guidance or remarks. Is my cookie handling wrong? Is my login method wrong? Do I pass the right URLs. Do I encode and send the parameter string correctly? Is there any addition valuable data from these POSTs I should take? P.S. just in any case let me tell you that the username and password is not real. For security reasons I don't want to give valid ones. (I think this is appropriate approach) Here are the POST requests: POST /1/mm/auth/mc/auth/ma/index/mo/1 HTTP/1.1 Host: www.mtel.bg User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:15.0) Gecko/20100101 Firefox/15.0.1 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8 Accept-Language: en-us,en;q=0.5 Accept-Encoding: gzip, deflate Connection: keep-alive Referer: http://www.mtel.bg/1/mm/smscenter/mc/sendsms/ma/index/mo/1 Cookie: __utma=209782857.541729286.1349267381.1349270269.1349274374.3; __utmc=209782857; __utmz=209782857.1349267381.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __atuvc=28%7C40; PHPSESSID=q0mage2usmv34slcv3dmd6t057; __utmb=209782857.3.10.1349274374 Content-Type: multipart/form-data; boundary=---------------------------151901450223722 Content-Length: 475 -----------------------------151901450223722 Content-Disposition: form-data; name="maccount" myRawUserName -----------------------------151901450223722 Content-Disposition: form-data; name="mpassword" myRawPassword -----------------------------151901450223722 Content-Disposition: form-data; name="redirect_https" http -----------------------------151901450223722 Content-Disposition: form-data; name="submit" ........ -----------------------------151901450223722-- HTTP/1.1 302 Found Server: nginx Date: Wed, 03 Oct 2012 14:26:40 GMT Content-Type: text/html; charset=Utf-8 Connection: close Expires: Thu, 19 Nov 1981 08:52:00 GMT Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0 Pragma: no-cache Location: /moyat-profil-sms-tsentar_3004/mm/smscenter/mc/sendsms/ma/index Content-Length: 0 The above text is vied with wireshark's follow tcp stream when pressing the log in button. POST /moyat-profil-sms-tsentar_3004/mm/smscenter/mc/sendsms/ma/index HTTP/1.1 *same as the above ones* Referer: http://www.mtel.bg/moyat-profil-sms-tsentar_3004/mm/smscenter/mc/sendsms/ma/index Cookie: __utma=209782857.541729286.1349267381.1349270269.1349274374.3; __utmc=209782857; __utmz=209782857.1349267381.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __atuvc=29%7C40; PHPSESSID=q0mage2usmv34slcv3dmd6t057; __utmb=209782857.4.10.1349274374 Content-Type: application/x-www-form-urlencoded Content-Length: 147 from=men&sender=0&msisdn=35988888888&tophone=0&smstext=this+is+some+FREE+SMS+text%21+100+char+per+sms+only%21&id=&sendaction=&direction=&msgLen=50 HTTP/1.1 302 Found Server: nginx Date: Wed, 03 Oct 2012 14:31:38 GMT Content-Type: text/html; charset=Utf-8 Connection: close Expires: Thu, 19 Nov 1981 08:52:00 GMT Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0 Pragma: no-cache Location: /moyat-profil-sms-tsentar_3004/mm/smscenter/mc/sendsms/ma/success/s/1 Content-Length: 0 The above text is when you press the send button.

    Read the article

  • A free standing ASP.NET Pager Web Control

    - by Rick Strahl
    Paging in ASP.NET has been relatively easy with stock controls supporting basic paging functionality. However, recently I built an MVC application and one of the things I ran into was that I HAD TO build manual paging support into a few of my pages. Dealing with list controls and rendering markup is easy enough, but doing paging is a little more involved. I ended up with a small but flexible component that can be dropped anywhere. As it turns out the task of creating a semi-generic Pager control for MVC was fairly easily. Now I’m back to working in Web Forms and thought to myself that the way I created the pager in MVC actually would also work in ASP.NET – in fact quite a bit easier since the whole thing can be conveniently wrapped up into an easily reusable control. A standalone pager would provider easier reuse in various pages and a more consistent pager display regardless of what kind of 'control’ the pager is associated with. Why a Pager Control? At first blush it might sound silly to create a new pager control – after all Web Forms has pretty decent paging support, doesn’t it? Well, sort of. Yes the GridView control has automatic paging built in and the ListView control has the related DataPager control. The built in ASP.NET paging has several issues though: Postback and JavaScript requirements If you look at paging links in ASP.NET they are always postback links with javascript:__doPostback() calls that go back to the server. While that works fine and actually has some benefit like the fact that paging saves changes to the page and post them back, it’s not very SEO friendly. Basically if you use javascript based navigation nosearch engine will follow the paging links which effectively cuts off list content on the first page. The DataPager control does support GET based links via the QueryStringParameter property, but the control is effectively tied to the ListView control (which is the only control that implements IPageableItemContainer). DataSource Controls required for Efficient Data Paging Retrieval The only way you can get paging to work efficiently where only the few records you display on the page are queried for and retrieved from the database you have to use a DataSource control - only the Linq and Entity DataSource controls  support this natively. While you can retrieve this data yourself manually, there’s no way to just assign the page number and render the pager based on this custom subset. Other than that default paging requires a full resultset for ASP.NET to filter the data and display only a subset which can be very resource intensive and wasteful if you’re dealing with largish resultsets (although I’m a firm believer in returning actually usable sets :-}). If you use your own business layer that doesn’t fit an ObjectDataSource you’re SOL. That’s a real shame too because with LINQ based querying it’s real easy to retrieve a subset of data that is just the data you want to display but the native Pager functionality doesn’t support just setting properties to display just the subset AFAIK. DataPager is not Free Standing The DataPager control is the closest thing to a decent Pager implementation that ASP.NET has, but alas it’s not a free standing component – it works off a related control and the only one that it effectively supports from the stock ASP.NET controls is the ListView control. This means you can’t use the same data pager formatting for a grid and a list view or vice versa and you’re always tied to the control. Paging Events In order to handle paging you have to deal with paging events. The events fire at specific time instances in the page pipeline and because of this you often have to handle data binding in a way to work around the paging events or else end up double binding your data sources based on paging. Yuk. Styling The GridView pager is a royal pain to beat into submission for styled rendering. The DataPager control has many more options and template layout and it renders somewhat cleaner, but it too is not exactly easy to get a decent display for. Not a Generic Solution The problem with the ASP.NET controls too is that it’s not generic. GridView, DataGrid use their own internal paging, ListView can use a DataPager and if you want to manually create data layout – well you’re on your own. IOW, depending on what you use you likely have very different looking Paging experiences. So, I figured I’ve struggled with this once too many and finally sat down and built a Pager control. The Pager Control My goal was to create a totally free standing control that has no dependencies on other controls and certainly no requirements for using DataSource controls. The idea is that you should be able to use this pager control without any sort of data requirements at all – you should just be able to set properties and be able to display a pager. The Pager control I ended up with has the following features: Completely free standing Pager control – no control or data dependencies Complete manual control – Pager can render without any data dependency Easy to use: Only need to set PageSize, ActivePage and TotalItems Supports optional filtering of IQueryable for efficient queries and Pager rendering Supports optional full set filtering of IEnumerable<T> and DataTable Page links are plain HTTP GET href Links Control automatically picks up Page links on the URL and assigns them (automatic page detection no page index changing events to hookup) Full CSS Styling support On the downside there’s no templating support for the control so the layout of the pager is relatively fixed. All elements however are stylable and there are options to control the text, and layout options such as whether to display first and last pages and the previous/next buttons and so on. To give you an idea what the pager looks like, here are two differently styled examples (all via CSS):   The markup for these two pagers looks like this: <ww:Pager runat="server" id="ItemPager" PageSize="5" PageLinkCssClass="gridpagerbutton" SelectedPageCssClass="gridpagerbutton-selected" PagesTextCssClass="gridpagertext" CssClass="gridpager" RenderContainerDiv="true" ContainerDivCssClass="gridpagercontainer" MaxPagesToDisplay="6" PagesText="Item Pages:" NextText="next" PreviousText="previous" /> <ww:Pager runat="server" id="ItemPager2" PageSize="5" RenderContainerDiv="true" MaxPagesToDisplay="6" /> The latter example uses default style settings so it there’s not much to set. The first example on the other hand explicitly assigns custom styles and overrides a few of the formatting options. Styling The styling is based on a number of CSS classes of which the the main pager, pagerbutton and pagerbutton-selected classes are the important ones. Other styles like pagerbutton-next/prev/first/last are based on the pagerbutton style. The default styling shown for the red outlined pager looks like this: .pagercontainer { margin: 20px 0; background: whitesmoke; padding: 5px; } .pager { float: right; font-size: 10pt; text-align: left; } .pagerbutton,.pagerbutton-selected,.pagertext { display: block; float: left; text-align: center; border: solid 2px maroon; min-width: 18px; margin-left: 3px; text-decoration: none; padding: 4px; } .pagerbutton-selected { font-size: 130%; font-weight: bold; color: maroon; border-width: 0px; background: khaki; } .pagerbutton-first { margin-right: 12px; } .pagerbutton-last,.pagerbutton-prev { margin-left: 12px; } .pagertext { border: none; margin-left: 30px; font-weight: bold; } .pagerbutton a { text-decoration: none; } .pagerbutton:hover { background-color: maroon; color: cornsilk; } .pagerbutton-prev { background-image: url(images/prev.png); background-position: 2px center; background-repeat: no-repeat; width: 35px; padding-left: 20px; } .pagerbutton-next { background-image: url(images/next.png); background-position: 40px center; background-repeat: no-repeat; width: 35px; padding-right: 20px; margin-right: 0px; } Yup that’s a lot of styling settings although not all of them are required. The key ones are pagerbutton, pager and pager selection. The others (which are implicitly created by the control based on the pagerbutton style) are for custom markup of the ‘special’ buttons. In my apps I tend to have two kinds of pages: Those that are associated with typical ‘grid’ displays that display purely tabular data and those that have a more looser list like layout. The two pagers shown above represent these two views and the pager and gridpager styles in my standard style sheet reflect these two styles. Configuring the Pager with Code Finally lets look at what it takes to hook up the pager. As mentioned in the highlights the Pager control is completely independent of other controls so if you just want to display a pager on its own it’s as simple as dropping the control and assigning the PageSize, ActivePage and either TotalPages or TotalItems. So for this markup: <ww:Pager runat="server" id="ItemPagerManual" PageSize="5" MaxPagesToDisplay="6" /> I can use code as simple as: ItemPagerManual.PageSize = 3; ItemPagerManual.ActivePage = 4;ItemPagerManual.TotalItems = 20; Note that ActivePage is not required - it will automatically use any Page=x query string value and assign it, although you can override it as I did above. TotalItems can be any value that you retrieve from a result set or manually assign as I did above. A more realistic scenario based on a LINQ to SQL IQueryable result is even easier. In this example, I have a UserControl that contains a ListView control that renders IQueryable data. I use a User Control here because there are different views the user can choose from with each view being a different user control. This incidentally also highlights one of the nice features of the pager: Because the pager is independent of the control I can put the pager on the host page instead of into each of the user controls. IOW, there’s only one Pager control, but there are potentially many user controls/listviews that hold the actual display data. The following code demonstrates how to use the Pager with an IQueryable that loads only the records it displays: protected voidPage_Load(objectsender, EventArgs e) {     Category = Request.Params["Category"] ?? string.Empty;     IQueryable<wws_Item> ItemList = ItemRepository.GetItemsByCategory(Category);     // Update the page and filter the list down     ItemList = ItemPager.FilterIQueryable<wws_Item>(ItemList); // Render user control with a list view Control ulItemList = LoadControl("~/usercontrols/" + App.Configuration.ItemListType + ".ascx"); ((IInventoryItemListControl)ulItemList).InventoryItemList = ItemList; phItemList.Controls.Add(ulItemList); // placeholder } The code uses a business object to retrieve Items by category as an IQueryable which means that the result is only an expression tree that hasn’t execute SQL yet and can be further filtered. I then pass this IQueryable to the FilterIQueryable() helper method of the control which does two main things: Filters the IQueryable to retrieve only the data displayed on the active page Sets the Totaltems property and calculates TotalPages on the Pager and that’s it! When the Pager renders it uses those values, plus the PageSize and ActivePage properties to render the Pager. In addition to IQueryable there are also filter methods for IEnumerable<T> and DataTable, but these versions just filter the data by removing rows/items from the entire already retrieved data. Output Generated and Paging Links The output generated creates pager links as plain href links. Here’s what the output looks like: <div id="ItemPager" class="pagercontainer"> <div class="pager"> <span class="pagertext">Pages: </span><a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=1" class="pagerbutton" />1</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=2" class="pagerbutton" />2</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=3" class="pagerbutton" />3</a> <span class="pagerbutton-selected">4</span> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=5" class="pagerbutton" />5</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=6" class="pagerbutton" />6</a> <a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=20" class="pagerbutton pagerbutton-last" />20</a>&nbsp;<a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=3" class="pagerbutton pagerbutton-prev" />Prev</a>&nbsp;<a href="http://localhost/WestWindWebStore/itemlist.aspx?Page=5" class="pagerbutton pagerbutton-next" />Next</a></div> <br clear="all" /> </div> </div> The links point back to the current page and simply append a Page= page link into the page. When the page gets reloaded with the new page number the pager automatically detects the page number and automatically assigns the ActivePage property which results in the appropriate page to be displayed. The code shown in the previous section is all that’s needed to handle paging. Note that HTTP GET based paging is different than the Postback paging ASP.NET uses by default. Postback paging preserves modified page content when clicking on pager buttons, but this control will simply load a new page – no page preservation at this time. The advantage of not using Postback paging is that the URLs generated are plain HTML links that a search engine can follow where __doPostback() links are not. Pager with a Grid The pager also works in combination with grid controls so it’s easy to bypass the grid control’s paging features if desired. In the following example I use a gridView control and binds it to a DataTable result which is also filterable by the Pager control. The very basic plain vanilla ASP.NET grid markup looks like this: <div style="width: 600px; margin: 0 auto;padding: 20px; "> <asp:DataGrid runat="server" AutoGenerateColumns="True" ID="gdItems" CssClass="blackborder" style="width: 600px;"> <AlternatingItemStyle CssClass="gridalternate" /> <HeaderStyle CssClass="gridheader" /> </asp:DataGrid> <ww:Pager runat="server" ID="Pager" CssClass="gridpager" ContainerDivCssClass="gridpagercontainer" PageLinkCssClass="gridpagerbutton" SelectedPageCssClass="gridpagerbutton-selected" PageSize="8" RenderContainerDiv="true" MaxPagesToDisplay="6" /> </div> and looks like this when rendered: using custom set of CSS styles. The code behind for this code is also very simple: protected void Page_Load(object sender, EventArgs e) { string category = Request.Params["category"] ?? ""; busItem itemRep = WebStoreFactory.GetItem(); var items = itemRep.GetItemsByCategory(category) .Select(itm => new {Sku = itm.Sku, Description = itm.Description}); // run query into a DataTable for demonstration DataTable dt = itemRep.Converter.ToDataTable(items,"TItems"); // Remove all items not on the current page dt = Pager.FilterDataTable(dt,0); // bind and display gdItems.DataSource = dt; gdItems.DataBind(); } A little contrived I suppose since the list could already be bound from the list of elements, but this is to demonstrate that you can also bind against a DataTable if your business layer returns those. Unfortunately there’s no way to filter a DataReader as it’s a one way forward only reader and the reader is required by the DataSource to perform the bindings.  However, you can still use a DataReader as long as your business logic filters the data prior to rendering and provides a total item count (most likely as a second query). Control Creation The control itself is a pretty brute force ASP.NET control. Nothing clever about this other than some basic rendering logic and some simple calculations and update routines to determine which buttons need to be shown. You can take a look at the full code from the West Wind Web Toolkit’s Repository (note there are a few dependencies). To give you an idea how the control works here is the Render() method: /// <summary> /// overridden to handle custom pager rendering for runtime and design time /// </summary> /// <param name="writer"></param> protected override void Render(HtmlTextWriter writer) { base.Render(writer); if (TotalPages == 0 && TotalItems > 0) TotalPages = CalculateTotalPagesFromTotalItems(); if (DesignMode) TotalPages = 10; // don't render pager if there's only one page if (TotalPages < 2) return; if (RenderContainerDiv) { if (!string.IsNullOrEmpty(ContainerDivCssClass)) writer.AddAttribute("class", ContainerDivCssClass); writer.RenderBeginTag("div"); } // main pager wrapper writer.WriteBeginTag("div"); writer.AddAttribute("id", this.ClientID); if (!string.IsNullOrEmpty(CssClass)) writer.WriteAttribute("class", this.CssClass); writer.Write(HtmlTextWriter.TagRightChar + "\r\n"); // Pages Text writer.WriteBeginTag("span"); if (!string.IsNullOrEmpty(PagesTextCssClass)) writer.WriteAttribute("class", PagesTextCssClass); writer.Write(HtmlTextWriter.TagRightChar); writer.Write(this.PagesText); writer.WriteEndTag("span"); // if the base url is empty use the current URL FixupBaseUrl(); // set _startPage and _endPage ConfigurePagesToRender(); // write out first page link if (ShowFirstAndLastPageLinks && _startPage != 1) { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-first"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write("1"); writer.WriteEndTag("a"); writer.Write("&nbsp;"); } // write out all the page links for (int i = _startPage; i < _endPage + 1; i++) { if (i == ActivePage) { writer.WriteBeginTag("span"); if (!string.IsNullOrEmpty(SelectedPageCssClass)) writer.WriteAttribute("class", SelectedPageCssClass); writer.Write(HtmlTextWriter.TagRightChar); writer.Write(i.ToString()); writer.WriteEndTag("span"); } else { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, i.ToString()).TrimEnd('&'); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(i.ToString()); writer.WriteEndTag("a"); } writer.Write("\r\n"); } // write out last page link if (ShowFirstAndLastPageLinks && _endPage < TotalPages) { writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, TotalPages.ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-last"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(TotalPages.ToString()); writer.WriteEndTag("a"); } // Previous link if (ShowPreviousNextLinks && !string.IsNullOrEmpty(PreviousText) && ActivePage > 1) { writer.Write("&nbsp;"); writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (ActivePage - 1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-prev"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(PreviousText); writer.WriteEndTag("a"); } // Next link if (ShowPreviousNextLinks && !string.IsNullOrEmpty(NextText) && ActivePage < TotalPages) { writer.Write("&nbsp;"); writer.WriteBeginTag("a"); string pageUrl = StringUtils.SetUrlEncodedKey(BaseUrl, QueryStringPageField, (ActivePage + 1).ToString()); writer.WriteAttribute("href", pageUrl); if (!string.IsNullOrEmpty(PageLinkCssClass)) writer.WriteAttribute("class", PageLinkCssClass + " " + PageLinkCssClass + "-next"); writer.Write(HtmlTextWriter.SelfClosingTagEnd); writer.Write(NextText); writer.WriteEndTag("a"); } writer.WriteEndTag("div"); if (RenderContainerDiv) { if (RenderContainerDivBreak) writer.Write("<br clear=\"all\" />\r\n"); writer.WriteEndTag("div"); } } As I said pretty much brute force rendering based on the control’s property settings of which there are quite a few: You can also see the pager in the designer above. unfortunately the VS designer (both 2010 and 2008) fails to render the float: left CSS styles properly and starts wrapping after margins are applied in the special buttons. Not a big deal since VS does at least respect the spacing (the floated elements overlay). Then again I’m not using the designer anyway :-}. Filtering Data What makes the Pager easy to use is the filter methods built into the control. While this functionality is clearly not the most politically correct design choice as it violates separation of concerns, it’s very useful for typical pager operation. While I actually have filter methods that do something similar in my business layer, having it exposed on the control makes the control a lot more useful for typical databinding scenarios. Of course these methods are optional – if you have a business layer that can provide filtered page queries for you can use that instead and assign the TotalItems property manually. There are three filter method types available for IQueryable, IEnumerable and for DataTable which tend to be the most common use cases in my apps old and new. The IQueryable version is pretty simple as it can simply rely on on .Skip() and .Take() with LINQ: /// <summary> /// <summary> /// Queries the database for the ActivePage applied manually /// or from the Request["page"] variable. This routine /// figures out and sets TotalPages, ActivePage and /// returns a filtered subset IQueryable that contains /// only the items from the ActivePage. /// </summary> /// <param name="query"></param> /// <param name="activePage"> /// The page you want to display. Sets the ActivePage property when passed. /// Pass 0 or smaller to use ActivePage setting. /// </param> /// <returns></returns> public IQueryable<T> FilterIQueryable<T>(IQueryable<T> query, int activePage) where T : class, new() { ActivePage = activePage < 1 ? ActivePage : activePage; if (ActivePage < 1) ActivePage = 1; TotalItems = query.Count(); if (TotalItems <= PageSize) { ActivePage = 1; TotalPages = 1; return query; } int skip = ActivePage - 1; if (skip > 0) query = query.Skip(skip * PageSize); _TotalPages = CalculateTotalPagesFromTotalItems(); return query.Take(PageSize); } The IEnumerable<T> version simply  converts the IEnumerable to an IQuerable and calls back into this method for filtering. The DataTable version requires a little more work to manually parse and filter records (I didn’t want to add the Linq DataSetExtensions assembly just for this): /// <summary> /// Filters a data table for an ActivePage. /// /// Note: Modifies the data set permanently by remove DataRows /// </summary> /// <param name="dt">Full result DataTable</param> /// <param name="activePage">Page to display. 0 to use ActivePage property </param> /// <returns></returns> public DataTable FilterDataTable(DataTable dt, int activePage) { ActivePage = activePage < 1 ? ActivePage : activePage; if (ActivePage < 1) ActivePage = 1; TotalItems = dt.Rows.Count; if (TotalItems <= PageSize) { ActivePage = 1; TotalPages = 1; return dt; } int skip = ActivePage - 1; if (skip > 0) { for (int i = 0; i < skip * PageSize; i++ ) dt.Rows.RemoveAt(0); } while(dt.Rows.Count > PageSize) dt.Rows.RemoveAt(PageSize); return dt; } Using the Pager Control The pager as it is is a first cut I built a couple of weeks ago and since then have been tweaking a little as part of an internal project I’m working on. I’ve replaced a bunch of pagers on various older pages with this pager without any issues and have what now feels like a more consistent user interface where paging looks and feels the same across different controls. As a bonus I’m only loading the data from the database that I need to display a single page. With the preset class tags applied too adding a pager is now as easy as dropping the control and adding the style sheet for styling to be consistent – no fuss, no muss. Schweet. Hopefully some of you may find this as useful as I have or at least as a baseline to build ontop of… Resources The Pager is part of the West Wind Web & Ajax Toolkit Pager.cs Source Code (some toolkit dependencies) Westwind.css base stylesheet with .pager and .gridpager styles Pager Example Page © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Ajax Control Toolkit July 2011 Release and the New HTML Editor Extender

    - by Stephen Walther
    I’m happy to announce the July 2011 release of the Ajax Control Toolkit which includes important bug fixes and a completely new HTML Editor Extender control. You can download the July 2011 Release by visiting the Ajax Control Toolkit CodePlex site at: http://AjaxControlToolkit.CodePlex.com Using the New HTML Editor Extender Control You can use the new HTML Editor Extender to extend any standard ASP.NET TextBox control so that it supports rich formatting such as bold, italics, bulleted lists, numbered lists, typefaces and different foreground and background colors. The following code illustrates how you can extend a standard ASP.NET TextBox control with the HtmlEditorExtender: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Simple.aspx.cs" Inherits="WebApplication1.Simple" %> <%@ Register TagPrefix="asp" Namespace="AjaxControlToolkit" Assembly="AjaxControlToolkit" %> <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server"> <title>Simple</title> </head> <body> <form id="form1" runat="server"> <asp:ToolkitScriptManager runat="Server" /> <asp:TextBox ID="txtComments" TextMode="MultiLine" Columns="60" Rows="8" runat="server" /> <asp:HtmlEditorExtender TargetControlID="txtComments" runat="server" /> </form> </body> </html> This page has the following three controls: ToolkitScriptManager – The ToolkitScriptManager renders all of the scripts required by the Ajax Control Toolkit. TextBox – The TextBox control is a standard ASP.NET TextBox which is set to display multiple lines (a TextArea instead of an Input element). HtmlEditorExtender – The HtmlEditorExtender is set to extend the TextBox control. You can use the standard TextBox Text property to read the rich text entered into the TextBox control on the server. Lightweight and HTML5 The HTML Editor Extender works on all modern browsers including the most recent versions of Mozilla Firefox (Firefox 5), Google Chrome (Chrome 12), and Apple Safari (Safari 5). Furthermore, the HTML Editor Extender is compatible with Microsoft Internet Explorer 6 and newer. The HTML Editor Extender is very lightweight. It takes advantage of the HTML5 ContentEditable attribute so it does not require an iframe or complex browser workarounds. If you select View Source in your browser while using the HTML Editor Extender, we hope that you will be pleasantly surprised by how little markup and script is generated by the HTML Editor Extender. Customizable Toolbar Buttons Depending on the web application that you are building, you will want to display different toolbar buttons with the HTML Editor Extender. One of the design goals of the HTML Editor Extender was to make it very easy for you to customize the toolbar buttons. Imagine, for example, that you want to use the HTML Editor Extender when accepting comments on blog posts. In that case, you might want to restrict the type of formatting that a user can display. You might want to enable a user to format text as bold or italic but you do not want the user to make any other formatting changes. The following page illustrates how you can customize the HTML Editor Extender toolbar: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="CustomToolbar.aspx.cs" Inherits="WebApplication1.CustomToolbar" %> <%@ Register TagPrefix="asp" Namespace="AjaxControlToolkit" Assembly="AjaxControlToolkit" %> <html> <head runat="server"> <title>Custom Toolbar</title> </head> <body> <form id="form1" runat="server"> <asp:ToolkitScriptManager Runat="server" /> <asp:TextBox ID="txtComments" TextMode="MultiLine" Columns="50" Rows="10" Text="Hello <b>world!</b>" Runat="server" /> <asp:HtmlEditorExtender TargetControlID="txtComments" runat="server"> <Toolbar> <asp:Bold /> <asp:Italic /> </Toolbar> </asp:HtmlEditorExtender> </form> </body> </html> Notice that the HTML Editor Extender in the page above has a Toolbar subtag. You can list the toolbar buttons which you want to appear within the subtag. In the case above, only Bold and Italic buttons are displayed. Here is a complete list of the Toolbar buttons currently supported by the HTML Editor Extender: Undo Redo Bold Italic Underline StrikeThrough Subscript Superscript JustifyLeft JustifyCenter JustifyRight JustifyFull InsertOrderedList InsertUnorderedList CreateLink UnLink RemoveFormat SelectAll UnSelect Delete Cut Copy Paste BackgroundColorSelector ForeColorSelector FontNameSelector FontSizeSelector Indent Outdent InsertHorizontalRule HorizontalSeparator Of course the HTML Editor Extender was designed to be extensible. You can create your own buttons and add them to the control. Compatible with the AntiXSS Library When using the HTML Editor Extender on a public facing website, we strongly recommend that you use the HTML Editor Extender with the AntiXSS Library. If you allow users to submit arbitrary HTML, and you don’t take any action to strip out malicious markup, then you are opening your website to Cross-Site Scripting Attacks (XSS attacks). The HTML Editor Extender uses the Provider Model to support different Sanitizer Providers. The July 2011 release of the Ajax Control Toolkit ships with a single Sanitizer Provider which uses the AntiXSS library (see http://AntiXss.CodePlex.com ). A Sanitizer Provider is responsible for sanitizing HTML markup by removing any malicious elements, attributes, and attribute values. For example, the AntiXss Sanitizer Provider will take the following block of HTML: <b><a href=""javascript:doEvil()"">Visit Grandma</a></b> <script>doEvil()</script> And return the following sanitized block of HTML: <b><a href="">Visit Grandma</a></b> Notice that the JavaScript href and <SCRIPT> tag are both stripped out. Be aware that there are a depressingly large number of ways to sneak evil markup into your HTML. You definitely want a Sanitizer as a safety net. Before you can use the AntiXSS Sanitizer Provider, you must add three assemblies to your web application: AntiXSSLibrary.dll, HtmlSanitizationLibrary.dll, and SanitizerProviders.dll. All three assemblies are included with the CodePlex download of the Ajax Control Toolkit in the SanitizerProviders folder. Here’s how you modify your web.config file to use the AntiXSS Sanitizer Provider: <configuration> <configSections> <sectionGroup name="system.web"> <section name="sanitizer" requirePermission="false" type="AjaxControlToolkit.Sanitizer.ProviderSanitizerSection, AjaxControlToolkit"/> </sectionGroup> </configSections> <system.web> <compilation targetFramework="4.0" debug="true"/> <sanitizer defaultProvider="AntiXssSanitizerProvider"> <providers> <add name="AntiXssSanitizerProvider" type="AjaxControlToolkit.Sanitizer.AntiXssSanitizerProvider"></add> </providers> </sanitizer> </system.web> </configuration> You can detect whether the HTML Editor Extender is using the AntiXSS Sanitizer Provider by checking the HtmlEditorExtender SanitizerProvider property like this: if (MyHtmlEditorExtender.SanitizerProvider == null) { throw new Exception("Please enable the AntiXss Sanitizer!"); } When the SanitizerProvider property has the value null, you know that a Sanitizer Provider has not been configured in the web.config file. Because the AntiXSS library requires Full Trust, you cannot use the AntiXSS Sanitizer Provider with most shared website hosting providers. Because most shared hosting providers only support Medium Trust and not Full Trust, we do not recommend using the HTML Editor Extender with a public website hosted with a shared hosting provider. Why a New HTML Editor Control? The Ajax Control Toolkit now includes two HTML Editor controls. Why did we introduce a new HTML Editor control when there was already an existing HTML Editor? We think you will like the new HTML Editor much more than the previous one. We had several goals with the new HTML Editor Extender: Lightweight – We wanted to leverage HTML5 to create a lightweight HTML Editor. The new HTML Editor generates much less markup and script than the previous HTML Editor. Secure – We wanted to make it easy to integrate the AntiXSS library with the HTML Editor. If you are creating a public facing website, we strongly recommend that you use the AntiXSS Provider. Customizable – We wanted to make it easy for users to customize the toolbar buttons displayed by the HTML Editor. Compatibility – We wanted to ensure that the HTML Editor will work with the latest versions of the most popular browsers (including Internet Explorer 6 and higher). The old HTML Editor control is still included in the Ajax Control Toolkit and continues to live in the AjaxControlToolkit.HTMLEditor namespace. We have not modified the control and you can continue to use the control in the same way as you have used it in the past. However, we hope that you will consider migrating to the new HTML Editor Extender for the reasons listed above. Summary We’ve introduced a new Ajax Control Toolkit control with this release. I want to thank the developers and testers on the Superexpert team for the huge amount of work which they put into this control. It was a non-trivial task to build an entirely new control which has the complexity of the HTML Editor in less than 6 weeks. Please let us know what you think! We want to hear your feedback. If you discover issues with the new HTML Editor Extender control, or you have questions about the control, or you have ideas for how it can be improved, then please post them to this blog. Tomorrow starts a new sprint

    Read the article

  • Real Excel Templates I

    - by Tim Dexter
    As promised, I'm starting to document the new Excel templates that I teased you all with a few weeks back. Leslie is buried in 11g documentation and will not get to officially documenting the templates for a while. I'll do my best to be professional and not ramble on about this and that, although the weather here has finally turned and its 'scorchio' here in Colorado today. Maybe our stand of Aspen will finally come into leaf ... but I digress. Preamble These templates are not actually that new, I helped in a small way to develop them a few years back with Excel 'meistress' Shirley for a company that was trying to use the Report Manager(RR) Excel FSG outputs under EBS 12. The functionality they needed was just not there in the RR FSG templates, the templates are actually XSL that is created from the the RR Excel template builder and fed to BIP for processing. Think of Excel from our RTF templates and you'll be there ie not really Excel but HTML masquerading as Excel. Although still under controlled release in EBS they have now made their way to the standlone release and are willing to share their Excel goodness. You get everything you have with hte Excel Analyzer Excel templates plus so much more. Therein lies a question, what will happen to the Analyzer templates? My understanding is that both will come together into a single Excel template format some time in the post-11g release world. The new XLSX format for Exce 2007/10 is also in the mix too so watch this space. What more do these templates offer? Well, you can structure data in the Excel output. Similar to RTF templates you can create sheets of data that have master-detail n relationships. Although the analyzer templates can do this, you have to get into macros whereas BIP will do this all for you. You can also use native XSL functions in your data to manipulate it prior to rendering. BP functions are not currently supported. The most impressive, for me at least, is the sheet 'bursting'. You can split your hierarchical data across multiple sheets and dynamically name those sheets. Finally, you of course, still get all the native Excel functionality. Pre-reqs You must be on 10.1.3.4.1 plus the latest rollup patch, 9546699. You can patch upa BIP instance running with OBIEE, no problem You need Excel 2000 or above to build the templates Some patience - there is no Excel template builder for these new templates. So its all going to have to be done by hand. Its not that tough but can get a little 'fiddly'. You can not test the template from Excel , it has to be deployed and then run. Limitations The new templates are definitely superior to the Analyzer templates but there are a few limitations. Re-grouping is not supported. You can only follow a data hierarchy not bend it to your will unless you want to get into macros. No support for BIP functions. The templates support native XSL functions only. No template builder Getting Started The templates make the use of named cells and groups of cells to allow BIP to find the insertion point for data points. It also uses a hidden sheet to store calculation mappings from named cells to XML data elements. To start with, in the great BIP tradition, we need some sample XML data. Becasue I wanted to show the master-detail output we need some hierarchical data. If you have not yet gotten into the data templates, now is a good time, I wrote a post a while back starting from the simple to more complex. They generate ideal data sets for these templates. Im working with the following data set: <EMPLOYEES> <LIST_G_DEPT> <G_DEPT> <DEPARTMENT_ID>10</DEPARTMENT_ID> <DEPARTMENT_NAME>Administration</DEPARTMENT_NAME> <LIST_G_EMP> <G_EMP> <EMPLOYEE_ID>200</EMPLOYEE_ID> <EMP_NAME>Jennifer Whalen</EMP_NAME> <EMAIL>JWHALEN</EMAIL> <PHONE_NUMBER>515.123.4444</PHONE_NUMBER> <HIRE_DATE>1987-09-17T00:00:00.000-06:00</HIRE_DATE> <SALARY>4400</SALARY> </G_EMP> </LIST_G_EMP> <TOTAL_EMPS>1</TOTAL_EMPS> <TOTAL_SALARY>4400</TOTAL_SALARY> <AVG_SALARY>4400</AVG_SALARY> <MAX_SALARY>4400</MAX_SALARY> <MIN_SALARY>4400</MIN_SALARY> </G_DEPT> ... <LIST_G_DEPT> <EMPLOYEES> Simple enough to follow and bread and butter stuff for an RTF template. Building the Template For an Excel template we need to start by thinking about how we want to render the data. Come up with a sample output in Excel. Its all dummy data, nothing marked up yet with one row of data for each level. I have the department name and then a repeating row for the employees. You can apply Excel formatting to the layout. The total is going to be derived from a data element. We'll get to Excel functions later. Marking Up Cells Next we need to start marking up the cells with custom names to map them to data elements. The cell names need to follow a specific format: For data grouping, XDO_GROUP_?group_name? For data elements, XDO_?element_name? Notice the question mark delimter, the group_name and element_name are case sensitive. The next step is to find how to name cells; the easiest method is to highlight the cell and then type in the name. You can also find the Name Manager dialog. I use 2007 and its available on the ribbon under the Formulas section Go thorugh the process of naming all the cells for the element values you have. Using my data set from above.You should end up with something like this in your 'Name Manager' dialog. You can update any mistakes you might have made through this dialog. Creating Groups In the image above you can see there are a couple of named group cells. To create these its a simple case of highlighting the cells that make up the group and then naming them. For the EMP group, highlight the employee row and then type in the name, XDO_GROUP?G_EMP? Notice the 10,000 total is outside of the G_EMP group. Its actually named, XDO_?TOTAL_SALARY?, a query calculated value. For the department group, we need to include the department name cell and the sub EMP grouping and name it, XDO_GROUP?G_DEPT? Notice, the 10,000 total is included in the G_DEPT group. This will ensure it repeats at the department level. Lastly, we do need to include a special sheet in the workbook. We will not have anything meaningful in there for now, but it needs to be present. Create a new sheet and name it XDO_METADATA. The name is important as the BIP rendering engine will looking for it. For our current example we do not need anything other than the required stuff in our XDO_METADATA sheet but, it must be present. Easy enough to hide it. Here's what I have: The only cell that is important is the 'Data Constraints:' cell. The rest is optional. To save curious users getting distracted, hide the metadata sheet. Deploying & Running Templates We should now have a usable Excel template. Loading it into a report is easy enough using the browser UI, just like an RTF template. Set the template type to Excel. You will now be able to run the report and hopefully get something like this. You will not get the red highlighting, thats just some conditional formatting I added to the template using Excel functionality. Your dates are probably going to look raw too. I got around this for now using an Excel function on the cell: =--REPLACE(SUBSTITUTE(E8,"T"," "),LEN(E8)-6,6,"") Google to the rescue on that one. Try some other stuff out. To avoid constantly loading the template through the UI. If you have BIP running locally or you can access the reports repository, once you have loaded the template the first time. Just save the template directly into the report folder. I have put together a sample report using a sample data set, available here. Just drop the xml data file, EmpbyDeptExcelData.xml into 'demo files' folder and you should be good to go. Thats the basics, next we'll start using some XSL functions in the template and move onto the 'bursting' across sheets.

    Read the article

  • Using the West Wind Web Toolkit to set up AJAX and REST Services

    - by Rick Strahl
    I frequently get questions about which option to use for creating AJAX and REST backends for ASP.NET applications. There are many solutions out there to do this actually, but when I have a choice - not surprisingly - I fall back to my own tools in the West Wind West Wind Web Toolkit. I've talked a bunch about the 'in-the-box' solutions in the past so for a change in this post I'll talk about the tools that I use in my own and customer applications to handle AJAX and REST based access to service resources using the West Wind West Wind Web Toolkit. Let me preface this by saying that I like things to be easy. Yes flexible is very important as well but not at the expense of over-complexity. The goal I've had with my tools is make it drop dead easy, with good performance while providing the core features that I'm after, which are: Easy AJAX/JSON Callbacks Ability to return any kind of non JSON content (string, stream, byte[], images) Ability to work with both XML and JSON interchangeably for input/output Access endpoints via POST data, RPC JSON calls, GET QueryString values or Routing interface Easy to use generic JavaScript client to make RPC calls (same syntax, just what you need) Ability to create clean URLS with Routing Ability to use standard ASP.NET HTTP Stack for HTTP semantics It's all about options! In this post I'll demonstrate most of these features (except XML) in a few simple and short samples which you can download. So let's take a look and see how you can build an AJAX callback solution with the West Wind Web Toolkit. Installing the Toolkit Assemblies The easiest and leanest way of using the Toolkit in your Web project is to grab it via NuGet: West Wind Web and AJAX Utilities (Westwind.Web) and drop it into the project by right clicking in your Project and choosing Manage NuGet Packages from anywhere in the Project.   When done you end up with your project looking like this: What just happened? Nuget added two assemblies - Westwind.Web and Westwind.Utilities and the client ww.jquery.js library. It also added a couple of references into web.config: The default namespaces so they can be accessed in pages/views and a ScriptCompressionModule that the toolkit optionally uses to compress script resources served from within the assembly (namely ww.jquery.js and optionally jquery.js). Creating a new Service The West Wind Web Toolkit supports several ways of creating and accessing AJAX services, but for this post I'll stick to the lower level approach that works from any plain HTML page or of course MVC, WebForms, WebPages. There's also a WebForms specific control that makes this even easier but I'll leave that for another post. So, to create a new standalone AJAX/REST service we can create a new HttpHandler in the new project either as a pure class based handler or as a generic .ASHX handler. Both work equally well, but generic handlers don't require any web.config configuration so I'll use that here. In the root of the project add a Generic Handler. I'm going to call this one StockService.ashx. Once the handler has been created, edit the code and remove all of the handler body code. Then change the base class to CallbackHandler and add methods that have a [CallbackMethod] attribute. Here's the modified base handler implementation now looks like with an added HelloWorld method: using System; using Westwind.Web; namespace WestWindWebAjax { /// <summary> /// Handler implements CallbackHandler to provide REST/AJAX services /// </summary> public class SampleService : CallbackHandler { [CallbackMethod] public string HelloWorld(string name) { return "Hello " + name + ". Time is: " + DateTime.Now.ToString(); } } } Notice that the class inherits from CallbackHandler and that the HelloWorld service method is marked up with [CallbackMethod]. We're done here. Services Urlbased Syntax Once you compile, the 'service' is live can respond to requests. All CallbackHandlers support input in GET and POST formats, and can return results as JSON or XML. To check our fancy HelloWorld method we can now access the service like this: http://localhost/WestWindWebAjax/StockService.ashx?Method=HelloWorld&name=Rick which produces a default JSON response - in this case a string (wrapped in quotes as it's JSON): (note by default JSON will be downloaded by most browsers not displayed - various options are available to view JSON right in the browser) If I want to return the same data as XML I can tack on a &format=xml at the end of the querystring which produces: <string>Hello Rick. Time is: 11/1/2011 12:11:13 PM</string> Cleaner URLs with Routing Syntax If you want cleaner URLs for each operation you can also configure custom routes on a per URL basis similar to the way that WCF REST does. To do this you need to add a new RouteHandler to your application's startup code in global.asax.cs one for each CallbackHandler based service you create: protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); } With this code in place you can now add RouteUrl properties to any of your service methods. For the HelloWorld method that doesn't make a ton of sense but here is what a routed clean URL might look like in definition: [CallbackMethod(RouteUrl="stocks/HelloWorld/{name}")] public string HelloWorld(string name) { return "Hello " + name + ". Time is: " + DateTime.Now.ToString(); } The same URL I previously used now becomes a bit shorter and more readable with: http://localhost/WestWindWebAjax/HelloWorld/Rick It's an easy way to create cleaner URLs and still get the same functionality. Calling the Service with $.getJSON() Since the result produced is JSON you can now easily consume this data using jQuery's getJSON method. First we need a couple of scripts - jquery.js and ww.jquery.js in the page: <!DOCTYPE html> <html> <head> <link href="Css/Westwind.css" rel="stylesheet" type="text/css" /> <script src="scripts/jquery.min.js" type="text/javascript"></script> <script src="scripts/ww.jquery.min.js" type="text/javascript"></script> </head> <body> Next let's add a small HelloWorld example form (what else) that has a single textbox to type a name, a button and a div tag to receive the result: <fieldset> <legend>Hello World</legend> Please enter a name: <input type="text" name="txtHello" id="txtHello" value="" /> <input type="button" id="btnSayHello" value="Say Hello (POST)" /> <input type="button" id="btnSayHelloGet" value="Say Hello (GET)" /> <div id="divHelloMessage" class="errordisplay" style="display:none;width: 450px;" > </div> </fieldset> Then to call the HelloWorld method a little jQuery is used to hook the document startup and the button click followed by the $.getJSON call to retrieve the data from the server. <script type="text/javascript"> $(document).ready(function () { $("#btnSayHelloGet").click(function () { $.getJSON("SampleService.ashx", { Method: "HelloWorld", name: $("#txtHello").val() }, function (result) { $("#divHelloMessage") .text(result) .fadeIn(1000); }); });</script> .getJSON() expects a full URL to the endpoint of our service, which is the ASHX file. We can either provide a full URL (SampleService.ashx?Method=HelloWorld&name=Rick) or we can just provide the base URL and an object that encodes the query string parameters for us using an object map that has a property that matches each parameter for the server method. We can also use the clean URL routing syntax, but using the object parameter encoding actually is safer as the parameters will get properly encoded by jQuery. The result returned is whatever the result on the server method is - in this case a string. The string is applied to the divHelloMessage element and we're done. Obviously this is a trivial example, but it demonstrates the basics of getting a JSON response back to the browser. AJAX Post Syntax - using ajaxCallMethod() The previous example allows you basic control over the data that you send to the server via querystring parameters. This works OK for simple values like short strings, numbers and boolean values, but doesn't really work if you need to pass something more complex like an object or an array back up to the server. To handle traditional RPC type messaging where the idea is to map server side functions and results to a client side invokation, POST operations can be used. The easiest way to use this functionality is to use ww.jquery.js and the ajaxCallMethod() function. ww.jquery wraps jQuery's AJAX functions and knows implicitly how to call a CallbackServer method with parameters and parse the result. Let's look at another simple example that posts a simple value but returns something more interesting. Let's start with the service method: [CallbackMethod(RouteUrl="stocks/{symbol}")] public StockQuote GetStockQuote(string symbol) { Response.Cache.SetExpires(DateTime.UtcNow.Add(new TimeSpan(0, 2, 0))); StockServer server = new StockServer(); var quote = server.GetStockQuote(symbol); if (quote == null) throw new ApplicationException("Invalid Symbol passed."); return quote; } This sample utilizes a small StockServer helper class (included in the sample) that downloads a stock quote from Yahoo's financial site via plain HTTP GET requests and formats it into a StockQuote object. Lets create a small HTML block that lets us query for the quote and display it: <fieldset> <legend>Single Stock Quote</legend> Please enter a stock symbol: <input type="text" name="txtSymbol" id="txtSymbol" value="msft" /> <input type="button" id="btnStockQuote" value="Get Quote" /> <div id="divStockDisplay" class="errordisplay" style="display:none; width: 450px;"> <div class="label-left">Company:</div> <div id="stockCompany"></div> <div class="label-left">Last Price:</div> <div id="stockLastPrice"></div> <div class="label-left">Quote Time:</div> <div id="stockQuoteTime"></div> </div> </fieldset> The final result looks something like this:   Let's hook up the button handler to fire the request and fill in the data as shown: $("#btnStockQuote").click(function () { ajaxCallMethod("SampleService.ashx", "GetStockQuote", [$("#txtSymbol").val()], function (quote) { $("#divStockDisplay").show().fadeIn(1000); $("#stockCompany").text(quote.Company + " (" + quote.Symbol + ")"); $("#stockLastPrice").text(quote.LastPrice); $("#stockQuoteTime").text(quote.LastQuoteTime.formatDate("MMM dd, HH:mm EST")); }, onPageError); }); So we point at SampleService.ashx and the GetStockQuote method, passing a single parameter of the input symbol value. Then there are two handlers for success and failure callbacks.  The success handler is the interesting part - it receives the stock quote as a result and assigns its values to various 'holes' in the stock display elements. The data that comes back over the wire is JSON and it looks like this: { "Symbol":"MSFT", "Company":"Microsoft Corpora", "OpenPrice":26.11, "LastPrice":26.01, "NetChange":0.02, "LastQuoteTime":"2011-11-03T02:00:00Z", "LastQuoteTimeString":"Nov. 11, 2011 4:20pm" } which is an object representation of the data. JavaScript can evaluate this JSON string back into an object easily and that's the reslut that gets passed to the success function. The quote data is then applied to existing page content by manually selecting items and applying them. There are other ways to do this more elegantly like using templates, but here we're only interested in seeing how the data is returned. The data in the object is typed - LastPrice is a number and QuoteTime is a date. Note about the date value: JavaScript doesn't have a date literal although the JSON embedded ISO string format used above  ("2011-11-03T02:00:00Z") is becoming fairly standard for JSON serializers. However, JSON parsers don't deserialize dates by default and return them by string. This is why the StockQuote actually returns a string value of LastQuoteTimeString for the same date. ajaxMethodCallback always converts dates properly into 'real' dates and the example above uses the real date value along with a .formatDate() data extension (also in ww.jquery.js) to display the raw date properly. Errors and Exceptions So what happens if your code fails? For example if I pass an invalid stock symbol to the GetStockQuote() method you notice that the code does this: if (quote == null) throw new ApplicationException("Invalid Symbol passed."); CallbackHandler automatically pushes the exception message back to the client so it's easy to pick up the error message. Regardless of what kind of error occurs: Server side, client side, protocol errors - any error will fire the failure handler with an error object parameter. The error is returned to the client via a JSON response in the error callback. In the previous examples I called onPageError which is a generic routine in ww.jquery that displays a status message on the bottom of the screen. But of course you can also take over the error handling yourself: $("#btnStockQuote").click(function () { ajaxCallMethod("SampleService.ashx", "GetStockQuote", [$("#txtSymbol").val()], function (quote) { $("#divStockDisplay").fadeIn(1000); $("#stockCompany").text(quote.Company + " (" + quote.Symbol + ")"); $("#stockLastPrice").text(quote.LastPrice); $("#stockQuoteTime").text(quote.LastQuoteTime.formatDate("MMM dd, hh:mmt")); }, function (error, xhr) { $("#divErrorDisplay").text(error.message).fadeIn(1000); }); }); The error object has a isCallbackError, message and  stackTrace properties, the latter of which is only populated when running in Debug mode, and this object is returned for all errors: Client side, transport and server side errors. Regardless of which type of error you get the same object passed (as well as the XHR instance optionally) which makes for a consistent error retrieval mechanism. Specifying HttpVerbs You can also specify HTTP Verbs that are allowed using the AllowedHttpVerbs option on the CallbackMethod attribute: [CallbackMethod(AllowedHttpVerbs=HttpVerbs.GET | HttpVerbs.POST)] public string HelloWorld(string name) { … } If you're building REST style API's this might be useful to force certain request semantics onto the client calling. For the above if call with a non-allowed HttpVerb the request returns a 405 error response along with a JSON (or XML) error object result. The default behavior is to allow all verbs access (HttpVerbs.All). Passing in object Parameters Up to now the parameters I passed were very simple. But what if you need to send something more complex like an object or an array? Let's look at another example now that passes an object from the client to the server. Keeping with the Stock theme here lets add a method called BuyOrder that lets us buy some shares for a stock. Consider the following service method that receives an StockBuyOrder object as a parameter: [CallbackMethod] public string BuyStock(StockBuyOrder buyOrder) { var server = new StockServer(); var quote = server.GetStockQuote(buyOrder.Symbol); if (quote == null) throw new ApplicationException("Invalid or missing stock symbol."); return string.Format("You're buying {0} shares of {1} ({2}) stock at {3} for a total of {4} on {5}.", buyOrder.Quantity, quote.Company, quote.Symbol, quote.LastPrice.ToString("c"), (quote.LastPrice * buyOrder.Quantity).ToString("c"), buyOrder.BuyOn.ToString("MMM d")); } public class StockBuyOrder { public string Symbol { get; set; } public int Quantity { get; set; } public DateTime BuyOn { get; set; } public StockBuyOrder() { BuyOn = DateTime.Now; } } This is a contrived do-nothing example that simply echoes back what was passed in, but it demonstrates how you can pass complex data to a callback method. On the client side we now have a very simple form that captures the three values on a form: <fieldset> <legend>Post a Stock Buy Order</legend> Enter a symbol: <input type="text" name="txtBuySymbol" id="txtBuySymbol" value="GLD" />&nbsp;&nbsp; Qty: <input type="text" name="txtBuyQty" id="txtBuyQty" value="10" style="width: 50px" />&nbsp;&nbsp; Buy on: <input type="text" name="txtBuyOn" id="txtBuyOn" value="<%= DateTime.Now.ToString("d") %>" style="width: 70px;" /> <input type="button" id="btnBuyStock" value="Buy Stock" /> <div id="divStockBuyMessage" class="errordisplay" style="display:none"></div> </fieldset> The completed form and demo then looks something like this:   The client side code that picks up the input values and assigns them to object properties and sends the AJAX request looks like this: $("#btnBuyStock").click(function () { // create an object map that matches StockBuyOrder signature var buyOrder = { Symbol: $("#txtBuySymbol").val(), Quantity: $("#txtBuyQty").val() * 1, // number Entered: new Date() } ajaxCallMethod("SampleService.ashx", "BuyStock", [buyOrder], function (result) { $("#divStockBuyMessage").text(result).fadeIn(1000); }, onPageError); }); The code creates an object and attaches the properties that match the server side object passed to the BuyStock method. Each property that you want to update needs to be included and the type must match (ie. string, number, date in this case). Any missing properties will not be set but also not cause any errors. Pass POST data instead of Objects In the last example I collected a bunch of values from form variables and stuffed them into object variables in JavaScript code. While that works, often times this isn't really helping - I end up converting my types on the client and then doing another conversion on the server. If lots of input controls are on a page and you just want to pick up the values on the server via plain POST variables - that can be done too - and it makes sense especially if you're creating and filling the client side object only to push data to the server. Let's add another method to the server that once again lets us buy a stock. But this time let's not accept a parameter but rather send POST data to the server. Here's the server method receiving POST data: [CallbackMethod] public string BuyStockPost() { StockBuyOrder buyOrder = new StockBuyOrder(); buyOrder.Symbol = Request.Form["txtBuySymbol"]; ; int qty; int.TryParse(Request.Form["txtBuyQuantity"], out qty); buyOrder.Quantity = qty; DateTime time; DateTime.TryParse(Request.Form["txtBuyBuyOn"], out time); buyOrder.BuyOn = time; // Or easier way yet //FormVariableBinder.Unbind(buyOrder,null,"txtBuy"); var server = new StockServer(); var quote = server.GetStockQuote(buyOrder.Symbol); if (quote == null) throw new ApplicationException("Invalid or missing stock symbol."); return string.Format("You're buying {0} shares of {1} ({2}) stock at {3} for a total of {4} on {5}.", buyOrder.Quantity, quote.Company, quote.Symbol, quote.LastPrice.ToString("c"), (quote.LastPrice * buyOrder.Quantity).ToString("c"), buyOrder.BuyOn.ToString("MMM d")); } Clearly we've made this server method take more code than it did with the object parameter. We've basically moved the parameter assignment logic from the client to the server. As a result the client code to call this method is now a bit shorter since there's no client side shuffling of values from the controls to an object. $("#btnBuyStockPost").click(function () { ajaxCallMethod("SampleService.ashx", "BuyStockPost", [], // Note: No parameters - function (result) { $("#divStockBuyMessage").text(result).fadeIn(1000); }, onPageError, // Force all page Form Variables to be posted { postbackMode: "Post" }); }); The client simply calls the BuyStockQuote method and pushes all the form variables from the page up to the server which parses them instead. The feature that makes this work is one of the options you can pass to the ajaxCallMethod() function: { postbackMode: "Post" }); which directs the function to include form variable POST data when making the service call. Other options include PostNoViewState (for WebForms to strip out WebForms crap vars), PostParametersOnly (default), None. If you pass parameters those are always posted to the server except when None is set. The above code can be simplified a bit by using the FormVariableBinder helper, which can unbind form variables directly into an object: FormVariableBinder.Unbind(buyOrder,null,"txtBuy"); which replaces the manual Request.Form[] reading code. It receives the object to unbind into, a string of properties to skip, and an optional prefix which is stripped off form variables to match property names. The component is similar to the MVC model binder but it's independent of MVC. Returning non-JSON Data CallbackHandler also supports returning non-JSON/XML data via special return types. You can return raw non-JSON encoded strings like this: [CallbackMethod(ReturnAsRawString=true,ContentType="text/plain")] public string HelloWorldNoJSON(string name) { return "Hello " + name + ". Time is: " + DateTime.Now.ToString(); } Calling this method results in just a plain string - no JSON encoding with quotes around the result. This can be useful if your server handling code needs to return a string or HTML result that doesn't fit well for a page or other UI component. Any string output can be returned. You can also return binary data. Stream, byte[] and Bitmap/Image results are automatically streamed back to the client. Notice that you should set the ContentType of the request either on the CallbackMethod attribute or using Response.ContentType. This ensures the Web Server knows how to display your binary response. Using a stream response makes it possible to return any of data. Streamed data can be pretty handy to return bitmap data from a method. The following is a method that returns a stock history graph for a particular stock over a provided number of years: [CallbackMethod(ContentType="image/png",RouteUrl="stocks/history/graph/{symbol}/{years}")] public Stream GetStockHistoryGraph(string symbol, int years = 2,int width = 500, int height=350) { if (width == 0) width = 500; if (height == 0) height = 350; StockServer server = new StockServer(); return server.GetStockHistoryGraph(symbol,"Stock History for " + symbol,width,height,years); } I can now hook this up into the JavaScript code when I get a stock quote. At the end of the process I can assign the URL to the service that returns the image into the src property and so force the image to display. Here's the changed code: $("#btnStockQuote").click(function () { var symbol = $("#txtSymbol").val(); ajaxCallMethod("SampleService.ashx", "GetStockQuote", [symbol], function (quote) { $("#divStockDisplay").fadeIn(1000); $("#stockCompany").text(quote.Company + " (" + quote.Symbol + ")"); $("#stockLastPrice").text(quote.LastPrice); $("#stockQuoteTime").text(quote.LastQuoteTime.formatDate("MMM dd, hh:mmt")); // display a stock chart $("#imgStockHistory").attr("src", "stocks/history/graph/" + symbol + "/2"); },onPageError); }); The resulting output then looks like this: The charting code uses the new ASP.NET 4.0 Chart components via code to display a bar chart of the 2 year stock data as part of the StockServer class which you can find in the sample download. The ability to return arbitrary data from a service is useful as you can see - in this case the chart is clearly associated with the service and it's nice that the graph generation can happen off a handler rather than through a page. Images are common resources, but output can also be PDF reports, zip files for downloads etc. which is becoming increasingly more common to be returned from REST endpoints and other applications. Why reinvent? Obviously the examples I've shown here are pretty basic in terms of functionality. But I hope they demonstrate the core features of AJAX callbacks that you need to work through in most applications which is simple: return data, send back data and potentially retrieve data in various formats. While there are other solutions when it comes down to making AJAX callbacks and servicing REST like requests, I like the flexibility my home grown solution provides. Simply put it's still the easiest solution that I've found that addresses my common use cases: AJAX JSON RPC style callbacks Url based access XML and JSON Output from single method endpoint XML and JSON POST support, querystring input, routing parameter mapping UrlEncoded POST data support on callbacks Ability to return stream/raw string data Essentially ability to return ANYTHING from Service and pass anything All these features are available in various solutions but not together in one place. I've been using this code base for over 4 years now in a number of projects both for myself and commercial work and it's served me extremely well. Besides the AJAX functionality CallbackHandler provides, it's also an easy way to create any kind of output endpoint I need to create. Need to create a few simple routines that spit back some data, but don't want to create a Page or View or full blown handler for it? Create a CallbackHandler and add a method or multiple methods and you have your generic endpoints.  It's a quick and easy way to add small code pieces that are pretty efficient as they're running through a pretty small handler implementation. I can have this up and running in a couple of minutes literally without any setup and returning just about any kind of data. Resources Download the Sample NuGet: Westwind Web and AJAX Utilities (Westwind.Web) ajaxCallMethod() Documentation Using the AjaxMethodCallback WebForms Control West Wind Web Toolkit Home Page West Wind Web Toolkit Source Code © Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  jQuery  AJAX   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • July 2013 Release of the Ajax Control Toolkit

    - by Stephen.Walther
    I’m super excited to announce the July 2013 release of the Ajax Control Toolkit. You can download the new version of the Ajax Control Toolkit from CodePlex (http://ajaxControlToolkit.CodePlex.com) or install the Ajax Control Toolkit from NuGet: With this release, we have completely rewritten the way the Ajax Control Toolkit combines, minifies, gzips, and caches JavaScript files. The goal of this release was to improve the performance of the Ajax Control Toolkit and make it easier to create custom Ajax Control Toolkit controls. Improving Ajax Control Toolkit Performance Previous releases of the Ajax Control Toolkit optimized performance for a single page but not multiple pages. When you visited each page in an app, the Ajax Control Toolkit would combine all of the JavaScript files required by the controls in the page into a new JavaScript file. So, even if every page in your app used the exact same controls, visitors would need to download a new combined Ajax Control Toolkit JavaScript file for each page visited. Downloading new scripts for each page that you visit does not lead to good performance. In general, you want to make as few requests for JavaScript files as possible and take maximum advantage of caching. For most apps, you would get much better performance if you could specify all of the Ajax Control Toolkit controls that you need for your entire app and create a single JavaScript file which could be used across your entire app. What a great idea! Introducing Control Bundles With this release of the Ajax Control Toolkit, we introduce the concept of Control Bundles. You define a Control Bundle to indicate the set of Ajax Control Toolkit controls that you want to use in your app. You define Control Bundles in a file located in the root of your application named AjaxControlToolkit.config. For example, the following AjaxControlToolkit.config file defines two Control Bundles: <ajaxControlToolkit> <controlBundles> <controlBundle> <control name="CalendarExtender" /> <control name="ComboBox" /> </controlBundle> <controlBundle name="CalendarBundle"> <control name="CalendarExtender"></control> </controlBundle> </controlBundles> </ajaxControlToolkit> The first Control Bundle in the file above does not have a name. When a Control Bundle does not have a name then it becomes the default Control Bundle for your entire application. The default Control Bundle is used by the ToolkitScriptManager by default. For example, the default Control Bundle is used when you declare the ToolkitScriptManager like this:  <ajaxToolkit:ToolkitScriptManager runat=”server” /> The default Control Bundle defined in the file above includes all of the scripts required for the CalendarExtender and ComboBox controls. All of the scripts required for both of these controls are combined, minified, gzipped, and cached automatically. The AjaxControlToolkit.config file above also defines a second Control Bundle with the name CalendarBundle. Here’s how you would use the CalendarBundle with the ToolkitScriptManager: <ajaxToolkit:ToolkitScriptManager runat="server"> <ControlBundles> <ajaxToolkit:ControlBundle Name="CalendarBundle" /> </ControlBundles> </ajaxToolkit:ToolkitScriptManager> In this case, only the JavaScript files required by the CalendarExtender control, and not the ComboBox, would be downloaded because the CalendarBundle lists only the CalendarExtender control. You can use multiple named control bundles with the ToolkitScriptManager and you will get all of the scripts from both bundles. Support for ControlBundles is a new feature of the ToolkitScriptManager that we introduced with this release. We extended the ToolkitScriptManager to support the Control Bundles that you can define in the AjaxControlToolkit.config file. Let me be explicit about the rules for Control Bundles: 1. If you do not create an AjaxControlToolkit.config file then the ToolkitScriptManager will download all of the JavaScript files required for all of the controls in the Ajax Control Toolkit. This is the easy but low performance option. 2. If you create an AjaxControlToolkit.config file and create a ControlBundle without a name then the ToolkitScriptManager uses that Control Bundle by default. For example, if you plan to use only the CalendarExtender and ComboBox controls in your application then you should create a default bundle that lists only these two controls. 3. If you create an AjaxControlToolkit.config file and create one or more named Control Bundles then you can use these named Control Bundles with the ToolkitScriptManager. For example, you might want to use different subsets of the Ajax Control Toolkit controls in different sections of your app. I should also mention that you can use the AjaxControlToolkit.config file with custom Ajax Control Toolkit controls – new controls that you write. For example, here is how you would register a set of custom controls from an assembly named MyAssembly: <ajaxControlToolkit> <controlBundles> <controlBundle name="CustomBundle"> <control name="MyAssembly.MyControl1" assembly="MyAssembly" /> <control name="MyAssembly.MyControl2" assembly="MyAssembly" /> </controlBundle> </ajaxControlToolkit> What about ASP.NET Bundling and Minification? The idea of Control Bundles is similar to the idea of Script Bundles used in ASP.NET Bundling and Minification. You might be wondering why we didn’t simply use Script Bundles with the Ajax Control Toolkit. There were several reasons. First, ASP.NET Bundling does not work with scripts embedded in an assembly. Because all of the scripts used by the Ajax Control Toolkit are embedded in the AjaxControlToolkit.dll assembly, ASP.NET Bundling was not an option. Second, Web Forms developers typically think at the level of controls and not at the level of individual scripts. We believe that it makes more sense for a Web Forms developer to specify the controls that they need in an app (CalendarExtender, ToggleButton) instead of the individual scripts that they need in an app (the 15 or so scripts required by the CalenderExtender). Finally, ASP.NET Bundling does not work with older versions of ASP.NET. The Ajax Control Toolkit needs to support ASP.NET 3.5, ASP.NET 4.0, and ASP.NET 4.5. Therefore, using ASP.NET Bundling was not an option. There is nothing wrong with using Control Bundles and Script Bundles side-by-side. The ASP.NET 4.0 and 4.5 ToolkitScriptManager supports both approaches to bundling scripts. Using the AjaxControlToolkit.CombineScriptsHandler Browsers cache JavaScript files by URL. For example, if you request the exact same JavaScript file from two different URLs then the exact same JavaScript file must be downloaded twice. However, if you request the same JavaScript file from the same URL more than once then it only needs to be downloaded once. With this release of the Ajax Control Toolkit, we have introduced a new HTTP Handler named the AjaxControlToolkit.CombineScriptsHandler. If you register this handler in your web.config file then the Ajax Control Toolkit can cache your JavaScript files for up to one year in the future automatically. You should register the handler in two places in your web.config file: in the <httpHandlers> section and the <system.webServer> section (don’t forget to register the handler for the AjaxFileUpload while you are there!). <httpHandlers> <add verb="*" path="AjaxFileUploadHandler.axd" type="AjaxControlToolkit.AjaxFileUploadHandler, AjaxControlToolkit" /> <add verb="*" path="CombineScriptsHandler.axd" type="AjaxControlToolkit.CombineScriptsHandler, AjaxControlToolkit" /> </httpHandlers> <system.webServer> <validation validateIntegratedModeConfiguration="false" /> <handlers> <add name="AjaxFileUploadHandler" verb="*" path="AjaxFileUploadHandler.axd" type="AjaxControlToolkit.AjaxFileUploadHandler, AjaxControlToolkit" /> <add name="CombineScriptsHandler" verb="*" path="CombineScriptsHandler.axd" type="AjaxControlToolkit.CombineScriptsHandler, AjaxControlToolkit" /> </handlers> <system.webServer> The handler is only used in release mode and not in debug mode. You can enable release mode in your web.config file like this: <compilation debug=”false”> You also can override the web.config setting with the ToolkitScriptManager like this: <act:ToolkitScriptManager ScriptMode=”Release” runat=”server”/> In release mode, scripts are combined, minified, gzipped, and cached with a far future cache header automatically. When the handler is not registered, scripts are requested from the page that contains the ToolkitScriptManager: When the handler is registered in the web.config file, scripts are requested from the handler: If you want the best performance, always register the handler. That way, the Ajax Control Toolkit can cache the bundled scripts across page requests with a far future cache header. If you don’t register the handler then a new JavaScript file must be downloaded whenever you travel to a new page. Dynamic Bundling and Minification Previous releases of the Ajax Control Toolkit used a Visual Studio build task to minify the JavaScript files used by the Ajax Control Toolkit controls. The disadvantage of this approach to minification is that it made it difficult to create custom Ajax Control Toolkit controls. Starting with this release of the Ajax Control Toolkit, we support dynamic minification. The JavaScript files in the Ajax Control Toolkit are minified at runtime instead of at build time. Scripts are minified only when in release mode. You can specify release mode with the web.config file or with the ToolkitScriptManager ScriptMode property. Because of this change, the Ajax Control Toolkit now depends on the Ajax Minifier. You must include a reference to AjaxMin.dll in your Visual Studio project or you cannot take advantage of runtime minification. If you install the Ajax Control Toolkit from NuGet then AjaxMin.dll is added to your project as a NuGet dependency automatically. If you download the Ajax Control Toolkit from CodePlex then the AjaxMin.dll is included in the download. This change means that you no longer need to do anything special to create a custom Ajax Control Toolkit. As an open source project, we hope more people will contribute to the Ajax Control Toolkit (Yes, I am looking at you.) We have been working hard on making it much easier to create new custom controls. More on this subject with the next release of the Ajax Control Toolkit. A Single Visual Studio Solution We also made substantial changes to the Visual Studio solution and projects used by the Ajax Control Toolkit with this release. This change will matter to you only if you need to work directly with the Ajax Control Toolkit source code. In previous releases of the Ajax Control Toolkit, we maintained separate solution and project files for ASP.NET 3.5, ASP.NET 4.0, and ASP.NET 4.5. Starting with this release, we now support a single Visual Studio 2012 solution that takes advantage of multi-targeting to build ASP.NET 3.5, ASP.NET 4.0, and ASP.NET 4.5 versions of the toolkit. This change means that you need Visual Studio 2012 to open the Ajax Control Toolkit project downloaded from CodePlex. For details on how we setup multi-targeting, please see Budi Adiono’s blog post: http://www.budiadiono.com/2013/07/25/visual-studio-2012-multi-targeting-framework-project/ Summary You can take advantage of this release of the Ajax Control Toolkit to significantly improve the performance of your website. You need to do two things: 1) You need to create an AjaxControlToolkit.config file which lists the controls used in your app and 2) You need to register the AjaxControlToolkit.CombineScriptsHandler in the web.config file. We made substantial changes to the Ajax Control Toolkit with this release. We think these changes will result in much better performance for multipage apps and make the process of building custom controls much easier. As always, we look forward to hearing your feedback.

    Read the article

  • Node.js Adventure - When Node Flying in Wind

    - by Shaun
    In the first post of this series I mentioned some popular modules in the community, such as underscore, async, etc.. I also listed a module named “Wind (zh-CN)”, which is created by one of my friend, Jeff Zhao (zh-CN). Now I would like to use a separated post to introduce this module since I feel it brings a new async programming style in not only Node.js but JavaScript world. If you know or heard about the new feature in C# 5.0 called “async and await”, or you learnt F#, you will find the “Wind” brings the similar async programming experience in JavaScript. By using “Wind”, we can write async code that looks like the sync code. The callbacks, async stats and exceptions will be handled by “Wind” automatically and transparently.   What’s the Problem: Dense “Callback” Phobia Let’s firstly back to my second post in this series. As I mentioned in that post, when we wanted to read some records from SQL Server we need to open the database connection, and then execute the query. In Node.js all IO operation are designed as async callback pattern which means when the operation was done, it will invoke a function which was taken from the last parameter. For example the database connection opening code would be like this. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: } 8: }); And then if we need to query the database the code would be like this. It nested in the previous function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: } 14: }; 15: } 16: }); Assuming if we need to copy some data from this database to another then we need to open another connection and execute the command within the function under the query function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: target.open(targetConnectionString, function(error, t_conn) { 14: if(error) { 15: // connect failed 16: } 17: else { 18: t_conn.queryRaw(copy_command, function(error, results) { 19: if(error) { 20: // copy failed 21: } 22: else { 23: // and then, what do you want to do now... 24: } 25: }; 26: } 27: }; 28: } 29: }; 30: } 31: }); This is just an example. In the real project the logic would be more complicated. This means our application might be messed up and the business process will be fragged by many callback functions. I would like call this “Dense Callback Phobia”. This might be a challenge how to make code straightforward and easy to read, something like below. 1: try 2: { 3: // open source connection 4: var s_conn = sqlConnect(s_connectionString); 5: // retrieve data 6: var results = sqlExecuteCommand(s_conn, s_command); 7: 8: // open target connection 9: var t_conn = sqlConnect(t_connectionString); 10: // prepare the copy command 11: var t_command = getCopyCommand(results); 12: // execute the copy command 13: sqlExecuteCommand(s_conn, t_command); 14: } 15: catch (ex) 16: { 17: // error handling 18: }   What’s the Problem: Sync-styled Async Programming Similar as the previous problem, the callback-styled async programming model makes the upcoming operation as a part of the current operation, and mixed with the error handling code. So it’s very hard to understand what on earth this code will do. And since Node.js utilizes non-blocking IO mode, we cannot invoke those operations one by one, as they will be executed concurrently. For example, in this post when I tried to copy the records from Windows Azure SQL Database (a.k.a. WASD) to Windows Azure Table Storage, if I just insert the data into table storage one by one and then print the “Finished” message, I will see the message shown before the data had been copied. This is because all operations were executed at the same time. In order to make the copy operation and print operation executed synchronously I introduced a module named “async” and the code was changed as below. 1: async.forEach(results.rows, 2: function (row, callback) { 3: var resource = { 4: "PartitionKey": row[1], 5: "RowKey": row[0], 6: "Value": row[2] 7: }; 8: client.insertEntity(tableName, resource, function (error) { 9: if (error) { 10: callback(error); 11: } 12: else { 13: console.log("entity inserted."); 14: callback(null); 15: } 16: }); 17: }, 18: function (error) { 19: if (error) { 20: error["target"] = "insertEntity"; 21: res.send(500, error); 22: } 23: else { 24: console.log("all done."); 25: res.send(200, "Done!"); 26: } 27: }); It ensured that the “Finished” message will be printed when all table entities had been inserted. But it cannot promise that the records will be inserted in sequence. It might be another challenge to make the code looks like in sync-style? 1: try 2: { 3: forEach(row in rows) { 4: var entity = { /* ... */ }; 5: tableClient.insert(tableName, entity); 6: } 7:  8: console.log("Finished"); 9: } 10: catch (ex) { 11: console.log(ex); 12: }   How “Wind” Helps “Wind” is a JavaScript library which provides the control flow with plain JavaScript for asynchronous programming (and more) without additional pre-compiling steps. It’s available in NPM so that we can install it through “npm install wind”. Now let’s create a very simple Node.js application as the example. This application will take some website URLs from the command arguments and tried to retrieve the body length and print them in console. Then at the end print “Finish”. I’m going to use “request” module to make the HTTP call simple so I also need to install by the command “npm install request”. The code would be like this. 1: var request = require("request"); 2:  3: // get the urls from arguments, the first two arguments are `node.exe` and `fetch.js` 4: var args = process.argv.splice(2); 5:  6: // main function 7: var main = function() { 8: for(var i = 0; i < args.length; i++) { 9: // get the url 10: var url = args[i]; 11: // send the http request and try to get the response and body 12: request(url, function(error, response, body) { 13: if(!error && response.statusCode == 200) { 14: // log the url and the body length 15: console.log( 16: "%s: %d.", 17: response.request.uri.href, 18: body.length); 19: } 20: else { 21: // log error 22: console.log(error); 23: } 24: }); 25: } 26: 27: // finished 28: console.log("Finished"); 29: }; 30:  31: // execute the main function 32: main(); Let’s execute this application. (I made them in multi-lines for better reading.) 1: node fetch.js 2: "http://www.igt.com/us-en.aspx" 3: "http://www.igt.com/us-en/games.aspx" 4: "http://www.igt.com/us-en/cabinets.aspx" 5: "http://www.igt.com/us-en/systems.aspx" 6: "http://www.igt.com/us-en/interactive.aspx" 7: "http://www.igt.com/us-en/social-gaming.aspx" 8: "http://www.igt.com/support.aspx" Below is the output. As you can see the finish message was printed at the beginning, and the pages’ length retrieved in a different order than we specified. This is because in this code the request command, console logging command are executed asynchronously and concurrently. Now let’s introduce “Wind” to make them executed in order, which means it will request the websites one by one, and print the message at the end.   First of all we need to import the “Wind” package and make sure the there’s only one global variant named “Wind”, and ensure it’s “Wind” instead of “wind”. 1: var Wind = require("wind");   Next, we need to tell “Wind” which code will be executed asynchronously so that “Wind” can control the execution process. In this case the “request” operation executed asynchronously so we will create a “Task” by using a build-in helps function in “Wind” named Wind.Async.Task.create. 1: var requestBodyLengthAsync = function(url) { 2: return Wind.Async.Task.create(function(t) { 3: request(url, function(error, response, body) { 4: if(error || response.statusCode != 200) { 5: t.complete("failure", error); 6: } 7: else { 8: var data = 9: { 10: uri: response.request.uri.href, 11: length: body.length 12: }; 13: t.complete("success", data); 14: } 15: }); 16: }); 17: }; The code above created a “Task” from the original request calling code. In “Wind” a “Task” means an operation will be finished in some time in the future. A “Task” can be started by invoke its start() method, but no one knows when it actually will be finished. The Wind.Async.Task.create helped us to create a task. The only parameter is a function where we can put the actual operation in, and then notify the task object it’s finished successfully or failed by using the complete() method. In the code above I invoked the request method. If it retrieved the response successfully I set the status of this task as “success” with the URL and body length. If it failed I set this task as “failure” and pass the error out.   Next, we will change the main() function. In “Wind” if we want a function can be controlled by Wind we need to mark it as “async”. This should be done by using the code below. 1: var main = eval(Wind.compile("async", function() { 2: })); When the application is running, Wind will detect “eval(Wind.compile(“async”, function” and generate an anonymous code from the body of this original function. Then the application will run the anonymous code instead of the original one. In our example the main function will be like this. 1: var main = eval(Wind.compile("async", function() { 2: for(var i = 0; i < args.length; i++) { 3: try 4: { 5: var result = $await(requestBodyLengthAsync(args[i])); 6: console.log( 7: "%s: %d.", 8: result.uri, 9: result.length); 10: } 11: catch (ex) { 12: console.log(ex); 13: } 14: } 15: 16: console.log("Finished"); 17: })); As you can see, when I tried to request the URL I use a new command named “$await”. It tells Wind, the operation next to $await will be executed asynchronously, and the main thread should be paused until it finished (or failed). So in this case, my application will be pause when the first response was received, and then print its body length, then try the next one. At the end, print the finish message.   Finally, execute the main function. The full code would be like this. 1: var request = require("request"); 2: var Wind = require("wind"); 3:  4: var args = process.argv.splice(2); 5:  6: var requestBodyLengthAsync = function(url) { 7: return Wind.Async.Task.create(function(t) { 8: request(url, function(error, response, body) { 9: if(error || response.statusCode != 200) { 10: t.complete("failure", error); 11: } 12: else { 13: var data = 14: { 15: uri: response.request.uri.href, 16: length: body.length 17: }; 18: t.complete("success", data); 19: } 20: }); 21: }); 22: }; 23:  24: var main = eval(Wind.compile("async", function() { 25: for(var i = 0; i < args.length; i++) { 26: try 27: { 28: var result = $await(requestBodyLengthAsync(args[i])); 29: console.log( 30: "%s: %d.", 31: result.uri, 32: result.length); 33: } 34: catch (ex) { 35: console.log(ex); 36: } 37: } 38: 39: console.log("Finished"); 40: })); 41:  42: main().start();   Run our new application. At the beginning we will see the compiled and generated code by Wind. Then we can see the pages were requested one by one, and at the end the finish message was printed. Below is the code Wind generated for us. As you can see the original code, the output code were shown. 1: // Original: 2: function () { 3: for(var i = 0; i < args.length; i++) { 4: try 5: { 6: var result = $await(requestBodyLengthAsync(args[i])); 7: console.log( 8: "%s: %d.", 9: result.uri, 10: result.length); 11: } 12: catch (ex) { 13: console.log(ex); 14: } 15: } 16: 17: console.log("Finished"); 18: } 19:  20: // Compiled: 21: /* async << function () { */ (function () { 22: var _builder_$0 = Wind.builders["async"]; 23: return _builder_$0.Start(this, 24: _builder_$0.Combine( 25: _builder_$0.Delay(function () { 26: /* var i = 0; */ var i = 0; 27: /* for ( */ return _builder_$0.For(function () { 28: /* ; i < args.length */ return i < args.length; 29: }, function () { 30: /* ; i ++) { */ i ++; 31: }, 32: /* try { */ _builder_$0.Try( 33: _builder_$0.Delay(function () { 34: /* var result = $await(requestBodyLengthAsync(args[i])); */ return _builder_$0.Bind(requestBodyLengthAsync(args[i]), function (result) { 35: /* console.log("%s: %d.", result.uri, result.length); */ console.log("%s: %d.", result.uri, result.length); 36: return _builder_$0.Normal(); 37: }); 38: }), 39: /* } catch (ex) { */ function (ex) { 40: /* console.log(ex); */ console.log(ex); 41: return _builder_$0.Normal(); 42: /* } */ }, 43: null 44: ) 45: /* } */ ); 46: }), 47: _builder_$0.Delay(function () { 48: /* console.log("Finished"); */ console.log("Finished"); 49: return _builder_$0.Normal(); 50: }) 51: ) 52: ); 53: /* } */ })   How Wind Works Someone may raise a big concern when you find I utilized “eval” in my code. Someone may assume that Wind utilizes “eval” to execute some code dynamically while “eval” is very low performance. But I would say, Wind does NOT use “eval” to run the code. It only use “eval” as a flag to know which code should be compiled at runtime. When the code was firstly been executed, Wind will check and find “eval(Wind.compile(“async”, function”. So that it knows this function should be compiled. Then it utilized parse-js to analyze the inner JavaScript and generated the anonymous code in memory. Then it rewrite the original code so that when the application was running it will use the anonymous one instead of the original one. Since the code generation was done at the beginning of the application was started, in the future no matter how long our application runs and how many times the async function was invoked, it will use the generated code, no need to generate again. So there’s no significant performance hurt when using Wind.   Wind in My Previous Demo Let’s adopt Wind into one of my previous demonstration and to see how it helps us to make our code simple, straightforward and easy to read and understand. In this post when I implemented the functionality that copied the records from my WASD to table storage, the logic would be like this. 1, Open database connection. 2, Execute a query to select all records from the table. 3, Recreate the table in Windows Azure table storage. 4, Create entities from each of the records retrieved previously, and then insert them into table storage. 5, Finally, show message as the HTTP response. But as the image below, since there are so many callbacks and async operations, it’s very hard to understand my logic from the code. Now let’s use Wind to rewrite our code. First of all, of course, we need the Wind package. Then we need to include the package files into project and mark them as “Copy always”. Add the Wind package into the source code. Pay attention to the variant name, you must use “Wind” instead of “wind”. 1: var express = require("express"); 2: var async = require("async"); 3: var sql = require("node-sqlserver"); 4: var azure = require("azure"); 5: var Wind = require("wind"); Now we need to create some async functions by using Wind. All async functions should be wrapped so that it can be controlled by Wind which are open database, retrieve records, recreate table (delete and create) and insert entity in table. Below are these new functions. All of them are created by using Wind.Async.Task.create. 1: sql.openAsync = function (connectionString) { 2: return Wind.Async.Task.create(function (t) { 3: sql.open(connectionString, function (error, conn) { 4: if (error) { 5: t.complete("failure", error); 6: } 7: else { 8: t.complete("success", conn); 9: } 10: }); 11: }); 12: }; 13:  14: sql.queryAsync = function (conn, query) { 15: return Wind.Async.Task.create(function (t) { 16: conn.queryRaw(query, function (error, results) { 17: if (error) { 18: t.complete("failure", error); 19: } 20: else { 21: t.complete("success", results); 22: } 23: }); 24: }); 25: }; 26:  27: azure.recreateTableAsync = function (tableName) { 28: return Wind.Async.Task.create(function (t) { 29: client.deleteTable(tableName, function (error, successful, response) { 30: console.log("delete table finished"); 31: client.createTableIfNotExists(tableName, function (error, successful, response) { 32: console.log("create table finished"); 33: if (error) { 34: t.complete("failure", error); 35: } 36: else { 37: t.complete("success", null); 38: } 39: }); 40: }); 41: }); 42: }; 43:  44: azure.insertEntityAsync = function (tableName, entity) { 45: return Wind.Async.Task.create(function (t) { 46: client.insertEntity(tableName, entity, function (error, entity, response) { 47: if (error) { 48: t.complete("failure", error); 49: } 50: else { 51: t.complete("success", null); 52: } 53: }); 54: }); 55: }; Then in order to use these functions we will create a new function which contains all steps for data copying. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: } 4: catch (ex) { 5: console.log(ex); 6: res.send(500, "Internal error."); 7: } 8: })); Let’s execute steps one by one with the “$await” keyword introduced by Wind so that it will be invoked in sequence. First is to open the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: } 7: catch (ex) { 8: console.log(ex); 9: res.send(500, "Internal error."); 10: } 11: })); Then retrieve all records from the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: } 10: catch (ex) { 11: console.log(ex); 12: res.send(500, "Internal error."); 13: } 14: })); After recreated the table, we need to create the entities and insert them into table storage. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: } 24: } 25: catch (ex) { 26: console.log(ex); 27: res.send(500, "Internal error."); 28: } 29: })); Finally, send response back to the browser. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: // send response 24: console.log("all done"); 25: res.send(200, "All done!"); 26: } 27: } 28: catch (ex) { 29: console.log(ex); 30: res.send(500, "Internal error."); 31: } 32: })); If we compared with the previous code we will find now it became more readable and much easy to understand. It’s very easy to know what this function does even though without any comments. When user go to URL “/was/copyRecords” we will execute the function above. The code would be like this. 1: app.get("/was/copyRecords", function (req, res) { 2: copyRecords(req, res).start(); 3: }); And below is the logs printed in local compute emulator console. As we can see the functions executed one by one and then finally the response back to me browser.   Scaffold Functions in Wind Wind provides not only the async flow control and compile functions, but many scaffold methods as well. We can build our async code more easily by using them. I’m going to introduce some basic scaffold functions here. In the code above I created some functions which wrapped from the original async function such as open database, create table, etc.. All of them are very similar, created a task by using Wind.Async.Task.create, return error or result object through Task.complete function. In fact, Wind provides some functions for us to create task object from the original async functions. If the original async function only has a callback parameter, we can use Wind.Async.Binding.fromCallback method to get the task object directly. For example the code below returned the task object which wrapped the file exist check function. 1: var Wind = require("wind"); 2: var fs = require("fs"); 3:  4: fs.existsAsync = Wind.Async.Binding.fromCallback(fs.exists); In Node.js a very popular async function pattern is that, the first parameter in the callback function represent the error object, and the other parameters is the return values. In this case we can use another build-in function in Wind named Wind.Async.Binding.fromStandard. For example, the open database function can be created from the code below. 1: sql.openAsync = Wind.Async.Binding.fromStandard(sql.open); 2:  3: /* 4: sql.openAsync = function (connectionString) { 5: return Wind.Async.Task.create(function (t) { 6: sql.open(connectionString, function (error, conn) { 7: if (error) { 8: t.complete("failure", error); 9: } 10: else { 11: t.complete("success", conn); 12: } 13: }); 14: }); 15: }; 16: */ When I was testing the scaffold functions under Wind.Async.Binding I found for some functions, such as the Azure SDK insert entity function, cannot be processed correctly. So I personally suggest writing the wrapped method manually.   Another scaffold method in Wind is the parallel tasks coordination. In this example, the steps of open database, retrieve records and recreated table should be invoked one by one, but it can be executed in parallel when copying data from database to table storage. In Wind there’s a scaffold function named Task.whenAll which can be used here. Task.whenAll accepts a list of tasks and creates a new task. It will be returned only when all tasks had been completed, or any errors occurred. For example in the code below I used the Task.whenAll to make all copy operation executed at the same time. 1: var copyRecordsInParallel = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage in parallal 14: var tasks = new Array(results.rows.length); 15: for (var i = 0; i < results.rows.length; i++) { 16: var entity = { 17: "PartitionKey": results.rows[i][1], 18: "RowKey": results.rows[i][0], 19: "Value": results.rows[i][2] 20: }; 21: tasks[i] = azure.insertEntityAsync(tableName, entity); 22: } 23: $await(Wind.Async.Task.whenAll(tasks)); 24: // send response 25: console.log("all done"); 26: res.send(200, "All done!"); 27: } 28: } 29: catch (ex) { 30: console.log(ex); 31: res.send(500, "Internal error."); 32: } 33: })); 34:  35: app.get("/was/copyRecordsInParallel", function (req, res) { 36: copyRecordsInParallel(req, res).start(); 37: });   Besides the task creation and coordination, Wind supports the cancellation solution so that we can send the cancellation signal to the tasks. It also includes exception solution which means any exceptions will be reported to the caller function.   Summary In this post I introduced a Node.js module named Wind, which created by my friend Jeff Zhao. As you can see, different from other async library and framework, adopted the idea from F# and C#, Wind utilizes runtime code generation technology to make it more easily to write async, callback-based functions in a sync-style way. By using Wind there will be almost no callback, and the code will be very easy to understand. Currently Wind is still under developed and improved. There might be some problems but the author, Jeff, should be very happy and enthusiastic to learn your problems, feedback, suggestion and comments. You can contact Jeff by - Email: [email protected] - Group: https://groups.google.com/d/forum/windjs - GitHub: https://github.com/JeffreyZhao/wind/issues   Source code can be download here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Parallelism in .NET – Part 11, Divide and Conquer via Parallel.Invoke

    - by Reed
    Many algorithms are easily written to work via recursion.  For example, most data-oriented tasks where a tree of data must be processed are much more easily handled by starting at the root, and recursively “walking” the tree.  Some algorithms work this way on flat data structures, such as arrays, as well.  This is a form of divide and conquer: an algorithm design which is based around breaking up a set of work recursively, “dividing” the total work in each recursive step, and “conquering” the work when the remaining work is small enough to be solved easily. Recursive algorithms, especially ones based on a form of divide and conquer, are often a very good candidate for parallelization. This is apparent from a common sense standpoint.  Since we’re dividing up the total work in the algorithm, we have an obvious, built-in partitioning scheme.  Once partitioned, the data can be worked upon independently, so there is good, clean isolation of data. Implementing this type of algorithm is fairly simple.  The Parallel class in .NET 4 includes a method suited for this type of operation: Parallel.Invoke.  This method works by taking any number of delegates defined as an Action, and operating them all in parallel.  The method returns when every delegate has completed: Parallel.Invoke( () => { Console.WriteLine("Action 1 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); }, () => { Console.WriteLine("Action 2 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); }, () => { Console.WriteLine("Action 3 executing in thread {0}", Thread.CurrentThread.ManagedThreadId); } ); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Running this simple example demonstrates the ease of using this method.  For example, on my system, I get three separate thread IDs when running the above code.  By allowing any number of delegates to be executed directly, concurrently, the Parallel.Invoke method provides us an easy way to parallelize any algorithm based on divide and conquer.  We can divide our work in each step, and execute each task in parallel, recursively. For example, suppose we wanted to implement our own quicksort routine.  The quicksort algorithm can be designed based on divide and conquer.  In each iteration, we pick a pivot point, and use that to partition the total array.  We swap the elements around the pivot, then recursively sort the lists on each side of the pivot.  For example, let’s look at this simple, sequential implementation of quicksort: public static void QuickSort<T>(T[] array) where T : IComparable<T> { QuickSortInternal(array, 0, array.Length - 1); } private static void QuickSortInternal<T>(T[] array, int left, int right) where T : IComparable<T> { if (left >= right) { return; } SwapElements(array, left, (left + right) / 2); int last = left; for (int current = left + 1; current <= right; ++current) { if (array[current].CompareTo(array[left]) < 0) { ++last; SwapElements(array, last, current); } } SwapElements(array, left, last); QuickSortInternal(array, left, last - 1); QuickSortInternal(array, last + 1, right); } static void SwapElements<T>(T[] array, int i, int j) { T temp = array[i]; array[i] = array[j]; array[j] = temp; } Here, we implement the quicksort algorithm in a very common, divide and conquer approach.  Running this against the built-in Array.Sort routine shows that we get the exact same answers (although the framework’s sort routine is slightly faster).  On my system, for example, I can use framework’s sort to sort ten million random doubles in about 7.3s, and this implementation takes about 9.3s on average. Looking at this routine, though, there is a clear opportunity to parallelize.  At the end of QuickSortInternal, we recursively call into QuickSortInternal with each partition of the array after the pivot is chosen.  This can be rewritten to use Parallel.Invoke by simply changing it to: // Code above is unchanged... SwapElements(array, left, last); Parallel.Invoke( () => QuickSortInternal(array, left, last - 1), () => QuickSortInternal(array, last + 1, right) ); } This routine will now run in parallel.  When executing, we now see the CPU usage across all cores spike while it executes.  However, there is a significant problem here – by parallelizing this routine, we took it from an execution time of 9.3s to an execution time of approximately 14 seconds!  We’re using more resources as seen in the CPU usage, but the overall result is a dramatic slowdown in overall processing time. This occurs because parallelization adds overhead.  Each time we split this array, we spawn two new tasks to parallelize this algorithm!  This is far, far too many tasks for our cores to operate upon at a single time.  In effect, we’re “over-parallelizing” this routine.  This is a common problem when working with divide and conquer algorithms, and leads to an important observation: When parallelizing a recursive routine, take special care not to add more tasks than necessary to fully utilize your system. This can be done with a few different approaches, in this case.  Typically, the way to handle this is to stop parallelizing the routine at a certain point, and revert back to the serial approach.  Since the first few recursions will all still be parallelized, our “deeper” recursive tasks will be running in parallel, and can take full advantage of the machine.  This also dramatically reduces the overhead added by parallelizing, since we’re only adding overhead for the first few recursive calls.  There are two basic approaches we can take here.  The first approach would be to look at the total work size, and if it’s smaller than a specific threshold, revert to our serial implementation.  In this case, we could just check right-left, and if it’s under a threshold, call the methods directly instead of using Parallel.Invoke. The second approach is to track how “deep” in the “tree” we are currently at, and if we are below some number of levels, stop parallelizing.  This approach is a more general-purpose approach, since it works on routines which parse trees as well as routines working off of a single array, but may not work as well if a poor partitioning strategy is chosen or the tree is not balanced evenly. This can be written very easily.  If we pass a maxDepth parameter into our internal routine, we can restrict the amount of times we parallelize by changing the recursive call to: // Code above is unchanged... SwapElements(array, left, last); if (maxDepth < 1) { QuickSortInternal(array, left, last - 1, maxDepth); QuickSortInternal(array, last + 1, right, maxDepth); } else { --maxDepth; Parallel.Invoke( () => QuickSortInternal(array, left, last - 1, maxDepth), () => QuickSortInternal(array, last + 1, right, maxDepth)); } We no longer allow this to parallelize indefinitely – only to a specific depth, at which time we revert to a serial implementation.  By starting the routine with a maxDepth equal to Environment.ProcessorCount, we can restrict the total amount of parallel operations significantly, but still provide adequate work for each processing core. With this final change, my timings are much better.  On average, I get the following timings: Framework via Array.Sort: 7.3 seconds Serial Quicksort Implementation: 9.3 seconds Naive Parallel Implementation: 14 seconds Parallel Implementation Restricting Depth: 4.7 seconds Finally, we are now faster than the framework’s Array.Sort implementation.

    Read the article

  • Custom ASP.NET Routing to an HttpHandler

    - by Rick Strahl
    As of version 4.0 ASP.NET natively supports routing via the now built-in System.Web.Routing namespace. Routing features are automatically integrated into the HtttpRuntime via a few custom interfaces. New Web Forms Routing Support In ASP.NET 4.0 there are a host of improvements including routing support baked into Web Forms via a RouteData property available on the Page class and RouteCollection.MapPageRoute() route handler that makes it easy to route to Web forms. To map ASP.NET Page routes is as simple as setting up the routes with MapPageRoute:protected void Application_Start(object sender, EventArgs e) { RegisterRoutes(RouteTable.Routes); } void RegisterRoutes(RouteCollection routes) { routes.MapPageRoute("StockQuote", "StockQuote/{symbol}", "StockQuote.aspx"); routes.MapPageRoute("StockQuotes", "StockQuotes/{symbolList}", "StockQuotes.aspx"); } and then accessing the route data in the page you can then use the new Page class RouteData property to retrieve the dynamic route data information:public partial class StockQuote1 : System.Web.UI.Page { protected StockQuote Quote = null; protected void Page_Load(object sender, EventArgs e) { string symbol = RouteData.Values["symbol"] as string; StockServer server = new StockServer(); Quote = server.GetStockQuote(symbol); // display stock data in Page View } } Simple, quick and doesn’t require much explanation. If you’re using WebForms most of your routing needs should be served just fine by this simple mechanism. Kudos to the ASP.NET team for putting this in the box and making it easy! How Routing Works To handle Routing in ASP.NET involves these steps: Registering Routes Creating a custom RouteHandler to retrieve an HttpHandler Attaching RouteData to your HttpHandler Picking up Route Information in your Request code Registering routes makes ASP.NET aware of the Routes you want to handle via the static RouteTable.Routes collection. You basically add routes to this collection to let ASP.NET know which URL patterns it should watch for. You typically hook up routes off a RegisterRoutes method that fires in Application_Start as I did in the example above to ensure routes are added only once when the application first starts up. When you create a route, you pass in a RouteHandler instance which ASP.NET caches and reuses as routes are matched. Once registered ASP.NET monitors the routes and if a match is found just prior to the HttpHandler instantiation, ASP.NET uses the RouteHandler registered for the route and calls GetHandler() on it to retrieve an HttpHandler instance. The RouteHandler.GetHandler() method is responsible for creating an instance of an HttpHandler that is to handle the request and – if necessary – to assign any additional custom data to the handler. At minimum you probably want to pass the RouteData to the handler so the handler can identify the request based on the route data available. To do this you typically add  a RouteData property to your handler and then assign the property from the RouteHandlers request context. This is essentially how Page.RouteData comes into being and this approach should work well for any custom handler implementation that requires RouteData. It’s a shame that ASP.NET doesn’t have a top level intrinsic object that’s accessible off the HttpContext object to provide route data more generically, but since RouteData is directly tied to HttpHandlers and not all handlers support it it might cause some confusion of when it’s actually available. Bottom line is that if you want to hold on to RouteData you have to assign it to a custom property of the handler or else pass it to the handler via Context.Items[] object that can be retrieved on an as needed basis. It’s important to understand that routing is hooked up via RouteHandlers that are responsible for loading HttpHandler instances. RouteHandlers are invoked for every request that matches a route and through this RouteHandler instance the Handler gains access to the current RouteData. Because of this logic it’s important to understand that Routing is really tied to HttpHandlers and not available prior to handler instantiation, which is pretty late in the HttpRuntime’s request pipeline. IOW, Routing works with Handlers but not with earlier in the pipeline within Modules. Specifically ASP.NET calls RouteHandler.GetHandler() from the PostResolveRequestCache HttpRuntime pipeline event. Here’s the call stack at the beginning of the GetHandler() call: which fires just before handler resolution. Non-Page Routing – You need to build custom RouteHandlers If you need to route to a custom Http Handler or other non-Page (and non-MVC) endpoint in the HttpRuntime, there is no generic mapping support available. You need to create a custom RouteHandler that can manage creating an instance of an HttpHandler that is fired in response to a routed request. Depending on what you are doing this process can be simple or fairly involved as your code is responsible based on the route data provided which handler to instantiate, and more importantly how to pass the route data on to the Handler. Luckily creating a RouteHandler is easy by implementing the IRouteHandler interface which has only a single GetHttpHandler(RequestContext context) method. In this method you can pick up the requestContext.RouteData, instantiate the HttpHandler of choice, and assign the RouteData to it. Then pass back the handler and you’re done.Here’s a simple example of GetHttpHandler() method that dynamically creates a handler based on a passed in Handler type./// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } Note that this code checks for a specific type of handler and if it matches assigns the RouteData to this handler. This is optional but quite a common scenario if you want to work with RouteData. If the handler you need to instantiate isn’t under your control but you still need to pass RouteData to Handler code, an alternative is to pass the RouteData via the HttpContext.Items collection:IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; requestContext.HttpContext.Items["RouteData"] = requestContext.RouteData; return handler; } The code in the handler implementation can then pick up the RouteData from the context collection as needed:RouteData routeData = HttpContext.Current.Items["RouteData"] as RouteData This isn’t as clean as having an explicit RouteData property, but it does have the advantage that the route data is visible anywhere in the Handler’s code chain. It’s definitely preferable to create a custom property on your handler, but the Context work-around works in a pinch when you don’t’ own the handler code and have dynamic code executing as part of the handler execution. An Example of a Custom RouteHandler: Attribute Based Route Implementation In this post I’m going to discuss a custom routine implementation I built for my CallbackHandler class in the West Wind Web & Ajax Toolkit. CallbackHandler can be very easily used for creating AJAX, REST and POX requests following RPC style method mapping. You can pass parameters via URL query string, POST data or raw data structures, and you can retrieve results as JSON, XML or raw string/binary data. It’s a quick and easy way to build service interfaces with no fuss. As a quick review here’s how CallbackHandler works: You create an Http Handler that derives from CallbackHandler You implement methods that have a [CallbackMethod] Attribute and that’s it. Here’s an example of an CallbackHandler implementation in an ashx.cs based handler:// RestService.ashx.cs public class RestService : CallbackHandler { [CallbackMethod] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } } CallbackHandler makes it super easy to create a method on the server, pass data to it via POST, QueryString or raw JSON/XML data, and then retrieve the results easily back in various formats. This works wonderful and I’ve used these tools in many projects for myself and with clients. But one thing missing has been the ability to create clean URLs. Typical URLs looked like this: http://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuote&symbol=msfthttp://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuotes&symbolList=msft,intc,gld,slw,mwe&format=xml which works and is clear enough, but also clearly very ugly. It would be much nicer if URLs could look like this: http://www.west-wind.com//WestwindWebtoolkit/Samples/StockQuote/msfthttp://www.west-wind.com/WestwindWebtoolkit/Samples/StockQuotes/msft,intc,gld,slw?format=xml (the Virtual Root in this sample is WestWindWebToolkit/Samples and StockQuote/{symbol} is the route)(If you use FireFox try using the JSONView plug-in make it easier to view JSON content) So, taking a clue from the WCF REST tools that use RouteUrls I set out to create a way to specify RouteUrls for each of the endpoints. The change made basically allows changing the above to: [CallbackMethod(RouteUrl="RestService/StockQuote/{symbol}")] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod(RouteUrl = "RestService/StockQuotes/{symbolList}")] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } where a RouteUrl is specified as part of the Callback attribute. And with the changes made with RouteUrls I can now get URLs like the second set shown earlier. So how does that work? Let’s find out… How to Create Custom Routes As mentioned earlier Routing is made up of several steps: Creating a custom RouteHandler to create HttpHandler instances Mapping the actual Routes to the RouteHandler Retrieving the RouteData and actually doing something useful with it in the HttpHandler In the CallbackHandler routing example above this works out to something like this: Create a custom RouteHandler that includes a property to track the method to call Set up the routes using Reflection against the class Looking for any RouteUrls in the CallbackMethod attribute Add a RouteData property to the CallbackHandler so we can access the RouteData in the code of the handler Creating a Custom Route Handler To make the above work I created a custom RouteHandler class that includes the actual IRouteHandler implementation as well as a generic and static method to automatically register all routes marked with the [CallbackMethod(RouteUrl="…")] attribute. Here’s the code:/// <summary> /// Route handler that can create instances of CallbackHandler derived /// callback classes. The route handler tracks the method name and /// creates an instance of the service in a predictable manner /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler type</typeparam> public class CallbackHandlerRouteHandler : IRouteHandler { /// <summary> /// Method name that is to be called on this route. /// Set by the automatically generated RegisterRoutes /// invokation. /// </summary> public string MethodName { get; set; } /// <summary> /// The type of the handler we're going to instantiate. /// Needed so we can semi-generically instantiate the /// handler and call the method on it. /// </summary> public Type CallbackHandlerType { get; set; } /// <summary> /// Constructor to pass in the two required components we /// need to create an instance of our handler. /// </summary> /// <param name="methodName"></param> /// <param name="callbackHandlerType"></param> public CallbackHandlerRouteHandler(string methodName, Type callbackHandlerType) { MethodName = methodName; CallbackHandlerType = callbackHandlerType; } /// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } /// <summary> /// Generic method to register all routes from a CallbackHandler /// that have RouteUrls defined on the [CallbackMethod] attribute /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler Type</typeparam> /// <param name="routes"></param> public static void RegisterRoutes<TCallbackHandler>(RouteCollection routes) { // find all methods var methods = typeof(TCallbackHandler).GetMethods(BindingFlags.Instance | BindingFlags.Public); foreach (var method in methods) { var attrs = method.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (attrs.Length < 1) continue; CallbackMethodAttribute attr = attrs[0] as CallbackMethodAttribute; if (string.IsNullOrEmpty(attr.RouteUrl)) continue; // Add the route routes.Add(method.Name, new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler)))); } } } The RouteHandler implements IRouteHandler, and its responsibility via the GetHandler method is to create an HttpHandler based on the route data. When ASP.NET calls GetHandler it passes a requestContext parameter which includes a requestContext.RouteData property. This parameter holds the current request’s route data as well as an instance of the current RouteHandler. If you look at GetHttpHandler() you can see that the code creates an instance of the handler we are interested in and then sets the RouteData property on the handler. This is how you can pass the current request’s RouteData to the handler. The RouteData object also has a  RouteData.RouteHandler property that is also available to the Handler later, which is useful in order to get additional information about the current route. In our case here the RouteHandler includes a MethodName property that identifies the method to execute in the handler since that value no longer comes from the URL so we need to figure out the method name some other way. The method name is mapped explicitly when the RouteHandler is created and here the static method that auto-registers all CallbackMethods with RouteUrls sets the method name when it creates the routes while reflecting over the methods (more on this in a minute). The important point here is that you can attach additional properties to the RouteHandler and you can then later access the RouteHandler and its properties later in the Handler to pick up these custom values. This is a crucial feature in that the RouteHandler serves in passing additional context to the handler so it knows what actions to perform. The automatic route registration is handled by the static RegisterRoutes<TCallbackHandler> method. This method is generic and totally reusable for any CallbackHandler type handler. To register a CallbackHandler and any RouteUrls it has defined you simple use code like this in Application_Start (or other application startup code):protected void Application_Start(object sender, EventArgs e) { // Register Routes for RestService CallbackHandlerRouteHandler.RegisterRoutes<RestService>(RouteTable.Routes); } If you have multiple CallbackHandler style services you can make multiple calls to RegisterRoutes for each of the service types. RegisterRoutes internally uses reflection to run through all the methods of the Handler, looking for CallbackMethod attributes and whether a RouteUrl is specified. If it is a new instance of a CallbackHandlerRouteHandler is created and the name of the method and the type are set. routes.Add(method.Name,           new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler) )) ); While the routing with CallbackHandlerRouteHandler is set up automatically for all methods that use the RouteUrl attribute, you can also use code to hook up those routes manually and skip using the attribute. The code for this is straightforward and just requires that you manually map each individual route to each method you want a routed: protected void Application_Start(objectsender, EventArgs e){    RegisterRoutes(RouteTable.Routes);}void RegisterRoutes(RouteCollection routes) { routes.Add("StockQuote Route",new Route("StockQuote/{symbol}",                     new CallbackHandlerRouteHandler("GetStockQuote",typeof(RestService) ) ) );     routes.Add("StockQuotes Route",new Route("StockQuotes/{symbolList}",                     new CallbackHandlerRouteHandler("GetStockQuotes",typeof(RestService) ) ) );}I think it’s clearly easier to have CallbackHandlerRouteHandler.RegisterRoutes() do this automatically for you based on RouteUrl attributes, but some people have a real aversion to attaching logic via attributes. Just realize that the option to manually create your routes is available as well. Using the RouteData in the Handler A RouteHandler’s responsibility is to create an HttpHandler and as mentioned earlier, natively IHttpHandler doesn’t have any support for RouteData. In order to utilize RouteData in your handler code you have to pass the RouteData to the handler. In my CallbackHandlerRouteHandler when it creates the HttpHandler instance it creates the instance and then assigns the custom RouteData property on the handler:IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; Again this only works if you actually add a RouteData property to your handler explicitly as I did in my CallbackHandler implementation:/// <summary> /// Optionally store RouteData on this handler /// so we can access it internally /// </summary> public RouteData RouteData {get; set; } and the RouteHandler needs to set it when it creates the handler instance. Once you have the route data in your handler you can access Route Keys and Values and also the RouteHandler. Since my RouteHandler has a custom property for the MethodName to retrieve it from within the handler I can do something like this now to retrieve the MethodName (this example is actually not in the handler but target is an instance pass to the processor): // check for Route Data method name if (target is CallbackHandler) { var routeData = ((CallbackHandler)target).RouteData; if (routeData != null) methodToCall = ((CallbackHandlerRouteHandler)routeData.RouteHandler).MethodName; } When I need to access the dynamic values in the route ( symbol in StockQuote/{symbol}) I can retrieve it easily with the Values collection (RouteData.Values["symbol"]). In my CallbackHandler processing logic I’m basically looking for matching parameter names to Route parameters: // look for parameters in the routeif(routeData != null){    string parmString = routeData.Values[parameter.Name] as string;    adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType);} And with that we’ve come full circle. We’ve created a custom RouteHandler() that passes the RouteData to the handler it creates. We’ve registered our routes to use the RouteHandler, and we’ve utilized the route data in our handler. For completeness sake here’s the routine that executes a method call based on the parameters passed in and one of the options is to retrieve the inbound parameters off RouteData (as well as from POST data or QueryString parameters):internal object ExecuteMethod(string method, object target, string[] parameters, CallbackMethodParameterType paramType, ref CallbackMethodAttribute callbackMethodAttribute) { HttpRequest Request = HttpContext.Current.Request; object Result = null; // Stores parsed parameters (from string JSON or QUeryString Values) object[] adjustedParms = null; Type PageType = target.GetType(); MethodInfo MI = PageType.GetMethod(method, BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic); if (MI == null) throw new InvalidOperationException("Invalid Server Method."); object[] methods = MI.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (methods.Length < 1) throw new InvalidOperationException("Server method is not accessible due to missing CallbackMethod attribute"); if (callbackMethodAttribute != null) callbackMethodAttribute = methods[0] as CallbackMethodAttribute; ParameterInfo[] parms = MI.GetParameters(); JSONSerializer serializer = new JSONSerializer(); RouteData routeData = null; if (target is CallbackHandler) routeData = ((CallbackHandler)target).RouteData; int parmCounter = 0; adjustedParms = new object[parms.Length]; foreach (ParameterInfo parameter in parms) { // Retrieve parameters out of QueryString or POST buffer if (parameters == null) { // look for parameters in the route if (routeData != null) { string parmString = routeData.Values[parameter.Name] as string; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // GET parameter are parsed as plain string values - no JSON encoding else if (HttpContext.Current.Request.HttpMethod == "GET") { // Look up the parameter by name string parmString = Request.QueryString[parameter.Name]; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // POST parameters are treated as methodParameters that are JSON encoded else if (paramType == CallbackMethodParameterType.Json) //string newVariable = methodParameters.GetValue(parmCounter) as string; adjustedParms[parmCounter] = serializer.Deserialize(Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject( Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); } else if (paramType == CallbackMethodParameterType.Json) adjustedParms[parmCounter] = serializer.Deserialize(parameters[parmCounter], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject(parameters[parmCounter], parameter.ParameterType); parmCounter++; } Result = MI.Invoke(target, adjustedParms); return Result; } The code basically uses Reflection to loop through all the parameters available on the method and tries to assign the parameters from RouteData, QueryString or POST variables. The parameters are converted into their appropriate types and then used to eventually make a Reflection based method call. What’s sweet is that the RouteData retrieval is just another option for dealing with the inbound data in this scenario and it adds exactly two lines of code plus the code to retrieve the MethodName I showed previously – a seriously low impact addition that adds a lot of extra value to this endpoint callback processing implementation. Debugging your Routes If you create a lot of routes it’s easy to run into Route conflicts where multiple routes have the same path and overlap with each other. This can be difficult to debug especially if you are using automatically generated routes like the routes created by CallbackHandlerRouteHandler.RegisterRoutes. Luckily there’s a tool that can help you out with this nicely. Phill Haack created a RouteDebugging tool you can download and add to your project. The easiest way to do this is to grab and add this to your project is to use NuGet (Add Library Package from your Project’s Reference Nodes):   which adds a RouteDebug assembly to your project. Once installed you can easily debug your routes with this simple line of code which needs to be installed at application startup:protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); // Debug your routes RouteDebug.RouteDebugger.RewriteRoutesForTesting(RouteTable.Routes); } Any routed URL then displays something like this: The screen shows you your current route data and all the routes that are mapped along with a flag that displays which route was actually matched. This is useful – if you have any overlap of routes you will be able to see which routes are triggered – the first one in the sequence wins. This tool has saved my ass on a few occasions – and with NuGet now it’s easy to add it to your project in a few seconds and then remove it when you’re done. Routing Around Custom routing seems slightly complicated on first blush due to its disconnected components of RouteHandler, route registration and mapping of custom handlers. But once you understand the relationship between a RouteHandler, the RouteData and how to pass it to a handler, utilizing of Routing becomes a lot easier as you can easily pass context from the registration to the RouteHandler and through to the HttpHandler. The most important thing to understand when building custom routing solutions is to figure out how to map URLs in such a way that the handler can figure out all the pieces it needs to process the request. This can be via URL routing parameters and as I did in my example by passing additional context information as part of the RouteHandler instance that provides the proper execution context. In my case this ‘context’ was the method name, but it could be an actual static value like an enum identifying an operation or category in an application. Basically user supplied data comes in through the url and static application internal data can be passed via RouteHandler property values. Routing can make your application URLs easier to read by non-techie types regardless of whether you’re building Service type or REST applications, or full on Web interfaces. Routing in ASP.NET 4.0 makes it possible to create just about any extensionless URLs you can dream up and custom RouteHanmdler References Sample ProjectIncludes the sample CallbackHandler service discussed here along with compiled versionsof the Westwind.Web and Westwind.Utilities assemblies.  (requires .NET 4.0/VS 2010) West Wind Web Toolkit includes full implementation of CallbackHandler and the Routing Handler West Wind Web Toolkit Source CodeContains the full source code to the Westwind.Web and Westwind.Utilities assemblies usedin these samples. Includes the source described in the post.(Latest build in the Subversion Repository) CallbackHandler Source(Relevant code to this article tree in Westwind.Web assembly) JSONView FireFoxPluginA simple FireFox Plugin to easily view JSON data natively in FireFox.For IE you can use a registry hack to display JSON as raw text.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  HTTP  

    Read the article

  • AngularJS on top of ASP.NET: Moving the MVC framework out to the browser

    - by Varun Chatterji
    Heavily drawing inspiration from Ruby on Rails, MVC4’s convention over configuration model of development soon became the Holy Grail of .NET web development. The MVC model brought with it the goodness of proper separation of concerns between business logic, data, and the presentation logic. However, the MVC paradigm, was still one in which server side .NET code could be mixed with presentation code. The Razor templating engine, though cleaner than its predecessors, still encouraged and allowed you to mix .NET server side code with presentation logic. Thus, for example, if the developer required a certain <div> tag to be shown if a particular variable ShowDiv was true in the View’s model, the code could look like the following: Fig 1: To show a div or not. Server side .NET code is used in the View Mixing .NET code with HTML in views can soon get very messy. Wouldn’t it be nice if the presentation layer (HTML) could be pure HTML? Also, in the ASP.NET MVC model, some of the business logic invariably resides in the controller. It is tempting to use an anti­pattern like the one shown above to control whether a div should be shown or not. However, best practice would indicate that the Controller should not be aware of the div. The ShowDiv variable in the model should not exist. A controller should ideally, only be used to do the plumbing of getting the data populated in the model and nothing else. The view (ideally pure HTML) should render the presentation layer based on the model. In this article we will see how Angular JS, a new JavaScript framework by Google can be used effectively to build web applications where: 1. Views are pure HTML 2. Controllers (in the server sense) are pure REST based API calls 3. The presentation layer is loaded as needed from partial HTML only files. What is MVVM? MVVM short for Model View View Model is a new paradigm in web development. In this paradigm, the Model and View stuff exists on the client side through javascript instead of being processed on the server through postbacks. These frameworks are JavaScript frameworks that facilitate the clear separation of the “frontend” or the data rendering logic from the “backend” which is typically just a REST based API that loads and processes data through a resource model. The frameworks are called MVVM as a change to the Model (through javascript) gets reflected in the view immediately i.e. Model > View. Also, a change on the view (through manual input) gets reflected in the model immediately i.e. View > Model. The following figure shows this conceptually (comments are shown in red): Fig 2: Demonstration of MVVM in action In Fig 2, two text boxes are bound to the same variable model.myInt. Thus, changing the view manually (changing one text box through keyboard input) also changes the other textbox in real time demonstrating V > M property of a MVVM framework. Furthermore, clicking the button adds 1 to the value of model.myInt thus changing the model through JavaScript. This immediately updates the view (the value in the two textboxes) thus demonstrating the M > V property of a MVVM framework. Thus we see that the model in a MVVM JavaScript framework can be regarded as “the single source of truth“. This is an important concept. Angular is one such MVVM framework. We shall use it to build a simple app that sends SMS messages to a particular number. Application, Routes, Views, Controllers, Scope and Models Angular can be used in many ways to construct web applications. For this article, we shall only focus on building Single Page Applications (SPAs). Many of the approaches we will follow in this article have alternatives. It is beyond the scope of this article to explain every nuance in detail but we shall try to touch upon the basic concepts and end up with a working application that can be used to send SMS messages using Sent.ly Plus (a service that is itself built using Angular). Before you read on, we would like to urge you to forget what you know about Models, Views, Controllers and Routes in the ASP.NET MVC4 framework. All these words have different meanings in the Angular world. Whenever these words are used in this article, they will refer to Angular concepts and not ASP.NET MVC4 concepts. The following figure shows the skeleton of the root page of an SPA: Fig 3: The skeleton of a SPA The skeleton of the application is based on the Bootstrap starter template which can be found at: http://getbootstrap.com/examples/starter­template/ Apart from loading the Angular, jQuery and Bootstrap JavaScript libraries, it also loads our custom scripts /app/js/controllers.js /app/js/app.js These scripts define the routes, views and controllers which we shall come to in a moment. Application Notice that the body tag (Fig. 3) has an extra attribute: ng­app=”smsApp” Providing this tag “bootstraps” our single page application. It tells Angular to load a “module” called smsApp. This “module” is defined /app/js/app.js angular.module('smsApp', ['smsApp.controllers', function () {}]) Fig 4: The definition of our application module The line shows above, declares a module called smsApp. It also declares that this module “depends” on another module called “smsApp.controllers”. The smsApp.controllers module will contain all the controllers for our SPA. Routing and Views Notice that in the Navbar (in Fig 3) we have included two hyperlinks to: “#/app” “#/help” This is how Angular handles routing. Since the URLs start with “#”, they are actually just bookmarks (and not server side resources). However, our route definition (in /app/js/app.js) gives these URLs a special meaning within the Angular framework. angular.module('smsApp', ['smsApp.controllers', function () { }]) //Configure the routes .config(['$routeProvider', function ($routeProvider) { $routeProvider.when('/binding', { templateUrl: '/app/partials/bindingexample.html', controller: 'BindingController' }); }]); Fig 5: The definition of a route with an associated partial view and controller As we can see from the previous code sample, we are using the $routeProvider object in the configuration of our smsApp module. Notice how the code “asks for” the $routeProvider object by specifying it as a dependency in the [] braces and then defining a function that accepts it as a parameter. This is known as dependency injection. Please refer to the following link if you want to delve into this topic: http://docs.angularjs.org/guide/di What the above code snippet is doing is that it is telling Angular that when the URL is “#/binding”, then it should load the HTML snippet (“partial view”) found at /app/partials/bindingexample.html. Also, for this URL, Angular should load the controller called “BindingController”. We have also marked the div with the class “container” (in Fig 3) with the ng­view attribute. This attribute tells Angular that views (partial HTML pages) defined in the routes will be loaded within this div. You can see that the Angular JavaScript framework, unlike many other frameworks, works purely by extending HTML tags and attributes. It also allows you to extend HTML with your own tags and attributes (through directives) if you so desire, you can find out more about directives at the following URL: http://www.codeproject.com/Articles/607873/Extending­HTML­with­AngularJS­Directives Controllers and Models We have seen how we define what views and controllers should be loaded for a particular route. Let us now consider how controllers are defined. Our controllers are defined in the file /app/js/controllers.js. The following snippet shows the definition of the “BindingController” which is loaded when we hit the URL http://localhost:port/index.html#/binding (as we have defined in the route earlier as shown in Fig 5). Remember that we had defined that our application module “smsApp” depends on the “smsApp.controllers” module (see Fig 4). The code snippet below shows how the “BindingController” defined in the route shown in Fig 5 is defined in the module smsApp.controllers: angular.module('smsApp.controllers', [function () { }]) .controller('BindingController', ['$scope', function ($scope) { $scope.model = {}; $scope.model.myInt = 6; $scope.addOne = function () { $scope.model.myInt++; } }]); Fig 6: The definition of a controller in the “smsApp.controllers” module. The pieces are falling in place! Remember Fig.2? That was the code of a partial view that was loaded within the container div of the skeleton SPA shown in Fig 3. The route definition shown in Fig 5 also defined that the controller called “BindingController” (shown in Fig 6.) was loaded when we loaded the URL: http://localhost:22544/index.html#/binding The button in Fig 2 was marked with the attribute ng­click=”addOne()” which added 1 to the value of model.myInt. In Fig 6, we can see that this function is actually defined in the “BindingController”. Scope We can see from Fig 6, that in the definition of “BindingController”, we defined a dependency on $scope and then, as usual, defined a function which “asks for” $scope as per the dependency injection pattern. So what is $scope? Any guesses? As you might have guessed a scope is a particular “address space” where variables and functions may be defined. This has a similar meaning to scope in a programming language like C#. Model: The Scope is not the Model It is tempting to assign variables in the scope directly. For example, we could have defined myInt as $scope.myInt = 6 in Fig 6 instead of $scope.model.myInt = 6. The reason why this is a bad idea is that scope in hierarchical in Angular. Thus if we were to define a controller which was defined within the another controller (nested controllers), then the inner controller would inherit the scope of the parent controller. This inheritance would follow JavaScript prototypal inheritance. Let’s say the parent controller defined a variable through $scope.myInt = 6. The child controller would inherit the scope through java prototypical inheritance. This basically means that the child scope has a variable myInt that points to the parent scopes myInt variable. Now if we assigned the value of myInt in the parent, the child scope would be updated with the same value as the child scope’s myInt variable points to the parent scope’s myInt variable. However, if we were to assign the value of the myInt variable in the child scope, then the link of that variable to the parent scope would be broken as the variable myInt in the child scope now points to the value 6 and not to the parent scope’s myInt variable. But, if we defined a variable model in the parent scope, then the child scope will also have a variable model that points to the model variable in the parent scope. Updating the value of $scope.model.myInt in the parent scope would change the model variable in the child scope too as the variable is pointed to the model variable in the parent scope. Now changing the value of $scope.model.myInt in the child scope would ALSO change the value in the parent scope. This is because the model reference in the child scope is pointed to the scope variable in the parent. We did no new assignment to the model variable in the child scope. We only changed an attribute of the model variable. Since the model variable (in the child scope) points to the model variable in the parent scope, we have successfully changed the value of myInt in the parent scope. Thus the value of $scope.model.myInt in the parent scope becomes the “single source of truth“. This is a tricky concept, thus it is considered good practice to NOT use scope inheritance. More info on prototypal inheritance in Angular can be found in the “JavaScript Prototypal Inheritance” section at the following URL: https://github.com/angular/angular.js/wiki/Understanding­Scopes. Building It: An Angular JS application using a .NET Web API Backend Now that we have a perspective on the basic components of an MVVM application built using Angular, let’s build something useful. We will build an application that can be used to send out SMS messages to a given phone number. The following diagram describes the architecture of the application we are going to build: Fig 7: Broad application architecture We are going to add an HTML Partial to our project. This partial will contain the form fields that will accept the phone number and message that needs to be sent as an SMS. It will also display all the messages that have previously been sent. All the executable code that is run on the occurrence of events (button clicks etc.) in the view resides in the controller. The controller interacts with the ASP.NET WebAPI to get a history of SMS messages, add a message etc. through a REST based API. For the purposes of simplicity, we will use an in memory data structure for the purposes of creating this application. Thus, the tasks ahead of us are: Creating the REST WebApi with GET, PUT, POST, DELETE methods. Creating the SmsView.html partial Creating the SmsController controller with methods that are called from the SmsView.html partial Add a new route that loads the controller and the partial. 1. Creating the REST WebAPI This is a simple task that should be quite straightforward to any .NET developer. The following listing shows our ApiController: public class SmsMessage { public string to { get; set; } public string message { get; set; } } public class SmsResource : SmsMessage { public int smsId { get; set; } } public class SmsResourceController : ApiController { public static Dictionary<int, SmsResource> messages = new Dictionary<int, SmsResource>(); public static int currentId = 0; // GET api/<controller> public List<SmsResource> Get() { List<SmsResource> result = new List<SmsResource>(); foreach (int key in messages.Keys) { result.Add(messages[key]); } return result; } // GET api/<controller>/5 public SmsResource Get(int id) { if (messages.ContainsKey(id)) return messages[id]; return null; } // POST api/<controller> public List<SmsResource> Post([FromBody] SmsMessage value) { //Synchronize on messages so we don't have id collisions lock (messages) { SmsResource res = (SmsResource) value; res.smsId = currentId++; messages.Add(res.smsId, res); //SentlyPlusSmsSender.SendMessage(value.to, value.message); return Get(); } } // PUT api/<controller>/5 public List<SmsResource> Put(int id, [FromBody] SmsMessage value) { //Synchronize on messages so we don't have id collisions lock (messages) { if (messages.ContainsKey(id)) { //Update the message messages[id].message = value.message; messages[id].to = value.message; } return Get(); } } // DELETE api/<controller>/5 public List<SmsResource> Delete(int id) { if (messages.ContainsKey(id)) { messages.Remove(id); } return Get(); } } Once this class is defined, we should be able to access the WebAPI by a simple GET request using the browser: http://localhost:port/api/SmsResource Notice the commented line: //SentlyPlusSmsSender.SendMessage The SentlyPlusSmsSender class is defined in the attached solution. We have shown this line as commented as we want to explain the core Angular concepts. If you load the attached solution, this line is uncommented in the source and an actual SMS will be sent! By default, the API returns XML. For consumption of the API in Angular, we would like it to return JSON. To change the default to JSON, we make the following change to WebApiConfig.cs file located in the App_Start folder. public static class WebApiConfig { public static void Register(HttpConfiguration config) { config.Routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); var appXmlType = config.Formatters.XmlFormatter. SupportedMediaTypes. FirstOrDefault( t => t.MediaType == "application/xml"); config.Formatters.XmlFormatter.SupportedMediaTypes.Remove(appXmlType); } } We now have our backend REST Api which we can consume from Angular! 2. Creating the SmsView.html partial This simple partial will define two fields: the destination phone number (international format starting with a +) and the message. These fields will be bound to model.phoneNumber and model.message. We will also add a button that we shall hook up to sendMessage() in the controller. A list of all previously sent messages (bound to model.allMessages) will also be displayed below the form input. The following code shows the code for the partial: <!--­­ If model.errorMessage is defined, then render the error div -­­> <div class="alert alert-­danger alert-­dismissable" style="margin­-top: 30px;" ng­-show="model.errorMessage != undefined"> <button type="button" class="close" data­dismiss="alert" aria­hidden="true">&times;</button> <strong>Error!</strong> <br /> {{ model.errorMessage }} </div> <!--­­ The input fields bound to the model --­­> <div class="well" style="margin-­top: 30px;"> <table style="width: 100%;"> <tr> <td style="width: 45%; text-­align: center;"> <input type="text" placeholder="Phone number (eg; +44 7778 609466)" ng­-model="model.phoneNumber" class="form-­control" style="width: 90%" onkeypress="return checkPhoneInput();" /> </td> <td style="width: 45%; text-­align: center;"> <input type="text" placeholder="Message" ng­-model="model.message" class="form-­control" style="width: 90%" /> </td> <td style="text-­align: center;"> <button class="btn btn-­danger" ng-­click="sendMessage();" ng-­disabled="model.isAjaxInProgress" style="margin­right: 5px;">Send</button> <img src="/Content/ajax-­loader.gif" ng­-show="model.isAjaxInProgress" /> </td> </tr> </table> </div> <!--­­ The past messages ­­--> <div style="margin-­top: 30px;"> <!­­-- The following div is shown if there are no past messages --­­> <div ng­-show="model.allMessages.length == 0"> No messages have been sent yet! </div> <!--­­ The following div is shown if there are some past messages --­­> <div ng-­show="model.allMessages.length == 0"> <table style="width: 100%;" class="table table-­striped"> <tr> <td>Phone Number</td> <td>Message</td> <td></td> </tr> <!--­­ The ng-­repeat directive is line the repeater control in .NET, but as you can see this partial is pure HTML which is much cleaner --> <tr ng-­repeat="message in model.allMessages"> <td>{{ message.to }}</td> <td>{{ message.message }}</td> <td> <button class="btn btn-­danger" ng-­click="delete(message.smsId);" ng­-disabled="model.isAjaxInProgress">Delete</button> </td> </tr> </table> </div> </div> The above code is commented and should be self explanatory. Conditional rendering is achieved through using the ng-­show=”condition” attribute on various div tags. Input fields are bound to the model and the send button is bound to the sendMessage() function in the controller as through the ng­click=”sendMessage()” attribute defined on the button tag. While AJAX calls are taking place, the controller sets model.isAjaxInProgress to true. Based on this variable, buttons are disabled through the ng-­disabled directive which is added as an attribute to the buttons. The ng-­repeat directive added as an attribute to the tr tag causes the table row to be rendered multiple times much like an ASP.NET repeater. 3. Creating the SmsController controller The penultimate piece of our application is the controller which responds to events from our view and interacts with our MVC4 REST WebAPI. The following listing shows the code we need to add to /app/js/controllers.js. Note that controller definitions can be chained. Also note that this controller “asks for” the $http service. The $http service is a simple way in Angular to do AJAX. So far we have only encountered modules, controllers, views and directives in Angular. The $http is new entity in Angular called a service. More information on Angular services can be found at the following URL: http://docs.angularjs.org/guide/dev_guide.services.understanding_services. .controller('SmsController', ['$scope', '$http', function ($scope, $http) { //We define the model $scope.model = {}; //We define the allMessages array in the model //that will contain all the messages sent so far $scope.model.allMessages = []; //The error if any $scope.model.errorMessage = undefined; //We initially load data so set the isAjaxInProgress = true; $scope.model.isAjaxInProgress = true; //Load all the messages $http({ url: '/api/smsresource', method: "GET" }). success(function (data, status, headers, config) { this callback will be called asynchronously //when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }). error(function (data, status, headers, config) { //called asynchronously if an error occurs //or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); $scope.delete = function (id) { //We are making an ajax call so we set this to true $scope.model.isAjaxInProgress = true; $http({ url: '/api/smsresource/' + id, method: "DELETE" }). success(function (data, status, headers, config) { // this callback will be called asynchronously // when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); error(function (data, status, headers, config) { // called asynchronously if an error occurs // or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); } $scope.sendMessage = function () { $scope.model.errorMessage = undefined; var message = ''; if($scope.model.message != undefined) message = $scope.model.message.trim(); if ($scope.model.phoneNumber == undefined || $scope.model.phoneNumber == '' || $scope.model.phoneNumber.length < 10 || $scope.model.phoneNumber[0] != '+') { $scope.model.errorMessage = "You must enter a valid phone number in international format. Eg: +44 7778 609466"; return; } if (message.length == 0) { $scope.model.errorMessage = "You must specify a message!"; return; } //We are making an ajax call so we set this to true $scope.model.isAjaxInProgress = true; $http({ url: '/api/smsresource', method: "POST", data: { to: $scope.model.phoneNumber, message: $scope.model.message } }). success(function (data, status, headers, config) { // this callback will be called asynchronously // when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }). error(function (data, status, headers, config) { // called asynchronously if an error occurs // or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status // We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); } }]); We can see from the previous listing how the functions that are called from the view are defined in the controller. It should also be evident how easy it is to make AJAX calls to consume our MVC4 REST WebAPI. Now we are left with the final piece. We need to define a route that associates a particular path with the view we have defined and the controller we have defined. 4. Add a new route that loads the controller and the partial This is the easiest part of the puzzle. We simply define another route in the /app/js/app.js file: $routeProvider.when('/sms', { templateUrl: '/app/partials/smsview.html', controller: 'SmsController' }); Conclusion In this article we have seen how much of the server side functionality in the MVC4 framework can be moved to the browser thus delivering a snappy and fast user interface. We have seen how we can build client side HTML only views that avoid the messy syntax offered by server side Razor views. We have built a functioning app from the ground up. The significant advantage of this approach to building web apps is that the front end can be completely platform independent. Even though we used ASP.NET to create our REST API, we could just easily have used any other language such as Node.js, Ruby etc without changing a single line of our front end code. Angular is a rich framework and we have only touched on basic functionality required to create a SPA. For readers who wish to delve further into the Angular framework, we would recommend the following URL as a starting point: http://docs.angularjs.org/misc/started. To get started with the code for this project: Sign up for an account at http://plus.sent.ly (free) Add your phone number Go to the “My Identies Page” Note Down your Sender ID, Consumer Key and Consumer Secret Download the code for this article at: https://docs.google.com/file/d/0BzjEWqSE31yoZjZlV0d0R2Y3eW8/edit?usp=sharing Change the values of Sender Id, Consumer Key and Consumer Secret in the web.config file Run the project through Visual Studio!

    Read the article

  • May 2011 Release of the Ajax Control Toolkit

    - by Stephen Walther
    I’m happy to announce that the Superexpert team has published the May 2011 release of the Ajax Control Toolkit at CodePlex. You can download the new release at the following URL: http://ajaxcontroltoolkit.codeplex.com/releases/view/65800 This release focused on improving the ModalPopup and AsyncFileUpload controls. Our team closed a total of 34 bugs related to the ModalPopup and AsyncFileUpload controls. Enhanced ModalPopup Control You can take advantage of the Ajax Control Toolkit ModalPopup control to easily create popup dialogs in your ASP.NET Web Forms applications. When the dialog appears, you cannot interact with any page content which appears behind the modal dialog. For example, the following page contains a standard ASP.NET Button and Panel. When you click the Button, the Panel appears as a popup dialog: <%@ Page Language="vb" AutoEventWireup="false" CodeBehind="Simple.aspx.vb" Inherits="ACTSamples.Simple" %> <%@ Register TagPrefix="act" Namespace="AjaxControlToolkit" Assembly="AjaxControlToolkit" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server"> <title>Simple Modal Popup Sample</title> <style type="text/css"> html { background-color: blue; } #dialog { border: 2px solid black; width: 500px; background-color: White; } #dialogContents { padding: 10px; } .modalBackground { background-color:Gray; filter:alpha(opacity=70); opacity:0.7; } </style> </head> <body> <form id="form1" runat="server"> <div> <act:ToolkitScriptManager ID="tsm" runat="server" /> <asp:Panel ID="dialog" runat="server"> <div id="dialogContents"> Here are the contents of the dialog. <br /> <asp:Button ID="btnOK" Text="OK" runat="server" /> </div> </asp:Panel> <asp:Button ID="btnShow" Text="Open Dialog" runat="server" /> <act:ModalPopupExtender TargetControlID="btnShow" PopupControlID="dialog" OkControlID="btnOK" DropShadow="true" BackgroundCssClass="modalBackground" runat="server" /> </div> </form> </body> </html>     Notice that the page includes two controls from the Ajax Control Toolkit: the ToolkitScriptManager and the ModalPopupExtender control. Any page which uses any of the controls from the Ajax Control Toolkit must include a ToolkitScriptManager. The ModalPopupExtender is used to create the popup. The following properties are set: · TargetControlID – This is the ID of the Button or LinkButton control which causes the modal popup to be displayed. · PopupControlID – This is the ID of the Panel control which contains the content displayed in the modal popup. · OKControlID – This is the ID of a Button or LinkButton which causes the modal popup to close. · DropShadow – Displays a drop shadow behind the modal popup. · BackgroundCSSClass – The name of a Cascading Style Sheet class which is used to gray out the background of the page when the modal popup is displayed. The ModalPopup is completely cross-browser compatible. For example, the following screenshots show the same page displayed in Firefox 4, Internet Explorer 9, and Chrome 11: The ModalPopup control has lots of nice properties. For example, you can make the ModalPopup draggable. You also can programmatically hide and show a modal popup from either server-side or client-side code. To learn more about the properties of the ModalPopup control, see the following website: http://www.asp.net/ajax/ajaxcontroltoolkit/Samples/ModalPopup/ModalPopup.aspx Animated ModalPopup Control In the May 2011 release of the Ajax Control Toolkit, we enhanced the Modal Popup control so that it supports animations. We made this modification in response to a feature request posted at CodePlex which got 65 votes (plenty of people wanted this feature): http://ajaxcontroltoolkit.codeplex.com/workitem/6944 I want to thank Dani Kenan for posting a patch to this issue which we used as the basis for adding animation support for the modal popup. Thanks Dani! The enhanced ModalPopup in the May 2011 release of the Ajax Control Toolkit supports the following animations: OnShowing – Called before the modal popup is shown. OnShown – Called after the modal popup is shown. OnHiding – Called before the modal popup is hidden. OnHidden – Called after the modal popup is hidden. You can use these animations, for example, to fade-in a modal popup when it is displayed and fade-out the popup when it is hidden. Here’s the code: <act:ModalPopupExtender ID="ModalPopupExtender1" TargetControlID="btnShow" PopupControlID="dialog" OkControlID="btnOK" DropShadow="true" BackgroundCssClass="modalBackground" runat="server"> <Animations> <OnShown> <Fadein /> </OnShown> <OnHiding> <Fadeout /> </OnHiding> </Animations> </act:ModalPopupExtender>     So that you can experience the full joy of this animated modal popup, I recorded the following video: Of course, you can use any of the animations supported by the Ajax Control Toolkit with the modal popup. The animation reference is located here: http://www.asp.net/ajax/ajaxcontroltoolkit/Samples/Walkthrough/AnimationReference.aspx Fixes to the AsyncFileUpload In the May 2011 release, we also focused our energies on performing bug fixes for the AsyncFileUpload control. We fixed several major issues with the AsyncFileUpload including: It did not work in master pages It did not work when ClientIDMode=”Static” It did not work with Firefox 4 It did not work when multiple AsyncFileUploads were included in the same page It generated markup which was not HTML5 compatible The AsyncFileUpload control is a super useful control. It enables you to upload files in a form without performing a postback. Here’s some sample code which demonstrates how you can use the AsyncFileUpload: <%@ Page Language="vb" AutoEventWireup="false" CodeBehind="Simple.aspx.vb" Inherits="ACTSamples.Simple1" %> <%@ Register TagPrefix="act" Namespace="AjaxControlToolkit" Assembly="AjaxControlToolkit" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head id="Head1" runat="server"> <title>Simple AsyncFileUpload</title> </head> <body> <form id="form1" runat="server"> <div> <act:ToolkitScriptManager ID="tsm" runat="server" /> User Name: <br /> <asp:TextBox ID="txtUserName" runat="server" /> <asp:RequiredFieldValidator EnableClientScript="false" ErrorMessage="Required" ControlToValidate="txtUserName" runat="server" /> <br /><br /> Avatar: <act:AsyncFileUpload ID="async1" ThrobberID="throbber" UploadingBackColor="yellow" ErrorBackColor="red" CompleteBackColor="green" UploaderStyle="Modern" PersistFile="true" runat="server" /> <asp:Image ID="throbber" ImageUrl="uploading.gif" style="display:none" runat="server" /> <br /><br /> <asp:Button ID="btnSubmit" Text="Submit" runat="server" /> </div> </form> </body> </html> And here’s the code-behind for the page above: Public Class Simple1 Inherits System.Web.UI.Page Private Sub btnSubmit_Click(ByVal sender As Object, ByVal e As System.EventArgs) Handles btnSubmit.Click If Page.IsValid Then ' Get Form Fields Dim userName As String Dim file As Byte() userName = txtUserName.Text If async1.HasFile Then file = async1.FileBytes End If ' Save userName, file to database ' Redirect to success page Response.Redirect("SimpleDone.aspx") End If End Sub End Class   The form above contains an AsyncFileUpload which has values for the following properties: ThrobberID – The ID of an element in the page to display while a file is being uploaded. UploadingBackColor – The color to display in the upload field while a file is being uploaded. ErrorBackColor – The color to display in the upload field when there is an error uploading a file. CompleteBackColor – The color to display in the upload field when the upload is complete. UploaderStyle – The user interface style: Traditional or Modern. PersistFile – When true, the uploaded file is persisted in Session state. The last property PersistFile, causes the uploaded file to be stored in Session state. That way, if completing a form requires multiple postbacks, then the user needs to upload the file only once. For example, if there is a server validation error, then the user is not required to re-upload the file after fixing the validation issue. In the sample code above, this condition is simulated by disabling client-side validation for the RequiredFieldValidator control. The RequiredFieldValidator EnableClientScript property has the value false. The following video demonstrates how the AsyncFileUpload control works: You can learn more about the properties and methods of the AsyncFileUpload control by visiting the following page: http://www.asp.net/ajax/ajaxcontroltoolkit/Samples/AsyncFileUpload/AsyncFileUpload.aspx Conclusion In the May 2011 release of the Ajax Control Toolkit, we addressed over 30 bugs related to the ModalPopup and AsyncFileUpload controls. Furthermore, by building on code submitted by the community, we enhanced the ModalPopup control so that it supports animation (Thanks Dani). In our next sprint for the June release of the Ajax Control Toolkit, we plan to focus on the HTML Editor control. Subscribe to this blog to keep updated.

    Read the article

  • Data Profiling without SSIS

    Strangely enough for a predominantly SSIS blog, this post is all about how to perform data profiling without using SSIS. Whilst the Data Profiling Task is a worthy addition, there are a couple of limitations I’ve encountered of late. The first is that it requires SQL Server 2008, and not everyone is there yet. The second is that it can only target SQL Server 2005 and above. What about older systems, which are the ones that we probably need to investigate the most, or other vendor databases such as Oracle? With these limitations in mind I did some searching to find a quick and easy alternative to help me perform some data profiling for a project I was working on recently. I only had SQL Server 2005 available, and anyway most of my target source systems were Oracle, and of course I had short timescales. I looked at several options. Some never got beyond the download stage, they failed to install or just did not run, and others provided less than I could have produced myself by spending 2 minutes writing some basic SQL queries. In the end I settled on an open source product called DataCleaner. To quote from their website: DataCleaner is an Open Source application for profiling, validating and comparing data. These activities help you administer and monitor your data quality in order to ensure that your data is useful and applicable to your business situation. DataCleaner is the free alternative to software for master data management (MDM) methodologies, data warehousing (DW) projects, statistical research, preparation for extract-transform-load (ETL) activities and more. DataCleaner is developed in Java and licensed under LGPL. As quoted above it claims to support profiling, validating and comparing data, but I didn’t really get past the profiling functions, so won’t comment on the other two. The profiling whilst not prefect certainly saved some time compared to the limited alternatives. The ability to profile heterogeneous data sources is a big advantage over the SSIS option, and I found it overall quite easy to use and performance was good. I could see it struggling at times, but actually for what it does I was impressed. It had some data type niggles with Oracle, and some metrics seem a little strange, although thankfully they were easy to augment with some SQL queries to ensure a consistent picture. The report export options didn’t do it for me, but copy and paste with a bit of Excel magic was sufficient. One initial point for me personally is that I have had limited exposure to things of the Java persuasion and whilst I normally get by fine, sometimes the simplest things can throw me. For example installing a JDBC driver, why do I have to copy files to make it all work, has nobody ever heard of an MSI? In case there are other people out there like me who have become totally indoctrinated with the Microsoft software paradigm, I’ve written a quick start guide that details every step required. Steps 1- 5 are the key ones, the rest is really an excuse for some screenshots to show you the tool. Quick Start Guide Step 1  - Download Data Cleaner. The Microsoft Windows zipped exe option, and I chose the latest stable build, currently DataCleaner 1.5.3 (final). Extract the files to a suitable location. Step 2 - Download Java. If you try and run datacleaner.exe without Java it will warn you, and then open your default browser and take you to the Java download site. Follow the installation instructions from there, normally just click Download Java a couple of times and you’re done. Step 3 - Download Microsoft SQL Server JDBC Driver. You may have SQL Server installed, but you won’t have a JDBC driver. Version 3.0 is the latest as of April 2010. There is no real installer, we are in the Java world here, but run the exe you downloaded to extract the files. The default Unzip to folder is not much help, so try a fully qualified path such as C:\Program Files\Microsoft SQL Server JDBC Driver 3.0\ to ensure you can find the files afterwards. Step 4 - If you wish to use Windows Authentication to connect to your SQL Server then first we need to copy a file so that Data Cleaner can find it. Browse to the JDBC extract location from Step 3 and drill down to the file sqljdbc_auth.dll. You will have to choose the correct directory for your processor architecture. e.g. C:\Program Files\Microsoft SQL Server JDBC Driver 3.0\sqljdbc_3.0\enu\auth\x86\sqljdbc_auth.dll. Now copy this file to the Data Cleaner extract folder you chose in Step 1. An alternative method is to edit datacleaner.cmd in the data cleaner extract folder as detailed in this data cleaner wiki topic, but I find copying the file simpler. Step 5 – Now lets run Data Cleaner, just run datacleaner.exe from the extract folder you chose in Step 1. Step 6 – Complete or skip the registration screen, and ignore the task window for now. In the main window click settings. Step 7 – In the Settings dialog, select the Database drivers tab, then click Register database driver and select the Local JAR file option. Step 8 – Browse to the JDBC driver extract location from Step 3 and drill down to select sqljdbc4.jar. e.g. C:\Program Files\Microsoft SQL Server JDBC Driver 3.0\sqljdbc_3.0\enu\sqljdbc4.jar Step 9 – Select the Database driver class as com.microsoft.sqlserver.jdbc.SQLServerDriver, and then click the Test and Save database driver button. Step 10 - You should be back at the Settings dialog with a the list of drivers that includes SQL Server. Just click Save Settings to persist all your hard work. Step 11 – Now we can start to profile some data. In the main Data Cleaner window click New Task, and then Profile from the task window. Step 12 – In the Profile window click Open Database Step 13 – Now choose the SQL Server connection string option. Selecting a connection string gives us a template like jdbc:sqlserver://<hostname>:1433;databaseName=<database>, but obviously it requires some details to be entered for example  jdbc:sqlserver://localhost:1433;databaseName=SQLBits. This will connect to the database called SQLBits on my local machine. The port may also have to be changed if using such as when you have a multiple instances of SQL Server running. If using SQL Server Authentication enter a username and password as required and then click Connect to database. You can use Window Authentication, just add integratedSecurity=true to the end of your connection string. e.g jdbc:sqlserver://localhost:1433;databaseName=SQLBits;integratedSecurity=true.  If you didn’t complete Step 4 above you will need to do so now and restart Data Cleaner before it will work. Manually setting the connection string is fine, but creating a named connection makes more sense if you will be spending any length of time profiling a specific database. As highlighted in the left-hand screen-shot, at the bottom of the dialog it includes partial instructions on how to create named connections. In the folder shown C:\Users\<Username>\.datacleaner\1.5.3, open the datacleaner-config.xml file in your editor of choice add your own details. You’ll see a sample connection in the file already, just add yours following the same pattern. e.g. <!-- Darren's Named Connections --> <bean class="dk.eobjects.datacleaner.gui.model.NamedConnection"> <property name="name" value="SQLBits Local Connection" /> <property name="driverClass" value="com.microsoft.sqlserver.jdbc.SQLServerDriver" /> <property name="connectionString" value="jdbc:sqlserver://localhost:1433;databaseName=SQLBits;integratedSecurity=true" /> <property name="tableTypes"> <list> <value>TABLE</value> <value>VIEW</value> </list> </property> </bean> Step 14 – Once back at the Profile window, you should now see your schemas, tables and/or views listed down the left hand side. Browse this tree and double-click a table to select it for profiling. You can then click Add profile, and choose some profiling options, before finally clicking Run profiling. You can see below a sample output for three of the most common profiles, click the image for full size.   I hope this has given you a taster for DataCleaner, and should help you get up and running pretty quickly.

    Read the article

  • SQL SERVER – Guest Posts – Feodor Georgiev – The Context of Our Database Environment – Going Beyond the Internal SQL Server Waits – Wait Type – Day 21 of 28

    - by pinaldave
    This guest post is submitted by Feodor. Feodor Georgiev is a SQL Server database specialist with extensive experience of thinking both within and outside the box. He has wide experience of different systems and solutions in the fields of architecture, scalability, performance, etc. Feodor has experience with SQL Server 2000 and later versions, and is certified in SQL Server 2008. In this article Feodor explains the server-client-server process, and concentrated on the mutual waits between client and SQL Server. This is essential in grasping the concept of waits in a ‘global’ application plan. Recently I was asked to write a blog post about the wait statistics in SQL Server and since I had been thinking about writing it for quite some time now, here it is. It is a wide-spread idea that the wait statistics in SQL Server will tell you everything about your performance. Well, almost. Or should I say – barely. The reason for this is that SQL Server is always a part of a bigger system – there are always other players in the game: whether it is a client application, web service, any other kind of data import/export process and so on. In short, the SQL Server surroundings look like this: This means that SQL Server, aside from its internal waits, also depends on external waits and settings. As we can see in the picture above, SQL Server needs to have an interface in order to communicate with the surrounding clients over the network. For this communication, SQL Server uses protocol interfaces. I will not go into detail about which protocols are best, but you can read this article. Also, review the information about the TDS (Tabular data stream). As we all know, our system is only as fast as its slowest component. This means that when we look at our environment as a whole, the SQL Server might be a victim of external pressure, no matter how well we have tuned our database server performance. Let’s dive into an example: let’s say that we have a web server, hosting a web application which is using data from our SQL Server, hosted on another server. The network card of the web server for some reason is malfunctioning (think of a hardware failure, driver failure, or just improper setup) and does not send/receive data faster than 10Mbs. On the other end, our SQL Server will not be able to send/receive data at a faster rate either. This means that the application users will notify the support team and will say: “My data is coming very slow.” Now, let’s move on to a bit more exciting example: imagine that there is a similar setup as the example above – one web server and one database server, and the application is not using any stored procedure calls, but instead for every user request the application is sending 80kb query over the network to the SQL Server. (I really thought this does not happen in real life until I saw it one day.) So, what happens in this case? To make things worse, let’s say that the 80kb query text is submitted from the application to the SQL Server at least 100 times per minute, and as often as 300 times per minute in peak times. Here is what happens: in order for this query to reach the SQL Server, it will have to be broken into a of number network packets (according to the packet size settings) – and will travel over the network. On the other side, our SQL Server network card will receive the packets, will pass them to our network layer, the packets will get assembled, and eventually SQL Server will start processing the query – parsing, allegorizing, generating the query execution plan and so on. So far, we have already had a serious network overhead by waiting for the packets to reach our Database Engine. There will certainly be some processing overhead – until the database engine deals with the 80kb query and its 20 subqueries. The waits you see in the DMVs are actually collected from the point the query reaches the SQL Server and the packets are assembled. Let’s say that our query is processed and it finally returns 15000 rows. These rows have a certain size as well, depending on the data types returned. This means that the data will have converted to packages (depending on the network size package settings) and will have to reach the application server. There will also be waits, however, this time you will be able to see a wait type in the DMVs called ASYNC_NETWORK_IO. What this wait type indicates is that the client is not consuming the data fast enough and the network buffers are filling up. Recently Pinal Dave posted a blog on Client Statistics. What Client Statistics does is captures the physical flow characteristics of the query between the client(Management Studio, in this case) and the server and back to the client. As you see in the image, there are three categories: Query Profile Statistics, Network Statistics and Time Statistics. Number of server roundtrips–a roundtrip consists of a request sent to the server and a reply from the server to the client. For example, if your query has three select statements, and they are separated by ‘GO’ command, then there will be three different roundtrips. TDS Packets sent from the client – TDS (tabular data stream) is the language which SQL Server speaks, and in order for applications to communicate with SQL Server, they need to pack the requests in TDS packets. TDS Packets sent from the client is the number of packets sent from the client; in case the request is large, then it may need more buffers, and eventually might even need more server roundtrips. TDS packets received from server –is the TDS packets sent by the server to the client during the query execution. Bytes sent from client – is the volume of the data set to our SQL Server, measured in bytes; i.e. how big of a query we have sent to the SQL Server. This is why it is best to use stored procedures, since the reusable code (which already exists as an object in the SQL Server) will only be called as a name of procedure + parameters, and this will minimize the network pressure. Bytes received from server – is the amount of data the SQL Server has sent to the client, measured in bytes. Depending on the number of rows and the datatypes involved, this number will vary. But still, think about the network load when you request data from SQL Server. Client processing time – is the amount of time spent in milliseconds between the first received response packet and the last received response packet by the client. Wait time on server replies – is the time in milliseconds between the last request packet which left the client and the first response packet which came back from the server to the client. Total execution time – is the sum of client processing time and wait time on server replies (the SQL Server internal processing time) Here is an illustration of the Client-server communication model which should help you understand the mutual waits in a client-server environment. Keep in mind that a query with a large ‘wait time on server replies’ means the server took a long time to produce the very first row. This is usual on queries that have operators that need the entire sub-query to evaluate before they proceed (for example, sort and top operators). However, a query with a very short ‘wait time on server replies’ means that the query was able to return the first row fast. However a long ‘client processing time’ does not necessarily imply the client spent a lot of time processing and the server was blocked waiting on the client. It can simply mean that the server continued to return rows from the result and this is how long it took until the very last row was returned. The bottom line is that developers and DBAs should work together and think carefully of the resource utilization in the client-server environment. From experience I can say that so far I have seen only cases when the application developers and the Database developers are on their own and do not ask questions about the other party’s world. I would recommend using the Client Statistics tool during new development to track the performance of the queries, and also to find a synchronous way of utilizing resources between the client – server – client. Here is another example: think about similar setup as above, but add another server to the game. Let’s say that we keep our media on a separate server, and together with the data from our SQL Server we need to display some images on the webpage requested by our user. No matter how simple or complicated the logic to get the images is, if the images are 500kb each our users will get the page slowly and they will still think that there is something wrong with our data. Anyway, I don’t mean to get carried away too far from SQL Server. Instead, what I would like to say is that DBAs should also be aware of ‘the big picture’. I wrote a blog post a while back on this topic, and if you are interested, you can read it here about the big picture. And finally, here are some guidelines for monitoring the network performance and improving it: Run a trace and outline all queries that return more than 1000 rows (in Profiler you can actually filter and sort the captured trace by number of returned rows). This is not a set number; it is more of a guideline. The general thought is that no application user can consume that many rows at once. Ask yourself and your fellow-developers: ‘why?’. Monitor your network counters in Perfmon: Network Interface:Output queue length, Redirector:Network errors/sec, TCPv4: Segments retransmitted/sec and so on. Make sure to establish a good friendship with your network administrator (buy them coffee, for example J ) and get into a conversation about the network settings. Have them explain to you how the network cards are setup – are they standalone, are they ‘teamed’, what are the settings – full duplex and so on. Find some time to read a bit about networking. In this short blog post I hope I have turned your attention to ‘the big picture’ and the fact that there are other factors affecting our SQL Server, aside from its internal workings. As a further reading I would still highly recommend the Wait Stats series on this blog, also I would recommend you have the coffee break conversation with your network admin as soon as possible. This guest post is written by Feodor Georgiev. Read all the post in the Wait Types and Queue series. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, Readers Contribution, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL

    Read the article

  • Add Free Google Apps to Your Website or Blog

    - by Matthew Guay
    Would you like to have an email address from your own domain, but prefer Gmail’s interface and integration with Google Docs?  Here’s how you can add the free Google Apps Standard to your site and get the best of both worlds. Note: To signup for Google Apps and get it setup on your domain, you will need to be able to add info to your WordPress blog or change Domain settings manually. Getting Started Head to the Google Apps signup page (link below), and click the Get Started button on the right.  Note that we are signing up for the free Google Apps which allows a max of 50 users; if you need more than 50 email addresses for your domain, you can choose Premiere Edition instead for $50/year. Select that you are the Administrator of the domain, and enter the domain or subdomain you want to use with Google Apps.  Here we’re adding Google Apps to the techinch.com site, but we could instead add Apps to mail.techinch.com if needed…click Get Started. Enter your name, phone number, an existing email address, and other Administrator information.  The Apps signup page also includes some survey questions about your organization, but you only have to fill in the required fields. On the next page, enter a username and password for the administrator account.  Note that the user name will also be the administrative email address as [email protected]. Now you’re ready to authenticate your Google Apps account with your domain.  The steps are slightly different depending on whether your site is on WordPress.com or on your own hosting service or server, so we’ll show how to do it both ways.   Authenticate and Integrate Google Apps with WordPress.com To add Google Apps to a domain you have linked to your WordPress.com blog, select Change yourdomain.com CNAME record and click Continue. Copy the code under #2, which should be something like googleabcdefg123456.  Do not click the button at the bottom; wait until we’ve completed the next step.   Now, in a separate browser window or tab, open your WordPress Dashboard.  Click the arrow beside Upgrades, and select Domains from the menu. Click the Edit DNS link beside the domain name you’re adding to Google Apps. Scroll down to the Google Apps section, and paste your code from Google Apps into the verification code field.  Click Generate DNS records when you’re done. This will add the needed DNS settings to your records in the box above the Google Apps section.  Click Save DNS records. Now, go back to the Google Apps signup page, and click I’ve completed the steps above. Authenticate Google Apps on Your Own Server If your website is hosted on your own server or hosting account, you’ll need to take a few more steps to add Google Apps to your domain.  You can add a CNAME record to your domain host using the same information that you would use with a WordPress account, or you can upload an HTML file to your site’s main directory.  In this test we’re going to upload an HTML file to our site for verification. Copy the code under #1, which should be something like googleabcdefg123456.  Do not click the button at the bottom; wait until we’ve completed the next step first. Create a new HTML file and paste the code in it.  You can do this easily in Notepad: create a new document, paste the code, and then save as googlehostedservice.html.  Make sure to select the type as All Files or otherwise the file will have a .txt extension. Upload this file to your web server via FTP or a web dashboard for your site.  Make sure it is in the top level of your site’s directory structure, and try visiting it at yoursite.com/googlehostedservice.html. Now, go back to the Google Apps signup page, and click I’ve completed the steps above. Setup Your Email on Google Apps When this is done, your Google Apps account should be activated and ready to finish setting up.  Google Apps will offer to launch a guide to step you through the rest of the process; you can click Launch guide if you want, or click Skip this guide to continue on your own and go directly to the Apps dashboard.   If you choose to open the guide, you’ll be able to easily learn the ropes of Google Apps administration.  Once you’ve completed the tutorial, you’ll be taken to the Google Apps dashboard. Most of the Google Apps will be available for immediate use, but Email may take a bit more setup.  Click Activate email to get your Gmail-powered email running on your domain.    Add Google MX Records to Your Server You will need to add Google MX records to your domain registrar in order to have your mail routed to Google.  If your domain is hosted on WordPress.com, you’ve already made these changes so simply click I have completed these steps.  Otherwise, you’ll need to manually add these records before clicking that button.   Adding MX Entries is fairly easy, but the steps may depend on your hosting company or registrar.  With some hosts, you may have to contact support to have them add the MX records for you.  Our site’s host uses the popular cPanel for website administration, so here’s how we added the MX Entries through cPanel. Add MX Entries through cPanel Login to your site’s cPanel, and click the MX Entry link under Mail. Delete any existing MX Records for your domain or subdomain first to avoid any complications or interactions with Google Apps.  If you think you may want to revert to your old email service in the future, save a copy of the records so you can switch back if you need. Now, enter the MX Records that Google listed.  Here’s our account after we added all of the entries to our account. Finally, return to your Google Apps Dashboard and click the I have completed these steps button at the bottom of the page. Activating Service You’re now officially finished activating and setting up your Google Apps account.  Google will first have to check the MX records for your domain; this only took around an hour in our test, but Google warns it can take up to 48 hours in some cases. You may then see that Google is updating its servers with your account information.  Once again, this took much less time than Google’s estimate. When everything’s finished, you can click the link to access the inbox of your new Administrator email account in Google Apps. Welcome to Gmail … at your own domain!  All of the Google Apps work just the same in this version as they do in the public @gmail.com version, so you should feel right at home. You can return to the Google Apps dashboard from the Administrative email account by clicking the Manage this domain at the top right. In the Dashboard, you can easily add new users and email accounts, as well as change settings in your Google Apps account and add your site’s branding to your Apps. Your Google Apps will work just like their standard @gmail.com counterparts.  Here’s an example of an inbox customized with the techinch logo and a Gmail theme. Links to Remember Here are the common links to your Google Apps online.  Substitute your domain or subdomain for yourdomain.com. Dashboard https://www.google.com/a/cpanel/yourdomain.com Email https://mail.google.com/a/yourdomain.com Calendar https://www.google.com/calendar/hosted/yourdomain.com Docs https://docs.google.com/a/yourdomain.com Sites https://sites.google.com/a/yourdomain.com Conclusion Google Apps offers you great webapps and webmail for your domain, and let’s you take advantage of Google’s services while still maintaining the professional look of your own domain.  Setting up your account can be slightly complicated, but once it’s finished, it will run seamlessly and you’ll never have to worry about email or collaboration with your team again. Signup for the free Google Apps Standard Similar Articles Productive Geek Tips Mysticgeek Blog: Create Your Own Simple iGoogle GadgetAccess Your Favorite Google Services in Chrome the Easy WayRevo Uninstaller Pro [REVIEW]Mysticgeek Blog: A Look at Internet Explorer 8 Beta 1 on Windows XPFind Similar Websites in Google Chrome TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Xobni Plus for Outlook All My Movies 5.9 CloudBerry Online Backup 1.5 for Windows Home Server Snagit 10 Video preview of new Windows Live Essentials 21 Cursor Packs for XP, Vista & 7 Map the Stars with Stellarium Use ILovePDF To Split and Merge PDF Files TimeToMeet is a Simple Online Meeting Planning Tool Easily Create More Bookmark Toolbars in Firefox

    Read the article

  • How to Reuse Your Old Wi-Fi Router as a Network Switch

    - by Jason Fitzpatrick
    Just because your old Wi-Fi router has been replaced by a newer model doesn’t mean it needs to gather dust in the closet. Read on as we show you how to take an old and underpowered Wi-Fi router and turn it into a respectable network switch (saving your $20 in the process). Image by mmgallan. Why Do I Want To Do This? Wi-Fi technology has changed significantly in the last ten years but Ethernet-based networking has changed very little. As such, a Wi-Fi router with 2006-era guts is lagging significantly behind current Wi-Fi router technology, but the Ethernet networking component of the device is just as useful as ever; aside from potentially being only 100Mbs instead of 1000Mbs capable (which for 99% of home applications is irrelevant) Ethernet is Ethernet. What does this matter to you, the consumer? It means that even though your old router doesn’t hack it for your Wi-Fi needs any longer the device is still a perfectly serviceable (and high quality) network switch. When do you need a network switch? Any time you want to share an Ethernet cable among multiple devices, you need a switch. For example, let’s say you have a single Ethernet wall jack behind your entertainment center. Unfortunately you have four devices that you want to link to your local network via hardline including your smart HDTV, DVR, Xbox, and a little Raspberry Pi running XBMC. Instead of spending $20-30 to purchase a brand new switch of comparable build quality to your old Wi-Fi router it makes financial sense (and is environmentally friendly) to invest five minutes of your time tweaking the settings on the old router to turn it from a Wi-Fi access point and routing tool into a network switch–perfect for dropping behind your entertainment center so that your DVR, Xbox, and media center computer can all share an Ethernet connection. What Do I Need? For this tutorial you’ll need a few things, all of which you likely have readily on hand or are free for download. To follow the basic portion of the tutorial, you’ll need the following: 1 Wi-Fi router with Ethernet ports 1 Computer with Ethernet jack 1 Ethernet cable For the advanced tutorial you’ll need all of those things, plus: 1 copy of DD-WRT firmware for your Wi-Fi router We’re conducting the experiment with a Linksys WRT54GL Wi-Fi router. The WRT54 series is one of the best selling Wi-Fi router series of all time and there’s a good chance a significant number of readers have one (or more) of them stuffed in an office closet. Even if you don’t have one of the WRT54 series routers, however, the principles we’re outlining here apply to all Wi-Fi routers; as long as your router administration panel allows the necessary changes you can follow right along with us. A quick note on the difference between the basic and advanced versions of this tutorial before we proceed. Your typical Wi-Fi router has 5 Ethernet ports on the back: 1 labeled “Internet”, “WAN”, or a variation thereof and intended to be connected to your DSL/Cable modem, and 4 labeled 1-4 intended to connect Ethernet devices like computers, printers, and game consoles directly to the Wi-Fi router. When you convert a Wi-Fi router to a switch, in most situations, you’ll lose two port as the “Internet” port cannot be used as a normal switch port and one of the switch ports becomes the input port for the Ethernet cable linking the switch to the main network. This means, referencing the diagram above, you’d lose the WAN port and LAN port 1, but retain LAN ports 2, 3, and 4 for use. If you only need to switch for 2-3 devices this may be satisfactory. However, for those of you that would prefer a more traditional switch setup where there is a dedicated WAN port and the rest of the ports are accessible, you’ll need to flash a third-party router firmware like the powerful DD-WRT onto your device. Doing so opens up the router to a greater degree of modification and allows you to assign the previously reserved WAN port to the switch, thus opening up LAN ports 1-4. Even if you don’t intend to use that extra port, DD-WRT offers you so many more options that it’s worth the extra few steps. Preparing Your Router for Life as a Switch Before we jump right in to shutting down the Wi-Fi functionality and repurposing your device as a network switch, there are a few important prep steps to attend to. First, you want to reset the router (if you just flashed a new firmware to your router, skip this step). Following the reset procedures for your particular router or go with what is known as the “Peacock Method” wherein you hold down the reset button for thirty seconds, unplug the router and wait (while still holding the reset button) for thirty seconds, and then plug it in while, again, continuing to hold down the rest button. Over the life of a router there are a variety of changes made, big and small, so it’s best to wipe them all back to the factory default before repurposing the router as a switch. Second, after resetting, we need to change the IP address of the device on the local network to an address which does not directly conflict with the new router. The typical default IP address for a home router is 192.168.1.1; if you ever need to get back into the administration panel of the router-turned-switch to check on things or make changes it will be a real hassle if the IP address of the device conflicts with the new home router. The simplest way to deal with this is to assign an address close to the actual router address but outside the range of addresses that your router will assign via the DHCP client; a good pick then is 192.168.1.2. Once the router is reset (or re-flashed) and has been assigned a new IP address, it’s time to configure it as a switch. Basic Router to Switch Configuration If you don’t want to (or need to) flash new firmware onto your device to open up that extra port, this is the section of the tutorial for you: we’ll cover how to take a stock router, our previously mentioned WRT54 series Linksys, and convert it to a switch. Hook the Wi-Fi router up to the network via one of the LAN ports (consider the WAN port as good as dead from this point forward, unless you start using the router in its traditional function again or later flash a more advanced firmware to the device, the port is officially retired at this point). Open the administration control panel via  web browser on a connected computer. Before we get started two things: first,  anything we don’t explicitly instruct you to change should be left in the default factory-reset setting as you find it, and two, change the settings in the order we list them as some settings can’t be changed after certain features are disabled. To start, let’s navigate to Setup ->Basic Setup. Here you need to change the following things: Local IP Address: [different than the primary router, e.g. 192.168.1.2] Subnet Mask: [same as the primary router, e.g. 255.255.255.0] DHCP Server: Disable Save with the “Save Settings” button and then navigate to Setup -> Advanced Routing: Operating Mode: Router This particular setting is very counterintuitive. The “Operating Mode” toggle tells the device whether or not it should enable the Network Address Translation (NAT)  feature. Because we’re turning a smart piece of networking hardware into a relatively dumb one, we don’t need this feature so we switch from Gateway mode (NAT on) to Router mode (NAT off). Our next stop is Wireless -> Basic Wireless Settings: Wireless SSID Broadcast: Disable Wireless Network Mode: Disabled After disabling the wireless we’re going to, again, do something counterintuitive. Navigate to Wireless -> Wireless Security and set the following parameters: Security Mode: WPA2 Personal WPA Algorithms: TKIP+AES WPA Shared Key: [select some random string of letters, numbers, and symbols like JF#d$di!Hdgio890] Now you may be asking yourself, why on Earth are we setting a rather secure Wi-Fi configuration on a Wi-Fi router we’re not going to use as a Wi-Fi node? On the off chance that something strange happens after, say, a power outage when your router-turned-switch cycles on and off a bunch of times and the Wi-Fi functionality is activated we don’t want to be running the Wi-Fi node wide open and granting unfettered access to your network. While the chances of this are next-to-nonexistent, it takes only a few seconds to apply the security measure so there’s little reason not to. Save your changes and navigate to Security ->Firewall. Uncheck everything but Filter Multicast Firewall Protect: Disable At this point you can save your changes again, review the changes you’ve made to ensure they all stuck, and then deploy your “new” switch wherever it is needed. Advanced Router to Switch Configuration For the advanced configuration, you’ll need a copy of DD-WRT installed on your router. Although doing so is an extra few steps, it gives you a lot more control over the process and liberates an extra port on the device. Hook the Wi-Fi router up to the network via one of the LAN ports (later you can switch the cable to the WAN port). Open the administration control panel via web browser on the connected computer. Navigate to the Setup -> Basic Setup tab to get started. In the Basic Setup tab, ensure the following settings are adjusted. The setting changes are not optional and are required to turn the Wi-Fi router into a switch. WAN Connection Type: Disabled Local IP Address: [different than the primary router, e.g. 192.168.1.2] Subnet Mask: [same as the primary router, e.g. 255.255.255.0] DHCP Server: Disable In addition to disabling the DHCP server, also uncheck all the DNSMasq boxes as the bottom of the DHCP sub-menu. If you want to activate the extra port (and why wouldn’t you), in the WAN port section: Assign WAN Port to Switch [X] At this point the router has become a switch and you have access to the WAN port so the LAN ports are all free. Since we’re already in the control panel, however, we might as well flip a few optional toggles that further lock down the switch and prevent something odd from happening. The optional settings are arranged via the menu you find them in. Remember to save your settings with the save button before moving onto a new tab. While still in the Setup -> Basic Setup menu, change the following: Gateway/Local DNS : [IP address of primary router, e.g. 192.168.1.1] NTP Client : Disable The next step is to turn off the radio completely (which not only kills the Wi-Fi but actually powers the physical radio chip off). Navigate to Wireless -> Advanced Settings -> Radio Time Restrictions: Radio Scheduling: Enable Select “Always Off” There’s no need to create a potential security problem by leaving the Wi-Fi radio on, the above toggle turns it completely off. Under Services -> Services: DNSMasq : Disable ttraff Daemon : Disable Under the Security -> Firewall tab, uncheck every box except “Filter Multicast”, as seen in the screenshot above, and then disable SPI Firewall. Once you’re done here save and move on to the Administration tab. Under Administration -> Management:  Info Site Password Protection : Enable Info Site MAC Masking : Disable CRON : Disable 802.1x : Disable Routing : Disable After this final round of tweaks, save and then apply your settings. Your router has now been, strategically, dumbed down enough to plod along as a very dependable little switch. Time to stuff it behind your desk or entertainment center and streamline your cabling.     

    Read the article

< Previous Page | 69 70 71 72 73 74 75 76 77 78 79 80  | Next Page >