Search Results

Search found 8760 results on 351 pages for 'enhanced for loop'.

Page 73/351 | < Previous Page | 69 70 71 72 73 74 75 76 77 78 79 80  | Next Page >

  • A F# tail-recursive question

    - by ksharp
    Recently, I'm learning F#. I try to solve problem in different ways. Like this: (* [0;1;2;3;4;5;6;7;8] -> [(0,1,2);(3,4,5);(6,7,8)] *) //head-recursive let rec toTriplet_v1 list= match list with | a::b::c::t -> (a,b,c)::(toTriplet_v1 t) | _ -> [] //tail-recursive let toTriplet_v2 list= let rec loop lst acc= match lst with | a::b::c::t -> loop t ((a,b,c)::acc) | _ -> acc loop list [] //tail-recursive(???) let toTriplet_v3 list= let rec loop lst accfun= match lst with | a::b::c::t -> loop t (fun ls -> accfun ((a,b,c)::ls)) | _ -> accfun [] loop list (fun x -> x) let funs = [toTriplet_v1; toTriplet_v2; toTriplet_v3]; funs |> List.map (fun x -> x [0..8]) |> List.iteri (fun i x -> printfn "V%d : %A" (i+1) x) I thought the results of V2 and V3 should be the same. But, I get the result below: V1 : [(0, 1, 2); (3, 4, 5); (6, 7, 8)] V2 : [(6, 7, 8); (3, 4, 5); (0, 1, 2)] V3 : [(0, 1, 2); (3, 4, 5); (6, 7, 8)] Why the results of V2 and V3 are different?

    Read the article

  • Replacing repetitively occuring loops with eval in Javascript - good or bad?

    - by Herc
    Hello stackoverflow! I have a certain loop occurring several times in various functions in my code. To illustrate with an example, it's pretty much along the lines of the following: for (var i=0;i<= 5; i++) { function1(function2(arr[i],i),$('div'+i)); $('span'+i).value = function3(arr[i]); } Where i is the loop counter of course. For the sake of reducing my code size and avoid repeating the loop declaration, I thought I should replace it with the following: function loop(s) { for (var i=0;i<= 5; i++) { eval(s); } } [...] loop("function1(function2(arr[i],i),$('div'+i));$('span'+i).value = function3(arr[i]);"); Or should I? I've heard a lot about eval() slowing code execution and I'd like it to work as fast as a proper loop even in the Nintendo DSi browser, but I'd also like to cut down on code. What would you suggest? Thank you in advance!

    Read the article

  • How to identify end of InputStream in java

    - by Vardhaman
    I am trying to read bytes from server using Socket program, ie I am using InputStream to read the bytes. If I pass the length size I am able to read the bytes, but I am not sure what may be the length. So I am not able initialize the byte array. Also I tried while (in.read() !=-1), I observered it loop works fine when the data is sent , but the next line after the loop is not executable , I feel its still looking for the data in the stream but there is no ata. If I close the Server connection , then my client will execute the next line followed to the loop. I am not sure where I am going wrong? this.in = socket.getInputStream(); int dataInt = this.in.read(); while(dataInt != -1){ System.out.print(","+i+"--"+dataInt); i++; dataInt = this.in.read(); } System.out.print("End Of loop"); I get the output as:- ,1--0,2--62,3--96,4--131,5--142,6--1,7--133,8--2,9--16,10--48,11--56,12--1,13--0,14--14,15--128,16--0,17--0,18--0,19--48,20--0,21--0,22--0,23--0,24--0,25--1,26--0,27--0,28--38,29--114,30--23,31--20,32--70,33--3,34--20,35--1,36--133,37--48,38--51,39--49,40--52,41--49,42--55,43--49,44--52,45--52,46--54,47--55,48--50,49--51,50--52,51--48,52--53,53--56,54--51,55--48,56--48,57--57,58--57,59--57,60--57,61--57,62--57,63--57,64--56 But no output for :- End Of loop Please guide how shall I close the loop? Looking forward for you response. Thanking you all in advance.

    Read the article

  • Empty value when iterating a dictionary with .iteritems() method

    - by ptpatil
    I am having some weird trouble with dictionaries, I am trying to iterate pairs from a dictionary to pass to another function. The loop for the iterator though for some reason always returns empty values. Here is the code: def LinktoCentral(self, linkmethod): if linkmethod == 'sim': linkworker = Linker.SimilarityLinker() matchlist = [] for k,v in self.ToBeMatchedTable.iteritems(): matchlist.append(k, linkworker.GetBestMatch(v, self.CentralDataTable.items())) Now if I insert a print line above the for loop: matchlist = [] print self.ToBeMatchedTable.items() for k,v in self.ToBeMatchedTable.iteritems(): matchlist.append(k, linkworker.GetBestMatch(v, self.CentralDataTable.items())) I get the data that is supposed to be in the dictionary printed out. The values of the dictionary are list objects. An example tuple I get from the dictionary when printing just above the for loop: >>> (1, ['AARP/United Health Care', '8002277789', 'PO Box 740819', 'Atlanta', 'GA', '30374-0819', 'Paper', '3676']) However, the for loop gives empty lists to the linkworker.GetBestMatch method. If I put a print line just below the for loop, here is what I get: Code: matchlist = [] for k,v in self.ToBeMatchedTable.iteritems(): print self.ToBeMatchedTable.items() matchlist.append(k, linkworker.GetBestMatch(v, self.CentralDataTable.items())) ## Place holder for line to send match list to display window return matchlist Result of first iteration: >>> (0, ['', '', '', '', '', '', '', '']) I literally have no idea whats going on, there is nothing else going on while this loop is executed. Any stupid mistakes I made?

    Read the article

  • Interpolation using a sprite's previous frame and current frame

    - by user22241
    Overview I'm currently using a method which has been pointed out to me is extrapolation rather than interolation. As a result, I'm also now looking into the possibility of using another method which is based on a sprite's position at it's last (rendered) frame and it's current one. Assuming an interpolation value of 0.5 this is, (visually), how I understand it should affect my sprite's position.... This is how I'm obtaining an inerpolation value: public void onDrawFrame(GL10 gl) { // Set/re-set loop back to 0 to start counting again loops=0; while(System.currentTimeMillis() > nextGameTick && loops < maxFrameskip) { SceneManager.getInstance().getCurrentScene().updateLogic(); nextGameTick += skipTicks; timeCorrection += (1000d / ticksPerSecond) % 1; nextGameTick += timeCorrection; timeCorrection %= 1; loops++; tics++; } interpolation = (float)(System.currentTimeMillis() + skipTicks - nextGameTick) / (float)skipTicks; render(interpolation); } I am then applying it like so (in my rendering call): render(float interpolation) { spriteScreenX = (spriteScreenX - spritePreviousX) * interpolation + spritePreviousX; spritePreviousX = spriteScreenX; // update and store this for next time } Results This unfortunately does nothing to smooth the movement of my sprite. It's pretty much the same as without the interpolation code. I can't get my head around how this is supposed to work and I honestly can't find any decent resources which explain this in any detail. My understanding of extrapolation is that when we arrive at the rendering call, we calculate the time between the last update call and the render call, and then adjust the sprite's position to reflect this time (moving the sprite forward) - And yet, this (Interpolation) is moving the sprite back, so how can this produce smooth results? Any advise on this would be very much appreciated. Edit I've implemented the code from OriginalDaemon's answer like so: @Override public void onDrawFrame(GL10 gl) { newTime = System.currentTimeMillis()*0.001; frameTime = newTime - currentTime; if ( frameTime > (dt*25)) frameTime = (dt*25); currentTime = newTime; accumulator += frameTime; while ( accumulator >= dt ) { SceneManager.getInstance().getCurrentScene().updateLogic(); previousState = currentState; t += dt; accumulator -= dt; } interpolation = (float) (accumulator / dt); render(); } Interpolation values are now being produced between 0 and 1 as expected (similar to how they were in my original loop) - however, the results are the same as my original loop (my original loop allowed frames to skip if they took too long to draw which I think this loop is also doing). I appear to have made a mistake in my previous logging, it is logging as I would expect it to (interpolated position does appear to be inbetween the previous and current positions) - however, the sprites are most definitely choppy when the render() skipping happens.

    Read the article

  • Create USB installer from the command line?

    - by j-g-faustus
    I'm trying to create a bootable USB image to install Ubuntu on a new computer. I have done this before following the "create USB drive" instructions for Ubuntu desktop, but I don't have an Ubuntu desktop available. How can I do the same using only the command line? Things I've tried: Create bootable USB on Mac OS X following the ubuntu.com "create USB drive" instructions for Mac: Doesn't boot. usb-creator: According to apt-cache search usb-creator and Wikipedia usb-creator only exists as a graphical tool. "Create manually" instructions at help.ubuntu.com: None of the files and directories described (e.g. casper, filesystem.manifest, menu.lst) exist in the ISO image, and I don't know what has replaced them. unetbootin scripting: Requires X server (graphics support) to run, even when fully scripted. (The command sudo unetbootin lang=en method=diskimage isofile=~/ubuntu-10.10-server-amd64.iso installtype=USB targetdrive=/dev/sdg1 autoinstall=yes gives an error message unetbootin: cannot connect to X server.) Update Also tried GRUB fiddling: Merging information from pendrivelinux.com a related question on the Linux Stackexchange and a grub configuration example I was able to get halfway there - it booted from USB, displayed the grub menu and started the installation, but installation did not complete. For reference, this is the closest I got: sudo su # mount USB pen mount /dev/sd[X]1 /media/usb # install GRUB grub-install --force --no-floppy --root-directory=/media/usb /dev/sd[X] # copy ISO image to USB cp ~/ubuntu-10.10-server-amd64.iso /media/usb # mount ISO image, copy existing grub.cfg mount ~/ubuntu-10.10-server-amd64.iso /media/iso/ -o loop cp /media/iso/boot/grub/grub.cfg /media/usb/boot/grub/ I then edited /media/usb/boot/grub.cfg to add an .iso loopback, example grub entry: menuentry "Install Ubuntu Server" { set gfxpayload=keep loopback loop /ubuntu-10.10-server-amd64.iso linux (loop)/install/vmlinuz file=(loop)/preseed/ubuntu-server.seed iso-scan/filename=/ubuntu-10.10-server-amd64.iso quiet -- initrd (loop)/install/initrd.gz } When booting from USB, this would give me the Grub boot menu and start the installer, but the installer gave up after a couple of screens complaining that it couldn't find the CD-ROM drive. (Naturally, as the box I'm installing on doesn't have an optical drive.) I resolved this particular issue by giving up and doing the "create USB drive" routine using the Ubuntu Live desktop CD (on a computer that does have an optical drive), then the USB install works. But I expect that there is some way to do this from the command line of an Ubuntu system without X server and without an optical drive, so the question still stands. Does anyone know how?

    Read the article

  • Can parser combination be made efficient?

    - by Jon Harrop
    Around 6 years ago, I benchmarked my own parser combinators in OCaml and found that they were ~5× slower than the parser generators on offer at the time. I recently revisited this subject and benchmarked Haskell's Parsec vs a simple hand-rolled precedence climbing parser written in F# and was surprised to find the F# to be 25× faster than the Haskell. Here's the Haskell code I used to read a large mathematical expression from file, parse and evaluate it: import Control.Applicative import Text.Parsec hiding ((<|>)) expr = chainl1 term ((+) <$ char '+' <|> (-) <$ char '-') term = chainl1 fact ((*) <$ char '*' <|> div <$ char '/') fact = read <$> many1 digit <|> char '(' *> expr <* char ')' eval :: String -> Int eval = either (error . show) id . parse expr "" . filter (/= ' ') main :: IO () main = do file <- readFile "expr" putStr $ show $ eval file putStr "\n" and here's my self-contained precedence climbing parser in F#: let rec (|Expr|) (P(f, xs)) = Expr(loop (' ', f, xs)) and shift oop f op (P(g, xs)) = let h, xs = loop (op, g, xs) loop (oop, f h, xs) and loop = function | ' ' as oop, f, ('+' | '-' as op)::P(g, xs) | (' ' | '+' | '-' as oop), f, ('*' | '/' as op)::P(g, xs) | oop, f, ('^' as op)::P(g, xs) -> let h, xs = loop (op, g, xs) let op = match op with | '+' -> (+) | '-' -> (-) | '*' -> (*) | '/' -> (/) | '^' -> pown loop (oop, op f h, xs) | _, f, xs -> f, xs and (|P|) = function | '-'::P(f, xs) -> let f, xs = loop ('~', f, xs) P(-f, xs) | '('::Expr(f, ')'::xs) -> P(f, xs) | c::xs when '0' <= c && c <= '9' -> P(int(string c), xs) My impression is that even state-of-the-art parser combinators waste a lot of time back tracking. Is that correct? If so, is it possible to write parser combinators that generate state machines to obtain competitive performance or is it necessary to use code generation?

    Read the article

  • Big O Complexity of a method

    - by timeNomad
    I have this method: public static int what(String str, char start, char end) { int count=0; for(int i=0;i<str.length(); i++) { if(str.charAt(i) == start) { for(int j=i+1;j<str.length(); j++) { if(str.charAt(j) == end) count++; } } } return count; } What I need to find is: 1) What is it doing? Answer: counting the total number of end occurrences after EACH (or is it? Not specified in the assignment, point 3 depends on this) start. 2) What is its complexity? Answer: the first loops iterates over the string completely, so it's at least O(n), the second loop executes only if start char is found and even then partially (index at which start was found + 1). Although, big O is all about worst case no? So in the worst case, start is the 1st char & the inner iteration iterates over the string n-1 times, the -1 is a constant so it's n. But, the inner loop won't be executed every outer iteration pass, statistically, but since big O is about worst case, is it correct to say the complexity of it is O(n^2)? Ignoring any constants and the fact that in 99.99% of times the inner loop won't execute every outer loop pass. 3) Rewrite it so that complexity is lower. What I'm not sure of is whether start occurs at most once or more, if once at most, then method can be rewritten using one loop (having a flag indicating whether start has been encountered and from there on incrementing count at each end occurrence), yielding a complexity of O(n). In case though, that start can appear multiple times, which most likely it is, because assignment is of a Java course and I don't think they would make such ambiguity. Solving, in this case, is not possible using one loop... WAIT! Yes it is..! Just have a variable, say, inc to be incremented each time start is encountered & used to increment count each time end is encountered after the 1st start was found: inc = 0, count = 0 if (current char == start) inc++ if (inc > 0 && current char == end) count += inc This would also yield a complexity of O(n)? Because there is only 1 loop. Yes I realize I wrote a lot hehe, but what I also realized is that I understand a lot better by forming my thoughts into words...

    Read the article

  • OpenSSL Handshake Failure (14094410) - Erroneous Client Certificate Check from Mobile Phone

    - by Clayton Sims
    I'm running a proxy server through Apache with modssl, which we're using to proxy POSTs from mobile devices to another internal server. This works successfully for most clients, but requests from a specific phone model (Nokia 2690) are showing a bizarre handshake failure. It looks as though OpenSSL is either requesting (or attempting to read an unsolicited) client certificate from the phone (which is especially bizarre because j2me's kssl implementation doesn't support client certs). I've disabled client certificates with the SSLVerifyClient none directive in both the virtual host conf and the modssl conf. The trace from error.log on debug level is (details redacted): [client 41.220.207.10] Connection to child 0 established (server www.myserver.org:443) [info] Seeding PRNG with 656 bytes of entropy [debug] ssl_engine_kernel.c(1866): OpenSSL: Handshake: start [debug] ssl_engine_kernel.c(1874): OpenSSL: Loop: before/accept initialization [debug] ssl_engine_io.c(1882): OpenSSL: read 11/11 bytes from BIO#7fe3fbaf17a0 [mem: 7fe3fbaf90d0] (BIO dump follows) [debug] ssl_engine_io.c(1815): +-------------------------------------------------------------------------+ [debug] ssl_engine_io.c(1860): +-------------------------------------------------------------------------+ [debug] ssl_engine_io.c(1882): OpenSSL: read 49/49 bytes from BIO#7fe3fbaf17a0 [mem: 7fe3fbaf90db] (BIO dump follows) [debug] ssl_engine_io.c(1815): +-------------------------------------------------------------------------+ [debug] ssl_engine_io.c(1860): +-------------------------------------------------------------------------+ [debug] ssl_engine_kernel.c(1874): OpenSSL: Loop: SSLv3 read client hello A [debug] ssl_engine_kernel.c(1874): OpenSSL: Loop: SSLv3 write server hello A [debug] ssl_engine_kernel.c(1874): OpenSSL: Loop: SSLv3 write certificate A [debug] ssl_engine_kernel.c(1874): OpenSSL: Loop: SSLv3 write server done A [debug] ssl_engine_kernel.c(1874): OpenSSL: Loop: SSLv3 flush data [debug] ssl_engine_io.c(1882): OpenSSL: read 5/5 bytes from BIO#7fe3fbaf17a0 [mem: 7fe3fbaf90d0] (BIO dump follows) [debug] ssl_engine_io.c(1815): +-------------------------------------------------------------------------+ [debug] ssl_engine_io.c(1860): +-------------------------------------------------------------------------+ [debug] ssl_engine_io.c(1882): OpenSSL: read 2/2 bytes from BIO#7fe3fbaf17a0 [mem: 7fe3fbaf90d5] (BIO dump follows) [debug] ssl_engine_io.c(1815): +-------------------------------------------------------------------------+ [debug] ssl_engine_io.c(1860): +-------------------------------------------------------------------------+ [debug] ssl_engine_kernel.c(1879): OpenSSL: Read: SSLv3 read client certificate A [debug] ssl_engine_kernel.c(1898): OpenSSL: Exit: failed in SSLv3 read client certificate A [client 41.220.207.10] SSL library error 1 in handshake (server www.myserver.org:443) [info] SSL Library Error: 336151568 error:14094410:SSL routines:SSL3_READ_BYTES:sslv3 alert handshake failure [client 41.220.207.10] Connection closed to child 0 with abortive shutdown (server www.myserver.org:443) I've tried enabling all ciphers and all protocols temporarily with modssl, neither of which seemed to be the issue. The phone should be using RSA_RC4_128_MD5 and SSLv3, all of which are available. Am I missing something more fundamental about what's failing here? It seemed like the certificate request might have been part of a renegotiation failure. I tried enabling SSLInsecureRenegotiation On on the virtual host, in case it was an issue of the phone's SSL not supporting the new protocol, but to no avail. Currently running: Apache/2.2.16 (Ubuntu) mod_ssl/2.2.16 OpenSSL/0.9.8o Apache proxy_html/3.0.1

    Read the article

  • Debian Squeeze vzquota

    - by benjamin
    Hello, Apparently, I got Debian Squeeze (Debian 6) to work on a VPS using debootstrap and chroot as described here. Subsequent installation of the harden, exim4, mysql-server packages failed partially. Relevant information: insserv: warning: script 'S10vzquota' missing LSB tags and overrides insserv: warning: script is corrupt or invalid: /etc/init.d/../rc6.d/S00vzreboot insserv: warning: script 'vzquota' missing LSB tags and overrides insserv: There is a loop between service vzquota and stop-bootlogd if started insserv: loop involving service stop-bootlogd at depth 2 insserv: loop involving service vzquota at depth 1 insserv: loop involving service rsyslog at depth 1 insserv: Starting vzquota depends on stop-bootlogd and therefore on system facility `$all' which can not be true! insserv: Starting vzquota depends on stop-bootlogd and therefore on system facility `$all' which can not be true! insserv: There is a loop between service vzquota and stop-bootlogd if started insserv: Starting vzquota depends on stop-bootlogd and therefore on system facility `$all' which can not be true! insserv: Starting vzquota depends on stop-bootlogd and therefore on system facility `$all' which can not be true! insserv: exiting now without changing boot order! update-rc.d: error: insserv rejected the script header dpkg: error processing exim4-base (--configure): subprocess installed post-installation script returned error exit status 1 Any suggestions? Keywords: vzquota debian squeeze installation vps, virtual private server.

    Read the article

  • Varnish gets in a restart loop and causes the system to lock up; how can I fix?

    - by chrism2671
    Here is an extract from the syslog. Mar 2 14:01:10 ip-10-226-34-17 varnishd[20204]: Child (20205) not responding to ping, killing it. Mar 2 14:01:16 ip-10-226-34-17 varnishd[20204]: Child (20205) not responding to ping, killing it. Mar 2 14:01:16 ip-10-226-34-17 varnishd[20204]: Child (20205) died signal=3 Mar 2 14:01:21 ip-10-226-34-17 varnishd[20204]: Child cleanup complete Mar 2 14:01:21 ip-10-226-34-17 varnishd[20204]: child (13224) Started Mar 2 14:01:21 ip-10-226-34-17 varnishd[20204]: Child (13224) said Closed fds: 4 5 6 10 11 13 14 Mar 2 14:01:21 ip-10-226-34-17 varnishd[20204]: Child (13224) said Child starts Mar 2 14:01:21 ip-10-226-34-17 varnishd[20204]: Child (13224) said managed to mmap 536870912 bytes of 536870912 Mar 2 14:01:21 ip-10-226-34-17 varnishd[20204]: Child (13224) said Ready Mar 2 14:01:35 ip-10-226-34-17 varnishd[20204]: Child (13224) not responding to ping, killing it. Mar 2 14:02:10 ip-10-226-34-17 last message repeated 7 times Mar 2 14:03:15 ip-10-226-34-17 last message repeated 13 times Mar 2 14:03:20 ip-10-226-34-17 varnishd[20204]: Child (13224) not responding to ping, killing it. Mar 2 14:05:53 ip-10-226-34-17 varnishd[20204]: Child (13224) not responding to ping, killing it. Mar 2 14:05:53 ip-10-226-34-17 varnishd[20204]: Child (13224) not responding to ping, killing it. Mar 2 14:05:53 ip-10-226-34-17 varnishd[20204]: Child (13224) died signal=3 Mar 2 14:05:53 ip-10-226-34-17 varnishd[20204]: Child cleanup complete Mar 2 14:05:53 ip-10-226-34-17 varnishd[20204]: child (13288) Started I'm not expecting a solution here but any help just to decode what each line is doing would be very instructive. Many thanks!

    Read the article

  • C++ - getline() keeps reading the same line over and over again for some reason

    - by Jammanuser
    I am wondering WTF my while loop which calls istream& getline ( istream& is, string& str ); keeps reading the same line again. I have the following while loop (nested down several levels of other while loops and if statements) which calls getline, but my output statement which is the first code line in the while loop's block of code tells me it is reading the same line over and over again, which explains why my output file doesn't contain the right data when my program is finished. while (getline(file_handle, buffer_str)) { cout<< buffer_str <<endl; cin.get(); if ((buffer_str.find(';', 0) != string::npos) && (buffer_str.find('\"', 0) != string::npos)) { //we're now at the end of the 'exc' initialiation statement buffer_str.erase(buffer_str.size() - 2, 1); buffer_str += '\n'; for (size_t i = 0; i < pos; i++) { buffer_str += ' '; } buffer_str += "throw(exc);\n"; for (size_t i = 0; i < (pos - 3); i++) { buffer_str += ' '; } buffer_str += '}'; } else if (buffer_str.find(search_str6, 0) != string::npos) { //we're now at the second problem line of the first case buffer_str += " {\n"; output_str += buffer_str; output_str += '\n'; getline(file_handle, buffer_str); //We're now at the beginning of the 'exc' initialiation statement output_str += buffer_str; output_str += '\n'; while (getline(file_handle, buffer_str)) { if ((buffer_str.find(';', 0) != string::npos) && (buffer_str.find('\"', 0) != string::npos)) { //we're now at the end of the 'exc' initialiation statement buffer_str.erase(buffer_str.size() - 2, 1); buffer_str += '\n'; for (size_t i = 0; i < pos; i++) { buffer_str += ' '; } buffer_str += "throw(exc);\n"; for (size_t i = 0; i < (pos - 3); i++) { buffer_str += ' '; } buffer_str += '}'; } output_str += buffer_str; output_str += '\n'; if (buffer_str.find("return", 0) != string::npos) { getline(file_handle, buffer_str); output_str += buffer_str; output_str += '\n'; about_to_break = true; break; //out of this while loop } } } if (about_to_break) { break; //out of the level 3 while loop (execution then goes back up to beginning of level 2 while loop) } output_str += buffer_str; output_str += '\n'; } Because of this problem, my if statement and then my else statement in my loop are not functioning as they should, and it doesn't break out of that loop when it should (though it eventually does break out of it, but I don't know exactly how yet). Anyone have any idea what could be causing this problem?? Thanks in advance.

    Read the article

  • Game programming basics under Windows

    - by dreta
    I've been trying to learn some Windows programming using the Win32 API. Now, i'm used to working with the OS layer being abstracted away, mostly thanks to libraries like SFML or Allegro. Could you guys help me out and tell me if i'm thinking right here. The place for my gameloop is where i'm reading the messages? while (TRUE) { if (PeekMessage (&msg, NULL, 0, 0, PM_REMOVE)) { if (msg.message == WM_QUIT) break ; TranslateMessage (&msg) ; DispatchMessage (&msg) ; } else { //my game loop goes here } } Now the slightly bigger issue, that is, drawing. Do i run my drawing where i normaly do it, inside the game loop after the game logic? Or do i do it when WM_PAIN is being called and just call InvalidateRect (hwnd, NULL, TRUE); when i want to draw? This does feel weird, the WM_PAINT is a queued message, so i don't know for sure when it'll be called. So if i wanted to avoid this, do i just get the device handle inside the game loop and only ValidateRect (hwnd, NULL); in the WM_PAINT case (beside the ValidateRect (hwnd, NULL); called after drawing in the game loop)? Actually, now that i think about it, do i even need WM_PAINT in this situation or can i skip it and let DefWindowProc handle it (does it validate the screen if WM_PAINT isn't processed)? If this is any important, i'm setting up my code for OpenGL.

    Read the article

  • Messages do not always appear in [catalog].[event_messages] in the order that they occur [SSIS]

    - by jamiet
    This is a simple heads up for anyone doing SQL Server Integration Services (SSIS) development using SSIS 2012. Be aware that messages do not always appear in [catalog].[event_messages] in the order that they occur, observe… In the following query I am looking at a subset of messages in [catalog].[event_messages] and ordering them by [event_message_id]: SELECT [event_message_id],[event_name],[message_time],[message_source_name]FROM   [catalog].[event_messages] emWHERE  [event_message_id] BETWEEN 290972 AND 290982ORDER  BY [event_message_id] ASC--ORDER BY [message_time] ASC Take a look at the two rows that I have highlighted, note how the OnPostExecute event for “Utility GetTargetLoadDatesPerETLIfcName” appears after the OnPreExecute event for “FELC Loop over TargetLoadDates”, I happen to know that this is incorrect because “Utility GetTargetLoadDatesPerETLIfcName” is a package that gets executed by an Execute Package Task prior to the For Each Loop “FELC Loop over TargetLoadDates”: If we order instead by [message_time] then we see something that makes more sense: SELECT [event_message_id],[event_name],[message_time],[message_source_name]FROM   [catalog].[event_messages] emWHERE  [event_message_id] BETWEEN 290972 AND 290982--ORDER BY [event_message_id] ASCORDER  BY [message_time] ASC We can see that the OnPostExecute for “Utility GetTargetLoadDatesPerETLIfcName” did indeed occur before the OnPreExecute event for “FELC Loop over TargetLoadDates”, they just did not get assigned an [event_message_id] in chronological order. We can speculate as to why that might be (I suspect the explanation is something to do with the two executables appearing in different packages) but the reason is not the important thing here, just be aware that you should be ordering by [message_time] rather than [event_message_id] if you want to get 100% accurate insights into your executions. @Jamiet

    Read the article

  • How can I make smoother upwards/downwards controls in pygame?

    - by Zolani13
    This is a loop I use to interpret key events in a python game. # Event Loop for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_a: my_speed = -10; if event.key == pygame.K_d: my_speed = 10; if event.type == pygame.KEYUP: if event.key == pygame.K_a: my_speed = 0; if event.key == pygame.K_d: my_speed = 0; The 'A' key represents up, while the 'D' key represents down. I use this loop within a larger drawing loop, that moves the sprite using this: Paddle1.rect.y += my_speed; I'm just making a simple pong game (as my first real code/non-gamemaker game) but there's a problem between moving upwards <= downwards. Essentially, if I hold a button upwards (or downwards), and then press downwards (or upwards), now holding both buttons, the direction will change, which is a good thing. But if I then release the upward button, then the sprite will stop. It won't continue in the direction of my second input. This kind of key pressing is actually common with WASD users, when changing directions quickly. Few people remember to let go of the first button before pressing the second. But my program doesn't accommodate the habit. I think I understand the reason, which is that when I let go of my first key, the KEYUP event still triggers, setting the speed to 0. I need to make sure that if a key is released, it only sets the speed to 0 if another key isn't being pressed. But the interpreter will only go through one event at a time, I think, so I can't check if a key has been pressed if it's only interpreting the commands for a released key. This is my dilemma. I want set the key controls so that a player doesn't have to press one button at a time to move upwards <= downwards, making it smoother. How can I do that?

    Read the article

  • Avoid duplicate custom post type posts in multiple loops in Wordpress

    - by christinaaa
    I am running two loops with a custom post type of Portfolio (ID of 3). The first loop is for Featured and the second is for the rest. I plan on having more than 3 Featured posts in random order. I would like to have the Featured ones that aren't displaying in the first loop to show up in my second loop. How can I set this up so there are no duplicate posts? <?php /* Template Name: Portfolio */ get_header(); ?> <div class="section-bg"> <div class="portfolio"> <div class="featured-title"> <h1>featured</h1> </div> <!-- end #featured-title --> <div class="featured-gallery"> <?php $args = array( 'post_type' => 'portfolio', 'posts_per_page' => 3, 'cat' => 3, 'orderby' => 'rand' ); $loop = new WP_Query( $args ); while ( $loop->have_posts() ) : $loop->the_post(); ?> <div class="featured peek"> <a href="<?php the_permalink(); ?>"> <h1> <?php $thetitle = $post->post_title; $getlength = strlen($thetitle); $thelength = 40; echo substr($thetitle, 0, $thelength); if ($getlength > $thelength) echo '...'; ?> </h1> <div class="contact-divider"></div> <p><?php the_tags('',' / '); ?></p> <?php the_post_thumbnail('thumbnail', array('class' => 'cover')); ?> </a> </div> <!-- end .featured --> <?php endwhile; ?> </div> <!-- end .featured-gallery --> <div class="clearfix"></div> </div> <!-- end .portfolio --> </div> <!-- end #section-bg --> <div class="clearfix"></div> <div class="section-bg"> <div class="portfolio-gallery"> <?php $args = array( 'post_type' => 'portfolio', 'orderby' => 'rand'); $loop = new WP_Query( $args ); while ( $loop->have_posts() ) : $loop->the_post(); ?> <div class="featured peek"> <a href="<?php the_permalink(); ?>"> <h1> <?php $thetitle = $post->post_title; $getlength = strlen($thetitle); $thelength = 40; echo substr($thetitle, 0, $thelength); if ($getlength > $thelength) echo '...'; ?> </h1> <div class="contact-divider"></div> <p><?php the_tags('',' / '); ?></p> <a href="<?php the_permalink(); ?>"><?php the_post_thumbnail('thumbnail', array('class' => 'cover')); ?></a> </a> </div> <!-- end .featured --> <?php endwhile; ?> <div class="clearfix"></div> </div> <!-- end .portfolio-gallery --> <div class="clearfix"></div> </div> <!-- end #section-bg --> <?php get_footer(); ?> If possible, could the answer outline how to implement it into my existing code? Thank you. :)

    Read the article

  • Basics of Join Predicate Pushdown in Oracle

    - by Maria Colgan
    Happy New Year to all of our readers! We hope you all had a great holiday season. We start the new year by continuing our series on Optimizer transformations. This time it is the turn of Predicate Pushdown. I would like to thank Rafi Ahmed for the content of this blog.Normally, a view cannot be joined with an index-based nested loop (i.e., index access) join, since a view, in contrast with a base table, does not have an index defined on it. A view can only be joined with other tables using three methods: hash, nested loop, and sort-merge joins. Introduction The join predicate pushdown (JPPD) transformation allows a view to be joined with index-based nested-loop join method, which may provide a more optimal alternative. In the join predicate pushdown transformation, the view remains a separate query block, but it contains the join predicate, which is pushed down from its containing query block into the view. The view thus becomes correlated and must be evaluated for each row of the outer query block. These pushed-down join predicates, once inside the view, open up new index access paths on the base tables inside the view; this allows the view to be joined with index-based nested-loop join method, thereby enabling the optimizer to select an efficient execution plan. The join predicate pushdown transformation is not always optimal. The join predicate pushed-down view becomes correlated and it must be evaluated for each outer row; if there is a large number of outer rows, the cost of evaluating the view multiple times may make the nested-loop join suboptimal, and therefore joining the view with hash or sort-merge join method may be more efficient. The decision whether to push down join predicates into a view is determined by evaluating the costs of the outer query with and without the join predicate pushdown transformation under Oracle's cost-based query transformation framework. The join predicate pushdown transformation applies to both non-mergeable views and mergeable views and to pre-defined and inline views as well as to views generated internally by the optimizer during various transformations. The following shows the types of views on which join predicate pushdown is currently supported. UNION ALL/UNION view Outer-joined view Anti-joined view Semi-joined view DISTINCT view GROUP-BY view Examples Consider query A, which has an outer-joined view V. The view cannot be merged, as it contains two tables, and the join between these two tables must be performed before the join between the view and the outer table T4. A: SELECT T4.unique1, V.unique3 FROM T_4K T4,            (SELECT T10.unique3, T10.hundred, T10.ten             FROM T_5K T5, T_10K T10             WHERE T5.unique3 = T10.unique3) VWHERE T4.unique3 = V.hundred(+) AND       T4.ten = V.ten(+) AND       T4.thousand = 5; The following shows the non-default plan for query A generated by disabling join predicate pushdown. When query A undergoes join predicate pushdown, it yields query B. Note that query B is expressed in a non-standard SQL and shows an internal representation of the query. B: SELECT T4.unique1, V.unique3 FROM T_4K T4,           (SELECT T10.unique3, T10.hundred, T10.ten             FROM T_5K T5, T_10K T10             WHERE T5.unique3 = T10.unique3             AND T4.unique3 = V.hundred(+)             AND T4.ten = V.ten(+)) V WHERE T4.thousand = 5; The execution plan for query B is shown below. In the execution plan BX, note the keyword 'VIEW PUSHED PREDICATE' indicates that the view has undergone the join predicate pushdown transformation. The join predicates (shown here in red) have been moved into the view V; these join predicates open up index access paths thereby enabling index-based nested-loop join of the view. With join predicate pushdown, the cost of query A has come down from 62 to 32.  As mentioned earlier, the join predicate pushdown transformation is cost-based, and a join predicate pushed-down plan is selected only when it reduces the overall cost. Consider another example of a query C, which contains a view with the UNION ALL set operator.C: SELECT R.unique1, V.unique3 FROM T_5K R,            (SELECT T1.unique3, T2.unique1+T1.unique1             FROM T_5K T1, T_10K T2             WHERE T1.unique1 = T2.unique1             UNION ALL             SELECT T1.unique3, T2.unique2             FROM G_4K T1, T_10K T2             WHERE T1.unique1 = T2.unique1) V WHERE R.unique3 = V.unique3 and R.thousand < 1; The execution plan of query C is shown below. In the above, 'VIEW UNION ALL PUSHED PREDICATE' indicates that the UNION ALL view has undergone the join predicate pushdown transformation. As can be seen, here the join predicate has been replicated and pushed inside every branch of the UNION ALL view. The join predicates (shown here in red) open up index access paths thereby enabling index-based nested loop join of the view. Consider query D as an example of join predicate pushdown into a distinct view. We have the following cardinalities of the tables involved in query D: Sales (1,016,271), Customers (50,000), and Costs (787,766).  D: SELECT C.cust_last_name, C.cust_city FROM customers C,            (SELECT DISTINCT S.cust_id             FROM sales S, costs CT             WHERE S.prod_id = CT.prod_id and CT.unit_price > 70) V WHERE C.cust_state_province = 'CA' and C.cust_id = V.cust_id; The execution plan of query D is shown below. As shown in XD, when query D undergoes join predicate pushdown transformation, the expensive DISTINCT operator is removed and the join is converted into a semi-join; this is possible, since all the SELECT list items of the view participate in an equi-join with the outer tables. Under similar conditions, when a group-by view undergoes join predicate pushdown transformation, the expensive group-by operator can also be removed. With the join predicate pushdown transformation, the elapsed time of query D came down from 63 seconds to 5 seconds. Since distinct and group-by views are mergeable views, the cost-based transformation framework also compares the cost of merging the view with that of join predicate pushdown in selecting the most optimal execution plan. Summary We have tried to illustrate the basic ideas behind join predicate pushdown on different types of views by showing example queries that are quite simple. Oracle can handle far more complex queries and other types of views not shown here in the examples. Again many thanks to Rafi Ahmed for the content of this blog post.

    Read the article

  • C# Performance Pitfall – Interop Scenarios Change the Rules

    - by Reed
    C# and .NET, overall, really do have fantastic performance in my opinion.  That being said, the performance characteristics dramatically differ from native programming, and take some relearning if you’re used to doing performance optimization in most other languages, especially C, C++, and similar.  However, there are times when revisiting tricks learned in native code play a critical role in performance optimization in C#. I recently ran across a nasty scenario that illustrated to me how dangerous following any fixed rules for optimization can be… The rules in C# when optimizing code are very different than C or C++.  Often, they’re exactly backwards.  For example, in C and C++, lifting a variable out of loops in order to avoid memory allocations often can have huge advantages.  If some function within a call graph is allocating memory dynamically, and that gets called in a loop, it can dramatically slow down a routine. This can be a tricky bottleneck to track down, even with a profiler.  Looking at the memory allocation graph is usually the key for spotting this routine, as it’s often “hidden” deep in call graph.  For example, while optimizing some of my scientific routines, I ran into a situation where I had a loop similar to: for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i]); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This loop was at a fairly high level in the call graph, and often could take many hours to complete, depending on the input data.  As such, any performance optimization we could achieve would be greatly appreciated by our users. After a fair bit of profiling, I noticed that a couple of function calls down the call graph (inside of ProcessElement), there was some code that effectively was doing: // Allocate some data required DataStructure* data = new DataStructure(num); // Call into a subroutine that passed around and manipulated this data highly CallSubroutine(data); // Read and use some values from here double values = data->Foo; // Cleanup delete data; // ... return bar; Normally, if “DataStructure” was a simple data type, I could just allocate it on the stack.  However, it’s constructor, internally, allocated it’s own memory using new, so this wouldn’t eliminate the problem.  In this case, however, I could change the call signatures to allow the pointer to the data structure to be passed into ProcessElement and through the call graph, allowing the inner routine to reuse the same “data” memory instead of allocating.  At the highest level, my code effectively changed to something like: DataStructure* data = new DataStructure(numberToProcess); for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i], data); } delete data; Granted, this dramatically reduced the maintainability of the code, so it wasn’t something I wanted to do unless there was a significant benefit.  In this case, after profiling the new version, I found that it increased the overall performance dramatically – my main test case went from 35 minutes runtime down to 21 minutes.  This was such a significant improvement, I felt it was worth the reduction in maintainability. In C and C++, it’s generally a good idea (for performance) to: Reduce the number of memory allocations as much as possible, Use fewer, larger memory allocations instead of many smaller ones, and Allocate as high up the call stack as possible, and reuse memory I’ve seen many people try to make similar optimizations in C# code.  For good or bad, this is typically not a good idea.  The garbage collector in .NET completely changes the rules here. In C#, reallocating memory in a loop is not always a bad idea.  In this scenario, for example, I may have been much better off leaving the original code alone.  The reason for this is the garbage collector.  The GC in .NET is incredibly effective, and leaving the allocation deep inside the call stack has some huge advantages.  First and foremost, it tends to make the code more maintainable – passing around object references tends to couple the methods together more than necessary, and overall increase the complexity of the code.  This is something that should be avoided unless there is a significant reason.  Second, (unlike C and C++) memory allocation of a single object in C# is normally cheap and fast.  Finally, and most critically, there is a large advantage to having short lived objects.  If you lift a variable out of the loop and reuse the memory, its much more likely that object will get promoted to Gen1 (or worse, Gen2).  This can cause expensive compaction operations to be required, and also lead to (at least temporary) memory fragmentation as well as more costly collections later. As such, I’ve found that it’s often (though not always) faster to leave memory allocations where you’d naturally place them – deep inside of the call graph, inside of the loops.  This causes the objects to stay very short lived, which in turn increases the efficiency of the garbage collector, and can dramatically improve the overall performance of the routine as a whole. In C#, I tend to: Keep variable declarations in the tightest scope possible Declare and allocate objects at usage While this tends to cause some of the same goals (reducing unnecessary allocations, etc), the goal here is a bit different – it’s about keeping the objects rooted for as little time as possible in order to (attempt) to keep them completely in Gen0, or worst case, Gen1.  It also has the huge advantage of keeping the code very maintainable – objects are used and “released” as soon as possible, which keeps the code very clean.  It does, however, often have the side effect of causing more allocations to occur, but keeping the objects rooted for a much shorter time. Now – nowhere here am I suggesting that these rules are hard, fast rules that are always true.  That being said, my time spent optimizing over the years encourages me to naturally write code that follows the above guidelines, then profile and adjust as necessary.  In my current project, however, I ran across one of those nasty little pitfalls that’s something to keep in mind – interop changes the rules. In this case, I was dealing with an API that, internally, used some COM objects.  In this case, these COM objects were leading to native allocations (most likely C++) occurring in a loop deep in my call graph.  Even though I was writing nice, clean managed code, the normal managed code rules for performance no longer apply.  After profiling to find the bottleneck in my code, I realized that my inner loop, a innocuous looking block of C# code, was effectively causing a set of native memory allocations in every iteration.  This required going back to a “native programming” mindset for optimization.  Lifting these variables and reusing them took a 1:10 routine down to 0:20 – again, a very worthwhile improvement. Overall, the lessons here are: Always profile if you suspect a performance problem – don’t assume any rule is correct, or any code is efficient just because it looks like it should be Remember to check memory allocations when profiling, not just CPU cycles Interop scenarios often cause managed code to act very differently than “normal” managed code. Native code can be hidden very cleverly inside of managed wrappers

    Read the article

  • Need some help on how to replay the last game of a java maze game

    - by Marty
    Hello, I am working on creating a Java maze game for a project. The maze is displayed on the console as standard output not in an applet. I have created most of hte code I need, however I am stuck at one problem and that is I need a user to be able to replay the last game i.e redraw the maze with the users moves but without any input from the user. I am not sure on what course of action to take, i was thinking about copying each users move or the position of each move into another array, as you can see i have 2 variables which hold the position of the player, plyrX and plyrY do you think copying these values into a new array after each move would solve my problem and how would i go about this? I have updated my code, apologies about the textIO.java class not being present, not sure how to resolve that exept post a link to TextIO.java [TextIO.java][1] My code below is updated with a new array of type char to hold values from the original maze (read in from text file and displayed using unicode characters) and also to new variables c_plyrX and c_plyrY which I am thinking should hold the values of plyrX and plyrY and copy them into the new array. When I try to call the replayGame(); method from the menu the maze loads for a second then the console exits so im not sure what I am doing wrong Thanks public class MazeGame { //unicode characters that will define the maze walls, //pathways, and in game characters. final static char WALL = '\u2588'; //wall final static char PATH = '\u2591'; //pathway final static char PLAYER = '\u25EF'; //player final static char ENTRANCE = 'E'; //entrance final static char EXIT = '\u2716'; //exit //declaring member variables which will hold the maze co-ordinates //X = rows, Y = columns static int entX = 0; //entrance X co-ordinate static int entY = 1; //entrance y co-ordinate static int plyrX = 0; static int plyrY = 1; static int exitX = 24; //exit X co-ordinate static int exitY = 37; //exit Y co-ordinate //static member variables which hold maze values //used so values can be accessed from different methods static int rows; //rows variable static int cols; //columns variable static char[][] maze; //defines 2 dimensional array to hold the maze //variables that hold player movement values static char dir; //direction static int spaces; //amount of spaces user can travel //variable to hold amount of moves the user has taken; static int movesTaken = 0; //new array to hold player moves for replaying game static char[][] mazeCopy; static int c_plyrX; static int c_plyrY; /** userMenu method for displaying the user menu which will provide various options for * the user to choose such as play a maze game, get instructions, etc. */ public static void userMenu(){ TextIO.putln("Maze Game"); TextIO.putln("*********"); TextIO.putln("Choose an option."); TextIO.putln(""); TextIO.putln("1. Play the Maze Game."); TextIO.putln("2. View Instructions."); TextIO.putln("3. Replay the last game."); TextIO.putln("4. Exit the Maze Game."); TextIO.putln(""); int option; //variable for holding users option TextIO.put("Type your choice: "); option = TextIO.getlnInt(); //gets users option //switch statement for processing menu options switch(option){ case 1: playMazeGame(); case 2: instructions(); case 3: if (c_plyrX == plyrX && c_plyrY == plyrY)replayGame(); else { TextIO.putln("Option not available yet, you need to play a game first."); TextIO.putln(); userMenu(); } case 4: System.exit(0); //exits the user out of the console default: TextIO.put("Option must be 1, 2, 3 or 4"); } } //end of userMenu /**main method, will call the userMenu and get the users choice and call * the relevant method to execute the users choice. */ public static void main(String[]args){ userMenu(); //calls the userMenu method } //end of main method /**instructions method, displays instructions on how to play * the game to the user/ */ public static void instructions(){ TextIO.putln("To beat the Maze Game you have to move your character"); TextIO.putln("through the maze and reach the exit in as few moves as possible."); TextIO.putln(""); TextIO.putln("Your characer is displayed as a " + PLAYER); TextIO.putln("The maze exit is displayed as a " + EXIT); TextIO.putln("Reach the exit and you have won escaped the maze."); TextIO.putln("To control your character type the direction you want to go"); TextIO.putln("and how many spaces you want to move"); TextIO.putln("for example 'D3' will move your character"); TextIO.putln("down 3 spaces."); TextIO.putln("Remember you can't walk through walls!"); boolean insOption; //boolean variable TextIO.putln(""); TextIO.put("Do you want to play the Maze Game now? (Y or N) "); insOption = TextIO.getlnBoolean(); if (insOption == true)playMazeGame(); else userMenu(); } //end of instructions method /**playMazeGame method, calls the loadMaze method and the charMove method * to start playing the Maze Game. */ public static void playMazeGame(){ loadMaze(); plyrMoves(); } //end of playMazeGame method /**loadMaze method, loads the 39x25 maze from the MazeGame.txt text file * and inserts values from the text file into the maze array and * displays the maze on screen using the unicode block characters. * plyrX and plyrY variables are set at their staring co ordinates so that when * a game is completed and the user selects to play a new game * the player character will always be at position 01. */ public static void loadMaze(){ plyrX = 0; plyrY = 1; TextIO.readFile("MazeGame.txt"); //now reads from the external MazeGame.txt file rows = TextIO.getInt(); //gets the number of rows from text file to create X dimensions cols = TextIO.getlnInt(); //gets number of columns from text file to create Y dimensions maze = new char[rows][cols]; //creates maze array of base type char with specified dimnensions //loop to process the array and read in values from the text file. for (int i = 0; i<rows; i++){ for (int j = 0; j<cols; j++){ maze[i][j] = TextIO.getChar(); } TextIO.getln(); } //end for loop TextIO.readStandardInput(); //closes MazeGame.txt file and reads from //standard input. //loop to process the array values and display as unicode characters for (int i = 0; i<rows; i++){ for (int j = 0; j<cols; j++){ if (i == plyrX && j == plyrY){ plyrX = i; plyrY = j; TextIO.put(PLAYER); //puts the player character at player co-ords } else{ if (maze[i][j] == '0') TextIO.putf("%c",WALL); //puts wall block if (maze[i][j] == '1') TextIO.putf("%c",PATH); //puts path block if (maze[i][j] == '2') { entX = i; entY = j; TextIO.putf("%c",ENTRANCE); //puts entrance character } if (maze[i][j] == '3') { exitX = i; //holds value of exit exitY = j; //co-ordinates TextIO.putf("%c",EXIT); //puts exit character } } } TextIO.putln(); } //end for loop } //end of loadMaze method /**redrawMaze method, method for redrawing the maze after each move. * */ public static void redrawMaze(){ TextIO.readFile("MazeGame.txt"); //now reads from the external MazeGame.txt file rows = TextIO.getInt(); //gets the number of rows from text file to create X dimensions cols = TextIO.getlnInt(); //gets number of columns from text file to create Y dimensions maze = new char[rows][cols]; //creates maze array of base type char with specified dimnensions //loop to process the array and read in values from the text file. for (int i = 0; i<rows; i++){ for (int j = 0; j<cols; j++){ maze[i][j] = TextIO.getChar(); } TextIO.getln(); } //end for loop TextIO.readStandardInput(); //closes MazeGame.txt file and reads from //standard input. //loop to process the array values and display as unicode characters for (int i = 0; i<rows; i++){ for (int j = 0; j<cols; j++){ if (i == plyrX && j == plyrY){ plyrX = i; plyrY = j; TextIO.put(PLAYER); //puts the player character at player co-ords } else{ if (maze[i][j] == '0') TextIO.putf("%c",WALL); //puts wall block if (maze[i][j] == '1') TextIO.putf("%c",PATH); //puts path block if (maze[i][j] == '2') { entX = i; entY = j; TextIO.putf("%c",ENTRANCE); //puts entrance character } if (maze[i][j] == '3') { exitX = i; //holds value of exit exitY = j; //co-ordinates TextIO.putf("%c",EXIT); //puts exit character } } } TextIO.putln(); } //end for loop } //end redrawMaze method /**replay game method * */ public static void replayGame(){ c_plyrX = plyrX; c_plyrY = plyrY; TextIO.readFile("MazeGame.txt"); //now reads from the external MazeGame.txt file rows = TextIO.getInt(); //gets the number of rows from text file to create X dimensions cols = TextIO.getlnInt(); //gets number of columns from text file to create Y dimensions mazeCopy = new char[rows][cols]; //creates maze array of base type char with specified dimnensions //loop to process the array and read in values from the text file. for (int i = 0; i<rows; i++){ for (int j = 0; j<cols; j++){ mazeCopy[i][j] = TextIO.getChar(); } TextIO.getln(); } //end for loop TextIO.readStandardInput(); //closes MazeGame.txt file and reads from //standard input. //loop to process the array values and display as unicode characters for (int i = 0; i<rows; i++){ for (int j = 0; j<cols; j++){ if (i == c_plyrX && j == c_plyrY){ c_plyrX = i; c_plyrY = j; TextIO.put(PLAYER); //puts the player character at player co-ords } else{ if (mazeCopy[i][j] == '0') TextIO.putf("%c",WALL); //puts wall block if (mazeCopy[i][j] == '1') TextIO.putf("%c",PATH); //puts path block if (mazeCopy[i][j] == '2') { entX = i; entY = j; TextIO.putf("%c",ENTRANCE); //puts entrance character } if (mazeCopy[i][j] == '3') { exitX = i; //holds value of exit exitY = j; //co-ordinates TextIO.putf("%c",EXIT); //puts exit character } } } TextIO.putln(); } //end for loop } //end replayGame method /**plyrMoves method, method for moving the players character * around the maze. */ public static void plyrMoves(){ int nplyrX = plyrX; int nplyrY = plyrY; int pMoves; direction(); //UP if (dir == 'U' || dir == 'u'){ nplyrX = plyrX; nplyrY = plyrY; for(pMoves = 0; pMoves <= spaces; pMoves++){ if (maze[nplyrX][nplyrY] == '0'){ TextIO.putln("Invalid move, try again."); } else if (pMoves != spaces){ nplyrX =plyrX + 1; } else { plyrX = plyrX-spaces; c_plyrX = plyrX; movesTaken++; } } }//end UP if //DOWN if (dir == 'D' || dir == 'd'){ nplyrX = plyrX; nplyrY = plyrY; for (pMoves = 0; pMoves <= spaces; pMoves ++){ if (maze[nplyrX][nplyrY] == '0'){ TextIO.putln("Invalid move, try again"); } else if (pMoves != spaces){ nplyrX = plyrX+1; } else{ plyrX = plyrX+spaces; c_plyrX = plyrX; movesTaken++; } } } //end DOWN if //LEFT if (dir == 'L' || dir =='l'){ nplyrX = plyrX; nplyrY = plyrY; for (pMoves = 0; pMoves <= spaces; pMoves++){ if (maze[nplyrX][nplyrY] == '0'){ TextIO.putln("Invalid move, try again"); } else if (pMoves != spaces){ nplyrY = plyrY + 1; } else{ plyrY = plyrY-spaces; c_plyrY = plyrY; movesTaken++; } } } //end LEFT if //RIGHT if (dir == 'R' || dir == 'r'){ nplyrX = plyrX; nplyrY = plyrY; for (pMoves = 0; pMoves <= spaces; pMoves++){ if (maze[nplyrX][nplyrY] == '0'){ TextIO.putln("Invalid move, try again."); } else if (pMoves != spaces){ nplyrY += 1; } else{ plyrY = plyrY+spaces; c_plyrY = plyrY; movesTaken++; } } } //end RIGHT if //prints message if player escapes from the maze. if (maze[plyrX][plyrY] == '3'){ TextIO.putln("****Congratulations****"); TextIO.putln(); TextIO.putln("You have escaped from the maze."); TextIO.putln(); userMenu(); } else{ movesTaken++; redrawMaze(); plyrMoves(); } } //end of plyrMoves method /**direction, method * */ public static char direction(){ TextIO.putln("Enter the direction you wish to move in and the distance"); TextIO.putln("i.e D3 = move down 3 spaces"); TextIO.putln("U - Up, D - Down, L - Left, R - Right: "); dir = TextIO.getChar(); if (dir =='U' || dir == 'D' || dir == 'L' || dir == 'R' || dir == 'u' || dir == 'd' || dir == 'l' || dir == 'r'){ spacesMoved(); } else{ loadMaze(); TextIO.putln("Invalid direction!"); TextIO.put("Direction must be one of U, D, L or R"); direction(); } return dir; //returns the value of dir (direction) } //end direction method /**spaces method, gets the amount of spaces the user wants to move * */ public static int spacesMoved(){ TextIO.putln(" "); spaces = TextIO.getlnInt(); if (spaces <= 0){ loadMaze(); TextIO.put("Invalid amount of spaces, try again"); spacesMoved(); } return spaces; } //end spacesMoved method } //end of MazeGame class

    Read the article

  • Searching for tasks with code – Executables and Event Handlers

    Searching packages or just enumerating through all tasks is not quite as straightforward as it may first appear, mainly because of the way you can nest tasks within other containers. You can see this illustrated in the sample package below where I have used several sequence containers and loops. To complicate this further all containers types, including packages and tasks, can have event handlers which can then support the full range of nested containers again. Towards the lower right, the task called SQL In FEL also has an event handler not shown, within which is another Execute SQL Task, so that makes a total of 6 Execute SQL Tasks 6 tasks spread across the package. In my previous post about such as adding a property expressionI kept it simple and just looked at tasks at the package level, but what if you wanted to find any or all tasks in a package? For this post I've written a console program that will search a package looking at all tasks no matter how deeply nested, and check to see if the name starts with "SQL". When it finds a matching task it writes out the hierarchy by name for that task, starting with the package and working down to the task itself. The output for our sample package is shown below, note it has found all 6 tasks, including the one on the OnPreExecute event of the SQL In FEL task TaskSearch v1.0.0.0 (1.0.0.0) Copyright (C) 2009 Konesans Ltd Processing File - C:\Projects\Alpha\Packages\MyPackage.dtsx MyPackage\FOR Counter Loop\SQL In Counter Loop MyPackage\SEQ For Each Loop Wrapper\FEL Simple Loop\SQL In FEL MyPackage\SEQ For Each Loop Wrapper\FEL Simple Loop\SQL In FEL\OnPreExecute\SQL On Pre Execute for FEL SQL Task MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SEQ Nested Lvl 2\SQL In Nested Lvl 2 MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SQL In Nested Lvl 1 #1 MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SQL In Nested Lvl 1 #2 6 matching tasks found in package. The full project and code is available for download below, but first we can walk through the project to highlight the most important sections of code. This code has been abbreviated for this description, but is complete in the download. First of all we load the package, and then start by looking at the Executables for the package. // Load the package file Application application = new Application(); using (Package package = application.LoadPackage(filename, null)) { int matchCount = 0; // Look in the package's executables ProcessExecutables(package.Executables, ref matchCount); ... // // ... // Write out final count Console.WriteLine("{0} matching tasks found in package.", matchCount); } The ProcessExecutables method is a key method, as an executable could be described as the the highest level of a working functionality or container. There are several of types of executables, such as tasks, or sequence containers and loops. To know what to do next we need to work out what type of executable we are dealing with as the abbreviated version of method shows below. private static void ProcessExecutables(Executables executables, ref int matchCount) { foreach (Executable executable in executables) { TaskHost taskHost = executable as TaskHost; if (taskHost != null) { ProcessTaskHost(taskHost, ref matchCount); ProcessEventHandlers(taskHost.EventHandlers, ref matchCount); continue; } ... // // ... ForEachLoop forEachLoop = executable as ForEachLoop; if (forEachLoop != null) { ProcessExecutables(forEachLoop.Executables, ref matchCount); ProcessEventHandlers(forEachLoop.EventHandlers, ref matchCount); continue; } } } As you can see if the executable we find is a task we then call out to our ProcessTaskHost method. As with all of our executables a task can have event handlers which themselves contain more executables such as task and loops, so we also make a call out our ProcessEventHandlers method. The other types of executables such as loops can also have event handlers as well as executables. As shown with the example for the ForEachLoop we call the same ProcessExecutables and ProcessEventHandlers methods again to drill down into the hierarchy of objects that the package may contain. This code needs to explicitly check for each type of executable (TaskHost, Sequence, ForLoop and ForEachLoop) because whilst they all have an Executables property this is not from a common base class or interface. This example was just a simple find a task by its name, so ProcessTaskHost really just does that. We also get the hierarchy of objects so we can write out for information, obviously you can adapt this method to do something more interesting such as adding a property expression. private static void ProcessTaskHost(TaskHost taskHost, ref int matchCount) { if (taskHost == null) { return; } // Check if the task matches our match name if (taskHost.Name.StartsWith(TaskNameFilter, StringComparison.OrdinalIgnoreCase)) { // Build up the full object hierarchy of the task // so we can write it out for information StringBuilder path = new StringBuilder(); DtsContainer container = taskHost; while (container != null) { path.Insert(0, container.Name); container = container.Parent; if (container != null) { path.Insert(0, "\\"); } } // Write the task path // e.g. Package\Container\Event\Task Console.WriteLine(path); Console.WriteLine(); // Increment match counter for info matchCount++; } } Just for completeness, the other processing method we covered above is for event handlers, but really that just calls back to the executables. This same method is called in our main package method, but it was omitted for brevity here. private static void ProcessEventHandlers(DtsEventHandlers eventHandlers, ref int matchCount) { foreach (DtsEventHandler eventHandler in eventHandlers) { ProcessExecutables(eventHandler.Executables, ref matchCount); } } As hopefully the code demonstrates, executables (Microsoft.SqlServer.Dts.Runtime.Executable) are the workers, but within them you can nest more executables (except for task tasks).Executables themselves can have event handlers which can in turn hold more executables. I have tried to illustrate this highlight the relationships in the following diagram. Download Sample code project TaskSearch.zip (11KB)

    Read the article

  • Searching for tasks with code – Executables and Event Handlers

    Searching packages or just enumerating through all tasks is not quite as straightforward as it may first appear, mainly because of the way you can nest tasks within other containers. You can see this illustrated in the sample package below where I have used several sequence containers and loops. To complicate this further all containers types, including packages and tasks, can have event handlers which can then support the full range of nested containers again. Towards the lower right, the task called SQL In FEL also has an event handler not shown, within which is another Execute SQL Task, so that makes a total of 6 Execute SQL Tasks 6 tasks spread across the package. In my previous post about such as adding a property expressionI kept it simple and just looked at tasks at the package level, but what if you wanted to find any or all tasks in a package? For this post I've written a console program that will search a package looking at all tasks no matter how deeply nested, and check to see if the name starts with "SQL". When it finds a matching task it writes out the hierarchy by name for that task, starting with the package and working down to the task itself. The output for our sample package is shown below, note it has found all 6 tasks, including the one on the OnPreExecute event of the SQL In FEL task TaskSearch v1.0.0.0 (1.0.0.0) Copyright (C) 2009 Konesans Ltd Processing File - C:\Projects\Alpha\Packages\MyPackage.dtsx MyPackage\FOR Counter Loop\SQL In Counter Loop MyPackage\SEQ For Each Loop Wrapper\FEL Simple Loop\SQL In FEL MyPackage\SEQ For Each Loop Wrapper\FEL Simple Loop\SQL In FEL\OnPreExecute\SQL On Pre Execute for FEL SQL Task MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SEQ Nested Lvl 2\SQL In Nested Lvl 2 MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SQL In Nested Lvl 1 #1 MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SQL In Nested Lvl 1 #2 6 matching tasks found in package. The full project and code is available for download below, but first we can walk through the project to highlight the most important sections of code. This code has been abbreviated for this description, but is complete in the download. First of all we load the package, and then start by looking at the Executables for the package. // Load the package file Application application = new Application(); using (Package package = application.LoadPackage(filename, null)) { int matchCount = 0; // Look in the package's executables ProcessExecutables(package.Executables, ref matchCount); ... // // ... // Write out final count Console.WriteLine("{0} matching tasks found in package.", matchCount); } The ProcessExecutables method is a key method, as an executable could be described as the the highest level of a working functionality or container. There are several of types of executables, such as tasks, or sequence containers and loops. To know what to do next we need to work out what type of executable we are dealing with as the abbreviated version of method shows below. private static void ProcessExecutables(Executables executables, ref int matchCount) { foreach (Executable executable in executables) { TaskHost taskHost = executable as TaskHost; if (taskHost != null) { ProcessTaskHost(taskHost, ref matchCount); ProcessEventHandlers(taskHost.EventHandlers, ref matchCount); continue; } ... // // ... ForEachLoop forEachLoop = executable as ForEachLoop; if (forEachLoop != null) { ProcessExecutables(forEachLoop.Executables, ref matchCount); ProcessEventHandlers(forEachLoop.EventHandlers, ref matchCount); continue; } } } As you can see if the executable we find is a task we then call out to our ProcessTaskHost method. As with all of our executables a task can have event handlers which themselves contain more executables such as task and loops, so we also make a call out our ProcessEventHandlers method. The other types of executables such as loops can also have event handlers as well as executables. As shown with the example for the ForEachLoop we call the same ProcessExecutables and ProcessEventHandlers methods again to drill down into the hierarchy of objects that the package may contain. This code needs to explicitly check for each type of executable (TaskHost, Sequence, ForLoop and ForEachLoop) because whilst they all have an Executables property this is not from a common base class or interface. This example was just a simple find a task by its name, so ProcessTaskHost really just does that. We also get the hierarchy of objects so we can write out for information, obviously you can adapt this method to do something more interesting such as adding a property expression. private static void ProcessTaskHost(TaskHost taskHost, ref int matchCount) { if (taskHost == null) { return; } // Check if the task matches our match name if (taskHost.Name.StartsWith(TaskNameFilter, StringComparison.OrdinalIgnoreCase)) { // Build up the full object hierarchy of the task // so we can write it out for information StringBuilder path = new StringBuilder(); DtsContainer container = taskHost; while (container != null) { path.Insert(0, container.Name); container = container.Parent; if (container != null) { path.Insert(0, "\\"); } } // Write the task path // e.g. Package\Container\Event\Task Console.WriteLine(path); Console.WriteLine(); // Increment match counter for info matchCount++; } } Just for completeness, the other processing method we covered above is for event handlers, but really that just calls back to the executables. This same method is called in our main package method, but it was omitted for brevity here. private static void ProcessEventHandlers(DtsEventHandlers eventHandlers, ref int matchCount) { foreach (DtsEventHandler eventHandler in eventHandlers) { ProcessExecutables(eventHandler.Executables, ref matchCount); } } As hopefully the code demonstrates, executables (Microsoft.SqlServer.Dts.Runtime.Executable) are the workers, but within them you can nest more executables (except for task tasks).Executables themselves can have event handlers which can in turn hold more executables. I have tried to illustrate this highlight the relationships in the following diagram. Download Sample code project TaskSearch.zip (11KB)

    Read the article

  • help with fixing fwts errors log

    - by jasmines
    Here is an extract of results.log: MTRR validation. Test 1 of 3: Validate the kernel MTRR IOMEM setup. FAILED [MEDIUM] MTRRIncorrectAttr: Test 1, Memory range 0xc0000000 to 0xdfffffff (PCI Bus 0000:00) has incorrect attribute Write-Combining. FAILED [MEDIUM] MTRRIncorrectAttr: Test 1, Memory range 0xfee01000 to 0xffffffff (PCI Bus 0000:00) has incorrect attribute Write-Protect. ==================================================================================================== Test 1 of 1: Kernel log error check. Kernel message: [ 0.208079] [Firmware Bug]: ACPI: BIOS _OSI(Linux) query ignored ADVICE: This is not exactly a failure mode but a warning from the kernel. The _OSI() method has implemented a match to the 'Linux' query in the DSDT and this is redundant because the ACPI driver matches onto the Windows _OSI strings by default. FAILED [HIGH] KlogACPIErrorMethodExecutionParse: Test 1, HIGH Kernel message: [ 3.512783] ACPI Error : Method parse/execution failed [\_SB_.PCI0.GFX0._DOD] (Node f7425858), AE_AML_PACKAGE_LIMIT (20110623/psparse-536) ADVICE: This is a bug picked up by the kernel, but as yet, the firmware test suite has no diagnostic advice for this particular problem. Found 1 unique errors in kernel log. ==================================================================================================== Check if system is using latest microcode. ---------------------------------------------------------------------------------------------------- Cannot read microcode file /usr/share/misc/intel-microcode.dat. Aborted test, initialisation failed. ==================================================================================================== MSR register tests. FAILED [MEDIUM] MSRCPUsInconsistent: Test 1, MSR SYSENTER_ESP (0x175) has 1 inconsistent values across 2 CPUs for (shift: 0 mask: 0xffffffffffffffff). MSR CPU 0 -> 0xf7bb9c40 vs CPU 1 -> 0xf7bc7c40 FAILED [MEDIUM] MSRCPUsInconsistent: Test 1, MSR MISC_ENABLE (0x1a0) has 1 inconsistent values across 2 CPUs for (shift: 0 mask: 0x400c51889). MSR CPU 0 -> 0x850088 vs CPU 1 -> 0x850089 ==================================================================================================== Checks firmware has set PCI Express MaxReadReq to a higher value on non-motherboard devices. ---------------------------------------------------------------------------------------------------- Test 1 of 1: Check firmware settings MaxReadReq for PCI Express devices. MaxReadReq for pci://00:00:1b.0 Audio device: Intel Corporation 82801I (ICH9 Family) HD Audio Controller (rev 03) is low (128) [Audio device]. MaxReadReq for pci://00:02:00.0 Network controller: Intel Corporation PRO/Wireless 5100 AGN [Shiloh] Network Connection is low (128) [Network controller]. FAILED [LOW] LowMaxReadReq: Test 1, 2 devices have low MaxReadReq settings. Firmware may have configured these too low. ADVICE: The MaxReadRequest size is set too low and will affect performance. It will provide excellent bus sharing at the cost of bus data transfer rates. Although not a critical issue, it may be worth considering setting the MaxReadRequest size to 256 or 512 to increase throughput on the PCI Express bus. Some drivers (for example the Brocade Fibre Channel driver) allow one to override the firmware settings. Where possible, this BIOS configuration setting is worth increasing it a little more for better performance at a small reduction of bus sharing. ==================================================================================================== PCIe ASPM check. ---------------------------------------------------------------------------------------------------- Test 1 of 2: PCIe ASPM ACPI test. PCIE ASPM is not controlled by Linux kernel. ADVICE: BIOS reports that Linux kernel should not modify ASPM settings that BIOS configured. It can be intentional because hardware vendors identified some capability bugs between the motherboard and the add-on cards. Test 2 of 2: PCIe ASPM registers test. WARNING: Test 2, RP 00h:1Ch.01h L0s not enabled. WARNING: Test 2, RP 00h:1Ch.01h L1 not enabled. WARNING: Test 2, Device 02h:00h.00h L0s not enabled. WARNING: Test 2, Device 02h:00h.00h L1 not enabled. PASSED: Test 2, PCIE aspm setting matched was matched. WARNING: Test 2, RP 00h:1Ch.05h L0s not enabled. WARNING: Test 2, RP 00h:1Ch.05h L1 not enabled. WARNING: Test 2, Device 85h:00h.00h L0s not enabled. WARNING: Test 2, Device 85h:00h.00h L1 not enabled. PASSED: Test 2, PCIE aspm setting matched was matched. ==================================================================================================== Extract and analyse Windows Management Instrumentation (WMI). Test 1 of 2: Check Windows Management Instrumentation in DSDT Found WMI Method WMAA with GUID: 5FB7F034-2C63-45E9-BE91-3D44E2C707E4, Instance 0x01 Found WMI Event, Notifier ID: 0x80, GUID: 95F24279-4D7B-4334-9387-ACCDC67EF61C, Instance 0x01 PASSED: Test 1, GUID 95F24279-4D7B-4334-9387-ACCDC67EF61C is handled by driver hp-wmi (Vendor: HP). Found WMI Event, Notifier ID: 0xa0, GUID: 2B814318-4BE8-4707-9D84-A190A859B5D0, Instance 0x01 FAILED [MEDIUM] WMIUnknownGUID: Test 1, GUID 2B814318-4BE8-4707-9D84-A190A859B5D0 is unknown to the kernel, a driver may need to be implemented for this GUID. ADVICE: A WMI driver probably needs to be written for this event. It can checked for using: wmi_has_guid("2B814318-4BE8-4707-9D84-A190A859B5D0"). One can install a notify handler using wmi_install_notify_handler("2B814318-4BE8-4707-9D84-A190A859B5D0", handler, NULL). http://lwn.net/Articles/391230 describes how to write an appropriate driver. Found WMI Object, Object ID AB, GUID: 05901221-D566-11D1-B2F0-00A0C9062910, Instance 0x01, Flags: 00 Found WMI Method WMBA with GUID: 1F4C91EB-DC5C-460B-951D-C7CB9B4B8D5E, Instance 0x01 Found WMI Object, Object ID BC, GUID: 2D114B49-2DFB-4130-B8FE-4A3C09E75133, Instance 0x7f, Flags: 00 Found WMI Object, Object ID BD, GUID: 988D08E3-68F4-4C35-AF3E-6A1B8106F83C, Instance 0x19, Flags: 00 Found WMI Object, Object ID BE, GUID: 14EA9746-CE1F-4098-A0E0-7045CB4DA745, Instance 0x01, Flags: 00 Found WMI Object, Object ID BF, GUID: 322F2028-0F84-4901-988E-015176049E2D, Instance 0x01, Flags: 00 Found WMI Object, Object ID BG, GUID: 8232DE3D-663D-4327-A8F4-E293ADB9BF05, Instance 0x01, Flags: 00 Found WMI Object, Object ID BH, GUID: 8F1F6436-9F42-42C8-BADC-0E9424F20C9A, Instance 0x00, Flags: 00 Found WMI Object, Object ID BI, GUID: 8F1F6435-9F42-42C8-BADC-0E9424F20C9A, Instance 0x00, Flags: 00 Found WMI Method WMAC with GUID: 7391A661-223A-47DB-A77A-7BE84C60822D, Instance 0x01 Found WMI Object, Object ID BJ, GUID: DF4E63B6-3BBC-4858-9737-C74F82F821F3, Instance 0x05, Flags: 00 ==================================================================================================== Disassemble DSDT to check for _OSI("Linux"). ---------------------------------------------------------------------------------------------------- Test 1 of 1: Disassemble DSDT to check for _OSI("Linux"). This is not strictly a failure mode, it just alerts one that this has been defined in the DSDT and probably should be avoided since the Linux ACPI driver matches onto the Windows _OSI strings { If (_OSI ("Linux")) { Store (0x03E8, OSYS) } If (_OSI ("Windows 2001")) { Store (0x07D1, OSYS) } If (_OSI ("Windows 2001 SP1")) { Store (0x07D1, OSYS) } If (_OSI ("Windows 2001 SP2")) { Store (0x07D2, OSYS) } If (_OSI ("Windows 2006")) { Store (0x07D6, OSYS) } If (LAnd (MPEN, LEqual (OSYS, 0x07D1))) { TRAP (0x01, 0x48) } TRAP (0x03, 0x35) } WARNING: Test 1, DSDT implements a deprecated _OSI("Linux") test. ==================================================================================================== 0 passed, 0 failed, 1 warnings, 0 aborted, 0 skipped, 0 info only. ==================================================================================================== ACPI DSDT Method Semantic Tests. ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP Failed to install global event handler. Test 22 of 93: Check _PSR (Power Source). ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP WARNING: Test 22, Detected an infinite loop when evaluating method '\_SB_.AC__._PSR'. ADVICE: This may occur because we are emulating the execution in this test environment and cannot handshake with the embedded controller or jump to the BIOS via SMIs. However, the fact that AML code spins forever means that lockup conditions are not being checked for in the AML bytecode. PASSED: Test 22, \_SB_.AC__._PSR correctly acquired and released locks 16 times. Test 35 of 93: Check _TMP (Thermal Zone Current Temp). ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP WARNING: Test 35, Detected an infinite loop when evaluating method '\_TZ_.DTSZ._TMP'. ADVICE: This may occur because we are emulating the execution in this test environment and cannot handshake with the embedded controller or jump to the BIOS via SMIs. However, the fact that AML code spins forever means that lockup conditions are not being checked for in the AML bytecode. PASSED: Test 35, \_TZ_.DTSZ._TMP correctly acquired and released locks 14 times. ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP WARNING: Test 35, Detected an infinite loop when evaluating method '\_TZ_.CPUZ._TMP'. ADVICE: This may occur because we are emulating the execution in this test environment and cannot handshake with the embedded controller or jump to the BIOS via SMIs. However, the fact that AML code spins forever means that lockup conditions are not being checked for in the AML bytecode. PASSED: Test 35, \_TZ_.CPUZ._TMP correctly acquired and released locks 10 times. ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP WARNING: Test 35, Detected an infinite loop when evaluating method '\_TZ_.SKNZ._TMP'. ADVICE: This may occur because we are emulating the execution in this test environment and cannot handshake with the embedded controller or jump to the BIOS via SMIs. However, the fact that AML code spins forever means that lockup conditions are not being checked for in the AML bytecode. PASSED: Test 35, \_TZ_.SKNZ._TMP correctly acquired and released locks 10 times. PASSED: Test 35, _TMP correctly returned sane looking value 0x00000b4c (289.2 degrees K) PASSED: Test 35, \_TZ_.BATZ._TMP correctly acquired and released locks 9 times. PASSED: Test 35, _TMP correctly returned sane looking value 0x00000aac (273.2 degrees K) PASSED: Test 35, \_TZ_.FDTZ._TMP correctly acquired and released locks 7 times. Test 46 of 93: Check _DIS (Disable). FAILED [MEDIUM] MethodShouldReturnNothing: Test 46, \_SB_.PCI0.LPCB.SIO_.COM1._DIS returned values, but was expected to return nothing. Object returned: INTEGER: 0x00000000 ADVICE: This probably won't cause any errors, but it should be fixed as the AML code is not conforming to the expected behaviour as described in the ACPI specification. FAILED [MEDIUM] MethodShouldReturnNothing: Test 46, \_SB_.PCI0.LPCB.SIO_.LPT0._DIS returned values, but was expected to return nothing. Object returned: INTEGER: 0x00000000 ADVICE: This probably won't cause any errors, but it should be fixed as the AML code is not conforming to the expected behaviour as described in the ACPI specification. Test 61 of 93: Check _WAK (System Wake). Test _WAK(1) System Wake, State S1. ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP WARNING: Test 61, Detected an infinite loop when evaluating method '\_WAK'. ADVICE: This may occur because we are emulating the execution in this test environment and cannot handshake with the embedded controller or jump to the BIOS via SMIs. However, the fact that AML code spins forever means that lockup conditions are not being checked for in the AML bytecode. Test _WAK(2) System Wake, State S2. ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP WARNING: Test 61, Detected an infinite loop when evaluating method '\_WAK'. ADVICE: This may occur because we are emulating the execution in this test environment and cannot handshake with the embedded controller or jump to the BIOS via SMIs. However, the fact that AML code spins forever means that lockup conditions are not being checked for in the AML bytecode. Test _WAK(3) System Wake, State S3. ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP WARNING: Test 61, Detected an infinite loop when evaluating method '\_WAK'. ADVICE: This may occur because we are emulating the execution in this test environment and cannot handshake with the embedded controller or jump to the BIOS via SMIs. However, the fact that AML code spins forever means that lockup conditions are not being checked for in the AML bytecode. Test _WAK(4) System Wake, State S4. ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP WARNING: Test 61, Detected an infinite loop when evaluating method '\_WAK'. ADVICE: This may occur because we are emulating the execution in this test environment and cannot handshake with the embedded controller or jump to the BIOS via SMIs. However, the fact that AML code spins forever means that lockup conditions are not being checked for in the AML bytecode. Test _WAK(5) System Wake, State S5. ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP WARNING: Test 61, Detected an infinite loop when evaluating method '\_WAK'. ADVICE: This may occur because we are emulating the execution in this test environment and cannot handshake with the embedded controller or jump to the BIOS via SMIs. However, the fact that AML code spins forever means that lockup conditions are not being checked for in the AML bytecode. Test 87 of 93: Check _BCL (Query List of Brightness Control Levels Supported). Package has 2 elements: 00: INTEGER: 0x00000000 01: INTEGER: 0x00000000 FAILED [MEDIUM] Method_BCLElementCount: Test 87, Method _BCL should return a package of more than 2 integers, got just 2. Test 88 of 93: Check _BCM (Set Brightness Level). ACPICA Exception AE_AML_PACKAGE_LIMIT during execution of method _BCM FAILED [CRITICAL] AEAMLPackgeLimit: Test 88, Detected error 'Package limit' when evaluating '\_SB_.PCI0.GFX0.DD02._BCM'. ==================================================================================================== ACPI table settings sanity checks. ---------------------------------------------------------------------------------------------------- Test 1 of 1: Check ACPI tables. PASSED: Test 1, Table APIC passed. Table ECDT not present to check. FAILED [MEDIUM] FADT32And64BothDefined: Test 1, FADT 32 bit FIRMWARE_CONTROL is non-zero, and X_FIRMWARE_CONTROL is also non-zero. Section 5.2.9 of the ACPI specification states that if the FIRMWARE_CONTROL is non-zero then X_FIRMWARE_CONTROL must be set to zero. ADVICE: The FADT FIRMWARE_CTRL is a 32 bit pointer that points to the physical memory address of the Firmware ACPI Control Structure (FACS). There is also an extended 64 bit version of this, the X_FIRMWARE_CTRL pointer that also can point to the FACS. Section 5.2.9 of the ACPI specification states that if the X_FIRMWARE_CTRL field contains a non zero value then the FIRMWARE_CTRL field *must* be zero. This error is also detected by the Linux kernel. If FIRMWARE_CTRL and X_FIRMWARE_CTRL are defined, then the kernel just uses the 64 bit version of the pointer. PASSED: Test 1, Table HPET passed. PASSED: Test 1, Table MCFG passed. PASSED: Test 1, Table RSDT passed. PASSED: Test 1, Table RSDP passed. Table SBST not present to check. PASSED: Test 1, Table XSDT passed. ==================================================================================================== Re-assemble DSDT and find syntax errors and warnings. ---------------------------------------------------------------------------------------------------- Test 1 of 2: Disassemble and reassemble DSDT FAILED [HIGH] AMLAssemblerError4043: Test 1, Assembler error in line 2261 Line | AML source ---------------------------------------------------------------------------------------------------- 02258| 0x00000000, // Range Minimum 02259| 0xFEDFFFFF, // Range Maximum 02260| 0x00000000, // Translation Offset 02261| 0x00000000, // Length | ^ | error 4043: Invalid combination of Length and Min/Max fixed flags 02262| ,, _Y0E, AddressRangeMemory, TypeStatic) 02263| DWordMemory (ResourceProducer, PosDecode, MinFixed, MaxFixed, Cacheable, ReadWrite, 02264| 0x00000000, // Granularity ==================================================================================================== ADVICE: (for error #4043): This occurs if the length is zero and just one of the resource MIF/MAF flags are set, or the length is non-zero and resource MIF/MAF flags are both set. These are illegal combinations and need to be fixed. See section 6.4.3.5 Address Space Resource Descriptors of version 4.0a of the ACPI specification for more details. FAILED [HIGH] AMLAssemblerError4050: Test 1, Assembler error in line 2268 Line | AML source ---------------------------------------------------------------------------------------------------- 02265| 0xFEE01000, // Range Minimum 02266| 0xFFFFFFFF, // Range Maximum 02267| 0x00000000, // Translation Offset 02268| 0x011FEFFF, // Length | ^ | error 4050: Length is not equal to fixed Min/Max window 02269| ,, , AddressRangeMemory, TypeStatic) 02270| }) 02271| Method (_CRS, 0, Serialized) ==================================================================================================== ADVICE: (for error #4050): The minimum address is greater than the maximum address. This is illegal. FAILED [HIGH] AMLAssemblerError1104: Test 1, Assembler error in line 8885 Line | AML source ---------------------------------------------------------------------------------------------------- 08882| Method (_DIS, 0, NotSerialized) 08883| { 08884| DSOD (0x02) 08885| Return (0x00) | ^ | warning level 0 1104: Reserved method should not return a value (_DIS) 08886| } 08887| 08888| Method (_SRS, 1, NotSerialized) ==================================================================================================== FAILED [HIGH] AMLAssemblerError1104: Test 1, Assembler error in line 9195 Line | AML source ---------------------------------------------------------------------------------------------------- 09192| Method (_DIS, 0, NotSerialized) 09193| { 09194| DSOD (0x01) 09195| Return (0x00) | ^ | warning level 0 1104: Reserved method should not return a value (_DIS) 09196| } 09197| 09198| Method (_SRS, 1, NotSerialized) ==================================================================================================== FAILED [HIGH] AMLAssemblerError1127: Test 1, Assembler error in line 9242 Line | AML source ---------------------------------------------------------------------------------------------------- 09239| CreateWordField (CRES, \_SB.PCI0.LPCB.SIO.LPT0._CRS._Y21._MAX, MAX2) 09240| CreateByteField (CRES, \_SB.PCI0.LPCB.SIO.LPT0._CRS._Y21._LEN, LEN2) 09241| CreateWordField (CRES, \_SB.PCI0.LPCB.SIO.LPT0._CRS._Y22._INT, IRQ0) 09242| CreateWordField (CRES, \_SB.PCI0.LPCB.SIO.LPT0._CRS._Y23._DMA, DMA0) | ^ | warning level 0 1127: ResourceTag smaller than Field (Tag: 8 bits, Field: 16 bits) 09243| If (RLPD) 09244| { 09245| Store (0x00, Local0) ==================================================================================================== FAILED [HIGH] AMLAssemblerError1128: Test 1, Assembler error in line 18682 Line | AML source ---------------------------------------------------------------------------------------------------- 18679| Store (0x01, Index (DerefOf (Index (Local0, 0x02)), 0x01)) 18680| If (And (WDPE, 0x40)) 18681| { 18682| Wait (\_SB.BEVT, 0x10) | ^ | warning level 0 1128: Result is not used, possible operator timeout will be missed 18683| } 18684| 18685| Store (BRID, Index (DerefOf (Index (Local0, 0x02)), 0x02)) ==================================================================================================== ADVICE: (for warning level 0 #1128): The operation can possibly timeout, and hence the return value indicates an timeout error. However, because the return value is not checked this very probably indicates that the code is buggy. A possible scenario is that a mutex times out and the code attempts to access data in a critical region when it should not. This will lead to undefined behaviour. This should be fixed. Table DSDT (0) reassembly: Found 2 errors, 4 warnings. Test 2 of 2: Disassemble and reassemble SSDT PASSED: Test 2, SSDT (0) reassembly, Found 0 errors, 0 warnings. FAILED [HIGH] AMLAssemblerError1104: Test 2, Assembler error in line 60 Line | AML source ---------------------------------------------------------------------------------------------------- 00057| { 00058| Store (CPDC (Arg0), Local0) 00059| GCAP (Local0) 00060| Return (Local0) | ^ | warning level 0 1104: Reserved method should not return a value (_PDC) 00061| } 00062| 00063| Method (_OSC, 4, NotSerialized) ==================================================================================================== FAILED [HIGH] AMLAssemblerError1104: Test 2, Assembler error in line 174 Line | AML source ---------------------------------------------------------------------------------------------------- 00171| { 00172| Store (\_PR.CPU0.CPDC (Arg0), Local0) 00173| GCAP (Local0) 00174| Return (Local0) | ^ | warning level 0 1104: Reserved method should not return a value (_PDC) 00175| } 00176| 00177| Method (_OSC, 4, NotSerialized) ==================================================================================================== FAILED [HIGH] AMLAssemblerError1104: Test 2, Assembler error in line 244 Line | AML source ---------------------------------------------------------------------------------------------------- 00241| { 00242| Store (\_PR.CPU0.CPDC (Arg0), Local0) 00243| GCAP (Local0) 00244| Return (Local0) | ^ | warning level 0 1104: Reserved method should not return a value (_PDC) 00245| } 00246| 00247| Method (_OSC, 4, NotSerialized) ==================================================================================================== FAILED [HIGH] AMLAssemblerError1104: Test 2, Assembler error in line 290 Line | AML source ---------------------------------------------------------------------------------------------------- 00287| { 00288| Store (\_PR.CPU0.CPDC (Arg0), Local0) 00289| GCAP (Local0) 00290| Return (Local0) | ^ | warning level 0 1104: Reserved method should not return a value (_PDC) 00291| } 00292| 00293| Method (_OSC, 4, NotSerialized) ==================================================================================================== Table SSDT (1) reassembly: Found 0 errors, 4 warnings. PASSED: Test 2, SSDT (2) reassembly, Found 0 errors, 0 warnings. PASSED: Test 2, SSDT (3) reassembly, Found 0 errors, 0 warnings. ==================================================================================================== 3 passed, 10 failed, 0 warnings, 0 aborted, 0 skipped, 0 info only. ==================================================================================================== Critical failures: 1 method test, at 1 log line: 1449: Detected error 'Package limit' when evaluating '\_SB_.PCI0.GFX0.DD02._BCM'. High failures: 11 klog test, at 1 log line: 121: HIGH Kernel message: [ 3.512783] ACPI Error: Method parse/execution failed [\_SB_.PCI0.GFX0._DOD] (Node f7425858), AE_AML_PACKAGE_LIMIT (20110623/psparse-536) syntaxcheck test, at 1 log line: 1668: Assembler error in line 2261 syntaxcheck test, at 1 log line: 1687: Assembler error in line 2268 syntaxcheck test, at 1 log line: 1703: Assembler error in line 8885 syntaxcheck test, at 1 log line: 1716: Assembler error in line 9195 syntaxcheck test, at 1 log line: 1729: Assembler error in line 9242 syntaxcheck test, at 1 log line: 1742: Assembler error in line 18682 syntaxcheck test, at 1 log line: 1766: Assembler error in line 60 syntaxcheck test, at 1 log line: 1779: Assembler error in line 174 syntaxcheck test, at 1 log line: 1792: Assembler error in line 244 syntaxcheck test, at 1 log line: 1805: Assembler error in line 290 Medium failures: 9 mtrr test, at 1 log line: 76: Memory range 0xc0000000 to 0xdfffffff (PCI Bus 0000:00) has incorrect attribute Write-Combining. mtrr test, at 1 log line: 78: Memory range 0xfee01000 to 0xffffffff (PCI Bus 0000:00) has incorrect attribute Write-Protect. msr test, at 1 log line: 165: MSR SYSENTER_ESP (0x175) has 1 inconsistent values across 2 CPUs for (shift: 0 mask: 0xffffffffffffffff). msr test, at 1 log line: 173: MSR MISC_ENABLE (0x1a0) has 1 inconsistent values across 2 CPUs for (shift: 0 mask: 0x400c51889). wmi test, at 1 log line: 528: GUID 2B814318-4BE8-4707-9D84-A190A859B5D0 is unknown to the kernel, a driver may need to be implemented for this GUID. method test, at 1 log line: 1002: \_SB_.PCI0.LPCB.SIO_.COM1._DIS returned values, but was expected to return nothing. method test, at 1 log line: 1011: \_SB_.PCI0.LPCB.SIO_.LPT0._DIS returned values, but was expected to return nothing. method test, at 1 log line: 1443: Method _BCL should return a package of more than 2 integers, got just 2. acpitables test, at 1 log line: 1643: FADT 32 bit FIRMWARE_CONTROL is non-zero, and X_FIRMWARE_CONTROL is also non-zero. Se

    Read the article

  • Useful Sharepoint Goodies

    - by Patrick Olurotimi Ige
    I came across this list of very interesting stuff below (and it could save lots for time) 1. Faceted Search: http://facetedsearch.codeplex.com/ 2. Podcasting Kit for SharePoint: http://pks.codeplex.com/ 3. Knowledge Base: http://spkb.codeplex.com/ 4. SharePoint Branding Tool: http://brandingtool.codeplex.com/ 5. SharePoint User Account Control: http://spuac.codeplex.com/ 6. SharePoint Enhanced Calendar: http://spenhancedcalendar.codeplex.com/ 7. Enhanced Discussion Board: http://edb.codeplex.com/ 8. Wildcard Search: http://spwildcardsearch.codeplex.com/ 9. SharePoint Usage Logging Kit: http://sulk.codeplex.com/ 10. SharePoint Zip: http://sharepointzip.codeplex.com/ 11. Facebook Kit for SharePoint: http://fks.codeplex.com/ 12. Short Messages: http://spmessaging.codeplex.com/ 13. Color coded calendar: http://planetwilson.codeplex.com/Release/ProjectReleases.aspx?ReleaseId=11814 14. Most Popular Pages on SharePoint: http://popularpages.codeplex.com/   Thanks to my two bits  heput the list together

    Read the article

  • MVC 2 Client Side Model Validation with ExtJS

    One of the most exciting new features in MVC 2 is "Enhanced Model Validation support across both server and client"; this new enhanced support allows for client side validation to be dynamically generated into a view from DataAnnotations attributes on models. One minor complaint: Out of the box, it only supports the Microsoft AJAX libraries. Good news: It can use other frameworks, and we have done just that! Ext.ux.MvcFormValidator The MvcFormValidator is an alternative form validation...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • ISO booting with grub2 in Ubuntu on an Apple

    - by Robert Vila
    I have Ubuntu with grub2 installed in an Apple Macbook pro with dual boot (using rEFIt), and I would like to use grub2 to boot the LiveCD ISO image of a system based in Debian too (CrunchBang). The ISO image is saved in the same hard disk, same partition as Ubuntu. I can easily boot many other LiveCD ISO images, but I cannot boot this one, and I cannot boot the MacOS system, from the grub menu, either. The installation of Ubuntu left a couple of menu entries to boot MacOS, but they never worked. SO I don't know if it is possible to boot them, and how. I have tried many options, but the menuentry I am trying now to boot crunchBang is this one: menuentry "crunchbang-10-20120207-i386.iso" { set isofile="/home/user/Desktop/ISO/crunchbang-10-20120207-i386.iso" loopback loop (hd0,3)$isofile linux (loop)/live/vmlinuz1 iso-scan/filename=$isofile toram=filesystem.squashfs findiso=$isofile boot=live config -- initrd (loop)/live/initrd1.img } And I copied it from here: http://linux4netbook.blogspot.com.es/2012/08/due-crunchbang-e-un-pennino.html

    Read the article

< Previous Page | 69 70 71 72 73 74 75 76 77 78 79 80  | Next Page >