Search Results

Search found 16333 results on 654 pages for 'exception safe'.

Page 73/654 | < Previous Page | 69 70 71 72 73 74 75 76 77 78 79 80  | Next Page >

  • null pointer exception on list.add

    - by Eric
    I've been working on this one error for a few hours so I thought I'd pick the brains of some pros. I am getting a null pointer exception at the modelData.add(i, es) method. I know from debugging that es isn't null. I'm really confused, thanks. public class EventTableModel extends AbstractTableModel { //private int rowCount = 0; protected List<EventSeat> modelData; private static final int COLUMN_COUNT = 3; private Event e; Event j = GUIpos.m; int i = 1; public EventTableModel(Event e) { this.e = e; try { System.out.println(modelData); for (EventSeat es : e.getEventSeats()) { modelData.add(i, es); i++; } } catch (DataException ex) { Logger.getLogger(EventTableModel.class.getName()).log(Level.SEVERE, null, ex); } }

    Read the article

  • problem with exporting a customized form from dll

    - by mavric
    I'm working on an application so i have write an dll which contain a form with some additional work and methods. so in the beginning of my program the thread launch this form (from my dll) to get some informations and then hide it and initialize some components and the application form and then show it. when the thread come the line where it define new instance of the exported form "MyForm inputform = new MyForm();" it throw an Exception called "Top-level control cannot be added to a control." so i don't know what to do ?!!. i tried to take the code of the form from the dll source code and put it in the main program and it works.... .but still i want to know what happen and what impede my application from run that form from my dll. thanks.

    Read the article

  • Java Null Pointer Exception :-(

    - by John-Michael Reed
    I've got a Null Pointer Exception in my main that just won't go away and I'm totally out of ideas. The error is on the line "Board[x][y].color = 2;" in which Board is a public, static array of piece objects that contain instance variables like the one "color" that is being set to 2 in the above statement. Pieces is not static - that is there are many different copies of pieces, each with its own data, but only one board. The array has been initialized and defined as both public Piece[][] Board = new Piece[8][8] and public static Piece[][] Board = new Piece[8][8], but no matter how I mess around with it (getting rid of static, putting the variable in another object, etc.), I can't seem to get the error to go away. Help?

    Read the article

  • Is there a way to force JUnit to fail on ANY unchecked exception, even if swallowed

    - by Uri
    I am using JUnit to write some higher level tests for legacy code that does not have unit tests. Much of this code "swallows" a variety of unchecked exceptions like NullPointerExceptions (e.g., by just printing stack trace and returning null). Therefore the unit test can pass even through there is a cascade of disasters at various points in the lower level code. Is there any way to have a test fail on the first unchecked exception even if they are swallowed? The only alternative I can think of is to write a custom JUnit wrapper that redirects System.err and then analyzes the output for exceptions.

    Read the article

  • [PersistenceException: org.hibernate.exception.SQLGrammarException: could not execute query]

    - by doniyor
    i need help. i am trying to select from database thru sql statement in play framework, but it gives me error, i cannot figure out where the clue is. here is the code: @Transactional public static Users findByUsernameAndPassword(String username, String password){ String hash = DigestUtils.md5Hex(password); Query q = JPA.em().createNativeQuery("select * from USERS where" + "USERNAME=? and PASSWORD=?").setParameter(1, username).setParameter(2, password); List<Users> users = q.getResultList(); if(users.isEmpty()){ return null; } else{ return users.get(0); here is the eror message: [PersistenceException: org.hibernate.exception.SQLGrammarException: could not execute query] can someone help me please! any help i would appreciate! thanks

    Read the article

  • Exception during processing XSLT transformation!

    - by Artic
    I'm using this code to generate contents file. try { StreamResult result = new StreamResult(); TransformerFactory tf = TransformerFactory.newInstance(); Templates templ = tf.newTemplates(xsltSource); Transformer transf = templ.newTransformer(); for (String item: groups){ item = item.replaceAll(" ", "-").toLowerCase(); result.setOutputStream(new FileOutputStream(path+item+".html")); transf.clearParameters(); transf.setParameter("group", item); transf.transform(xmlSource, result); } } catch (TransformerConfigurationException e) { throw new SinkException(e.getMessage()); } catch (TransformerException e) { throw new SinkException(e.getMessage()); } But on second iteration I have an exception ERROR: javax.xml.transform.TransformerException: com.sun.org.apache.xml.internal.utils.WrappedRuntimeException: Read error Cann't understand what is the reason?

    Read the article

  • [Java]Queue in while loop, cannot modify the value?

    - by javaLearner.java
    This is my code: Iterator it = queue.iterator(); while(it.hasNext()){ random = randNumber(1,2); if(random == 1){ queue.poll(); } else { queue.add("new"); queue.poll(); } } It gives me: Exception in thread "test" java.util.ConcurrentModificationException at java.util.LinkedList$ListItr.checkForComodification(LinkedList.java:761) at java.util.LinkedList$ListItr.next(LinkedList.java:696) Edit @Jon Skeet: What I want to do is: I have a queue list in, let say the size is 10, lets say: a,b,c,d ... j Generate a number between 1 and 2. if 1, pull (remove the top element) else if 2 add new element I will stop the loop until I added 3 new elements

    Read the article

  • Using std::bad_alloc for C pointers

    - by otibom
    I'm using a library written in C in a C++ project. I'd like to use C++ exceptions to handle C errors. In particular, it would be nice to have an exception thrown if an allocation fails. I can do this in constructors of classes which hold C-style pointers to C structs : if (c_object == NULL) throw std::bad_alloc(); But if the class is responsible for several C objects they are no ways of free-ing all already allocated pointers since the destructor isn't called. I have a feeling I could use smart-pointers, but I don't have much experience with them. What's more, I have to have access to the original C pointers to use the C api properly. Is there an elegant solution to this ?

    Read the article

  • JSF-JSP cancel button returns a number format exception

    - by Barca
    I have a cancel button on a JSF-JSP page. It is handled by a method on the corresponding java class: public String cancel_action() { return "CANCEL"; This is configured in faces-config.xml as following: <navigation-rule> <from-view-id>/page2.jsp</from-view-id> <navigation-case> <from-outcome>CANCEL</from-outcome> <to-view-id>/page1.jsp</to-view-id> </navigation-case> </navigation-rule> Not sure why it is returning a number format exception. Any help will be highly appreciated.

    Read the article

  • CMD Execption Handling C/C++

    - by ciyo
    I will use some CMD commands in my program and these commands might throw some exceptions. And as you know, when an exception accours, CMD writes its own error message the screen. But, I want to write my own error message. My question is this: Is there a way to block CMD messages and write only my own error messages? P.S. This is not a complex program. It executes CMD commands using System(). Example: Let's say, the user can rename and copy any files in the program. As you know, if the user does not enter file's path properly, an error message is showed on the screen. And I want that this error message never appears on the screen. Only my own error message is showed. Thank you!

    Read the article

  • Throwing an AggregateException in my own code

    - by Pat
    How should I go about collecting exceptions and putting them into an AggregateException to re-throw? For my specific code, I have a loop and will have zero or more exceptions thrown from a part of the code. I was hoping to just add the new exceptions to the AggregateException as they arise, but the documentation sort of indicates that it should be constructed with all the Exceptions at once (there is no method to add an Exception to the object). And what about creating a new AE every time and just including the previous AE in the list of exceptions? Seems a hokey way to do it. Any better ideas?

    Read the article

  • Removing exception

    - by Nikhil K
    I have used this code for extracting urls from web page.But in the line of 'foreach' it is showing Object reference not set to an instance of an object exception. What is the problem? how can i correct that? WebClient client = new WebClient(); string url = "http://www.google.co.in/search?hl=en&q=java&start=10&sa=N"; string source = client.DownloadString(url); HtmlDocument doc = new HtmlDocument(); doc.LoadHtml(source); foreach (HtmlNode link in doc.DocumentNode.SelectNodes("//a[@href and @rel='nofollow']")) { Console.WriteLine(link.Attributes["href"].Value); }

    Read the article

  • C++ runtime, display exception message

    - by aaa
    hello. I am using gcc on linux to compile C++ code. There are some exceptions which should not be handled and should close program. However, I would like to be able to display exception string: For example: throw std::runtime_error(" message"); does not display message, only type of error. I would like to display messages as well. Is there way to do it? it is a library, I really do not want to put catch statements and let library user decide. However, right now library user is fortran, which does not allow to handle exceptions. in principle, I can put handlers in wrapper code, but rather not to if there is a way around Thanks

    Read the article

  • null pointer exception in textview of setcontent

    - by kitokid
    I am getting the java.lang.NullPointerException on createTabContent for the following code. There are two tabspecs. When I called and set the tab , changed the tabs for the first time it is ok. But when i called again while I am on the second tab, its hit the null pointer exception for line : NoStudentText.setVisibility(View.VISIBLE); I will show No Student Text if there is no data for the student list. It shows the text for the first time call. But If I do second time call to that tab, got the error. tspecStudent.setContent(new TabContentFactory() { public View createTabContent(String arg0) { if(listStudent != null && listStudent .size() > 0) { //show the student list } else { TextView noStudentText = (TextView)findViewById(R.id.NoStudentText); noStudentText.setVisibility(View.VISIBLE); return noStudentText; } } });

    Read the article

  • Run Calculator in my App

    - by user
    I want to start the android calculator activity IN my activity. So, I can run an activity of my app in an activity of my app. But if I want to start an activity of the calculator for example in my app, logcat throws me this: FATAL EXCEPTION: main java.lang.RuntimeException: Unable to start activity ComponentInfo{}: java.lang.SecurityException: Requesting code from com.android.calculator2 (with uid 10016) to be run in process (with uid 10044) Caused by: java.lang.SecurityException: Requesting code from com.android.calculator2 (with uid 10016) to be run in process (with uid 10044) How can I reach my goal to start the calculator activity in my activity? Thank you very much

    Read the article

  • How should I use try...except while defining a function?

    - by SpawnCxy
    Hi all, I find I've been confused by the problem that when I needn't to use try..except.For last few days it was used in almost every function I defined which I think maybe a bad practice.For example: class mongodb(object): def getRecords(self,tname,conditions=''): try: col = eval("self.db.%s" %tname) recs = col.find(condition) return recs except Exception,e: #here make some error log with e.message What I thought is ,exceptions may be raised everywhere and I have to use try to get them. And my question is,is it a good practice to use it everywhere when defining functions?If not are there any principles for it?Help would be appreciated! Regards

    Read the article

  • Index out of range exception when using this query from C#

    - by jenifa
    I am using a calculation in my SQL query. How can I use that calculated field in C#? When I try, I get an index out of range exception. My query is: Select OwnerCompanyLog.olog_name,inlt_companyid,inlt_childcompid,inlt_effectinterest,inlt_percent,inlt_sharetype,inlt_shares,inlt_childbase,inlt_effdate, (inlt_percent * inlt_effectinterest)/100)eff from InterestLogTable INNER JOIN OwnerCompanyLog ON InterestLogTable.inlt_childcompid = OwnerCompanyLog.olog_companyid where inlt_companyid=5 Order By inlt_childcompid I want to use inlt_percent * inlt_effectinterest)/100 in my C# code: entity.ParentCompany = new List<Company>(); while (parentCompanyReader.Read()) { ParentCompany.Effect = parentCompanyReader["eff"].ToString(); entity.ParentCompany.Add(ParentCompany); } parentCompanyReader.Close(); But I got the error above.

    Read the article

  • Exception in Google App Engine (Java) while trying to create Memcache Object

    - by Shreeni
    I am coming back to an old Google App Engine project on which I saw a bug. During this lag, I have been upgrading my AppEngine SDK and is now set at 1.3. When I try to run the same project again, I see the following exception: java.lang.NoSuchMethodError: com.google.apphosting.api.ApiProxy$Environment.getDefaultNamespace()Ljava/lang/String; at com.google.appengine.api.NamespaceManager.get(NamespaceManager.java:56) at com.google.appengine.api.memcache.MemcacheServiceImpl.setNamespace(MemcacheServiceImpl.java:181) at com.google.appengine.api.memcache.MemcacheServiceImpl.(MemcacheServiceImpl.java:145) at com.google.appengine.api.memcache.MemcacheServiceFactory.getMemcacheService(MemcacheServiceFactory.java:25) The line causing the problem is: CacheManager.getInstance().getCacheFactory().createCache(Collections.emptyMap()); (It is the same line as suggested by the AppEngine documentation to create a memcache object. It used to work fine previously. ) Any suggestions on how to fix it?

    Read the article

  • Exception for java Swing application?

    - by Rich Fluckiger
    For some reason this is locking up the java application. Did I handle the exception correctly? private void submitButtonActionPerformed(java.awt.event.ActionEvent evt) { double amount, interest,rateCalc, a, b, c, payment; int years, months; while (true){ try{ amount = Double.valueOf(loanAmount.getText()); interest = Double.valueOf(interestRate.getText()); years = Integer.valueOf(loanYears.getText()); rateCalc = (interest/12); months = (years*12); a = Math.pow((1+rateCalc),months); b = (a*rateCalc); c = (a-1); payment = (amount *(b/c)); monthlyPayment.setText("Mortgage Payment $ = " + payment); } catch (NumberFormatException nfe){ javax.swing.JOptionPane.showMessageDialog(null, "Please enter numbers and not letters"); return; } } } monthlyPayment returns to the java app.

    Read the article

  • Hibernate Exception, what wrong ? [[Exception in thread "main" org.hibernate.InvalidMappingException

    - by user195970
    I use netbean 6.7.1 to write "hello world" witch hibernate, but I get some errors, plz help me, thank you very much. my exception init: deps-module-jar: deps-ear-jar: deps-jar: Copying 1 file to F:\Documents and Settings\My Dropbox\DropboxNetBeanProjects\loginspring\build\web\WEB-INF\classes compile-single: run-main: Oct 25, 2009 2:44:05 AM org.hibernate.cfg.Environment <clinit> INFO: Hibernate 3.2.5 Oct 25, 2009 2:44:05 AM org.hibernate.cfg.Environment <clinit> INFO: hibernate.properties not found Oct 25, 2009 2:44:05 AM org.hibernate.cfg.Environment buildBytecodeProvider INFO: Bytecode provider name : cglib Oct 25, 2009 2:44:05 AM org.hibernate.cfg.Environment <clinit> INFO: using JDK 1.4 java.sql.Timestamp handling Oct 25, 2009 2:44:05 AM org.hibernate.cfg.Configuration configure INFO: configuring from resource: /hibernate.cfg.xml Oct 25, 2009 2:44:05 AM org.hibernate.cfg.Configuration getConfigurationInputStream INFO: Configuration resource: /hibernate.cfg.xml Oct 25, 2009 2:44:06 AM org.hibernate.cfg.Configuration addResource INFO: Reading mappings from resource : hibernate/Tbluser.hbm.xml Oct 25, 2009 2:44:06 AM org.hibernate.util.XMLHelper$ErrorLogger error SEVERE: Error parsing XML: XML InputStream(1) Document is invalid: no grammar found. Oct 25, 2009 2:44:06 AM org.hibernate.util.XMLHelper$ErrorLogger error SEVERE: Error parsing XML: XML InputStream(1) Document root element "hibernate-mapping", must match DOCTYPE root "null". Exception in thread "main" org.hibernate.InvalidMappingException: Could not parse mapping document from resource hibernate/Tbluser.hbm.xml at org.hibernate.cfg.Configuration.addResource(Configuration.java:569) at org.hibernate.cfg.Configuration.parseMappingElement(Configuration.java:1587) at org.hibernate.cfg.Configuration.parseSessionFactory(Configuration.java:1555) at org.hibernate.cfg.Configuration.doConfigure(Configuration.java:1534) at org.hibernate.cfg.Configuration.doConfigure(Configuration.java:1508) at org.hibernate.cfg.Configuration.configure(Configuration.java:1428) at org.hibernate.cfg.Configuration.configure(Configuration.java:1414) at hibernate.CreateTest.main(CreateTest.java:22) Caused by: org.hibernate.InvalidMappingException: Could not parse mapping document from invalid mapping at org.hibernate.cfg.Configuration.addInputStream(Configuration.java:502) at org.hibernate.cfg.Configuration.addResource(Configuration.java:566) ... 7 more Caused by: org.xml.sax.SAXParseException: Document is invalid: no grammar found. at com.sun.org.apache.xerces.internal.util.ErrorHandlerWrapper.createSAXParseException(ErrorHandlerWrapper.java:195) at com.sun.org.apache.xerces.internal.util.ErrorHandlerWrapper.error(ErrorHandlerWrapper.java:131) at com.sun.org.apache.xerces.internal.impl.XMLErrorReporter.reportError(XMLErrorReporter.java:384) at com.sun.org.apache.xerces.internal.impl.XMLErrorReporter.reportError(XMLErrorReporter.java:318) at com.sun.org.apache.xerces.internal.impl.XMLNSDocumentScannerImpl.scanStartElement(XMLNSDocumentScannerImpl.java:250) at com.sun.org.apache.xerces.internal.impl.XMLNSDocumentScannerImpl$NSContentDriver.scanRootElementHook(XMLNSDocumentScannerImpl.java:626) at com.sun.org.apache.xerces.internal.impl.XMLDocumentFragmentScannerImpl$FragmentContentDriver.next(XMLDocumentFragmentScannerImpl.java:3095) at com.sun.org.apache.xerces.internal.impl.XMLDocumentScannerImpl$PrologDriver.next(XMLDocumentScannerImpl.java:921) at com.sun.org.apache.xerces.internal.impl.XMLDocumentScannerImpl.next(XMLDocumentScannerImpl.java:648) at com.sun.org.apache.xerces.internal.impl.XMLNSDocumentScannerImpl.next(XMLNSDocumentScannerImpl.java:140) at com.sun.org.apache.xerces.internal.impl.XMLDocumentFragmentScannerImpl.scanDocument(XMLDocumentFragmentScannerImpl.java:510) at com.sun.org.apache.xerces.internal.parsers.XML11Configuration.parse(XML11Configuration.java:807) at com.sun.org.apache.xerces.internal.parsers.XML11Configuration.parse(XML11Configuration.java:737) at com.sun.org.apache.xerces.internal.parsers.XMLParser.parse(XMLParser.java:107) at com.sun.org.apache.xerces.internal.parsers.AbstractSAXParser.parse(AbstractSAXParser.java:1205) at com.sun.org.apache.xerces.internal.jaxp.SAXParserImpl$JAXPSAXParser.parse(SAXParserImpl.java:522) at org.dom4j.io.SAXReader.read(SAXReader.java:465) at org.hibernate.cfg.Configuration.addInputStream(Configuration.java:499) ... 8 more Java Result: 1 BUILD SUCCESSFUL (total time: 1 second) hibernate.cfg.xml <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate Configuration DTD 3.0//EN" "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd"> <hibernate-configuration> <session-factory> <property name="hibernate.dialect">org.hibernate.dialect.MySQLDialect</property> <property name="hibernate.connection.driver_class">com.mysql.jdbc.Driver</property> <property name="hibernate.connection.url">jdbc:mysql://localhost:3306/hibernate</property> <property name="hibernate.connection.username">root</property> </session-factory> </hibernate-configuration> Tbluser.hbm.xml <?xml version="1.0"?> <!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD 3.0//EN" "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd"> <!-- Generated Oct 25, 2009 2:37:30 AM by Hibernate Tools 3.2.1.GA --> <hibernate-mapping> <class name="hibernate.Tbluser" table="tbluser" catalog="hibernate"> <id name="userId" type="java.lang.Integer"> <column name="userID" /> <generator class="identity" /> </id> <property name="username" type="string"> <column name="username" length="50" /> </property> <property name="password" type="string"> <column name="password" length="50" /> </property> <property name="email" type="string"> <column name="email" length="50" /> </property> <property name="phone" type="string"> <column name="phone" length="50" /> </property> <property name="groupId" type="java.lang.Integer"> <column name="groupID" /> </property> </class> </hibernate-mapping> Tbluser.java package hibernate; // Generated Oct 25, 2009 2:37:30 AM by Hibernate Tools 3.2.1.GA /** * Tbluser generated by hbm2java */ public class Tbluser implements java.io.Serializable { private Integer userId; private String username; private String password; private String email; private String phone; private Integer groupId; public Tbluser() { } public Tbluser(String username, String password, String email, String phone, Integer groupId) { this.username = username; this.password = password; this.email = email; this.phone = phone; this.groupId = groupId; } public Integer getUserId() { return this.userId; } public void setUserId(Integer userId) { this.userId = userId; } public String getUsername() { return this.username; } public void setUsername(String username) { this.username = username; } public String getPassword() { return this.password; } public void setPassword(String password) { this.password = password; } public String getEmail() { return this.email; } public void setEmail(String email) { this.email = email; } public String getPhone() { return this.phone; } public void setPhone(String phone) { this.phone = phone; } public Integer getGroupId() { return this.groupId; } public void setGroupId(Integer groupId) { this.groupId = groupId; } }

    Read the article

  • Exception with RubyAMF and Ruby 1.9 although code works

    - by Tam
    I'm getting an exception with RubyAMF using Ruby 1.9 and Rails 2.3.5. Although code afterward executes normally I'm not very comfortable with seeing such exception in the log file. Do you know what is causing it: >>>>>>>> RubyAMF >>>>>>>>> #<RubyAMF::Actions::PrepareAction:0x0000010139ff48> took: 0.00020 secs >>>>>>>> RubyAMF >>>>>>>>> #<RubyAMF::Actions::RailsInvokeAction:0x0000010139ff10> took: 0.29973 secs You have a nil object when you didn't expect it! You might have expected an instance of Array. The error occurred while evaluating nil.include? /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/activerecord-2.3.5/lib/active_record/attribute_methods.rb:142:in `create_time_zone_conversion_attribute?' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/activerecord-2.3.5/lib/active_record/attribute_methods.rb:75:in `block in define_attribute_methods' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/activerecord-2.3.5/lib/active_record/attribute_methods.rb:71:in `each' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/activerecord-2.3.5/lib/active_record/attribute_methods.rb:71:in `define_attribute_methods' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/activerecord-2.3.5/lib/active_record/attribute_methods.rb:242:in `method_missing' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/activerecord-2.3.5/lib/active_record/base.rb:2832:in `hash' /Users/tammam56/lal/vendor/plugins/ruby_amf/io/amf_serializer.rb:366:in `hash' /Users/tammam56/lal/vendor/plugins/ruby_amf/io/amf_serializer.rb:366:in `hash' /Users/tammam56/lal/vendor/plugins/ruby_amf/io/amf_serializer.rb:366:in `[]=' /Users/tammam56/lal/vendor/plugins/ruby_amf/io/amf_serializer.rb:366:in `store_object' /Users/tammam56/lal/vendor/plugins/ruby_amf/io/amf_serializer.rb:234:in `write_amf3_object' /Users/tammam56/lal/vendor/plugins/ruby_amf/io/amf_serializer.rb:154:in `write_amf3' /Users/tammam56/lal/vendor/plugins/ruby_amf/io/amf_serializer.rb:78:in `write' /Users/tammam56/lal/vendor/plugins/ruby_amf/io/amf_serializer.rb:70:in `block in run' /Users/tammam56/lal/vendor/plugins/ruby_amf/io/amf_serializer.rb:56:in `upto' /Users/tammam56/lal/vendor/plugins/ruby_amf/io/amf_serializer.rb:56:in `run' /Users/tammam56/lal/vendor/plugins/ruby_amf/app/filters.rb:91:in `block in run' /Users/tammam56/.rvm/rubies/ruby-1.9.1-p378/lib/ruby/1.9.1/benchmark.rb:309:in `realtime' /Users/tammam56/lal/vendor/plugins/ruby_amf/app/filters.rb:91:in `run' /Users/tammam56/lal/vendor/plugins/ruby_amf/app/filters.rb:12:in `block in run' /Users/tammam56/lal/vendor/plugins/ruby_amf/app/filters.rb:11:in `each' /Users/tammam56/lal/vendor/plugins/ruby_amf/app/filters.rb:11:in `run' /Users/tammam56/lal/vendor/plugins/ruby_amf/app/rails_gateway.rb:28:in `service' /Users/tammam56/lal/app/controllers/rubyamf_controller.rb:19:in `gateway' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/base.rb:1331:in `perform_action' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/filters.rb:617:in `call_filters' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/filters.rb:610:in `perform_action_with_filters' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/benchmarking.rb:68:in `block in perform_action_with_benchmark' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/activesupport-2.3.5/lib/active_support/core_ext/benchmark.rb:17:in `block in ms' /Users/tammam56/.rvm/rubies/ruby-1.9.1-p378/lib/ruby/1.9.1/benchmark.rb:309:in `realtime' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/activesupport-2.3.5/lib/active_support/core_ext/benchmark.rb:17:in `ms' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/benchmarking.rb:68:in `perform_action_with_benchmark' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/rescue.rb:160:in `perform_action_with_rescue' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/flash.rb:146:in `perform_action_with_flash' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/base.rb:532:in `process' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/filters.rb:606:in `process_with_filters' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/base.rb:391:in `process' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/base.rb:386:in `call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/routing/route_set.rb:437:in `call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/dispatcher.rb:87:in `dispatch' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/dispatcher.rb:121:in `_call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/dispatcher.rb:130:in `block in build_middleware_stack' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/activerecord-2.3.5/lib/active_record/query_cache.rb:29:in `call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/activerecord-2.3.5/lib/active_record/query_cache.rb:29:in `block in call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/activerecord-2.3.5/lib/active_record/connection_adapters/abstract/query_cache.rb:34:in `cache' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/activerecord-2.3.5/lib/active_record/query_cache.rb:9:in `cache' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/activerecord-2.3.5/lib/active_record/query_cache.rb:28:in `call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/activerecord-2.3.5/lib/active_record/connection_adapters/abstract/connection_pool.rb:361:in `call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/string_coercion.rb:25:in `call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/rack-1.0.1/lib/rack/head.rb:9:in `call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/rack-1.0.1/lib/rack/methodoverride.rb:24:in `call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/params_parser.rb:15:in `call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/session/cookie_store.rb:93:in `call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/failsafe.rb:26:in `call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/rack-1.0.1/lib/rack/lock.rb:11:in `block in call' <internal:prelude>:8:in `synchronize' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/rack-1.0.1/lib/rack/lock.rb:11:in `call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/dispatcher.rb:114:in `block in call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/reloader.rb:34:in `run' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/actionpack-2.3.5/lib/action_controller/dispatcher.rb:108:in `call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/rails-2.3.5/lib/rails/rack/static.rb:31:in `call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/rack-1.0.1/lib/rack/urlmap.rb:46:in `block in call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/rack-1.0.1/lib/rack/urlmap.rb:40:in `each' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/rack-1.0.1/lib/rack/urlmap.rb:40:in `call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/rails-2.3.5/lib/rails/rack/log_tailer.rb:17:in `call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/rack-1.0.1/lib/rack/content_length.rb:13:in `call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/rack-1.0.1/lib/rack/chunked.rb:15:in `call' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/rack-1.0.1/lib/rack/handler/mongrel.rb:64:in `process' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/mongrel-1.1.5/lib/mongrel.rb:159:in `block in process_client' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/mongrel-1.1.5/lib/mongrel.rb:158:in `each' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/mongrel-1.1.5/lib/mongrel.rb:158:in `process_client' /Users/tammam56/.rvm/gems/ruby-1.9.1-p378/gems/mongrel-1.1.5/lib/mongrel.rb:285:in `block (2 levels) in run '

    Read the article

  • "EXC_BAD_ACCESS: Unable to restore previously selected frame" Error, Array size?

    - by Job
    Hi there, I have an algorithm for creating the sieve of Eratosthenes and pulling primes from it. It lets you enter a max value for the sieve and the algorithm gives you the primes below that value and stores these in a c-style array. Problem: Everything works fine with values up to 500.000, however when I enter a large value -while running- it gives me the following error message in xcode: Program received signal: “EXC_BAD_ACCESS”. warning: Unable to restore previously selected frame. Data Formatters temporarily unavailable, will re-try after a 'continue'. (Not safe to call dlopen at this time.) My first idea was that I didn't use large enough variables, but as I am using 'unsigned long long int', this should not be the problem. Also the debugger points me to a point in my code where a point in the array get assigned a value. Therefore I wonder is there a maximum limit to an array? If yes: should I use NSArray instead? If no, then what is causing this error based on this information? EDIT: This is what the code looks like (it's not complete, for it fails at the last line posted). I'm using garbage collection. /*--------------------------SET UP--------------------------*/ unsigned long long int upperLimit = 550000; // unsigned long long int sieve[upperLimit]; unsigned long long int primes[upperLimit]; unsigned long long int indexCEX; unsigned long long int primesCounter = 0; // Fill sieve with 2 to upperLimit for(unsigned long long int indexA = 0; indexA < upperLimit-1; ++indexA) { sieve[indexA] = indexA+2; } unsigned long long int prime = 2; /*-------------------------CHECK & FIND----------------------------*/ while(!((prime*prime) > upperLimit)) { //check off all multiples of prime for(unsigned long long int indexB = prime-2; indexB < upperLimit-1; ++indexB) { // Multiple of prime = 0 if(sieve[indexB] != 0) { if(sieve[indexB] % prime == 0) { sieve[indexB] = 0; } } } /*---------------- Search for next prime ---------------*/ // index of current prime + 1 unsigned long long int indexC = prime - 1; while(sieve[indexC] == 0) { ++indexC; } prime = sieve[indexC]; // Store prime in primes[] primes[primesCounter] = prime; // This is where the code fails if upperLimit > 500000 ++primesCounter; indexCEX = indexC + 1; } As you may or may not see, is that I am -very much- a beginner. Any other suggestions are welcome of course :)

    Read the article

  • java.lang.NullPointerException exception in my controller file (using Spring Hibernate Maven)

    - by mrjayviper
    The problem doesn't seemed to have anything to do with Hibernate. As I've commented the Hibernate stuff but I'm still getting it. If I comment out this line message = staffDAO.searchForStaff(search); in my controller file, it goes through ok. But I don't see anything wrong with searchForStaff function. It's a very simple function that just returns the string "test" and run system.out.println("test"). Can you please help? thanks But this is the error that I'm getting: SEVERE: Servlet.service() for servlet [spring] in context with path [/directorymaven] threw exception [Request processing failed; nested exception is java.lang.NullPointerException] with root cause java.lang.NullPointerException at org.flinders.staffdirectory.controllers.SearchController.showSearchResults(SearchController.java:25) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:601) at org.springframework.web.method.support.InvocableHandlerMethod.invoke(InvocableHandlerMethod.java:219) at org.springframework.web.method.support.InvocableHandlerMethod.invokeForRequest(InvocableHandlerMethod.java:132) at org.springframework.web.servlet.mvc.method.annotation.ServletInvocableHandlerMethod.invokeAndHandle(ServletInvocableHandlerMethod.java:100) at org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter.invokeHandlerMethod(RequestMappingHandlerAdapter.java:604) at org.springframework.web.servlet.mvc.method.annotation.RequestMappingHandlerAdapter.handleInternal(RequestMappingHandlerAdapter.java:565) at org.springframework.web.servlet.mvc.method.AbstractHandlerMethodAdapter.handle(AbstractHandlerMethodAdapter.java:80) at org.springframework.web.servlet.DispatcherServlet.doDispatch(DispatcherServlet.java:923) at org.springframework.web.servlet.DispatcherServlet.doService(DispatcherServlet.java:852) at org.springframework.web.servlet.FrameworkServlet.processRequest(FrameworkServlet.java:882) at org.springframework.web.servlet.FrameworkServlet.doGet(FrameworkServlet.java:778) at javax.servlet.http.HttpServlet.service(HttpServlet.java:621) at javax.servlet.http.HttpServlet.service(HttpServlet.java:728) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:305) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:210) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:222) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:123) at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:472) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:171) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:99) at org.apache.catalina.valves.AccessLogValve.invoke(AccessLogValve.java:931) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:118) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:407) at org.apache.coyote.http11.AbstractHttp11Processor.process(AbstractHttp11Processor.java:1004) at org.apache.coyote.AbstractProtocol$AbstractConnectionHandler.process(AbstractProtocol.java:589) at org.apache.tomcat.util.net.JIoEndpoint$SocketProcessor.run(JIoEndpoint.java:310) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603) at java.lang.Thread.run(Thread.java:722) My spring-servlet xml <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context" xmlns:mvc="http://www.springframework.org/schema/mvc" xmlns:p="http://www.springframework.org/schema/p" xmlns:tx="http://www.springframework.org/schema/tx" xsi:schemaLocation=" http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/context http://www.springframework.org/schema/context/spring-context.xsd http://www.springframework.org/schema/mvc http://www.springframework.org/schema/mvc/spring-mvc.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx.xsd"> <context:component-scan base-package="org.flinders.staffdirectory.controllers" /> <mvc:annotation-driven /> <mvc:resources mapping="/resources/**" location="/resources/" /> <tx:annotation-driven /> <bean id="propertyConfigurer" class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer" p:location="/WEB-INF/spring.properties" /> <bean id="dataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close" p:driverClassName="${jdbc.driverClassName}" p:url="${jdbc.databaseurl}" p:username="${jdbc.username}" p:password="${jdbc.password}" /> <bean id="sessionFactory" class="org.springframework.orm.hibernate4.LocalSessionFactoryBean" p:dataSource-ref="dataSource" p:configLocation="${hibernate.config}" p:packagesToScan="org.flinders.staffdirectory"/> <bean id="transactionManager" class="org.springframework.orm.hibernate4.HibernateTransactionManager" p:sessionFactory-ref="sessionFactory" /> <bean id="viewResolver" class="org.springframework.web.servlet.view.UrlBasedViewResolver" p:viewClass="org.springframework.web.servlet.view.tiles2.TilesView" /> <bean id="tilesConfigurer" class="org.springframework.web.servlet.view.tiles2.TilesConfigurer" p:definitions="/WEB-INF/tiles.xml" /> <bean id="staffDAO" class="org.flinders.staffdirectory.dao.StaffDAO" p:sessionFactory-ref="sessionFactory" /> <!-- <bean id="staffService" class="org.flinders.staffdirectory.services.StaffServiceImpl" p:staffDAO-ref="staffDAO" />--> </beans> This is my controller file package org.flinders.staffdirectory.controllers; import java.util.List; //import org.flinders.staffdirectory.models.database.SearchResult; import org.flinders.staffdirectory.models.misc.Search; import org.flinders.staffdirectory.dao.StaffDAO; //import org.springframework.beans.factory.annotation.Autowired; import org.springframework.stereotype.Controller; import org.springframework.web.bind.annotation.ModelAttribute; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.servlet.ModelAndView; @Controller public class SearchController { //@Autowired private StaffDAO staffDAO; private String message; @RequestMapping("/SearchStaff") public ModelAndView showSearchResults(@ModelAttribute Search search) { //List<SearchResult> searchResults = message = staffDAO.searchForStaff(search); //System.out.println(search.getSurname()); return new ModelAndView("search/SearchForm", "Search", new Search()); //return new ModelAndView("search/SearchResults", "searchResults", searchResults); } @RequestMapping("/SearchForm") public ModelAndView showSearchForm() { return new ModelAndView("search/SearchForm", "search", new Search()); } } my dao class package org.flinders.staffdirectory.dao; import java.util.List; import org.hibernate.SessionFactory; //import org.springframework.beans.factory.annotation.Autowired; import org.flinders.staffdirectory.models.database.SearchResult; import org.flinders.staffdirectory.models.misc.Search; public class StaffDAO { //@Autowired private SessionFactory sessionFactory; public void setSessionFactory(SessionFactory sessionFactory) { this.sessionFactory = sessionFactory; } public String searchForStaff(Search search) { /*String SQL = "select distinct telsumm_id as id, telsumm_parent_id as parentId, telsumm_name_title as title, (case when substr(telsumm_surname, length(telsumm_surname) - 1, 1) = ',' then substr(telsumm_surname, 1, length(telsumm_surname) - 1) else telsumm_surname end) as surname, telsumm_preferred_name as firstname, nvl(telsumm_tele_number, '-') as telephoneNumber, nvl(telsumm_role, '-') as role, telsumm_display_department as department, lower(telsumm_entity_type) as entityType from teldirt.teld_summary where (telsumm_search_surname is not null) and not (nvl(telsumm_tele_directory,'xxx') IN ('N','S','D')) and not (telsumm_tele_number IS NULL AND telsumm_alias IS NULL) and (telsumm_alias_list = 'Y' OR (telsumm_tele_directory IN ('A','B'))) and ((nvl(telsumm_system_id_end,sysdate+1) > SYSDATE and telsumm_entity_type = 'P') or (telsumm_entity_type = 'N')) and (telsumm_search_department NOT like 'SPONSOR%')"; if (search.getSurname().length() > 0) { SQL += " and (telsumm_search_surname like '" + search.getSurname().toUpperCase() + "%')"; } if (search.getSurnameLike().length() > 0) { SQL += " and (telsumm_search_soundex like soundex(('%" + search.getSurnameLike().toUpperCase() + "%'))"; } if (search.getFirstname().length() > 0) { SQL += " and (telsumm_search_preferred_name like '" + search.getFirstname().toUpperCase() + "%' or telsumm_search_first_name like '" + search.getFirstname() + "%')"; } if (search.getTelephoneNumber().length() > 0) { SQL += " and (telsumm_tele_number like '" + search.getTelephoneNumber() + "%')"; } if (search.getDepartment().length() > 0) { SQL += " and (telsumm_search_department like '" + search.getDepartment().toUpperCase() + "%')"; } if (search.getRole().length() > 0) { SQL += " and (telsumm_search_role like '" + search.getRole().toUpperCase() + "%')"; } SQL += " order by surname, firstname"; List<Object[]> list = (List<Object[]>) sessionFactory.getCurrentSession().createQuery(SQL).list(); for(int j=0;j<list.size();j++){ Object [] obj= (Object[])list.get(j); for(int i=0;i<obj.length;i++) System.out.println(obj[i]); }*/ System.out.println("test"); return "test"; } }

    Read the article

  • How to set message when I get Exception

    - by user1748932
    public class XMLParser { // constructor public XMLParser() { } public String getXmlFromUrl(String url) { String responseBody = null; getset d1 = new getset(); String d = d1.getData(); // text String y = d1.getYear(); // year String c = d1.getCircular(); String p = d1.getPage(); List<NameValuePair> nameValuePairs = new ArrayList<NameValuePair>(); nameValuePairs.add(new BasicNameValuePair("YearID", y)); nameValuePairs.add(new BasicNameValuePair("CircularNo", c)); nameValuePairs.add(new BasicNameValuePair("SearchText", d)); nameValuePairs.add(new BasicNameValuePair("pagenumber", p)); try { HttpClient httpclient = new DefaultHttpClient(); HttpPost httppost = new HttpPost(url); httppost.setEntity(new UrlEncodedFormEntity(nameValuePairs)); HttpResponse response = httpclient.execute(httppost); HttpEntity entity = response.getEntity(); responseBody = EntityUtils.toString(entity); } catch (UnsupportedEncodingException e) { e.printStackTrace(); } catch (ClientProtocolException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } // return XML return responseBody; } public Document getDomElement(String xml) { Document doc = null; DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance(); try { DocumentBuilder db = dbf.newDocumentBuilder(); InputSource is = new InputSource(); is.setCharacterStream(new StringReader(xml)); doc = db.parse(is); } catch (ParserConfigurationException e) { Log.e("Error: ", e.getMessage()); return null; } catch (SAXException e) { Log.e("Error: ", e.getMessage()); // i m getting Exception here return null; } catch (IOException e) { Log.e("Error: ", e.getMessage()); return null; } return doc; } /** * Getting node value * * @param elem * element */ public final String getElementValue(Node elem) { Node child; if (elem != null) { if (elem.hasChildNodes()) { for (child = elem.getFirstChild(); child != null; child = child .getNextSibling()) { if (child.getNodeType() == Node.TEXT_NODE) { return child.getNodeValue(); } } } } return ""; } /** * Getting node value * * @param Element * node * @param key * string * */ public String getValue(Element item, String str) { NodeList n = item.getElementsByTagName(str); return this.getElementValue(n.item(0)); } } I am getting Exception in this class for parsing data. I want print this message in another class which extends from Activity. Can you please tell me how? I tried much but not able to do.. public class AndroidXMLParsingActivity extends Activity { public int currentPage = 1; public ListView lisView1; static final String KEY_ITEM = "docdetails"; static final String KEY_NAME = "heading"; public Button btnNext; public Button btnPre; public static String url = "http://dev.taxmann.com/TaxmannService/TaxmannService.asmx/GetNotificationList"; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); // listView1 lisView1 = (ListView) findViewById(R.id.listView1); // Next btnNext = (Button) findViewById(R.id.btnNext); // Perform action on click btnNext.setOnClickListener(new View.OnClickListener() { public void onClick(View v) { currentPage = currentPage + 1; ShowData(); } }); // Previous btnPre = (Button) findViewById(R.id.btnPre); // Perform action on click btnPre.setOnClickListener(new View.OnClickListener() { public void onClick(View v) { currentPage = currentPage - 1; ShowData(); } }); ShowData(); } public void ShowData() { XMLParser parser = new XMLParser(); String xml = parser.getXmlFromUrl(url); // getting XML Document doc = parser.getDomElement(xml); // getting DOM element NodeList nl = doc.getElementsByTagName(KEY_ITEM); int displayPerPage = 5; // Per Page int TotalRows = nl.getLength(); int indexRowStart = ((displayPerPage * currentPage) - displayPerPage); int TotalPage = 0; if (TotalRows <= displayPerPage) { TotalPage = 1; } else if ((TotalRows % displayPerPage) == 0) { TotalPage = (TotalRows / displayPerPage); } else { TotalPage = (TotalRows / displayPerPage) + 1; // 7 TotalPage = (int) TotalPage; // 7 } int indexRowEnd = displayPerPage * currentPage; // 5 if (indexRowEnd > TotalRows) { indexRowEnd = TotalRows; } // Disabled Button Next if (currentPage >= TotalPage) { btnNext.setEnabled(false); } else { btnNext.setEnabled(true); } // Disabled Button Previos if (currentPage <= 1) { btnPre.setEnabled(false); } else { btnPre.setEnabled(true); } // Load Data from Index int RowID = 1; ArrayList<HashMap<String, String>> menuItems = new ArrayList<HashMap<String, String>>(); HashMap<String, String> map; // RowID if (currentPage > 1) { RowID = (displayPerPage * (currentPage - 1)) + 1; } for (int i = indexRowStart; i < indexRowEnd; i++) { Element e = (Element) nl.item(i); // adding each child node to HashMap key => value map = new HashMap<String, String>(); map.put("RowID", String.valueOf(RowID)); map.put(KEY_NAME, parser.getValue(e, KEY_NAME)); // adding HashList to ArrayList menuItems.add(map); RowID = RowID + 1; } SimpleAdapter sAdap; sAdap = new SimpleAdapter(AndroidXMLParsingActivity.this, menuItems, R.layout.list_item, new String[] { "RowID", KEY_NAME }, new int[] { R.id.ColRowID, R.id.ColName }); lisView1.setAdapter(sAdap); } } This my class where I want to Print that message

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

< Previous Page | 69 70 71 72 73 74 75 76 77 78 79 80  | Next Page >