Search Results

Search found 8301 results on 333 pages for 'types'.

Page 73/333 | < Previous Page | 69 70 71 72 73 74 75 76 77 78 79 80  | Next Page >

  • How to reserve public API to internal usage in .NET?

    - by mark
    Dear ladies and sirs. Let me first present the case, which will explain my question. This is going to be a bit long, so I apologize in advance :-). I have objects and collections, which should support the Merge API (it is my custom API, the signature of which is immaterial for this question). This API must be internal, meaning only my framework should be allowed to invoke it. However, derived types should be able to override the basic implementation. The natural way to implement this pattern as I see it, is this: The Merge API is declared as part of some internal interface, let us say IMergeable. Because the interface is internal, derived types would not be able to implement it directly. Rather they must inherit it from a common base type. So, a common base type is introduced, which would implement the IMergeable interface explicitly, where the interface methods delegate to respective protected virtual methods, providing the default implementation. This way the API is only callable by my framework, but derived types may override the default implementation. The following code snippet demonstrates the concept: internal interface IMergeable { void Merge(object obj); } public class BaseFrameworkObject : IMergeable { protected virtual void Merge(object obj) { // The default implementation. } void IMergeable.Merge(object obj) { Merge(obj); } } public class SomeThirdPartyObject : BaseFrameworkObject { protected override void Merge(object obj) { // A derived type implementation. } } All is fine, provided a single common base type suffices, which is usually true for non collection types. The thing is that collections must be mergeable as well. Collections do not play nicely with the presented concept, because developers do not develop collections from the scratch. There are predefined implementations - observable, filtered, compound, read-only, remove-only, ordered, god-knows-what, ... They may be developed from scratch in-house, but once finished, they serve wide range of products and should never be tailored to some specific product. Which means, that either: they do not implement the IMergeable interface at all, because it is internal to some product the scope of the IMergeable interface is raised to public and the API becomes open and callable by all. Let us refer to these collections as standard collections. Anyway, the first option screws my framework, because now each possible standard collection type has to be paired with the respective framework version, augmenting the standard with the IMergeable interface implementation - this is so bad, I am not even considering it. The second option breaks the framework as well, because the IMergeable interface should be internal for a reason (whatever it is) and now this interface has to open to all. So what to do? My solution is this. make IMergeable public API, but add an extra parameter to the Merge method, I call it a security token. The interface implementation may check that the token references some internal object, which is never exposed to the outside. If this is the case, then the method was called from within the framework, otherwise - some outside API consumer attempted to invoke it and so the implementation can blow up with a SecurityException. Here is the modified code snippet demonstrating this concept: internal static class InternalApi { internal static readonly object Token = new object(); } public interface IMergeable { void Merge(object obj, object token); } public class BaseFrameworkObject : IMergeable { protected virtual void Merge(object obj) { // The default implementation. } public void Merge(object obj, object token) { if (!object.ReferenceEquals(token, InternalApi.Token)) { throw new SecurityException("bla bla bla"); } Merge(obj); } } public class SomeThirdPartyObject : BaseFrameworkObject { protected override void Merge(object obj) { // A derived type implementation. } } Of course, this is less explicit than having an internally scoped interface and the check is moved from the compile time to run time, yet this is the best I could come up with. Now, I have a gut feeling that there is a better way to solve the problem I have presented. I do not know, may be using some standard Code Access Security features? I have only vague understanding of it, but can LinkDemand attribute be somehow related to it? Anyway, I would like to hear other opinions. Thanks.

    Read the article

  • Applying ServiceKnownTypeAttribute to WCF service with Spring

    - by avidgoffer
    I am trying to apply the ServiceKnownTypeAttribute to my WCF Service but keep getting the error below my config. Does anyone have any ideas? <object id="HHGEstimating" type="Spring.ServiceModel.ServiceExporter, Spring.Services"> <property name="TargetName" value="HHGEstimatingHelper"/> <property name="Name" value="HHGEstimating"/> <property name="Namespace" value="http://www.igcsoftware.com/HHGEstimating"/> <property name="TypeAttributes"> <list> <ref local="wcfErrorBehavior"/> <ref local="wcfSilverlightFaultBehavior"/> <object type="System.ServiceModel.ServiceKnownTypeAttribute, System.ServiceModel"> <constructor-arg name="type" value="IGCSoftware.HHG.Business.UserControl.AtlasUser, IGCSoftware.HHG.Business"/> </object> </list> </property> Error thrown by a dependency of object 'HHGEstimating' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' : '1' constructor arguments specified but no matching constructor found in object 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' (hint: specify argument indexes, names, or types to avoid ambiguities). while resolving 'TypeAttributes[2]' to 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: Spring.Objects.Factory.ObjectCreationException: Error thrown by a dependency of object 'HHGEstimating' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' : '1' constructor arguments specified but no matching constructor found in object 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' (hint: specify argument indexes, names, or types to avoid ambiguities). while resolving 'TypeAttributes[2]' to 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' Source Error: An unhandled exception was generated during the execution of the current web request. Information regarding the origin and location of the exception can be identified using the exception stack trace below. Stack Trace: [ObjectCreationException: Error thrown by a dependency of object 'HHGEstimating' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' : '1' constructor arguments specified but no matching constructor found in object 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' (hint: specify argument indexes, names, or types to avoid ambiguities). while resolving 'TypeAttributes[2]' to 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46'] Spring.Objects.Factory.Support.ObjectDefinitionValueResolver.ResolveInnerObjectDefinition(String name, String innerObjectName, String argumentName, IObjectDefinition definition, Boolean singletonOwner) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\ObjectDefinitionValueResolver.cs:300 Spring.Objects.Factory.Support.ObjectDefinitionValueResolver.ResolvePropertyValue(String name, IObjectDefinition definition, String argumentName, Object argumentValue) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\ObjectDefinitionValueResolver.cs:150 Spring.Objects.Factory.Support.ObjectDefinitionValueResolver.ResolveValueIfNecessary(String name, IObjectDefinition definition, String argumentName, Object argumentValue) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\ObjectDefinitionValueResolver.cs:112 Spring.Objects.Factory.Config.ManagedList.Resolve(String objectName, IObjectDefinition definition, String propertyName, ManagedCollectionElementResolver resolver) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Config\ManagedList.cs:126 Spring.Objects.Factory.Support.ObjectDefinitionValueResolver.ResolvePropertyValue(String name, IObjectDefinition definition, String argumentName, Object argumentValue) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\ObjectDefinitionValueResolver.cs:201 Spring.Objects.Factory.Support.ObjectDefinitionValueResolver.ResolveValueIfNecessary(String name, IObjectDefinition definition, String argumentName, Object argumentValue) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\ObjectDefinitionValueResolver.cs:112 Spring.Objects.Factory.Support.AbstractAutowireCapableObjectFactory.ApplyPropertyValues(String name, RootObjectDefinition definition, IObjectWrapper wrapper, IPropertyValues properties) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\AbstractAutowireCapableObjectFactory.cs:373 Spring.Objects.Factory.Support.AbstractAutowireCapableObjectFactory.PopulateObject(String name, RootObjectDefinition definition, IObjectWrapper wrapper) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\AbstractAutowireCapableObjectFactory.cs:563 Spring.Objects.Factory.Support.AbstractAutowireCapableObjectFactory.ConfigureObject(String name, RootObjectDefinition definition, IObjectWrapper wrapper) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\AbstractAutowireCapableObjectFactory.cs:1844 Spring.Objects.Factory.Support.AbstractAutowireCapableObjectFactory.InstantiateObject(String name, RootObjectDefinition definition, Object[] arguments, Boolean allowEagerCaching, Boolean suppressConfigure) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\AbstractAutowireCapableObjectFactory.cs:918 Spring.Objects.Factory.Support.AbstractObjectFactory.CreateAndCacheSingletonInstance(String objectName, RootObjectDefinition objectDefinition, Object[] arguments) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\AbstractObjectFactory.cs:2120 Spring.Objects.Factory.Support.AbstractObjectFactory.GetObjectInternal(String name, Type requiredType, Object[] arguments, Boolean suppressConfigure) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\AbstractObjectFactory.cs:2046 Spring.Objects.Factory.Support.DefaultListableObjectFactory.PreInstantiateSingletons() in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Objects\Factory\Support\DefaultListableObjectFactory.cs:505 Spring.Context.Support.AbstractApplicationContext.Refresh() in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\AbstractApplicationContext.cs:911 _dynamic_Spring.Context.Support.XmlApplicationContext..ctor(Object[] ) +197 Spring.Reflection.Dynamic.SafeConstructor.Invoke(Object[] arguments) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Reflection\Dynamic\DynamicConstructor.cs:116 Spring.Context.Support.RootContextInstantiator.InvokeContextConstructor(ConstructorInfo ctor) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\ContextHandler.cs:550 Spring.Context.Support.ContextInstantiator.InstantiateContext() in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\ContextHandler.cs:494 Spring.Context.Support.ContextHandler.InstantiateContext(IApplicationContext parentContext, Object configContext, String contextName, Type contextType, Boolean caseSensitive, String[] resources) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\ContextHandler.cs:330 Spring.Context.Support.ContextHandler.Create(Object parent, Object configContext, XmlNode section) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\ContextHandler.cs:280 [ConfigurationErrorsException: Error creating context 'spring.root': Error thrown by a dependency of object 'HHGEstimating' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' : '1' constructor arguments specified but no matching constructor found in object 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' (hint: specify argument indexes, names, or types to avoid ambiguities). while resolving 'TypeAttributes[2]' to 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46'] System.Configuration.BaseConfigurationRecord.EvaluateOne(String[] keys, SectionInput input, Boolean isTrusted, FactoryRecord factoryRecord, SectionRecord sectionRecord, Object parentResult) +202 System.Configuration.BaseConfigurationRecord.Evaluate(FactoryRecord factoryRecord, SectionRecord sectionRecord, Object parentResult, Boolean getLkg, Boolean getRuntimeObject, Object& result, Object& resultRuntimeObject) +1061 System.Configuration.BaseConfigurationRecord.GetSectionRecursive(String configKey, Boolean getLkg, Boolean checkPermission, Boolean getRuntimeObject, Boolean requestIsHere, Object& result, Object& resultRuntimeObject) +1431 System.Configuration.BaseConfigurationRecord.GetSection(String configKey, Boolean getLkg, Boolean checkPermission) +56 System.Configuration.BaseConfigurationRecord.GetSection(String configKey) +8 System.Web.Configuration.HttpConfigurationSystem.GetApplicationSection(String sectionName) +45 System.Web.Configuration.HttpConfigurationSystem.GetSection(String sectionName) +49 System.Web.Configuration.HttpConfigurationSystem.System.Configuration.Internal.IInternalConfigSystem.GetSection(String configKey) +6 System.Configuration.ConfigurationManager.GetSection(String sectionName) +78 Spring.Util.ConfigurationUtils.GetSection(String sectionName) in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Util\ConfigurationUtils.cs:69 Spring.Context.Support.ContextRegistry.InitializeContextIfNeeded() in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\ContextRegistry.cs:340 Spring.Context.Support.ContextRegistry.GetContext() in l:\projects\spring-net\trunk\src\Spring\Spring.Core\Context\Support\ContextRegistry.cs:206 Spring.ServiceModel.Activation.ServiceHostFactory.CreateServiceHost(String reference, Uri[] baseAddresses) in l:\projects\spring-net\trunk\src\Spring\Spring.Services\ServiceModel\Activation\ServiceHostFactory.cs:66 System.ServiceModel.HostingManager.CreateService(String normalizedVirtualPath) +11687036 System.ServiceModel.HostingManager.ActivateService(String normalizedVirtualPath) +42 System.ServiceModel.HostingManager.EnsureServiceAvailable(String normalizedVirtualPath) +479 [ServiceActivationException: The service '/HHGEstimating.svc' cannot be activated due to an exception during compilation. The exception message is: Error creating context 'spring.root': Error thrown by a dependency of object 'HHGEstimating' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46' : '1' constructor arguments specified but no matching constructor found in object 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' (hint: specify argument indexes, names, or types to avoid ambiguities). while resolving 'TypeAttributes[2]' to 'System.ServiceModel.ServiceKnownTypeAttribute#25A5628' defined in 'assembly [IGCSoftware.HHG.WebService, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null], resource [IGCSoftware.HHG.WebService.Resources.Spring.objects.xml] line 46'.] System.ServiceModel.AsyncResult.End(IAsyncResult result) +11592858 System.ServiceModel.Activation.HostedHttpRequestAsyncResult.End(IAsyncResult result) +194 System.ServiceModel.Activation.HostedHttpRequestAsyncResult.ExecuteSynchronous(HttpApplication context, Boolean flowContext) +176 System.ServiceModel.Activation.HttpModule.ProcessRequest(Object sender, EventArgs e) +275 System.Web.SyncEventExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() +68 System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +75

    Read the article

  • Reflect.Emit Dynamic Type Memory Blowup

    - by Firestrand
    Using C# 3.5 I am trying to generate dynamic types at runtime using reflection emit. I used the Dynamic Query Library sample from Microsoft to create a class generator. Everything works, my problem is that 100 generated types inflate the memory usage by approximately 25MB. This is a completely unacceptable memory profile as eventually I want to support having several hundred thousand types generated in memory. Memory profiling shows that the memory is apparently being held by various System.Reflection.Emit types and methods though I can't figure out why. I haven't found others talking about this problem so I am hoping someone in this community either knows what I am doing wrong or if this is expected behavior. Contrived Example below: using System; using System.Collections.Generic; using System.Text; using System.Reflection; using System.Reflection.Emit; namespace SmallRelfectExample { class Program { static void Main(string[] args) { int typeCount = 100; int propCount = 100; Random rand = new Random(); Type dynType = null; for (int i = 0; i < typeCount; i++) { List<DynamicProperty> dpl = new List<DynamicProperty>(propCount); for (int j = 0; j < propCount; j++) { dpl.Add(new DynamicProperty("Key" + rand.Next().ToString(), typeof(String))); } SlimClassFactory scf = new SlimClassFactory(); dynType = scf.CreateDynamicClass(dpl.ToArray(), i); //Optionally do something with the type here } Console.WriteLine("SmallRelfectExample: {0} Types generated.", typeCount); Console.ReadLine(); } } public class SlimClassFactory { private readonly ModuleBuilder module; public SlimClassFactory() { AssemblyName name = new AssemblyName("DynamicClasses"); AssemblyBuilder assembly = AppDomain.CurrentDomain.DefineDynamicAssembly(name, AssemblyBuilderAccess.Run); module = assembly.DefineDynamicModule("Module"); } public Type CreateDynamicClass(DynamicProperty[] properties, int Id) { string typeName = "DynamicClass" + Id.ToString(); TypeBuilder tb = module.DefineType(typeName, TypeAttributes.Class | TypeAttributes.Public, typeof(DynamicClass)); FieldInfo[] fields = GenerateProperties(tb, properties); GenerateEquals(tb, fields); GenerateGetHashCode(tb, fields); Type result = tb.CreateType(); return result; } static FieldInfo[] GenerateProperties(TypeBuilder tb, DynamicProperty[] properties) { FieldInfo[] fields = new FieldBuilder[properties.Length]; for (int i = 0; i < properties.Length; i++) { DynamicProperty dp = properties[i]; FieldBuilder fb = tb.DefineField("_" + dp.Name, dp.Type, FieldAttributes.Private); PropertyBuilder pb = tb.DefineProperty(dp.Name, PropertyAttributes.HasDefault, dp.Type, null); MethodBuilder mbGet = tb.DefineMethod("get_" + dp.Name, MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.HideBySig, dp.Type, Type.EmptyTypes); ILGenerator genGet = mbGet.GetILGenerator(); genGet.Emit(OpCodes.Ldarg_0); genGet.Emit(OpCodes.Ldfld, fb); genGet.Emit(OpCodes.Ret); MethodBuilder mbSet = tb.DefineMethod("set_" + dp.Name, MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.HideBySig, null, new Type[] { dp.Type }); ILGenerator genSet = mbSet.GetILGenerator(); genSet.Emit(OpCodes.Ldarg_0); genSet.Emit(OpCodes.Ldarg_1); genSet.Emit(OpCodes.Stfld, fb); genSet.Emit(OpCodes.Ret); pb.SetGetMethod(mbGet); pb.SetSetMethod(mbSet); fields[i] = fb; } return fields; } static void GenerateEquals(TypeBuilder tb, FieldInfo[] fields) { MethodBuilder mb = tb.DefineMethod("Equals", MethodAttributes.Public | MethodAttributes.ReuseSlot | MethodAttributes.Virtual | MethodAttributes.HideBySig, typeof(bool), new Type[] { typeof(object) }); ILGenerator gen = mb.GetILGenerator(); LocalBuilder other = gen.DeclareLocal(tb); Label next = gen.DefineLabel(); gen.Emit(OpCodes.Ldarg_1); gen.Emit(OpCodes.Isinst, tb); gen.Emit(OpCodes.Stloc, other); gen.Emit(OpCodes.Ldloc, other); gen.Emit(OpCodes.Brtrue_S, next); gen.Emit(OpCodes.Ldc_I4_0); gen.Emit(OpCodes.Ret); gen.MarkLabel(next); foreach (FieldInfo field in fields) { Type ft = field.FieldType; Type ct = typeof(EqualityComparer<>).MakeGenericType(ft); next = gen.DefineLabel(); gen.EmitCall(OpCodes.Call, ct.GetMethod("get_Default"), null); gen.Emit(OpCodes.Ldarg_0); gen.Emit(OpCodes.Ldfld, field); gen.Emit(OpCodes.Ldloc, other); gen.Emit(OpCodes.Ldfld, field); gen.EmitCall(OpCodes.Callvirt, ct.GetMethod("Equals", new Type[] { ft, ft }), null); gen.Emit(OpCodes.Brtrue_S, next); gen.Emit(OpCodes.Ldc_I4_0); gen.Emit(OpCodes.Ret); gen.MarkLabel(next); } gen.Emit(OpCodes.Ldc_I4_1); gen.Emit(OpCodes.Ret); } static void GenerateGetHashCode(TypeBuilder tb, FieldInfo[] fields) { MethodBuilder mb = tb.DefineMethod("GetHashCode", MethodAttributes.Public | MethodAttributes.ReuseSlot | MethodAttributes.Virtual | MethodAttributes.HideBySig, typeof(int), Type.EmptyTypes); ILGenerator gen = mb.GetILGenerator(); gen.Emit(OpCodes.Ldc_I4_0); foreach (FieldInfo field in fields) { Type ft = field.FieldType; Type ct = typeof(EqualityComparer<>).MakeGenericType(ft); gen.EmitCall(OpCodes.Call, ct.GetMethod("get_Default"), null); gen.Emit(OpCodes.Ldarg_0); gen.Emit(OpCodes.Ldfld, field); gen.EmitCall(OpCodes.Callvirt, ct.GetMethod("GetHashCode", new Type[] { ft }), null); gen.Emit(OpCodes.Xor); } gen.Emit(OpCodes.Ret); } } public abstract class DynamicClass { public override string ToString() { PropertyInfo[] props = GetType().GetProperties(BindingFlags.Instance | BindingFlags.Public); StringBuilder sb = new StringBuilder(); sb.Append("{"); for (int i = 0; i < props.Length; i++) { if (i > 0) sb.Append(", "); sb.Append(props[i].Name); sb.Append("="); sb.Append(props[i].GetValue(this, null)); } sb.Append("}"); return sb.ToString(); } } public class DynamicProperty { private readonly string name; private readonly Type type; public DynamicProperty(string name, Type type) { if (name == null) throw new ArgumentNullException("name"); if (type == null) throw new ArgumentNullException("type"); this.name = name; this.type = type; } public string Name { get { return name; } } public Type Type { get { return type; } } } }

    Read the article

  • Select list auto update on any kind of change?

    - by Tom Irons
    I have a jQuery that when you click on a select option it will show the next one, but you have to click, you cant just use the down arrow or "tab" to the next option. I am wondering what options do I have to make this work? Here is my jQuery: function typefunction() { var itemTypes = jQuery('#type'); var select = this.value; itemTypes.change(function () { if ($(this).val() == '1-Hand') { $('.1-Hand').show(); $('.2-Hand').hide(); $('.off').hide(); $('.Armor').hide(); } else $('.1-Hand').hide(); if ($(this).val() == '2-Hand') { $('.2-Hand').show(); $('.1-Hand').hide(); $('.off').hide(); $('.Armor').hide(); } else $('.2-Hand').hide(); if ($(this).val() == 'Armor') { $('.Armor').show(); $('.2-Hand').hide(); $('.off').hide(); $('.1-Hand').hide(); } else $('.Armor').hide(); if ($(this).val() == 'Off-Hand') { $('.Off').show(); $('.2-Hand').hide(); $('.1-Hand').hide(); $('.Armor').hide(); } else $('.Off').hide(); if ($(this).val() == '1-Hand') { $('.one-hand-dps').show(); $('.item-armor').hide(); $('.two-hand-dps').hide(); } else $('.one-hand-dps').hide(); if ($(this).val() == '2-Hand') { $('.two-hand-dps').show(); $('.one-hand-dps').hide(); $('.item-armor').hide(); } else $('.two-hand-dps').hide(); if ($(this).val() == 'Armor') { $('.item-armor').show(); $('.one-hand-dps').hide(); $('.two-hand-dps').hide(); } else $('.item-armor').hide(); }); } And the HTML: <div class="input-group item"> <span class="input-group-addon">Type</span> <select id="type" name="type" class="form-control" onclick="typefunction(); itemstats(); Armor(); OffHand(); TwoHand();"> <option value="Any Type">Any Type</option> <option value="1-Hand">1-Hand</option> <option value="2-Hand">2-Hand</option> <option value="Armor">Armor</option> <option value="Off-Hand">Off-Hand</option> </select> </div> <div class="input-group item"> <span class="1-Hand input-group-addon" style="display: none;">Sub-Type</span> <select class="1-Hand form-control" name="sub[1]" style="display: none;"> <option value="All 1-Hand Item Types">All 1-Hand Item Types</option> <option>Axe</option> <option>Ceremonial Knife</option> <option>Hand Crossbow</option> <option>Dagger</option> <option>Fist Weapon</option> <option>Mace</option> <option>Mighty Weapon</option> <option>Spear</option> <option>Sword</option> <option>Wand</option> </select> </div> <div class="input-group"> <span class="2-Hand input-group-addon" style="display: none; ">Sub-Type</span> <select class="2-Hand form-control" name="sub[2]" style="display: none;"> <option>All 2-Hand Item Types</option> <option>Two-Handed Axe</option> <option>Bow</option> <option>Diabo</option> <option>Crossbow</option> <option>Two-Handed Mace</option> <option>Two-Handed Mighty Weapon</option> <option>Polearm</option> <option>Staff</option> <option>Two-Handed Sword</option> </select> </div> <div class="input-group"> <span class="Armor input-group-addon" style="display: none;">Sub-Type</span> <select class="Armor form-control" name="sub[3]" style="display:none;"> <option>All Armor Item Types</option> <option>Amulet</option> <option>Belt</option> <option>Boots</option> <option>Bracers</option> <option>Chest Armor</option> <option>Cloak</option> <option>Gloves</option> <option>Helm</option> <option>Pants</option> <option>Mighty Belt</option> <option>Ring</option> <option>Shoulders</option> <option>Spirit Stone</option> <option>Voodoo Mask</option> <option>Wizard Hat</option> </select> </div> <div class="input-group"> <span class="Off input-group-addon" style="display: none;">Sub-Type</span> <select class="Off form-control" name="sub[4]" style="display:none;"> <option>All Off-Hand Item Types</option> <option>Mojo</option> <option>Source</option> <option>Quiver</option> <option>Shield</option> </select> </div>

    Read the article

  • Namespaces and deserialization issue

    - by CaffGeek
    UPDATE: You can run the code at the end of this to recreate and see the error I am having and hopefully solve it! UPDATE2: It's not the removal of the xmlns="" that's the issue... as you can remove it from the initial xml string. The problem is with the [XmlType(TypeName = "Systems")] somehow causing it to be added... UPDATE3: Turns out the problem is in here, I need to set the TypeName based on what is in the existing, XmlTypeAttribute if it already exists on the class.... xmlAttributes.XmlType = new XmlTypeAttribute { Namespace = "" }; I get the following XML as a string from a webservice <Systems xmlns=""> <System id="1"> <sys_name>ALL</sys_name> </System> <System id="2"> <sys_name>asdfasdf</sys_name> </System> <System id="3"> <sys_name>fasdfasf</sys_name> </System> <System id="4"> <sys_name>asdfasdfasdf</sys_name> </System> </Systems> I then execute this, to convert it to an object result = XElement.Parse(xmlResult.OuterXml).Deserialize<AwayRequestSystems>(); Strangely though, in the Deserialize method, while the RemoveAllNamespaces works and returns the xml without the namespace I get the error <Systems xmlns=''> was not expected. in the catch when return (T) serializer.Deserialize(reader); executes! Why is it doing this? The xmlns is GONE!!! EXECUTABLE CODE! (Just put it in a test project) using System; using System.Collections.Generic; using System.Diagnostics; using System.Linq; using System.Xml; using System.Xml.Linq; using Microsoft.VisualStudio.TestTools.UnitTesting; using System.Xml.Serialization; namespace DeserializationTest { [TestClass] public class UnitTest1 { public TestContext TestContext { get; set; } [TestMethod] public void RemoveXmlnsFromSystems() { var xml = XElement.Parse(@"<Systems xmlns=""""> <System id=""1""> <sys_name>ALL</sys_name> </System> <System id=""2""> <sys_name>ePO</sys_name> </System> <System id=""3""> <sys_name>iEFT</sys_name> </System> <System id=""4""> <sys_name>Away Requests</sys_name> </System> <System id=""5""> <sys_name>RP3</sys_name> </System> </Systems>"); var systems = xml.Deserialize<AwayRequestSystems>(); Assert.IsInstanceOfType(systems, typeof(AwayRequestSystems)); var xmlnsFree = xml.RemoveAllNamespaces(); var str = xmlnsFree.ToString(); Debug.WriteLine(str); Assert.AreNotEqual("Error", xmlnsFree.Name.ToString(), "Serialization Error"); Assert.IsFalse(str.Contains("xmlns"), "Xmlns still exists"); } } [XmlType(TypeName = "Systems")] public class AwayRequestSystems : List<AwayRequestSystem> { } [XmlType(TypeName = "System")] public class AwayRequestSystem { [XmlAttribute("id")] public int ID { get; set; } [XmlElement("sys_name")] public string Name { get; set; } } public static class XmlSerializerFactory { private static Dictionary<Type, XmlSerializer> _serializers = new Dictionary<Type, XmlSerializer>(); public static void ResetCache() { _serializers = new Dictionary<Type, XmlSerializer>(); } public static XmlSerializer GetSerializerFor(Type typeOfT) { if (!_serializers.ContainsKey(typeOfT)) { var xmlAttributes = new XmlAttributes(); var xmlAttributeOverrides = new XmlAttributeOverrides(); Debug.WriteLine(string.Format("XmlSerializerFactory.GetSerializerFor(typeof({0}));", typeOfT)); xmlAttributes.XmlType = new XmlTypeAttribute { Namespace = "" }; xmlAttributes.Xmlns = false; var types = new List<Type> { typeOfT, typeOfT.BaseType }; foreach (var property in typeOfT.GetProperties()) { types.Add(property.PropertyType); } types.RemoveAll(t => t.ToString().StartsWith("System.")); foreach (var type in types) { if (xmlAttributeOverrides[type] == null) xmlAttributeOverrides.Add(type, xmlAttributes); } var newSerializer = new XmlSerializer(typeOfT, xmlAttributeOverrides); //var newSerializer = new XmlSerializer(typeOfT, xmlAttributeOverrides, types.ToArray(), new XmlRootAttribute(), string.Empty); //var newSerializer = new XmlSerializer(typeOfT, string.Empty); _serializers.Add(typeOfT, newSerializer); } return _serializers[typeOfT]; } } public static class XElementExtensions { public static XElement RemoveAllNamespaces(this XElement source) { if (source.HasAttributes) source.Attributes().Where(a => a.Name.LocalName.Equals("xmlns")).Remove(); return source.HasElements ? new XElement(source.Name.LocalName, source.Attributes()/*.Where(a => !a.Name.LocalName.Equals("xmlns"))*/, source.Elements().Select(el => RemoveAllNamespaces(el)) ) : new XElement(source.Name.LocalName) { Value = source.Value }; } } public static class SerializationExtensions { public static XElement Serialize(this object source) { try { var serializer = XmlSerializerFactory.GetSerializerFor(source.GetType()); var xdoc = new XDocument(); using (var writer = xdoc.CreateWriter()) { serializer.Serialize(writer, source, new XmlSerializerNamespaces(new[] { new XmlQualifiedName("", "") })); } var result = (xdoc.Document != null) ? xdoc.Document.Root : new XElement("Error", "Document Missing"); return result.RemoveAllNamespaces(); } catch (Exception x) { return new XElement("Error", x.ToString()); } } public static T Deserialize<T>(this XElement source) where T : class { //try //{ var serializer = XmlSerializerFactory.GetSerializerFor(typeof(T)); var cleanxml = source.RemoveAllNamespaces(); var reader = cleanxml.CreateReader(); return (T)serializer.Deserialize(reader); //} //catch (Exception x) //{ // return null; //} } } }

    Read the article

  • These are few objective type questions which i was not able to find the solution [closed]

    - by Tarun
    1. Which of the following advantages does System.Collections.IDictionaryEnumerator provide over System.Collections.IEnumerator? a. It adds properties for direct access to both the Key and the Value b. It is optimized to handle the structure of a Dictionary. c. It provides properties to determine if the Dictionary is enumerated in Key or Value order d. It provides reverse lookup methods to distinguish a Key from a specific Value 2. When Implementing System.EnterpriseServices.ServicedComponent derived classes, which of the following statements are true? a. Enabling object pooling requires an attribute on the class and the enabling of pooling in the COM+ catalog. b. Methods can be configured to automatically mark a transaction as complete by the use of attributes. c. You can configure authentication using the AuthenticationOption when the ActivationMode is set to Library. d. You can control the lifecycle policy of an individual instance using the SetLifetimeService method. 3. Which of the following are true regarding event declaration in the code below? class Sample { event MyEventHandlerType MyEvent; } a. MyEventHandlerType must be derived from System.EventHandler or System.EventHandler<TEventArgs> b. MyEventHandlerType must take two parameters, the first of the type Object, and the second of a class derived from System.EventArgs c. MyEventHandlerType may have a non-void return type d. If MyEventHandlerType is a generic type, event declaration must use a specialization of that type. e. MyEventHandlerType cannot be declared static 4. Which of the following statements apply to developing .NET code, using .NET utilities that are available with the SDK or Visual Studio? a. Developers can create assemblies directly from the MSIL Source Code. b. Developers can examine PE header information in an assembly. c. Developers can generate XML Schemas from class definitions contained within an assembly. d. Developers can strip all meta-data from managed assemblies. e. Developers can split an assembly into multiple assemblies. 5. Which of the following characteristics do classes in the System.Drawing namespace such as Brush,Font,Pen, and Icon share? a. They encapsulate native resource and must be properly Disposed to prevent potential exhausting of resources. b. They are all MarshalByRef derived classes, but functionality across AppDomains has specific limitations. c. You can inherit from these classes to provide enhanced or customized functionality 6. Which of the following are required to be true by objects which are going to be used as keys in a System.Collections.HashTable? a. They must handle case-sensitivity identically in both the GetHashCode() and Equals() methods. b. Key objects must be immutable for the duration they are used within a HashTable. c. Get HashCode() must be overridden to provide the same result, given the same parameters, regardless of reference equalityl unless the HashTable constructor is provided with an IEqualityComparer parameter. d. Each Element in a HashTable is stored as a Key/Value pair of the type System.Collections.DictionaryElement e. All of the above 7. Which of the following are true about Nullable types? a. A Nullable type is a reference type. b. A Nullable type is a structure. c. An implicit conversion exists from any non-nullable value type to a nullable form of that type. d. An implicit conversion exists from any nullable value type to a non-nullable form of that type. e. A predefined conversion from the nullable type S? to the nullable type T? exists if there is a predefined conversion from the non-nullable type S to the non-nullable type T 8. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is a private instance member with a leading underscore that can be programmatically referenced. c. The compiler generates a backing field that is accessible via reflection d. The compiler generates a code that will store the information separately from the instance to ensure its security. 9. Which of the following does using Initializer Syntax with a collection as shown below require? CollectionClass numbers = new CollectionClass { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; a. The Collection Class must implement System.Collections.Generic.ICollection<T> b. The Collection Class must implement System.Collections.Generic.IList<T> c. Each of the Items in the Initializer List will be passed to the Add<T>(T item) method d. The items in the initializer will be treated as an IEnumerable<T> and passed to the collection constructor+K110 10. What impact will using implicitly typed local variables as in the following example have? var sample = "Hello World"; a. The actual type is determined at compilation time, and has no impact on the runtime b. The actual type is determined at runtime, and late binding takes effect c. The actual type is based on the native VARIANT concept, and no binding to a specific type takes place. d. "var" itself is a specific type defined by the framework, and no special binding takes place 11. Which of the following is not supported by remoting object types? a. well-known singleton b. well-known single call c. client activated d. context-agile 12. In which of the following ways do structs differ from classes? a. Structs can not implement interfaces b. Structs cannot inherit from a base struct c. Structs cannot have events interfaces d. Structs cannot have virtual methods 13. Which of the following is not an unboxing conversion? a. void Sample1(object o) { int i = (int)o; } b. void Sample1(ValueType vt) { int i = (int)vt; } c. enum E { Hello, World} void Sample1(System.Enum et) { E e = (E) et; } d. interface I { int Value { get; set; } } void Sample1(I vt) { int i = vt.Value; } e. class C { public int Value { get; set; } } void Sample1(C vt) { int i = vt.Value; } 14. Which of the following are characteristics of the System.Threading.Timer class? a. The method provided by the TimerCallback delegate will always be invoked on the thread which created the timer. b. The thread which creates the timer must have a message processing loop (i.e. be considered a UI thread) c. The class contains protection to prevent reentrancy to the method provided by the TimerCallback delegate d. You can receive notification of an instance being Disposed by calling an overload of the Dispose method. 15. What is the proper declaration of a method which will handle the following event? Class MyClass { public event EventHandler MyEvent; } a. public void A_MyEvent(object sender, MyArgs e) { } b. public void A_MyEvent(object sender, EventArgs e) { } c. public void A_MyEvent(MyArgs e) { } d. public void A_MyEvent(MyClass sender,EventArgs e) { } 16. Which of the following scenarios are applicable to Window Workflow Foundation? a. Document-centric workflows b. Human workflows c. User-interface page flows d. Builtin support for communications across multiple applications and/or platforms e. All of the above 17. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is a private instance member with a leading underscore that can be programmatically referenced. c. The compiler generates a backing field that is accessible via reflection d. The compiler generates a code that will store the information separately from the instance to ensure its security. 18 While using the capabilities supplied by the System.Messaging classes, which of the following are true? a. Information must be explicitly converted to/from a byte stream before it uses the MessageQueue class b. Invoking the MessageQueue.Send member defaults to using the System.Messaging.XmlMessageFormatter to serialize the object. c. Objects must be XMLSerializable in order to be transferred over a MessageQueue instance. d. The first entry in a MessageQueue must be removed from the queue before the next entry can be accessed e. Entries removed from a MessageQueue within the scope of a transaction, will be pushed back into the front of the queue if the transaction fails. 19. Which of the following are true about declarative attributes? a. They must be inherited from the System.Attribute. b. Attributes are instantiated at the same time as instances of the class to which they are applied. c. Attribute classes may be restricted to be applied only to application element types. d. By default, a given attribute may be applied multiple times to the same application element. 20. When using version 3.5 of the framework in applications which emit a dynamic code, which of the following are true? a. A Partial trust code can not emit and execute a code b. A Partial trust application must have the SecurityCriticalAttribute attribute have called Assert ReflectionEmit permission c. The generated code no more permissions than the assembly which emitted it. d. It can be executed by calling System.Reflection.Emit.DynamicMethod( string name, Type returnType, Type[] parameterTypes ) without any special permissions Within Windows Workflow Foundation, Compensating Actions are used for: a. provide a means to rollback a failed transaction b. provide a means to undo a successfully committed transaction later c. provide a means to terminate an in process transaction d. achieve load balancing by adapting to the current activity 21. What is the proper declaration of a method which will handle the following event? Class MyClass { public event EventHandler MyEvent; } a. public void A_MyEvent(object sender, MyArgs e) { } b. public void A_MyEvent(object sender, EventArgs e) { } c. public void A_MyEvent(MyArgs e) { } d. public void A_MyEvent(MyClass sender,EventArgs e) { } 22. Which of the following controls allows the use of XSL to transform XML content into formatted content? a. System.Web.UI.WebControls.Xml b. System.Web.UI.WebControls.Xslt c. System.Web.UI.WebControls.Substitution d. System.Web.UI.WebControls.Transform 23. To which of the following do automatic properties refer? a. You declare (explicitly or implicitly) the accessibility of the property and get and set accessors, but do not provide any implementation or backing field b. You attribute a member field so that the compiler will generate get and set accessors c. The compiler creates properties for your class based on class level attributes d. They are properties which are automatically invoked as part of the object construction process 24. Which of the following are true about Nullable types? a. A Nullable type is a reference type. b. An implicit conversion exists from any non-nullable value type to a nullable form of that type. c. A predefined conversion from the nullable type S? to the nullable type T? exists if there is a predefined conversion from the non-nullable type S to the non-nullable type T 25. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is accessible via reflection. c. The compiler generates a code that will store the information separately from the instance to ensure its security. 26. When using an implicitly typed array, which of the following is most appropriate? a. All elements in the initializer list must be of the same type. b. All elements in the initializer list must be implicitly convertible to a known type which is the actual type of at least one member in the initializer list c. All elements in the initializer list must be implicitly convertible to common type which is a base type of the items actually in the list 27. Which of the following is false about anonymous types? a. They can be derived from any reference type. b. Two anonymous types with the same named parameters in the same order declared in different classes have the same type. c. All properties of an anonymous type are read/write. 28. Which of the following are true about Extension methods. a. They can be declared either static or instance members b. They must be declared in the same assembly (but may be in different source files) c. Extension methods can be used to override existing instance methods d. Extension methods with the same signature for the same class may be declared in multiple namespaces without causing compilation errors

    Read the article

  • Profile System: User share the same id

    - by Malcolm Frexner
    I have a strange effect on my site when it is under heavy load. I randomly get the properties of other users settings. I have my own implementation of the profile system so I guess I can not blame the profile system itself. I just need a point to start debugging from. I guess there is a cookie-value that maps to an Profile entry somewhere. Is there any chance to see how this mapping works? Here is my profile provider: using System; using System.Text; using System.Configuration; using System.Web; using System.Web.Profile; using System.Collections; using System.Collections.Specialized; using B2CShop.Model; using log4net; using System.Collections.Generic; using System.Diagnostics; using B2CShop.DAL; using B2CShop.Model.RepositoryInterfaces; [assembly: log4net.Config.XmlConfigurator()] namespace B2CShop.Profile { public class B2CShopProfileProvider : ProfileProvider { private static readonly ILog _log = LogManager.GetLogger(typeof(B2CShopProfileProvider)); // Get an instance of the Profile DAL using the ProfileDALFactory private static readonly B2CShop.DAL.UserRepository dal = new B2CShop.DAL.UserRepository(); // Private members private const string ERR_INVALID_PARAMETER = "Invalid Profile parameter:"; private const string PROFILE_USER = "User"; private static string applicationName = B2CShop.Model.Configuration.ApplicationConfiguration.MembershipApplicationName; /// <summary> /// The name of the application using the custom profile provider. /// </summary> public override string ApplicationName { get { return applicationName; } set { applicationName = value; } } /// <summary> /// Initializes the provider. /// </summary> /// <param name="name">The friendly name of the provider.</param> /// <param name="config">A collection of the name/value pairs representing the provider-specific attributes specified in the configuration for this provider.</param> public override void Initialize(string name, NameValueCollection config) { if (config == null) throw new ArgumentNullException("config"); if (string.IsNullOrEmpty(config["description"])) { config.Remove("description"); config.Add("description", "B2C Shop Custom Provider"); } if (string.IsNullOrEmpty(name)) name = "b2c_shop"; if (config["applicationName"] != null && !string.IsNullOrEmpty(config["applicationName"].Trim())) applicationName = config["applicationName"]; base.Initialize(name, config); } /// <summary> /// Returns the collection of settings property values for the specified application instance and settings property group. /// </summary> /// <param name="context">A System.Configuration.SettingsContext describing the current application use.</param> /// <param name="collection">A System.Configuration.SettingsPropertyCollection containing the settings property group whose values are to be retrieved.</param> /// <returns>A System.Configuration.SettingsPropertyValueCollection containing the values for the specified settings property group.</returns> public override SettingsPropertyValueCollection GetPropertyValues(SettingsContext context, SettingsPropertyCollection collection) { string username = (string)context["UserName"]; bool isAuthenticated = (bool)context["IsAuthenticated"]; //if (!isAuthenticated) return null; int uniqueID = dal.GetUniqueID(username, isAuthenticated, false, ApplicationName); SettingsPropertyValueCollection svc = new SettingsPropertyValueCollection(); foreach (SettingsProperty prop in collection) { SettingsPropertyValue pv = new SettingsPropertyValue(prop); switch (pv.Property.Name) { case PROFILE_USER: if (!String.IsNullOrEmpty(username)) { pv.PropertyValue = GetUser(uniqueID); } break; default: throw new ApplicationException(ERR_INVALID_PARAMETER + " name."); } svc.Add(pv); } return svc; } /// <summary> /// Sets the values of the specified group of property settings. /// </summary> /// <param name="context">A System.Configuration.SettingsContext describing the current application usage.</param> /// <param name="collection">A System.Configuration.SettingsPropertyValueCollection representing the group of property settings to set.</param> public override void SetPropertyValues(SettingsContext context, SettingsPropertyValueCollection collection) { string username = (string)context["UserName"]; CheckUserName(username); bool isAuthenticated = (bool)context["IsAuthenticated"]; int uniqueID = dal.GetUniqueID(username, isAuthenticated, false, ApplicationName); if (uniqueID == 0) { uniqueID = dal.CreateProfileForUser(username, isAuthenticated, ApplicationName); } foreach (SettingsPropertyValue pv in collection) { if (pv.PropertyValue != null) { switch (pv.Property.Name) { case PROFILE_USER: SetUser(uniqueID, (UserInfo)pv.PropertyValue); break; default: throw new ApplicationException(ERR_INVALID_PARAMETER + " name."); } } } UpdateActivityDates(username, false); } // Profile gettters // Retrieve UserInfo private static UserInfo GetUser(int userID) { return dal.GetUser(userID); } // Update account info private static void SetUser(int uniqueID, UserInfo user) { user.UserID = uniqueID; dal.SetUser(user); } // UpdateActivityDates // Updates the LastActivityDate and LastUpdatedDate values // when profile properties are accessed by the // GetPropertyValues and SetPropertyValues methods. // Passing true as the activityOnly parameter will update // only the LastActivityDate. private static void UpdateActivityDates(string username, bool activityOnly) { dal.UpdateActivityDates(username, activityOnly, applicationName); } /// <summary> /// Deletes profile properties and information for the supplied list of profiles. /// </summary> /// <param name="profiles">A System.Web.Profile.ProfileInfoCollection of information about profiles that are to be deleted.</param> /// <returns>The number of profiles deleted from the data source.</returns> public override int DeleteProfiles(ProfileInfoCollection profiles) { int deleteCount = 0; foreach (ProfileInfo p in profiles) if (DeleteProfile(p.UserName)) deleteCount++; return deleteCount; } /// <summary> /// Deletes profile properties and information for profiles that match the supplied list of user names. /// </summary> /// <param name="usernames">A string array of user names for profiles to be deleted.</param> /// <returns>The number of profiles deleted from the data source.</returns> public override int DeleteProfiles(string[] usernames) { int deleteCount = 0; foreach (string user in usernames) if (DeleteProfile(user)) deleteCount++; return deleteCount; } // DeleteProfile // Deletes profile data from the database for the specified user name. private static bool DeleteProfile(string username) { CheckUserName(username); return dal.DeleteAnonymousProfile(username, applicationName); } // Verifies user name for sise and comma private static void CheckUserName(string userName) { if (string.IsNullOrEmpty(userName) || userName.Length > 256 || userName.IndexOf(",") > 0) throw new ApplicationException(ERR_INVALID_PARAMETER + " user name."); } /// <summary> /// Deletes all user-profile data for profiles in which the last activity date occurred before the specified date. /// </summary> /// <param name="authenticationOption">One of the System.Web.Profile.ProfileAuthenticationOption values, specifying whether anonymous, authenticated, or both types of profiles are deleted.</param> /// <param name="userInactiveSinceDate">A System.DateTime that identifies which user profiles are considered inactive. If the System.Web.Profile.ProfileInfo.LastActivityDate value of a user profile occurs on or before this date and time, the profile is considered inactive.</param> /// <returns>The number of profiles deleted from the data source.</returns> public override int DeleteInactiveProfiles(ProfileAuthenticationOption authenticationOption, DateTime userInactiveSinceDate) { string[] userArray = new string[0]; dal.GetInactiveProfiles((int)authenticationOption, userInactiveSinceDate, ApplicationName).CopyTo(userArray, 0); return DeleteProfiles(userArray); } /// <summary> /// Retrieves profile information for profiles in which the user name matches the specified user names. /// </summary> /// <param name="authenticationOption">One of the System.Web.Profile.ProfileAuthenticationOption values, specifying whether anonymous, authenticated, or both types of profiles are returned.</param> /// <param name="usernameToMatch">The user name to search for.</param> /// <param name="pageIndex">The index of the page of results to return.</param> /// <param name="pageSize">The size of the page of results to return.</param> /// <param name="totalRecords">When this method returns, contains the total number of profiles.</param> /// <returns>A System.Web.Profile.ProfileInfoCollection containing user-profile information // for profiles where the user name matches the supplied usernameToMatch parameter.</returns> public override ProfileInfoCollection FindProfilesByUserName(ProfileAuthenticationOption authenticationOption, string usernameToMatch, int pageIndex, int pageSize, out int totalRecords) { CheckParameters(pageIndex, pageSize); return GetProfileInfo(authenticationOption, usernameToMatch, null, pageIndex, pageSize, out totalRecords); } /// <summary> /// Retrieves profile information for profiles in which the last activity date occurred on or before the specified date and the user name matches the specified user name. /// </summary> /// <param name="authenticationOption">One of the System.Web.Profile.ProfileAuthenticationOption values, specifying whether anonymous, authenticated, or both types of profiles are returned.</param> /// <param name="usernameToMatch">The user name to search for.</param> /// <param name="userInactiveSinceDate">A System.DateTime that identifies which user profiles are considered inactive. If the System.Web.Profile.ProfileInfo.LastActivityDate value of a user profile occurs on or before this date and time, the profile is considered inactive.</param> /// <param name="pageIndex">The index of the page of results to return.</param> /// <param name="pageSize">The size of the page of results to return.</param> /// <param name="totalRecords">When this method returns, contains the total number of profiles.</param> /// <returns>A System.Web.Profile.ProfileInfoCollection containing user profile information for inactive profiles where the user name matches the supplied usernameToMatch parameter.</returns> public override ProfileInfoCollection FindInactiveProfilesByUserName(ProfileAuthenticationOption authenticationOption, string usernameToMatch, DateTime userInactiveSinceDate, int pageIndex, int pageSize, out int totalRecords) { CheckParameters(pageIndex, pageSize); return GetProfileInfo(authenticationOption, usernameToMatch, userInactiveSinceDate, pageIndex, pageSize, out totalRecords); } /// <summary> /// Retrieves user profile data for all profiles in the data source. /// </summary> /// <param name="authenticationOption">One of the System.Web.Profile.ProfileAuthenticationOption values, specifying whether anonymous, authenticated, or both types of profiles are returned.</param> /// <param name="pageIndex">The index of the page of results to return.</param> /// <param name="pageSize">The size of the page of results to return.</param> /// <param name="totalRecords">When this method returns, contains the total number of profiles.</param> /// <returns>A System.Web.Profile.ProfileInfoCollection containing user-profile information for all profiles in the data source.</returns> public override ProfileInfoCollection GetAllProfiles(ProfileAuthenticationOption authenticationOption, int pageIndex, int pageSize, out int totalRecords) { CheckParameters(pageIndex, pageSize); return GetProfileInfo(authenticationOption, null, null, pageIndex, pageSize, out totalRecords); } /// <summary> /// Retrieves user-profile data from the data source for profiles in which the last activity date occurred on or before the specified date. /// </summary> /// <param name="authenticationOption">One of the System.Web.Profile.ProfileAuthenticationOption values, specifying whether anonymous, authenticated, or both types of profiles are returned.</param> /// <param name="userInactiveSinceDate">A System.DateTime that identifies which user profiles are considered inactive. If the System.Web.Profile.ProfileInfo.LastActivityDate of a user profile occurs on or before this date and time, the profile is considered inactive.</param> /// <param name="pageIndex">The index of the page of results to return.</param> /// <param name="pageSize">The size of the page of results to return.</param> /// <param name="totalRecords">When this method returns, contains the total number of profiles.</param> /// <returns>A System.Web.Profile.ProfileInfoCollection containing user-profile information about the inactive profiles.</returns> public override ProfileInfoCollection GetAllInactiveProfiles(ProfileAuthenticationOption authenticationOption, DateTime userInactiveSinceDate, int pageIndex, int pageSize, out int totalRecords) { CheckParameters(pageIndex, pageSize); return GetProfileInfo(authenticationOption, null, userInactiveSinceDate, pageIndex, pageSize, out totalRecords); } /// <summary> /// Returns the number of profiles in which the last activity date occurred on or before the specified date. /// </summary> /// <param name="authenticationOption">One of the System.Web.Profile.ProfileAuthenticationOption values, specifying whether anonymous, authenticated, or both types of profiles are returned.</param> /// <param name="userInactiveSinceDate">A System.DateTime that identifies which user profiles are considered inactive. If the System.Web.Profile.ProfileInfo.LastActivityDate of a user profile occurs on or before this date and time, the profile is considered inactive.</param> /// <returns>The number of profiles in which the last activity date occurred on or before the specified date.</returns> public override int GetNumberOfInactiveProfiles(ProfileAuthenticationOption authenticationOption, DateTime userInactiveSinceDate) { int inactiveProfiles = 0; ProfileInfoCollection profiles = GetProfileInfo(authenticationOption, null, userInactiveSinceDate, 0, 0, out inactiveProfiles); return inactiveProfiles; } //Verifies input parameters for page size and page index. private static void CheckParameters(int pageIndex, int pageSize) { if (pageIndex < 1 || pageSize < 1) throw new ApplicationException(ERR_INVALID_PARAMETER + " page index."); } //GetProfileInfo //Retrieves a count of profiles and creates a //ProfileInfoCollection from the profile data in the //database. Called by GetAllProfiles, GetAllInactiveProfiles, //FindProfilesByUserName, FindInactiveProfilesByUserName, //and GetNumberOfInactiveProfiles. //Specifying a pageIndex of 0 retrieves a count of the results only. private static ProfileInfoCollection GetProfileInfo(ProfileAuthenticationOption authenticationOption, string usernameToMatch, object userInactiveSinceDate, int pageIndex, int pageSize, out int totalRecords) { ProfileInfoCollection profiles = new ProfileInfoCollection(); totalRecords = 0; // Count profiles only. if (pageSize == 0) return profiles; int counter = 0; int startIndex = pageSize * (pageIndex - 1); int endIndex = startIndex + pageSize - 1; DateTime dt = new DateTime(1900, 1, 1); if (userInactiveSinceDate != null) dt = (DateTime)userInactiveSinceDate; /* foreach(CustomProfileInfo profile in dal.GetProfileInfo((int)authenticationOption, usernameToMatch, dt, applicationName, out totalRecords)) { if(counter >= startIndex) { ProfileInfo p = new ProfileInfo(profile.UserName, profile.IsAnonymous, profile.LastActivityDate, profile.LastUpdatedDate, 0); profiles.Add(p); } if(counter >= endIndex) { break; } counter++; } */ return profiles; } } } This is how I use it in the controller: public ActionResult AddTyreToCart(CartViewModel model) { string profile = Request.IsAuthenticated ? Request.AnonymousID : User.Identity.Name; } I would like to debug: How can 2 users who provide different cookies get the same profileid? EDIT Here is the code for getuniqueid public int GetUniqueID(string userName, bool isAuthenticated, bool ignoreAuthenticationType, string appName) { SqlParameter[] parms = { new SqlParameter("@Username", SqlDbType.VarChar, 256), new SqlParameter("@ApplicationName", SqlDbType.VarChar, 256)}; parms[0].Value = userName; parms[1].Value = appName; if (!ignoreAuthenticationType) { Array.Resize(ref parms, parms.Length + 1); parms[2] = new SqlParameter("@IsAnonymous", SqlDbType.Bit) { Value = !isAuthenticated }; } int userID; object retVal = null; retVal = SqlHelper.ExecuteScalar(ConfigurationManager.ConnectionStrings["SQLOrderB2CConnString"].ConnectionString, CommandType.StoredProcedure, "getProfileUniqueID", parms); if (retVal == null) userID = CreateProfileForUser(userName, isAuthenticated, appName); else userID = Convert.ToInt32(retVal); return userID; } And this is the SP: CREATE PROCEDURE [dbo].[getProfileUniqueID] @Username VarChar( 256), @ApplicationName VarChar( 256), @IsAnonymous bit = null AS BEGIN SET NOCOUNT ON; /* [getProfileUniqueID] created 08.07.2009 mf Retrive unique id for current user */ SELECT UniqueID FROM dbo.Profiles WHERE Username = @Username AND ApplicationName = @ApplicationName AND IsAnonymous = @IsAnonymous or @IsAnonymous = null END

    Read the article

  • Red Gate Coder interviews: Alex Davies

    - by Michael Williamson
    Alex Davies has been a software engineer at Red Gate since graduating from university, and is currently busy working on .NET Demon. We talked about tackling parallel programming with his actors framework, a scientific approach to debugging, and how JavaScript is going to affect the programming languages we use in years to come. So, if we start at the start, how did you get started in programming? When I was seven or eight, I was given a BBC Micro for Christmas. I had asked for a Game Boy, but my dad thought it would be better to give me a proper computer. For a year or so, I only played games on it, but then I found the user guide for writing programs in it. I gradually started doing more stuff on it and found it fun. I liked creating. As I went into senior school I continued to write stuff on there, trying to write games that weren’t very good. I got a real computer when I was fourteen and found ways to write BASIC on it. Visual Basic to start with, and then something more interesting than that. How did you learn to program? Was there someone helping you out? Absolutely not! I learnt out of a book, or by experimenting. I remember the first time I found a loop, I was like “Oh my God! I don’t have to write out the same line over and over and over again any more. It’s amazing!” When did you think this might be something that you actually wanted to do as a career? For a long time, I thought it wasn’t something that you would do as a career, because it was too much fun to be a career. I thought I’d do chemistry at university and some kind of career based on chemical engineering. And then I went to a careers fair at school when I was seventeen or eighteen, and it just didn’t interest me whatsoever. I thought “I could be a programmer, and there’s loads of money there, and I’m good at it, and it’s fun”, but also that I shouldn’t spoil my hobby. Now I don’t really program in my spare time any more, which is a bit of a shame, but I program all the rest of the time, so I can live with it. Do you think you learnt much about programming at university? Yes, definitely! I went into university knowing how to make computers do anything I wanted them to do. However, I didn’t have the language to talk about algorithms, so the algorithms course in my first year was massively important. Learning other language paradigms like functional programming was really good for breadth of understanding. Functional programming influences normal programming through design rather than actually using it all the time. I draw inspiration from it to write imperative programs which I think is actually becoming really fashionable now, but I’ve been doing it for ages. I did it first! There were also some courses on really odd programming languages, a bit of Prolog, a little bit of C. Having a little bit of each of those is something that I would have never done on my own, so it was important. And then there are knowledge-based courses which are about not programming itself but things that have been programmed like TCP. Those are really important for examples for how to approach things. Did you do any internships while you were at university? Yeah, I spent both of my summers at the same company. I thought I could code well before I went there. Looking back at the crap that I produced, it was only surpassed in its crappiness by all of the other code already in that company. I’m so much better at writing nice code now than I used to be back then. Was there just not a culture of looking after your code? There was, they just didn’t hire people for their abilities in that area. They hired people for raw IQ. The first indicator of it going wrong was that they didn’t have any computer scientists, which is a bit odd in a programming company. But even beyond that they didn’t have people who learnt architecture from anyone else. Most of them had started straight out of university, so never really had experience or mentors to learn from. There wasn’t the experience to draw from to teach each other. In the second half of my second internship, I was being given tasks like looking at new technologies and teaching people stuff. Interns shouldn’t be teaching people how to do their jobs! All interns are going to have little nuggets of things that you don’t know about, but they shouldn’t consistently be the ones who know the most. It’s not a good environment to learn. I was going to ask how you found working with people who were more experienced than you… When I reached Red Gate, I found some people who were more experienced programmers than me, and that was difficult. I’ve been coding since I was tiny. At university there were people who were cleverer than me, but there weren’t very many who were more experienced programmers than me. During my internship, I didn’t find anyone who I classed as being a noticeably more experienced programmer than me. So, it was a shock to the system to have valid criticisms rather than just formatting criticisms. However, Red Gate’s not so big on the actual code review, at least it wasn’t when I started. We did an entire product release and then somebody looked over all of the UI of that product which I’d written and say what they didn’t like. By that point, it was way too late and I’d disagree with them. Do you think the lack of code reviews was a bad thing? I think if there’s going to be any oversight of new people, then it should be continuous rather than chunky. For me I don’t mind too much, I could go out and get oversight if I wanted it, and in those situations I felt comfortable without it. If I was managing the new person, then maybe I’d be keener on oversight and then the right way to do it is continuously and in very, very small chunks. Have you had any significant projects you’ve worked on outside of a job? When I was a teenager I wrote all sorts of stuff. I used to write games, I derived how to do isomorphic projections myself once. I didn’t know what the word was so I couldn’t Google for it, so I worked it out myself. It was horrifically complicated. But it sort of tailed off when I started at university, and is now basically zero. If I do side-projects now, they tend to be work-related side projects like my actors framework, NAct, which I started in a down tools week. Could you explain a little more about NAct? It is a little C# framework for writing parallel code more easily. Parallel programming is difficult when you need to write to shared data. Sometimes parallel programming is easy because you don’t need to write to shared data. When you do need to access shared data, you could just have your threads pile in and do their work, but then you would screw up the data because the threads would trample on each other’s toes. You could lock, but locks are really dangerous if you’re using more than one of them. You get interactions like deadlocks, and that’s just nasty. Actors instead allows you to say this piece of data belongs to this thread of execution, and nobody else can read it. If you want to read it, then ask that thread of execution for a piece of it by sending a message, and it will send the data back by a message. And that avoids deadlocks as long as you follow some obvious rules about not making your actors sit around waiting for other actors to do something. There are lots of ways to write actors, NAct allows you to do it as if it was method calls on other objects, which means you get all the strong type-safety that C# programmers like. Do you think that this is suitable for the majority of parallel programming, or do you think it’s only suitable for specific cases? It’s suitable for most difficult parallel programming. If you’ve just got a hundred web requests which are all independent of each other, then I wouldn’t bother because it’s easier to just spin them up in separate threads and they can proceed independently of each other. But where you’ve got difficult parallel programming, where you’ve got multiple threads accessing multiple bits of data in multiple ways at different times, then actors is at least as good as all other ways, and is, I reckon, easier to think about. When you’re using actors, you presumably still have to write your code in a different way from you would otherwise using single-threaded code. You can’t use actors with any methods that have return types, because you’re not allowed to call into another actor and wait for it. If you want to get a piece of data out of another actor, then you’ve got to use tasks so that you can use “async” and “await” to await asynchronously for it. But other than that, you can still stick things in classes so it’s not too different really. Rather than having thousands of objects with mutable state, you can use component-orientated design, where there are only a few mutable classes which each have a small number of instances. Then there can be thousands of immutable objects. If you tend to do that anyway, then actors isn’t much of a jump. If I’ve already built my system without any parallelism, how hard is it to add actors to exploit all eight cores on my desktop? Usually pretty easy. If you can identify even one boundary where things look like messages and you have components where some objects live on one side and these other objects live on the other side, then you can have a granddaddy object on one side be an actor and it will parallelise as it goes across that boundary. Not too difficult. If we do get 1000-core desktop PCs, do you think actors will scale up? It’s hard. There are always in the order of twenty to fifty actors in my whole program because I tend to write each component as actors, and I tend to have one instance of each component. So this won’t scale to a thousand cores. What you can do is write data structures out of actors. I use dictionaries all over the place, and if you need a dictionary that is going to be accessed concurrently, then you could build one of those out of actors in no time. You can use queuing to marshal requests between different slices of the dictionary which are living on different threads. So it’s like a distributed hash table but all of the chunks of it are on the same machine. That means that each of these thousand processors has cached one small piece of the dictionary. I reckon it wouldn’t be too big a leap to start doing proper parallelism. Do you think it helps if actors get baked into the language, similarly to Erlang? Erlang is excellent in that it has thread-local garbage collection. C# doesn’t, so there’s a limit to how well C# actors can possibly scale because there’s a single garbage collected heap shared between all of them. When you do a global garbage collection, you’ve got to stop all of the actors, which is seriously expensive, whereas in Erlang garbage collections happen per-actor, so they’re insanely cheap. However, Erlang deviated from all the sensible language design that people have used recently and has just come up with crazy stuff. You can definitely retrofit thread-local garbage collection to .NET, and then it’s quite well-suited to support actors, even if it’s not baked into the language. Speaking of language design, do you have a favourite programming language? I’ll choose a language which I’ve never written before. I like the idea of Scala. It sounds like C#, only with some of the niggles gone. I enjoy writing static types. It means you don’t have to writing tests so much. When you say it doesn’t have some of the niggles? C# doesn’t allow the use of a property as a method group. It doesn’t have Scala case classes, or sum types, where you can do a switch statement and the compiler checks that you’ve checked all the cases, which is really useful in functional-style programming. Pattern-matching, in other words. That’s actually the major niggle. C# is pretty good, and I’m quite happy with C#. And what about going even further with the type system to remove the need for tests to something like Haskell? Or is that a step too far? I’m quite a pragmatist, I don’t think I could deal with trying to write big systems in languages with too few other users, especially when learning how to structure things. I just don’t know anyone who can teach me, and the Internet won’t teach me. That’s the main reason I wouldn’t use it. If I turned up at a company that writes big systems in Haskell, I would have no objection to that, but I wouldn’t instigate it. What about things in C#? For instance, there’s contracts in C#, so you can try to statically verify a bit more about your code. Do you think that’s useful, or just not worthwhile? I’ve not really tried it. My hunch is that it needs to be built into the language and be quite mathematical for it to work in real life, and that doesn’t seem to have ended up true for C# contracts. I don’t think anyone who’s tried them thinks they’re any good. I might be wrong. On a slightly different note, how do you like to debug code? I think I’m quite an odd debugger. I use guesswork extremely rarely, especially if something seems quite difficult to debug. I’ve been bitten spending hours and hours on guesswork and not being scientific about debugging in the past, so now I’m scientific to a fault. What I want is to see the bug happening in the debugger, to step through the bug happening. To watch the program going from a valid state to an invalid state. When there’s a bug and I can’t work out why it’s happening, I try to find some piece of evidence which places the bug in one section of the code. From that experiment, I binary chop on the possible causes of the bug. I suppose that means binary chopping on places in the code, or binary chopping on a stage through a processing cycle. Basically, I’m very stupid about how I debug. I won’t make any guesses, I won’t use any intuition, I will only identify the experiment that’s going to binary chop most effectively and repeat rather than trying to guess anything. I suppose it’s quite top-down. Is most of the time then spent in the debugger? Absolutely, if at all possible I will never debug using print statements or logs. I don’t really hold much stock in outputting logs. If there’s any bug which can be reproduced locally, I’d rather do it in the debugger than outputting logs. And with SmartAssembly error reporting, there’s not a lot that can’t be either observed in an error report and just fixed, or reproduced locally. And in those other situations, maybe I’ll use logs. But I hate using logs. You stare at the log, trying to guess what’s going on, and that’s exactly what I don’t like doing. You have to just look at it and see does this look right or wrong. We’ve covered how you get to grip with bugs. How do you get to grips with an entire codebase? I watch it in the debugger. I find little bugs and then try to fix them, and mostly do it by watching them in the debugger and gradually getting an understanding of how the code works using my process of binary chopping. I have to do a lot of reading and watching code to choose where my slicing-in-half experiment is going to be. The last time I did it was SmartAssembly. The old code was a complete mess, but at least it did things top to bottom. There wasn’t too much of some of the big abstractions where flow of control goes all over the place, into a base class and back again. Code’s really hard to understand when that happens. So I like to choose a little bug and try to fix it, and choose a bigger bug and try to fix it. Definitely learn by doing. I want to always have an aim so that I get a little achievement after every few hours of debugging. Once I’ve learnt the codebase I might be able to fix all the bugs in an hour, but I’d rather be using them as an aim while I’m learning the codebase. If I was a maintainer of a codebase, what should I do to make it as easy as possible for you to understand? Keep distinct concepts in different places. And name your stuff so that it’s obvious which concepts live there. You shouldn’t have some variable that gets set miles up the top of somewhere, and then is read miles down to choose some later behaviour. I’m talking from a very much SmartAssembly point of view because the old SmartAssembly codebase had tons and tons of these things, where it would read some property of the code and then deal with it later. Just thousands of variables in scope. Loads of things to think about. If you can keep concepts separate, then it aids me in my process of fixing bugs one at a time, because each bug is going to more or less be understandable in the one place where it is. And what about tests? Do you think they help at all? I’ve never had the opportunity to learn a codebase which has had tests, I don’t know what it’s like! What about when you’re actually developing? How useful do you find tests in finding bugs or regressions? Finding regressions, absolutely. Running bits of code that would be quite hard to run otherwise, definitely. It doesn’t happen very often that a test finds a bug in the first place. I don’t really buy nebulous promises like tests being a good way to think about the spec of the code. My thinking goes something like “This code works at the moment, great, ship it! Ah, there’s a way that this code doesn’t work. Okay, write a test, demonstrate that it doesn’t work, fix it, use the test to demonstrate that it’s now fixed, and keep the test for future regressions.” The most valuable tests are for bugs that have actually happened at some point, because bugs that have actually happened at some point, despite the fact that you think you’ve fixed them, are way more likely to appear again than new bugs are. Does that mean that when you write your code the first time, there are no tests? Often. The chance of there being a bug in a new feature is relatively unaffected by whether I’ve written a test for that new feature because I’m not good enough at writing tests to think of bugs that I would have written into the code. So not writing regression tests for all of your code hasn’t affected you too badly? There are different kinds of features. Some of them just always work, and are just not flaky, they just continue working whatever you throw at them. Maybe because the type-checker is particularly effective around them. Writing tests for those features which just tend to always work is a waste of time. And because it’s a waste of time I’ll tend to wait until a feature has demonstrated its flakiness by having bugs in it before I start trying to test it. You can get a feel for whether it’s going to be flaky code as you’re writing it. I try to write it to make it not flaky, but there are some things that are just inherently flaky. And very occasionally, I’ll think “this is going to be flaky” as I’m writing, and then maybe do a test, but not most of the time. How do you think your programming style has changed over time? I’ve got clearer about what the right way of doing things is. I used to flip-flop a lot between different ideas. Five years ago I came up with some really good ideas and some really terrible ideas. All of them seemed great when I thought of them, but they were quite diverse ideas, whereas now I have a smaller set of reliable ideas that are actually good for structuring code. So my code is probably more similar to itself than it used to be back in the day, when I was trying stuff out. I’ve got more disciplined about encapsulation, I think. There are operational things like I use actors more now than I used to, and that forces me to use immutability more than I used to. The first code that I wrote in Red Gate was the memory profiler UI, and that was an actor, I just didn’t know the name of it at the time. I don’t really use object-orientation. By object-orientation, I mean having n objects of the same type which are mutable. I want a constant number of objects that are mutable, and they should be different types. I stick stuff in dictionaries and then have one thing that owns the dictionary and puts stuff in and out of it. That’s definitely a pattern that I’ve seen recently. I think maybe I’m doing functional programming. Possibly. It’s plausible. If you had to summarise the essence of programming in a pithy sentence, how would you do it? Programming is the form of art that, without losing any of the beauty of architecture or fine art, allows you to produce things that people love and you make money from. So you think it’s an art rather than a science? It’s a little bit of engineering, a smidgeon of maths, but it’s not science. Like architecture, programming is on that boundary between art and engineering. If you want to do it really nicely, it’s mostly art. You can get away with doing architecture and programming entirely by having a good engineering mind, but you’re not going to produce anything nice. You’re not going to have joy doing it if you’re an engineering mind. Architects who are just engineering minds are not going to enjoy their job. I suppose engineering is the foundation on which you build the art. Exactly. How do you think programming is going to change over the next ten years? There will be an unfortunate shift towards dynamically-typed languages, because of JavaScript. JavaScript has an unfair advantage. JavaScript’s unfair advantage will cause more people to be exposed to dynamically-typed languages, which means other dynamically-typed languages crop up and the best features go into dynamically-typed languages. Then people conflate the good features with the fact that it’s dynamically-typed, and more investment goes into dynamically-typed languages. They end up better, so people use them. What about the idea of compiling other languages, possibly statically-typed, to JavaScript? It’s a reasonable idea. I would like to do it, but I don’t think enough people in the world are going to do it to make it pick up. The hordes of beginners are the lifeblood of a language community. They are what makes there be good tools and what makes there be vibrant community websites. And any particular thing which is the same as JavaScript only with extra stuff added to it, although it might be technically great, is not going to have the hordes of beginners. JavaScript is always to be quickest and easiest way for a beginner to start programming in the browser. And dynamically-typed languages are great for beginners. Compilers are pretty scary and beginners don’t write big code. And having your errors come up in the same place, whether they’re statically checkable errors or not, is quite nice for a beginner. If someone asked me to teach them some programming, I’d teach them JavaScript. If dynamically-typed languages are great for beginners, when do you think the benefits of static typing start to kick in? The value of having a statically typed program is in the tools that rely on the static types to produce a smooth IDE experience rather than actually telling me my compile errors. And only once you’re experienced enough a programmer that having a really smooth IDE experience makes a blind bit of difference, does static typing make a blind bit of difference. So it’s not really about size of codebase. If I go and write up a tiny program, I’m still going to get value out of writing it in C# using ReSharper because I’m experienced with C# and ReSharper enough to be able to write code five times faster if I have that help. Any other visions of the future? Nobody’s going to use actors. Because everyone’s going to be running on single-core VMs connected over network-ready protocols like JSON over HTTP. So, parallelism within one operating system is going to die. But until then, you should use actors. More Red Gater Coder interviews

    Read the article

  • Searching for tasks with code – Executables and Event Handlers

    Searching packages or just enumerating through all tasks is not quite as straightforward as it may first appear, mainly because of the way you can nest tasks within other containers. You can see this illustrated in the sample package below where I have used several sequence containers and loops. To complicate this further all containers types, including packages and tasks, can have event handlers which can then support the full range of nested containers again. Towards the lower right, the task called SQL In FEL also has an event handler not shown, within which is another Execute SQL Task, so that makes a total of 6 Execute SQL Tasks 6 tasks spread across the package. In my previous post about such as adding a property expressionI kept it simple and just looked at tasks at the package level, but what if you wanted to find any or all tasks in a package? For this post I've written a console program that will search a package looking at all tasks no matter how deeply nested, and check to see if the name starts with "SQL". When it finds a matching task it writes out the hierarchy by name for that task, starting with the package and working down to the task itself. The output for our sample package is shown below, note it has found all 6 tasks, including the one on the OnPreExecute event of the SQL In FEL task TaskSearch v1.0.0.0 (1.0.0.0) Copyright (C) 2009 Konesans Ltd Processing File - C:\Projects\Alpha\Packages\MyPackage.dtsx MyPackage\FOR Counter Loop\SQL In Counter Loop MyPackage\SEQ For Each Loop Wrapper\FEL Simple Loop\SQL In FEL MyPackage\SEQ For Each Loop Wrapper\FEL Simple Loop\SQL In FEL\OnPreExecute\SQL On Pre Execute for FEL SQL Task MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SEQ Nested Lvl 2\SQL In Nested Lvl 2 MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SQL In Nested Lvl 1 #1 MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SQL In Nested Lvl 1 #2 6 matching tasks found in package. The full project and code is available for download below, but first we can walk through the project to highlight the most important sections of code. This code has been abbreviated for this description, but is complete in the download. First of all we load the package, and then start by looking at the Executables for the package. // Load the package file Application application = new Application(); using (Package package = application.LoadPackage(filename, null)) { int matchCount = 0; // Look in the package's executables ProcessExecutables(package.Executables, ref matchCount); ... // // ... // Write out final count Console.WriteLine("{0} matching tasks found in package.", matchCount); } The ProcessExecutables method is a key method, as an executable could be described as the the highest level of a working functionality or container. There are several of types of executables, such as tasks, or sequence containers and loops. To know what to do next we need to work out what type of executable we are dealing with as the abbreviated version of method shows below. private static void ProcessExecutables(Executables executables, ref int matchCount) { foreach (Executable executable in executables) { TaskHost taskHost = executable as TaskHost; if (taskHost != null) { ProcessTaskHost(taskHost, ref matchCount); ProcessEventHandlers(taskHost.EventHandlers, ref matchCount); continue; } ... // // ... ForEachLoop forEachLoop = executable as ForEachLoop; if (forEachLoop != null) { ProcessExecutables(forEachLoop.Executables, ref matchCount); ProcessEventHandlers(forEachLoop.EventHandlers, ref matchCount); continue; } } } As you can see if the executable we find is a task we then call out to our ProcessTaskHost method. As with all of our executables a task can have event handlers which themselves contain more executables such as task and loops, so we also make a call out our ProcessEventHandlers method. The other types of executables such as loops can also have event handlers as well as executables. As shown with the example for the ForEachLoop we call the same ProcessExecutables and ProcessEventHandlers methods again to drill down into the hierarchy of objects that the package may contain. This code needs to explicitly check for each type of executable (TaskHost, Sequence, ForLoop and ForEachLoop) because whilst they all have an Executables property this is not from a common base class or interface. This example was just a simple find a task by its name, so ProcessTaskHost really just does that. We also get the hierarchy of objects so we can write out for information, obviously you can adapt this method to do something more interesting such as adding a property expression. private static void ProcessTaskHost(TaskHost taskHost, ref int matchCount) { if (taskHost == null) { return; } // Check if the task matches our match name if (taskHost.Name.StartsWith(TaskNameFilter, StringComparison.OrdinalIgnoreCase)) { // Build up the full object hierarchy of the task // so we can write it out for information StringBuilder path = new StringBuilder(); DtsContainer container = taskHost; while (container != null) { path.Insert(0, container.Name); container = container.Parent; if (container != null) { path.Insert(0, "\\"); } } // Write the task path // e.g. Package\Container\Event\Task Console.WriteLine(path); Console.WriteLine(); // Increment match counter for info matchCount++; } } Just for completeness, the other processing method we covered above is for event handlers, but really that just calls back to the executables. This same method is called in our main package method, but it was omitted for brevity here. private static void ProcessEventHandlers(DtsEventHandlers eventHandlers, ref int matchCount) { foreach (DtsEventHandler eventHandler in eventHandlers) { ProcessExecutables(eventHandler.Executables, ref matchCount); } } As hopefully the code demonstrates, executables (Microsoft.SqlServer.Dts.Runtime.Executable) are the workers, but within them you can nest more executables (except for task tasks).Executables themselves can have event handlers which can in turn hold more executables. I have tried to illustrate this highlight the relationships in the following diagram. Download Sample code project TaskSearch.zip (11KB)

    Read the article

  • SQL SERVER – Beginning of SQL Server Architecture – Terminology – Guest Post

    - by pinaldave
    SQL Server Architecture is a very deep subject. Covering it in a single post is an almost impossible task. However, this subject is very popular topic among beginners and advanced users.  I have requested my friend Anil Kumar who is expert in SQL Domain to help me write  a simple post about Beginning SQL Server Architecture. As stated earlier this subject is very deep subject and in this first article series he has covered basic terminologies. In future article he will explore the subject further down. Anil Kumar Yadav is Trainer, SQL Domain, Koenig Solutions. Koenig is a premier IT training firm that provides several IT certifications, such as Oracle 11g, Server+, RHCA, SQL Server Training, Prince2 Foundation etc. In this Article we will discuss about MS SQL Server architecture. The major components of SQL Server are: Relational Engine Storage Engine SQL OS Now we will discuss and understand each one of them. 1) Relational Engine: Also called as the query processor, Relational Engine includes the components of SQL Server that determine what your query exactly needs to do and the best way to do it. It manages the execution of queries as it requests data from the storage engine and processes the results returned. Different Tasks of Relational Engine: Query Processing Memory Management Thread and Task Management Buffer Management Distributed Query Processing 2) Storage Engine: Storage Engine is responsible for storage and retrieval of the data on to the storage system (Disk, SAN etc.). to understand more, let’s focus on the following diagram. When we talk about any database in SQL server, there are 2 types of files that are created at the disk level – Data file and Log file. Data file physically stores the data in data pages. Log files that are also known as write ahead logs, are used for storing transactions performed on the database. Let’s understand data file and log file in more details: Data File: Data File stores data in the form of Data Page (8KB) and these data pages are logically organized in extents. Extents: Extents are logical units in the database. They are a combination of 8 data pages i.e. 64 KB forms an extent. Extents can be of two types, Mixed and Uniform. Mixed extents hold different types of pages like index, System, Object data etc. On the other hand, Uniform extents are dedicated to only one type. Pages: As we should know what type of data pages can be stored in SQL Server, below mentioned are some of them: Data Page: It holds the data entered by the user but not the data which is of type text, ntext, nvarchar(max), varchar(max), varbinary(max), image and xml data. Index: It stores the index entries. Text/Image: It stores LOB ( Large Object data) like text, ntext, varchar(max), nvarchar(max),  varbinary(max), image and xml data. GAM & SGAM (Global Allocation Map & Shared Global Allocation Map): They are used for saving information related to the allocation of extents. PFS (Page Free Space): Information related to page allocation and unused space available on pages. IAM (Index Allocation Map): Information pertaining to extents that are used by a table or index per allocation unit. BCM (Bulk Changed Map): Keeps information about the extents changed in a Bulk Operation. DCM (Differential Change Map): This is the information of extents that have modified since the last BACKUP DATABASE statement as per allocation unit. Log File: It also known as write ahead log. It stores modification to the database (DML and DDL). Sufficient information is logged to be able to: Roll back transactions if requested Recover the database in case of failure Write Ahead Logging is used to create log entries Transaction logs are written in chronological order in a circular way Truncation policy for logs is based on the recovery model SQL OS: This lies between the host machine (Windows OS) and SQL Server. All the activities performed on database engine are taken care of by SQL OS. It is a highly configurable operating system with powerful API (application programming interface), enabling automatic locality and advanced parallelism. SQL OS provides various operating system services, such as memory management deals with buffer pool, log buffer and deadlock detection using the blocking and locking structure. Other services include exception handling, hosting for external components like Common Language Runtime, CLR etc. I guess this brief article gives you an idea about the various terminologies used related to SQL Server Architecture. In future articles we will explore them further. Guest Author  The author of the article is Anil Kumar Yadav is Trainer, SQL Domain, Koenig Solutions. Koenig is a premier IT training firm that provides several IT certifications, such as Oracle 11g, Server+, RHCA, SQL Server Training, Prince2 Foundation etc. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Security, SQL Server, SQL Tips and Tricks, SQL Training, T SQL, Technology

    Read the article

  • Top 4 Lame Tech Blogging Posts

    - by jkauffman
    From a consumption point of view, tech blogging is a great resource for one-off articles on niche subjects. If you spend any time reading tech blogs, you may find yourself running into several common, useless types of posts tech bloggers slip into. Some of these lame posts may just be natural due to common nerd psychology, and some others are probably due to lame, lemming-like laziness. I’m sure I’ll do my fair share of fitting the mold, but I quickly get bored when I happen upon posts that hit these patterns without any real purpose or personal touches. 1. The Content Regurgitation Posts This is a common pattern fueled by the starving pan-handlers in the web traffic economy. These are posts that are terse opinions or addendums to an existing post. I commonly see these involve huge block quotes from the linked article which almost always produces over 50% of the post itself. I’ve accidentally gone to these posts when I’m knowingly only interested in the source material. Web links can degrade as well, so if the source link is broken, then, well, I’m pretty steamed. I see this occur with simple opinions on technologies, Stack Overflow solutions, or various tech news like posts from Microsoft. It’s not uncommon to go to the linked article and see the author announce that he “added a blog post” as a response or summary of the topic. This is just rude, but those who do it are probably aware of this. It’s a matter of winning that sweet, juicy web traffic. I doubt this leeching is fooling anybody these days. I would like to rally human dignity and urge people to avoid these types of posts, and just leave a comment on the source material. 2. The “Sorry I Haven’t Posted In A While” Posts This one is far too common. You’ll most likely see this quote somewhere in the body of the offending post: I have been really busy. If the poster is especially guilt-ridden, you’ll see a few volleys of excuses. Here are some common reasons I’ve seen, which I’ll list from least to most painfully awkward. Out of town Vague allusions to personal health problems (these typically includes phrases like “sick”, “treatment'”, and “all better now!”) “Personal issues” (which I usually read as "divorce”) Graphic or specific personal health problems (maximum awkwardness potential is achieved if you see links to charity fund websites) I can’t help but to try over-analyzing why this occurs. Personally, I see this an an amalgamation of three plain factors: Life happens Us nerds are duty-driven, and driven to guilt at personal inefficiencies Tech blogs can become personal journals I don’t think we can do much about the first two, but on the third I think we could certainly contain our urges. I’m a pretty boring guy and, whether or I like it or not, I have an unspoken duty to protect the world from hearing about my unremarkable existence. Nobody cares what kind of sandwich I’m eating. Similarly, if I disappear for a while, it’s unlikely that anybody who happens upon my blog would care why. Rest assured, if I stop posting for a while due to a vasectomy, you will be the first to know. 3. The “At A Conference”, or “Conference Review” Posts I don’t know if I’m like everyone else on this one, but I have never been successfully interested in these posts. It even sounds like a good idea: if I can’t make it to a particular conference (like the KCDC this year), wouldn’t I be interested in a concentrated summary of events? Apparently, no! Within this realm, I’ve never read a post by a blogger that held my interest. What really baffles is is that, for whatever reason, I am genuinely engaged and interested when talking to someone in person regarding the same topic. I have noticed the same phenomenon when hearing about others’ vacations. If someone sends me an email about their vacation, I gloss over it and forget about it quickly. In contrast, if I’m speaking to that individual in person about their vacation, I’m actually interested. I’m unsure why the written medium eradicates the intrigue. I was raised by a roaming pack of friendly wild video games, so that may be a factor. 4. The “Top X Number of Y’s That Z” Posts I’ve seen this one crop up a lot more in the past few of years. Here are some fabricated examples: 5 Easy Ways to Improve Your Code Top 7 Good Habits Programmers Learn From Experience The 8 Things to Consider When Giving Estimates Top 4 Lame Tech Blogging Posts These are attention-grabbing headlines, and I’d assume they rack up hits. In fact, I enjoy a good number of these. But, I’ve been drawn to articles like this just to find an endless list of identically formatted posts on the blog’s archive sidebar. Often times these posts have overlapping topics, too. These types of posts give the impression that the author has given thought to prioritize and organize the points as a result of a comprehensive consideration of a particular topic. Did the author really weigh all the possibilities when identifying the “Top 4 Lame Tech Blogging Patterns”? Unfortunately, probably not. What a tool. To reiterate, I still enjoy the format, but I feel it is abused. Nowadays, I’m pretty skeptical when approaching posts in this format. If these trends continue, my brain will filter these blog posts out just as effectively as it ignores the encroaching “do xxx with this one trick” advertisements. Conclusion To active blog readers, I hope my guide has served you precious time in being able to identify lame blog posts at a glance. Save time and energy by skipping over the chaff of the internet! And if you author a blog, perhaps my insight will help you to avoid the occasional urge to produce these needless filler posts.

    Read the article

  • Using LogParser - part 2

    - by fatherjack
    PersonAddress.csv SalesOrderDetail.tsv In part 1 of this series we downloaded and installed LogParser and used it to list data from a csv file. That was a good start and in this article we are going to see the different ways we can stream data and choose whether a whole file is selected. We are also going to take a brief look at what file types we can interrogate. If we take the query from part 1 and add a value for the output parameter as -o:datagrid so that the query becomes LOGPARSER "SELECT top 15 * FROM C:\LP\person_address.csv" -o:datagrid and run that we get a different result. A pop-up dialog that lets us view the results in a resizable grid. Notice that because we didn't specify the columns we wanted returned by LogParser (we used SELECT *) is has added two columns to the recordset - filename and rownumber. This behaviour can be very useful as we will see in future parts of this series. You can click Next 10 rows or All rows or close the datagrid once you are finished reviewing the data. You may have noticed that the files that I am working with are different file types - one is a csv (comma separated values) and the other is a tsv (tab separated values). If you want to convert a file from one to another then LogParser makes it incredibly simple. Rather than using 'datagrid' as the value for the output parameter, use 'csv': logparser "SELECT SalesOrderID, SalesOrderDetailID, CarrierTrackingNumber, OrderQty, ProductID, SpecialOfferID, UnitPrice, UnitPriceDiscount, LineTotal, rowguid, ModifiedDate into C:\Sales_SalesOrderDetail.csv FROM C:\Sales_SalesOrderDetail.tsv" -i:tsv -o:csv Those familiar with SQL will not have to make a very big leap of faith to making adjustments to the above query to filter in/out records from the source file. Lets get all the records from the same file where the Order Quantity (OrderQty) is more than 25: logparser "SELECT SalesOrderID, SalesOrderDetailID, CarrierTrackingNumber, OrderQty, ProductID, SpecialOfferID, UnitPrice, UnitPriceDiscount, LineTotal, rowguid, ModifiedDate into C:\LP\Sales_SalesOrderDetailOver25.csv FROM C:\LP\Sales_SalesOrderDetail.tsv WHERE orderqty > 25" -i:tsv -o:csv Or we could find all those records where the Order Quantity is equal to 25 and output it to an xml file: logparser "SELECT SalesOrderID, SalesOrderDetailID, CarrierTrackingNumber, OrderQty, ProductID, SpecialOfferID, UnitPrice, UnitPriceDiscount, LineTotal, rowguid, ModifiedDate into C:\LP\Sales_SalesOrderDetailEq25.xml FROM C:\LP\Sales_SalesOrderDetail.tsv WHERE orderqty = 25" -i:tsv -o:xml All the standard comparison operators are to be found in LogParser; >, <, =, LIKE, BETWEEN, OR, NOT, AND. Input and Output file formats. LogParser has a pretty impressive list of file formats that it can parse and a good selection of output formats that will let you generate output in a format that is useable for whatever process or application you may be using. From any of these To any of these IISW3C: parses IIS log files in the W3C Extended Log File Format.   NAT: formats output records as readable tabulated columns. IIS: parses IIS log files in the Microsoft IIS Log File Format. CSV: formats output records as comma-separated values text. BIN: parses IIS log files in the Centralized Binary Log File Format. TSV: formats output records as tab-separated or space-separated values text. IISODBC: returns database records from the tables logged to by IIS when configured to log in the ODBC Log Format. XML: formats output records as XML documents. HTTPERR: parses HTTP error log files generated by Http.sys. W3C: formats output records in the W3C Extended Log File Format. URLSCAN: parses log files generated by the URLScan IIS filter. TPL: formats output records following user-defined templates. CSV: parses comma-separated values text files. IIS: formats output records in the Microsoft IIS Log File Format. TSV: parses tab-separated and space-separated values text files. SQL: uploads output records to a table in a SQL database. XML: parses XML text files. SYSLOG: sends output records to a Syslog server. W3C: parses text files in the W3C Extended Log File Format. DATAGRID: displays output records in a graphical user interface. NCSA: parses web server log files in the NCSA Common, Combined, and Extended Log File Formats. CHART: creates image files containing charts. TEXTLINE: returns lines from generic text files. TEXTWORD: returns words from generic text files. EVT: returns events from the Windows Event Log and from Event Log backup files (.evt files). FS: returns information on files and directories. REG: returns information on registry values. ADS: returns information on Active Directory objects. NETMON: parses network capture files created by NetMon. ETW: parses Enterprise Tracing for Windows trace log files and live sessions. COM: provides an interface to Custom Input Format COM Plugins. So, you can query data from any of the types on the left and really easily get it into a format where it is ready for analysis by other tools. To a DBA or network Administrator with an enquiring mind this is a treasure trove. In part 3 we will look at working with multiple sources and specifically outputting to SQL format. See you there!

    Read the article

  • Searching for tasks with code – Executables and Event Handlers

    Searching packages or just enumerating through all tasks is not quite as straightforward as it may first appear, mainly because of the way you can nest tasks within other containers. You can see this illustrated in the sample package below where I have used several sequence containers and loops. To complicate this further all containers types, including packages and tasks, can have event handlers which can then support the full range of nested containers again. Towards the lower right, the task called SQL In FEL also has an event handler not shown, within which is another Execute SQL Task, so that makes a total of 6 Execute SQL Tasks 6 tasks spread across the package. In my previous post about such as adding a property expressionI kept it simple and just looked at tasks at the package level, but what if you wanted to find any or all tasks in a package? For this post I've written a console program that will search a package looking at all tasks no matter how deeply nested, and check to see if the name starts with "SQL". When it finds a matching task it writes out the hierarchy by name for that task, starting with the package and working down to the task itself. The output for our sample package is shown below, note it has found all 6 tasks, including the one on the OnPreExecute event of the SQL In FEL task TaskSearch v1.0.0.0 (1.0.0.0) Copyright (C) 2009 Konesans Ltd Processing File - C:\Projects\Alpha\Packages\MyPackage.dtsx MyPackage\FOR Counter Loop\SQL In Counter Loop MyPackage\SEQ For Each Loop Wrapper\FEL Simple Loop\SQL In FEL MyPackage\SEQ For Each Loop Wrapper\FEL Simple Loop\SQL In FEL\OnPreExecute\SQL On Pre Execute for FEL SQL Task MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SEQ Nested Lvl 2\SQL In Nested Lvl 2 MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SQL In Nested Lvl 1 #1 MyPackage\SEQ Top Level\SEQ Nested Lvl 1\SQL In Nested Lvl 1 #2 6 matching tasks found in package. The full project and code is available for download below, but first we can walk through the project to highlight the most important sections of code. This code has been abbreviated for this description, but is complete in the download. First of all we load the package, and then start by looking at the Executables for the package. // Load the package file Application application = new Application(); using (Package package = application.LoadPackage(filename, null)) { int matchCount = 0; // Look in the package's executables ProcessExecutables(package.Executables, ref matchCount); ... // // ... // Write out final count Console.WriteLine("{0} matching tasks found in package.", matchCount); } The ProcessExecutables method is a key method, as an executable could be described as the the highest level of a working functionality or container. There are several of types of executables, such as tasks, or sequence containers and loops. To know what to do next we need to work out what type of executable we are dealing with as the abbreviated version of method shows below. private static void ProcessExecutables(Executables executables, ref int matchCount) { foreach (Executable executable in executables) { TaskHost taskHost = executable as TaskHost; if (taskHost != null) { ProcessTaskHost(taskHost, ref matchCount); ProcessEventHandlers(taskHost.EventHandlers, ref matchCount); continue; } ... // // ... ForEachLoop forEachLoop = executable as ForEachLoop; if (forEachLoop != null) { ProcessExecutables(forEachLoop.Executables, ref matchCount); ProcessEventHandlers(forEachLoop.EventHandlers, ref matchCount); continue; } } } As you can see if the executable we find is a task we then call out to our ProcessTaskHost method. As with all of our executables a task can have event handlers which themselves contain more executables such as task and loops, so we also make a call out our ProcessEventHandlers method. The other types of executables such as loops can also have event handlers as well as executables. As shown with the example for the ForEachLoop we call the same ProcessExecutables and ProcessEventHandlers methods again to drill down into the hierarchy of objects that the package may contain. This code needs to explicitly check for each type of executable (TaskHost, Sequence, ForLoop and ForEachLoop) because whilst they all have an Executables property this is not from a common base class or interface. This example was just a simple find a task by its name, so ProcessTaskHost really just does that. We also get the hierarchy of objects so we can write out for information, obviously you can adapt this method to do something more interesting such as adding a property expression. private static void ProcessTaskHost(TaskHost taskHost, ref int matchCount) { if (taskHost == null) { return; } // Check if the task matches our match name if (taskHost.Name.StartsWith(TaskNameFilter, StringComparison.OrdinalIgnoreCase)) { // Build up the full object hierarchy of the task // so we can write it out for information StringBuilder path = new StringBuilder(); DtsContainer container = taskHost; while (container != null) { path.Insert(0, container.Name); container = container.Parent; if (container != null) { path.Insert(0, "\\"); } } // Write the task path // e.g. Package\Container\Event\Task Console.WriteLine(path); Console.WriteLine(); // Increment match counter for info matchCount++; } } Just for completeness, the other processing method we covered above is for event handlers, but really that just calls back to the executables. This same method is called in our main package method, but it was omitted for brevity here. private static void ProcessEventHandlers(DtsEventHandlers eventHandlers, ref int matchCount) { foreach (DtsEventHandler eventHandler in eventHandlers) { ProcessExecutables(eventHandler.Executables, ref matchCount); } } As hopefully the code demonstrates, executables (Microsoft.SqlServer.Dts.Runtime.Executable) are the workers, but within them you can nest more executables (except for task tasks).Executables themselves can have event handlers which can in turn hold more executables. I have tried to illustrate this highlight the relationships in the following diagram. Download Sample code project TaskSearch.zip (11KB)

    Read the article

  • What is the most efficient way to convert to binary and back in C#?

    - by Saad Imran.
    I'm trying to write a general purpose socket server for a game I'm working on. I know I could very well use already built servers like SmartFox and Photon, but I wan't to go through the pain of creating one myself for learning purposes. I've come up with a BSON inspired protocol to convert the the basic data types, their arrays, and a special GSObject to binary and arrange them in a way so that it can be put back together into object form on the client end. At the core, the conversion methods utilize the .Net BitConverter class to convert the basic data types to binary. Anyways, the problem is performance, if I loop 50,000 times and convert my GSObject to binary each time it takes about 5500ms (the resulting byte[] is just 192 bytes per conversion). I think think this would be way too slow for an MMO that sends 5-10 position updates per second with a 1000 concurrent users. Yes, I know it's unlikely that a game will have a 1000 users on at the same time, but like I said earlier this is supposed to be a learning process for me, I want to go out of my way and build something that scales well and can handle at least a few thousand users. So yea, if anyone's aware of other conversion techniques or sees where I'm loosing performance I would appreciate the help. GSBitConverter.cs This is the main conversion class, it adds extension methods to main datatypes to convert to the binary format. It uses the BitConverter class to convert the base types. I've shown only the code to convert integer and integer arrays, but the rest of the method are pretty much replicas of those two, they just overload the type. public static class GSBitConverter { public static byte[] ToGSBinary(this short value) { return BitConverter.GetBytes(value); } public static byte[] ToGSBinary(this IEnumerable<short> value) { List<byte> bytes = new List<byte>(); short length = (short)value.Count(); bytes.AddRange(length.ToGSBinary()); for (int i = 0; i < length; i++) bytes.AddRange(value.ElementAt(i).ToGSBinary()); return bytes.ToArray(); } public static byte[] ToGSBinary(this bool value); public static byte[] ToGSBinary(this IEnumerable<bool> value); public static byte[] ToGSBinary(this IEnumerable<byte> value); public static byte[] ToGSBinary(this int value); public static byte[] ToGSBinary(this IEnumerable<int> value); public static byte[] ToGSBinary(this long value); public static byte[] ToGSBinary(this IEnumerable<long> value); public static byte[] ToGSBinary(this float value); public static byte[] ToGSBinary(this IEnumerable<float> value); public static byte[] ToGSBinary(this double value); public static byte[] ToGSBinary(this IEnumerable<double> value); public static byte[] ToGSBinary(this string value); public static byte[] ToGSBinary(this IEnumerable<string> value); public static string GetHexDump(this IEnumerable<byte> value); } Program.cs Here's the the object that I'm converting to binary in a loop. class Program { static void Main(string[] args) { GSObject obj = new GSObject(); obj.AttachShort("smallInt", 15); obj.AttachInt("medInt", 120700); obj.AttachLong("bigInt", 10900800700); obj.AttachDouble("doubleVal", Math.PI); obj.AttachStringArray("muppetNames", new string[] { "Kermit", "Fozzy", "Piggy", "Animal", "Gonzo" }); GSObject apple = new GSObject(); apple.AttachString("name", "Apple"); apple.AttachString("color", "red"); apple.AttachBool("inStock", true); apple.AttachFloat("price", (float)1.5); GSObject lemon = new GSObject(); apple.AttachString("name", "Lemon"); apple.AttachString("color", "yellow"); apple.AttachBool("inStock", false); apple.AttachFloat("price", (float)0.8); GSObject apricoat = new GSObject(); apple.AttachString("name", "Apricoat"); apple.AttachString("color", "orange"); apple.AttachBool("inStock", true); apple.AttachFloat("price", (float)1.9); GSObject kiwi = new GSObject(); apple.AttachString("name", "Kiwi"); apple.AttachString("color", "green"); apple.AttachBool("inStock", true); apple.AttachFloat("price", (float)2.3); GSArray fruits = new GSArray(); fruits.AddGSObject(apple); fruits.AddGSObject(lemon); fruits.AddGSObject(apricoat); fruits.AddGSObject(kiwi); obj.AttachGSArray("fruits", fruits); Stopwatch w1 = Stopwatch.StartNew(); for (int i = 0; i < 50000; i++) { byte[] b = obj.ToGSBinary(); } w1.Stop(); Console.WriteLine(BitConverter.IsLittleEndian ? "Little Endian" : "Big Endian"); Console.WriteLine(w1.ElapsedMilliseconds + "ms"); } Here's the code for some of my other classes that are used in the code above. Most of it is repetitive. GSObject GSArray GSWrappedObject

    Read the article

  • Using the Static Code Analysis feature of Visual Studio (Premium/Ultimate) to find memory leakage problems

    - by terje
    Memory for managed code is handled by the garbage collector, but if you use any kind of unmanaged code, like native resources of any kind, open files, streams and window handles, your application may leak memory if these are not properly handled.  To handle such resources the classes that own these in your application should implement the IDisposable interface, and preferably implement it according to the pattern described for that interface. When you suspect a memory leak, the immediate impulse would be to start up a memory profiler and start digging into that.   However, before you follow that impulse, do a Static Code Analysis run with a ruleset tuned to finding possible memory leaks in your code.  If you get any warnings from this, fix them before you go on with the profiling. How to use a ruleset In Visual Studio 2010 (Premium and Ultimate editions) you can define your own rulesets containing a list of Static Code Analysis checks.   I have defined the memory checks as shown in the lists below as ruleset files, which can be downloaded – see bottom of this post.  When you get them, you can easily attach them to every project in your solution using the Solution Properties dialog. Right click the solution, and choose Properties at the bottom, or use the Analyze menu and choose “Configure Code Analysis for Solution”: In this dialog you can now choose the Memorycheck ruleset for every project you want to investigate.  Pressing Apply or Ok opens every project file and changes the projects code analysis ruleset to the one we have specified here. How to define your own ruleset  (skip this if you just download my predefined rulesets) If you want to define the ruleset yourself, open the properties on any project, choose Code Analysis tab near the bottom, choose any ruleset in the drop box and press Open Clear out all the rules by selecting “Source Rule Sets” in the Group By box, and unselect the box Change the Group By box to ID, and select the checks you want to include from the lists below. Note that you can change the action for each check to either warning, error or none, none being the same as unchecking the check.   Now go to the properties window and set a new name and description for your ruleset. Then save (File/Save as) the ruleset using the new name as its name, and use it for your projects as detailed above. It can also be wise to add the ruleset to your solution as a solution item. That way it’s there if you want to enable Code Analysis in some of your TFS builds.   Running the code analysis In Visual Studio 2010 you can either do your code analysis project by project using the context menu in the solution explorer and choose “Run Code Analysis”, you can define a new solution configuration, call it for example Debug (Code Analysis), in for each project here enable the Enable Code Analysis on Build   In Visual Studio Dev-11 it is all much simpler, just go to the Solution root in the Solution explorer, right click and choose “Run code analysis on solution”.     The ruleset checks The following list is the essential and critical memory checks.  CheckID Message Can be ignored ? Link to description with fix suggestions CA1001 Types that own disposable fields should be disposable No  http://msdn.microsoft.com/en-us/library/ms182172.aspx CA1049 Types that own native resources should be disposable Only if the pointers assumed to point to unmanaged resources point to something else  http://msdn.microsoft.com/en-us/library/ms182173.aspx CA1063 Implement IDisposable correctly No  http://msdn.microsoft.com/en-us/library/ms244737.aspx CA2000 Dispose objects before losing scope No  http://msdn.microsoft.com/en-us/library/ms182289.aspx CA2115 1 Call GC.KeepAlive when using native resources See description  http://msdn.microsoft.com/en-us/library/ms182300.aspx CA2213 Disposable fields should be disposed If you are not responsible for release, of if Dispose occurs at deeper level  http://msdn.microsoft.com/en-us/library/ms182328.aspx CA2215 Dispose methods should call base class dispose Only if call to base happens at deeper calling level  http://msdn.microsoft.com/en-us/library/ms182330.aspx CA2216 Disposable types should declare a finalizer Only if type does not implement IDisposable for the purpose of releasing unmanaged resources  http://msdn.microsoft.com/en-us/library/ms182329.aspx CA2220 Finalizers should call base class finalizers No  http://msdn.microsoft.com/en-us/library/ms182341.aspx Notes: 1) Does not result in memory leak, but may cause the application to crash   The list below is a set of optional checks that may be enabled for your ruleset, because the issues these points too often happen as a result of attempting to fix up the warnings from the first set.   ID Message Type of fault Can be ignored ? Link to description with fix suggestions CA1060 Move P/invokes to NativeMethods class Security No http://msdn.microsoft.com/en-us/library/ms182161.aspx CA1816 Call GC.SuppressFinalize correctly Performance Sometimes, see description http://msdn.microsoft.com/en-us/library/ms182269.aspx CA1821 Remove empty finalizers Performance No http://msdn.microsoft.com/en-us/library/bb264476.aspx CA2004 Remove calls to GC.KeepAlive Performance and maintainability Only if not technically correct to convert to SafeHandle http://msdn.microsoft.com/en-us/library/ms182293.aspx CA2006 Use SafeHandle to encapsulate native resources Security No http://msdn.microsoft.com/en-us/library/ms182294.aspx CA2202 Do not dispose of objects multiple times Exception (System.ObjectDisposedException) No http://msdn.microsoft.com/en-us/library/ms182334.aspx CA2205 Use managed equivalents of Win32 API Maintainability and complexity Only if the replace doesn’t provide needed functionality http://msdn.microsoft.com/en-us/library/ms182365.aspx CA2221 Finalizers should be protected Incorrect implementation, only possible in MSIL coding No http://msdn.microsoft.com/en-us/library/ms182340.aspx   Downloadable ruleset definitions I have defined three rulesets, one called Inmeta.Memorycheck with the rules in the first list above, and Inmeta.Memorycheck.Optionals containing the rules in the second list, and the last one called Inmeta.Memorycheck.All containing the sum of the two first ones.  All three rulesets can be found in the  zip archive  “Inmeta.Memorycheck” downloadable from here.   Links to some other resources relevant to Static Code Analysis MSDN Magazine Article by Mickey Gousset on Static Code Analysis in VS2010 MSDN :  Analyzing Managed Code Quality by Using Code Analysis, root of the documentation for this Preventing generated code from being analyzed using attributes Online training course on Using Code Analysis with VS2010 Blogpost by Tatham Oddie on custom code analysis rules How to write custom rules, from Microsoft Code Analysis Team Blog Microsoft Code Analysis Team Blog

    Read the article

  • Oracle ATG Web Commerce 10 Implementation Developer Boot Camp - Reading (UK) - October 1-12, 2012

    - by Richard Lefebvre
    REGISTER NOW: Oracle ATG Web Commerce 10 Implementation Developer Boot Camp Reading, UK, October 1-12, 2012! OPN invites you to join us for a 10-day implementation bootcamp on Oracle ATG Web Commerce in Reading, UK from October 1-12, 2012.This 10-day boot camp is designed to provide partners with hands-on experience and technical training to successfully build and deploy Oracle ATG Web Commerce 10 Applications. This particular boot camp is focused on helping partners develop the essential skills needed to implement every aspect of an ATG Commerce Application from scratch, (not CRS-based), with a specific goal of enabling experienced Java/J2EE developers with a path towards becoming functional, effective, and contributing members of an ATG implementation team. Built for both new and experienced ATG developers alike, the collaborative nature of this program and its exercises, have proven to be highly effective and extremely valuable in learning the best practices for implementing ATG solutions. Though not required, this bootcamp provides a structured path to earning a Certified Oracle ATG Web Commerce 10 Specialization! What Is Covered: This boot camp is for Application Developers and Software Architects wanting to gain valuable insight into ATG application development best practices, as well as relevant and applicable implementation experience on projects modeled after four of the most common types of applications built on the ATG platform. The following learning objectives are all critical, and are of equal priority in enabling this role to succeed. This learning boot camp will help with: Building a basic functional transaction-ready ATG Web Commerce 10 Application. Utilizing ATG’s platform features such as scenarios, slots, targeters, user profiles and segments, to create a personalized user experience. Building Nucleus components to support and/or extend application functionality. Understanding the intricacies of ATG order checkout and fulfillment. Specifying, designing and implementing new commerce features in ATG 10. Building a functional commerce application modeled after four of the most common types of applications built on the ATG platform, within an agile-based project team environment and under simulated real-world project conditions. Duration: The Oracle ATG Web Commerce 10 Implementation Developer Boot Camp is an instructor-led workshop spanning 10 days. Audience: Application Developers Software Architects Prerequisite Training and Environment Requirements: Programming and Markup Experience with Java J2EE, JavaScript, XML, HTML and CSS Completion of Oracle ATG Web Commerce 10 Implementation Specialist Development Guided Learning Path modules Participants will be required to bring their own laptop that meets the minimum specifications:   64-bit PC and OS (e.g. Windows 7 64-bit) 4GB RAM or more 40GB Hard Disk Space Laptops will require access to the Internet through Remote Desktop via Windows. Agenda Topics: Week 1 – Day 1 through 5 Build a Basic Commerce Application In week one of the boot camp training, we will apply knowledge learned from the ATG Web Commerce 10 Implementation Developer Guided Learning Path modules, towards building a basic transaction-ready commerce application. There will be little to no lectures delivered in this boot camp, as developers will be fully engaged in ATG Application Development activities and best practices. Developers will work independently on the following lab assignments from day's 1 through 5: Lab Assignments  1 Environment Setup 2 Build a dynamic Home Page 3 Site Authentication 4 Build Customer Registration 5 Display Top Level Categories 6 Display Product Sub-Categories 7 Display Product List Page 8 Display Product Detail Page 9 ATG Inventory 10 Build “Add to Cart” Functionality 11 Build Shopping Cart 12 Build Checkout Page  13 Build Checkout Review Page 14 Create an Order and Build Order Confirmation Page 15 Implement Slots and Targeters for Personalization 16 Implement Pricing and Promotions 17 Order Fulfillment Back to top Week 2 – Day 6 through 10 Team-based Case Project In the second week of the boot camp training, participants will be asked to join a project team that will select a case project for the team to implement. Teams will be able to choose from four of the most common application types developed and deployed on the ATG platform. They are as follows: Hard goods with physical fulfillment, Soft goods with electronic fulfillment, a Service or subscription case example, a Course/Event registration case example. Team projects will have approximately 160 hours of use cases/stories for each team to build (40 hours per developer). Each day's Use Cases/Stories will build upon the prior day's work, and therefore must be fully completed at the end of each day. Please note that this boot camp intends to simulate real-world project conditions, and as such will likely require the need for project teams to possibly work beyond normal business hours. To promote further collaboration and group learning, each team will be asked to present their work and share the methodologies and solutions that they've applied to their cases at the end of each day. Location: Oracle Reading CVC TPC510 Room: Wraysbury Reading, UK 9:00 AM – 5:00 PM  Registration Fee (10 Days): US $3,375 Please click on the following link to REGISTER or  visit the Oracle ATG Web Commerce 10 Implementation Developer Boot Camp page for more information. Questions: Patrick Ty Partner Enablement, Oracle Commerce Phone: 310.343.7687 Mobile: 310.633.1013 Email: [email protected]

    Read the article

  • Breaking through the class sealing

    - by Jason Crease
    Do you understand 'sealing' in C#?  Somewhat?  Anyway, here's the lowdown. I've done this article from a C# perspective, but I've occasionally referenced .NET when appropriate. What is sealing a class? By sealing a class in C#, you ensure that you ensure that no class can be derived from that class.  You do this by simply adding the word 'sealed' to a class definition: public sealed class Dog {} Now writing something like " public sealed class Hamster: Dog {} " you'll get a compile error like this: 'Hamster: cannot derive from sealed type 'Dog' If you look in an IL disassembler, you'll see a definition like this: .class public auto ansi sealed beforefieldinit Dog extends [mscorlib]System.Object Note the addition of the word 'sealed'. What about sealing methods? You can also seal overriding methods.  By adding the word 'sealed', you ensure that the method cannot be overridden in a derived class.  Consider the following code: public class Dog : Mammal { public sealed override void Go() { } } public class Mammal { public virtual void Go() { } } In this code, the method 'Go' in Dog is sealed.  It cannot be overridden in a subclass.  Writing this would cause a compile error: public class Dachshund : Dog { public override void Go() { } } However, we can 'new' a method with the same name.  This is essentially a new method; distinct from the 'Go' in the subclass: public class Terrier : Dog { public new void Go() { } } Sealing properties? You can also seal seal properties.  You add 'sealed' to the property definition, like so: public sealed override string Name {     get { return m_Name; }     set { m_Name = value; } } In C#, you can only seal a property, not the underlying setters/getters.  This is because C# offers no override syntax for setters or getters.  However, in underlying IL you seal the setter and getter methods individually - a property is just metadata. Why bother sealing? There are a few traditional reasons to seal: Invariance. Other people may want to derive from your class, even though your implementation may make successful derivation near-impossible.  There may be twisted, hacky logic that could never be second-guessed by another developer.  By sealing your class, you're protecting them from wasting their time.  The CLR team has sealed most of the framework classes, and I assume they did this for this reason. Security.  By deriving from your type, an attacker may gain access to functionality that enables him to hack your system.  I consider this a very weak security precaution. Speed.  If a class is sealed, then .NET doesn't need to consult the virtual-function-call table to find the actual type, since it knows that no derived type can exist.  Therefore, it could emit a 'call' instead of 'callvirt' or at least optimise the machine code, thus producing a performance benefit.  But I've done trials, and have been unable to demonstrate this If you have an example, please share! All in all, I'm not convinced that sealing is interesting or important.  Anyway, moving-on... What is automatically sealed? Value types and structs.  If they were not always sealed, all sorts of things would go wrong.  For instance, structs are laid-out inline within a class.  But what if you assigned a substruct to a struct field of that class?  There may be too many fields to fit. Static classes.  Static classes exist in C# but not .NET.  The C# compiler compiles a static class into an 'abstract sealed' class.  So static classes are already sealed in C#. Enumerations.  The CLR does not track the types of enumerations - it treats them as simple value types.  Hence, polymorphism would not work. What cannot be sealed? Interfaces.  Interfaces exist to be implemented, so sealing to prevent implementation is dumb.  But what if you could prevent interfaces from being extended (i.e. ban declarations like "public interface IMyInterface : ISealedInterface")?  There is no good reason to seal an interface like this.  Sealing finalizes behaviour, but interfaces have no intrinsic behaviour to finalize Abstract classes.  In IL you can create an abstract sealed class.  But C# syntax for this already exists - declaring a class as a 'static', so it forces you to declare it as such. Non-override methods.  If a method isn't declared as override it cannot be overridden, so sealing would make no difference.  Note this is stated from a C# perspective - the words are opposite in IL.  In IL, you have four choices in total: no declaration (which actually seals the method), 'virtual' (called 'override' in C#), 'sealed virtual' ('sealed override' in C#) and 'newslot virtual' ('new virtual' or 'virtual' in C#, depending on whether the method already exists in a base class). Methods that implement interface methods.  Methods that implement an interface method must be virtual, so cannot be sealed. Fields.  A field cannot be overridden, only hidden (using the 'new' keyword in C#), so sealing would make no sense.

    Read the article

  • Reference Data Management and Master Data: Are Relation ?

    - by Mala Narasimharajan
    Submitted By:  Rahul Kamath  Oracle Data Relationship Management (DRM) has always been extremely powerful as an Enterprise Master Data Management (MDM) solution that can help manage changes to master data in a way that influences enterprise structure, whether it be mastering chart of accounts to enable financial transformation, or revamping organization structures to drive business transformation and operational efficiencies, or restructuring sales territories to enable equitable distribution of leads to sales teams following the acquisition of new products, or adding additional cost centers to enable fine grain control over expenses. Increasingly, DRM is also being utilized by Oracle customers for reference data management, an emerging solution space that deserves some explanation. What is reference data? How does it relate to Master Data? Reference data is a close cousin of master data. While master data is challenged with problems of unique identification, may be more rapidly changing, requires consensus building across stakeholders and lends structure to business transactions, reference data is simpler, more slowly changing, but has semantic content that is used to categorize or group other information assets – including master data – and gives them contextual value. In fact, the creation of a new master data element may require new reference data to be created. For example, when a European company acquires a US business, chances are that they will now need to adapt their product line taxonomy to include a new category to describe the newly acquired US product line. Further, the cross-border transaction will also result in a revised geo hierarchy. The addition of new products represents changes to master data while changes to product categories and geo hierarchy are examples of reference data changes.1 The following table contains an illustrative list of examples of reference data by type. Reference data types may include types and codes, business taxonomies, complex relationships & cross-domain mappings or standards. Types & Codes Taxonomies Relationships / Mappings Standards Transaction Codes Industry Classification Categories and Codes, e.g., North America Industry Classification System (NAICS) Product / Segment; Product / Geo Calendars (e.g., Gregorian, Fiscal, Manufacturing, Retail, ISO8601) Lookup Tables (e.g., Gender, Marital Status, etc.) Product Categories City à State à Postal Codes Currency Codes (e.g., ISO) Status Codes Sales Territories (e.g., Geo, Industry Verticals, Named Accounts, Federal/State/Local/Defense) Customer / Market Segment; Business Unit / Channel Country Codes (e.g., ISO 3166, UN) Role Codes Market Segments Country Codes / Currency Codes / Financial Accounts Date/Time, Time Zones (e.g., ISO 8601) Domain Values Universal Standard Products and Services Classification (UNSPSC), eCl@ss International Classification of Diseases (ICD) e.g., ICD9 à IC10 mappings Tax Rates Why manage reference data? Reference data carries contextual value and meaning and therefore its use can drive business logic that helps execute a business process, create a desired application behavior or provide meaningful segmentation to analyze transaction data. Further, mapping reference data often requires human judgment. Sample Use Cases of Reference Data Management Healthcare: Diagnostic Codes The reference data challenges in the healthcare industry offer a case in point. Part of being HIPAA compliant requires medical practitioners to transition diagnosis codes from ICD-9 to ICD-10, a medical coding scheme used to classify diseases, signs and symptoms, causes, etc. The transition to ICD-10 has a significant impact on business processes, procedures, contracts, and IT systems. Since both code sets ICD-9 and ICD-10 offer diagnosis codes of very different levels of granularity, human judgment is required to map ICD-9 codes to ICD-10. The process requires collaboration and consensus building among stakeholders much in the same way as does master data management. Moreover, to build reports to understand utilization, frequency and quality of diagnoses, medical practitioners may need to “cross-walk” mappings -- either forward to ICD-10 or backwards to ICD-9 depending upon the reporting time horizon. Spend Management: Product, Service & Supplier Codes Similarly, as an enterprise looks to rationalize suppliers and leverage their spend, conforming supplier codes, as well as product and service codes requires supporting multiple classification schemes that may include industry standards (e.g., UNSPSC, eCl@ss) or enterprise taxonomies. Aberdeen Group estimates that 90% of companies rely on spreadsheets and manual reviews to aggregate, classify and analyze spend data, and that data management activities account for 12-15% of the sourcing cycle and consume 30-50% of a commodity manager’s time. Creating a common map across the extended enterprise to rationalize codes across procurement, accounts payable, general ledger, credit card, procurement card (P-card) as well as ACH and bank systems can cut sourcing costs, improve compliance, lower inventory stock, and free up talent to focus on value added tasks. Change Management: Point of Sales Transaction Codes and Product Codes In the specialty finance industry, enterprises are confronted with usury laws – governed at the state and local level – that regulate financial product innovation as it relates to consumer loans, check cashing and pawn lending. To comply, it is important to demonstrate that transactions booked at the point of sale are posted against valid product codes that were on offer at the time of booking the sale. Since new products are being released at a steady stream, it is important to ensure timely and accurate mapping of point-of-sale transaction codes with the appropriate product and GL codes to comply with the changing regulations. Multi-National Companies: Industry Classification Schemes As companies grow and expand across geographies, a typical challenge they encounter with reference data represents reconciling various versions of industry classification schemes in use across nations. While the United States, Mexico and Canada conform to the North American Industry Classification System (NAICS) standard, European Union countries choose different variants of the NACE industry classification scheme. Multi-national companies must manage the individual national NACE schemes and reconcile the differences across countries. Enterprises must invest in a reference data change management application to address the challenge of distributing reference data changes to downstream applications and assess which applications were impacted by a given change. References 1 Master Data versus Reference Data, Malcolm Chisholm, April 1, 2006.

    Read the article

  • Computer Networks UNISA - Chap 15 &ndash; Network Management

    - by MarkPearl
    After reading this section you should be able to Understand network management and the importance of documentation, baseline measurements, policies, and regulations to assess and maintain a network’s health. Manage a network’s performance using SNMP-based network management software, system and event logs, and traffic-shaping techniques Identify the reasons for and elements of an asset managements system Plan and follow regular hardware and software maintenance routines Fundamentals of Network Management Network management refers to the assessment, monitoring, and maintenance of all aspects of a network including checking for hardware faults, ensuring high QoS, maintaining records of network assets, etc. Scope of network management differs depending on the size and requirements of the network. All sub topics of network management share the goals of enhancing the efficiency and performance while preventing costly downtime or loss. Documentation The way documentation is stored may vary, but to adequately manage a network one should at least record the following… Physical topology (types of LAN and WAN topologies – ring, star, hybrid) Access method (does it use Ethernet 802.3, token ring, etc.) Protocols Devices (Switches, routers, etc) Operating Systems Applications Configurations (What version of operating system and config files for serve / client software) Baseline Measurements A baseline is a report of the network’s current state of operation. Baseline measurements might include the utilization rate for your network backbone, number of users logged on per day, etc. Baseline measurements allow you to compare future performance increases or decreases caused by network changes or events with past network performance. Obtaining baseline measurements is the only way to know for certain whether a pattern of usage has changed, or whether a network upgrade has made a difference. There are various tools available for measuring baseline performance on a network. Policies, Procedures, and Regulations Following rules helps limit chaos, confusion, and possibly downtime. The following policies and procedures and regulations make for sound network management. Media installations and management (includes designing physical layout of cable, etc.) Network addressing policies (includes choosing and applying a an addressing scheme) Resource sharing and naming conventions (includes rules for logon ID’s) Security related policies Troubleshooting procedures Backup and disaster recovery procedures In addition to internal policies, a network manager must consider external regulatory rules. Fault and Performance Management After documenting every aspect of your network and following policies and best practices, you are ready to asses you networks status on an on going basis. This process includes both performance management and fault management. Network Management Software To accomplish both fault and performance management, organizations often use enterprise-wide network management software. There various software packages that do this, each collect data from multiple networked devices at regular intervals, in a process called polling. Each managed device runs a network management agent. So as not to affect the performance of a device while collecting information, agents do not demand significant processing resources. The definition of a managed devices and their data are collected in a MIB (Management Information Base). Agents communicate information about managed devices via any of several application layer protocols. On modern networks most agents use SNMP which is part of the TCP/IP suite and typically runs over UDP on port 161. Because of the flexibility and sophisticated network management applications are a challenge to configure and fine-tune. One needs to be careful to only collect relevant information and not cause performance issues (i.e. pinging a device every 5 seconds can be a problem with thousands of devices). MRTG (Multi Router Traffic Grapher) is a simple command line utility that uses SNMP to poll devices and collects data in a log file. MRTG can be used with Windows, UNIX and Linux. System and Event Logs Virtually every condition recognized by an operating system can be recorded. This is typically done using event logs. In Windows there is a GUI event log viewer. Similar information is recorded in UNIX and Linux in a system log. Much of the information collected in event logs and syslog files does not point to a problem, even if it is marked with a warning so it is important to filter your logs appropriately to reduce the noise. Traffic Shaping When a network must handle high volumes of network traffic, users benefit from performance management technique called traffic shaping. Traffic shaping involves manipulating certain characteristics of packets, data streams, or connections to manage the type and amount of traffic traversing a network or interface at any moment. Its goals are to assure timely delivery of the most important traffic while offering the best possible performance for all users. Several types of traffic prioritization exist including prioritizing traffic according to any of the following characteristics… Protocol IP address User group DiffServr VLAN tag in a Data Link layer frame Service or application Caching In addition to traffic shaping, a network or host might use caching to improve performance. Caching is the local storage of frequently needed files that would otherwise be obtained from an external source. By keeping files close to the requester, caching allows the user to access those files quickly. The most common type of caching is Web caching, in which Web pages are stored locally. To an ISP, caching is much more than just convenience. It prevents a significant volume of WAN traffic, thus improving performance and saving money. Asset Management Another key component in managing networks is identifying and tracking its hardware. This is called asset management. The first step to asset management is to take an inventory of each node on the network. You will also want to keep records of every piece of software purchased by your organization. Asset management simplifies maintaining and upgrading the network chiefly because you know what the system includes. In addition, asset management provides network administrators with information about the costs and benefits of certain types of hardware or software. Change Management Networks are always in a stage of flux with various aspects including… Software changes and patches Client Upgrades Shared Application Upgrades NOS Upgrades Hardware and Physical Plant Changes Cabling Upgrades Backbone Upgrades For a detailed explanation on each of these read the textbook (Page 750 – 761)

    Read the article

  • Subterranean IL: The ThreadLocal type

    - by Simon Cooper
    I came across ThreadLocal<T> while I was researching ConcurrentBag. To look at it, it doesn't really make much sense. What's all those extra Cn classes doing in there? Why is there a GenericHolder<T,U,V,W> class? What's going on? However, digging deeper, it's a rather ingenious solution to a tricky problem. Thread statics Declaring that a variable is thread static, that is, values assigned and read from the field is specific to the thread doing the reading, is quite easy in .NET: [ThreadStatic] private static string s_ThreadStaticField; ThreadStaticAttribute is not a pseudo-custom attribute; it is compiled as a normal attribute, but the CLR has in-built magic, activated by that attribute, to redirect accesses to the field based on the executing thread's identity. TheadStaticAttribute provides a simple solution when you want to use a single field as thread-static. What if you want to create an arbitary number of thread static variables at runtime? Thread-static fields can only be declared, and are fixed, at compile time. Prior to .NET 4, you only had one solution - thread local data slots. This is a lesser-known function of Thread that has existed since .NET 1.1: LocalDataStoreSlot threadSlot = Thread.AllocateNamedDataSlot("slot1"); string value = "foo"; Thread.SetData(threadSlot, value); string gettedValue = (string)Thread.GetData(threadSlot); Each instance of LocalStoreDataSlot mediates access to a single slot, and each slot acts like a separate thread-static field. As you can see, using thread data slots is quite cumbersome. You need to keep track of LocalDataStoreSlot objects, it's not obvious how instances of LocalDataStoreSlot correspond to individual thread-static variables, and it's not type safe. It's also relatively slow and complicated; the internal implementation consists of a whole series of classes hanging off a single thread-static field in Thread itself, using various arrays, lists, and locks for synchronization. ThreadLocal<T> is far simpler and easier to use. ThreadLocal ThreadLocal provides an abstraction around thread-static fields that allows it to be used just like any other class; it can be used as a replacement for a thread-static field, it can be used in a List<ThreadLocal<T>>, you can create as many as you need at runtime. So what does it do? It can't just have an instance-specific thread-static field, because thread-static fields have to be declared as static, and so shared between all instances of the declaring type. There's something else going on here. The values stored in instances of ThreadLocal<T> are stored in instantiations of the GenericHolder<T,U,V,W> class, which contains a single ThreadStatic field (s_value) to store the actual value. This class is then instantiated with various combinations of the Cn types for generic arguments. In .NET, each separate instantiation of a generic type has its own static state. For example, GenericHolder<int,C0,C1,C2> has a completely separate s_value field to GenericHolder<int,C1,C14,C1>. This feature is (ab)used by ThreadLocal to emulate instance thread-static fields. Every time an instance of ThreadLocal is constructed, it is assigned a unique number from the static s_currentTypeId field using Interlocked.Increment, in the FindNextTypeIndex method. The hexadecimal representation of that number then defines the specific Cn types that instantiates the GenericHolder class. That instantiation is therefore 'owned' by that instance of ThreadLocal. This gives each instance of ThreadLocal its own ThreadStatic field through a specific unique instantiation of the GenericHolder class. Although GenericHolder has four type variables, the first one is always instantiated to the type stored in the ThreadLocal<T>. This gives three free type variables, each of which can be instantiated to one of 16 types (C0 to C15). This puts an upper limit of 4096 (163) on the number of ThreadLocal<T> instances that can be created for each value of T. That is, there can be a maximum of 4096 instances of ThreadLocal<string>, and separately a maximum of 4096 instances of ThreadLocal<object>, etc. However, there is an upper limit of 16384 enforced on the total number of ThreadLocal instances in the AppDomain. This is to stop too much memory being used by thousands of instantiations of GenericHolder<T,U,V,W>, as once a type is loaded into an AppDomain it cannot be unloaded, and will continue to sit there taking up memory until the AppDomain is unloaded. The total number of ThreadLocal instances created is tracked by the ThreadLocalGlobalCounter class. So what happens when either limit is reached? Firstly, to try and stop this limit being reached, it recycles GenericHolder type indexes of ThreadLocal instances that get disposed using the s_availableIndices concurrent stack. This allows GenericHolder instantiations of disposed ThreadLocal instances to be re-used. But if there aren't any available instantiations, then ThreadLocal falls back on a standard thread local slot using TLSHolder. This makes it very important to dispose of your ThreadLocal instances if you'll be using lots of them, so the type instantiations can be recycled. The previous way of creating arbitary thread-static variables, thread data slots, was slow, clunky, and hard to use. In comparison, ThreadLocal can be used just like any other type, and each instance appears from the outside to be a non-static thread-static variable. It does this by using the CLR type system to assign each instance of ThreadLocal its own instantiated type containing a thread-static field, and so delegating a lot of the bookkeeping that thread data slots had to do to the CLR type system itself! That's a very clever use of the CLR type system.

    Read the article

  • NDepend Evaluation: Part 3

    - by Anthony Trudeau
    NDepend is a Visual Studio add-in designed for intense code analysis with the goal of high code quality. NDepend uses a number of metrics and aggregates the data in pleasing static and active visual reports. My evaluation of NDepend will be broken up into several different parts. In the first part of the evaluation I looked at installing the add-in.  And in the last part I went over my first impressions including an overview of the features.  In this installment I provide a little more detail on a few of the features that I really like. Dependency Matrix The dependency matrix is one of the rich visual components provided with NDepend.  At a glance it lets you know where you have coupling problems including cycles.  It does this with number indicating the weight of the dependency and a color-coding that indicates the nature of the dependency. Green and blue cells are direct dependencies (with the difference being whether the relationship is from row-to-column or column-to-row).  Black cells are the ones that you really want to know about.  These indicate that you have a cycle.  That is, type A refers to type B and type B also refers to Type A. But, that’s not the end of the story.  A handy pop-up appears when you hover over the cell in question.  It explains the color, the dependency, and provides several interesting links that will teach you more than you want to know about the dependency. You can double-click the problem cells to explode the dependency.  That will show the dependencies on a method-by-method basis allowing you to more easily target and fix the problem.  When you’re done you can click the back button on the toolbar. Dependency Graph The dependency graph is another component provided.  It’s complementary to the dependency matrix, but it isn’t as easy to identify dependency issues using the window. On a positive note, it does provide more information than the matrix. My biggest issue with the dependency graph is determining what is shown.  This was not readily obvious.  I ended up using the navigation buttons to get an acceptable view.  I would have liked to choose what I see. Once you see the types you want you can get a decent idea of coupling strength based on the width of the dependency lines.  Double-arrowed lines are problematic and are shown in red.  The size of the boxes will be related to the metric being displayed.  This is controlled using the Box Size drop-down in the toolbar.  Personally, I don’t find the size of the box to be helpful, so I change it to Constant Font. One nice thing about the display is that you can see the entire path of dependencies when you hover over a type.  This is done by color-coding the dependencies and dependants.  It would be nice if selecting the box for the type would lock the highlighting in place. I did find a perhaps unintended work-around to the color-coding.  You can lock the color-coding in by hovering over the type, right-clicking, and then clicking on the canvas area to clear the pop-up menu.  You can then do whatever with it including saving it to an image file with the color-coding. CQL NDepend uses a code query language (CQL) to work with your code just like it was a database.  CQL cannot be confused with the robustness of T-SQL or even LINQ, but it represents an impressive attempt at providing an expressive way to enumerate and interrogate your code. There are two main windows you’ll use when working with CQL.  The CQL Query Explorer allows you to define what queries (rules) are run as part of a report – I immediately unselected rules that I don’t want in my results.  The CQL Query Edit window is where you can view or author your own rules.  The explorer window is pretty self-explanatory, so I won’t mention it further other than to say that any queries you author will appear in the custom group. Authoring your own queries is really hard to screw-up.  The Intellisense-like pop-ups tell you what you can do while making composition easy.  I was able to create a query within two minutes of playing with the editor.  My query warns if any types that are interfaces don’t start with an “I”. WARN IF Count > 0 IN SELECT TYPES WHERE IsInterface AND !NameLike “I” The results from the CQL Query Edit window are immediate. That fact makes it useful for ad hoc querying.  It’s worth mentioning two things that could make the experience smoother.  First, out of habit from using Visual Studio I expect to be able to scroll and press Tab to select an item in the list (like Intellisense).  You have to press Enter when you scroll to the item you want.  Second, the commands are case-sensitive.  I don’t see a really good reason to enforce that. CQL has a lot of potential not just in enforcing code quality, but also enforcing architectural constraints that your enterprise has defined. Up Next My next update will be the final part of the evaluation.  I will summarize my experience and provide my conclusions on the NDepend add-in. ** View Part 1 of the Evaluation ** ** View Part 2 of the Evaluation ** Disclaimer: Patrick Smacchia contacted me about reviewing NDepend. I received a free license in return for sharing my experiences and talking about the capabilities of the add-in on this site. There is no expectation of a positive review elicited from the author of NDepend.

    Read the article

  • Access Control Service v2: Registering Web Identities in your Applications [concepts]

    - by Your DisplayName here!
    ACS v2 support two fundamental types of client identities– I like to call them “enterprise identities” (WS-*) and “web identities” (Google, LiveID, OpenId in general…). I also see two different “mind sets” when it comes to application design using the above identity types: Enterprise identities – often the fact that a client can present a token from a trusted identity provider means he is a legitimate user of the application. Trust relationships and authorization details have been negotiated out of band (often on paper). Web identities – the fact that a user can authenticate with Google et al does not necessarily mean he is a legitimate (or registered) user of an application. Typically additional steps are necessary (like filling out a form, email confirmation etc). Sometimes also a mixture of both approaches exist, for the sake of this post, I will focus on the web identity case. I got a number of questions how to implement the web identity scenario and after some conversations it turns out it is the old authentication vs. authorization problem that gets in the way. Many people use the IsAuthenticated property on IIdentity to make security decisions in their applications (or deny user=”?” in ASP.NET terms). That’s a very natural thing to do, because authentication was done inside the application and we knew exactly when the IsAuthenticated condition is true. Been there, done that. Guilty ;) The fundamental difference between these “old style” apps and federation is, that authentication is not done by the application anymore. It is done by a third party service, and in the case of web identity providers, in services that are not under our control (nor do we have a formal business relationship with these providers). Now the issue is, when you switch to ACS, and someone with a Google account authenticates, indeed IsAuthenticated is true – because that’s what he is! This does not mean, that he is also authorized to use the application. It just proves he was able to authenticate with Google. Now this obviously leads to confusion. How can we solve that? Easy answer: We have to deal with authentication and authorization separately. Job done ;) For many application types I see this general approach: Application uses ACS for authentication (maybe both enterprise and web identities, we focus on web identities but you could easily have a dual approach here) Application offers to authenticate (or sign in) via web identity accounts like LiveID, Google, Facebook etc. Application also maintains a database of its “own” users. Typically you want to store additional information about the user In such an application type it is important to have a unique identifier for your users (think the primary key of your user database). What would that be? Most web identity provider (and all the standard ACS v2 supported ones) emit a NameIdentifier claim. This is a stable ID for the client (scoped to the relying party – more on that later). Furthermore ACS emits a claims identifying the identity provider (like the original issuer concept in WIF). When you combine these two values together, you can be sure to have a unique identifier for the user, e.g.: Facebook-134952459903700\799880347 You can now check on incoming calls, if the user is already registered and if yes, swap the ACS claims with claims coming from your user database. One claims would maybe be a role like “Registered User” which can then be easily used to do authorization checks in the application. The WIF claims authentication manager is a perfect place to do the claims transformation. If the user is not registered, show a register form. Maybe you can use some claims from the identity provider to pre-fill form fields. (see here where I show how to use the Facebook API to fetch additional user properties). After successful registration (which may include other mechanisms like a confirmation email), flip the bit in your database to make the web identity a registered user. This is all very theoretical. In the next post I will show some code and provide a download link for the complete sample. More on NameIdentifier Identity providers “guarantee” that the name identifier for a given user in your application will always be the same. But different applications (in the case of ACS – different ACS namespaces) will see different name identifiers. This is by design to protect the privacy of users because identical name identifiers could be used to create “profiles” of some sort for that user. In technical terms they create the name identifier approximately like this: name identifier = Hash((Provider Internal User ID) + (Relying Party Address)) Why is this important to know? Well – when you change the name of your ACS namespace, the name identifiers will change as well and you will will lose your “connection” to your existing users. Oh an btw – never use any other claims (like email address or name) to form a unique ID – these can often be changed by users.

    Read the article

  • WordPress not resizing images with Nginx + php-fpm and other issues

    - by Julian Fernandes
    Recently i setup a Ubuntu 12.04 VPS with 512mb/1ghz CPU, Nginx + php-fpm + Varnish + APC + Percona's MySQL server + CloudFlare Pro for our Ubuntu LoCo Team's WordPress blog. The blog get about 3~4k daily hits, use about 180MB and 8~20% CPU. Everything seems to be working insanely fast... page load is really good and is about 16x faster than any of our competitors... but there is one problem. When we upload a image, WordPress don't resize it, so all we can do it insert the full image in the post. If the imagem have, let's say, 30kb, it resize fine... but if the image have 100kb+, it won't... In nginx error logs i see this: upstream timed out (110: Connection timed out) while reading response header from upstream, client: 150.162.216.64, server: www.ubuntubrsc.com, request: "POST /wp-admin/async-upload.php HTTP/1.1", upstream: "fastcgi://unix:/var/run/php5-fpm.sock:", host: "www.ubuntubrsc.com", referrer: "http://www.ubuntubrsc.com/wp-admin/media-upload.php?post_id=2668&" It seems to be related with the issue, but i dunno. When that timeout happens, i started to get it when i'm trying to view a post too: upstream timed out (110: Connection timed out) while reading response header from upstream, client: 150.162.216.64, server: www.ubuntubrsc.com, request: "GET /tutoriais-gimp-6-adicionando-aplicando-novos-pinceis.html HTTP/1.1", upstream: "fastcgi://unix:/var/run/php5-fpm.sock:", host: "www.ubuntubrsc.com", referrer: "http://www.ubuntubrsc.com/" And only a restart of php5-fpm fix it. I tryed increasing some timeouts and stuffs but it did not worked, so i guess it's some kind of limitation i did not figured yet. Could someone help me with it, please? /etc/nginx/nginx.conf: user www-data; worker_processes 1; pid /var/run/nginx.pid; events { worker_connections 1024; use epoll; multi_accept on; } http { ## # Basic Settings ## sendfile on; tcp_nopush on; tcp_nodelay off; keepalive_timeout 15; keepalive_requests 2000; types_hash_max_size 2048; server_tokens off; server_name_in_redirect off; open_file_cache max=1000 inactive=300s; open_file_cache_valid 360s; open_file_cache_min_uses 2; open_file_cache_errors off; server_names_hash_bucket_size 64; # server_name_in_redirect off; client_body_buffer_size 128K; client_header_buffer_size 1k; client_max_body_size 2m; large_client_header_buffers 4 8k; client_body_timeout 10m; client_header_timeout 10m; send_timeout 10m; include /etc/nginx/mime.types; default_type application/octet-stream; ## # Logging Settings ## error_log /var/log/nginx/error.log; access_log off; ## # CloudFlare's IPs (uncomment when site goes live) ## set_real_ip_from 204.93.240.0/24; set_real_ip_from 204.93.177.0/24; set_real_ip_from 199.27.128.0/21; set_real_ip_from 173.245.48.0/20; set_real_ip_from 103.22.200.0/22; set_real_ip_from 141.101.64.0/18; set_real_ip_from 108.162.192.0/18; set_real_ip_from 190.93.240.0/20; real_ip_header CF-Connecting-IP; set_real_ip_from 127.0.0.1/32; ## # Gzip Settings ## gzip on; gzip_disable "msie6"; gzip_vary on; gzip_proxied any; gzip_comp_level 9; gzip_min_length 1000; gzip_proxied expired no-cache no-store private auth; gzip_buffers 32 8k; # gzip_http_version 1.1; gzip_types text/plain text/css application/json application/x-javascript text/xml application/xml application/xml+rss text/javascript; ## # nginx-naxsi config ## # Uncomment it if you installed nginx-naxsi ## #include /etc/nginx/naxsi_core.rules; ## # nginx-passenger config ## # Uncomment it if you installed nginx-passenger ## #passenger_root /usr; #passenger_ruby /usr/bin/ruby; ## # Virtual Host Configs ## include /etc/nginx/conf.d/*.conf; include /etc/nginx/sites-enabled/*; } /etc/nginx/fastcgi_params: fastcgi_param QUERY_STRING $query_string; fastcgi_param REQUEST_METHOD $request_method; fastcgi_param CONTENT_TYPE $content_type; fastcgi_param CONTENT_LENGTH $content_length; fastcgi_param SCRIPT_FILENAME $request_filename; fastcgi_param SCRIPT_NAME $fastcgi_script_name; fastcgi_param REQUEST_URI $request_uri; fastcgi_param DOCUMENT_URI $document_uri; fastcgi_param DOCUMENT_ROOT $document_root; fastcgi_param SERVER_PROTOCOL $server_protocol; fastcgi_param GATEWAY_INTERFACE CGI/1.1; fastcgi_param SERVER_SOFTWARE nginx/$nginx_version; fastcgi_param REMOTE_ADDR $remote_addr; fastcgi_param REMOTE_PORT $remote_port; fastcgi_param SERVER_ADDR $server_addr; fastcgi_param SERVER_PORT $server_port; fastcgi_param SERVER_NAME $server_name; fastcgi_param HTTPS $https; fastcgi_send_timeout 180; fastcgi_read_timeout 180; fastcgi_buffer_size 128k; fastcgi_buffers 256 4k; # PHP only, required if PHP was built with --enable-force-cgi-redirect fastcgi_param REDIRECT_STATUS 200; /etc/nginx/sites-avaiable/default: ## # DEFAULT HANDLER # ubuntubrsc.com ## server { listen 8080; # Make site available from main domain server_name www.ubuntubrsc.com; # Root directory root /var/www; index index.php index.html index.htm; include /var/www/nginx.conf; access_log off; location / { try_files $uri $uri/ /index.php?q=$uri&$args; } location = /favicon.ico { log_not_found off; access_log off; } location = /robots.txt { allow all; log_not_found off; access_log off; } location ~ /\. { deny all; access_log off; log_not_found off; } location ~* ^/wp-content/uploads/.*.php$ { deny all; access_log off; log_not_found off; } rewrite /wp-admin$ $scheme://$host$uri/ permanent; error_page 404 = @wordpress; log_not_found off; location @wordpress { include /etc/nginx/fastcgi_params; fastcgi_pass unix:/var/run/php5-fpm.sock; fastcgi_param SCRIPT_NAME /index.php; fastcgi_param SCRIPT_FILENAME $document_root/index.php; } location ~ \.php$ { try_files $uri =404; include /etc/nginx/fastcgi_params; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name; if (-f $request_filename) { fastcgi_pass unix:/var/run/php5-fpm.sock; } } } server { listen 8080; server_name ubuntubrsc.* www.ubuntubrsc.net www.ubuntubrsc.org www.ubuntubrsc.com.br www.ubuntubrsc.info www.ubuntubrsc.in; return 301 $scheme://www.ubuntubrsc.com$request_uri; } /var/www/nginx.conf: # BEGIN W3TC Minify cache location ~ /wp-content/w3tc/min.*\.js$ { types {} default_type application/x-javascript; expires modified 31536000s; add_header X-Powered-By "W3 Total Cache/0.9.2.5b"; add_header Vary "Accept-Encoding"; add_header Pragma "public"; add_header Cache-Control "max-age=31536000, public, must-revalidate, proxy-revalidate"; } location ~ /wp-content/w3tc/min.*\.css$ { types {} default_type text/css; expires modified 31536000s; add_header X-Powered-By "W3 Total Cache/0.9.2.5b"; add_header Vary "Accept-Encoding"; add_header Pragma "public"; add_header Cache-Control "max-age=31536000, public, must-revalidate, proxy-revalidate"; } location ~ /wp-content/w3tc/min.*js\.gzip$ { gzip off; types {} default_type application/x-javascript; expires modified 31536000s; add_header X-Powered-By "W3 Total Cache/0.9.2.5b"; add_header Vary "Accept-Encoding"; add_header Pragma "public"; add_header Cache-Control "max-age=31536000, public, must-revalidate, proxy-revalidate"; add_header Content-Encoding gzip; } location ~ /wp-content/w3tc/min.*css\.gzip$ { gzip off; types {} default_type text/css; expires modified 31536000s; add_header X-Powered-By "W3 Total Cache/0.9.2.5b"; add_header Vary "Accept-Encoding"; add_header Pragma "public"; add_header Cache-Control "max-age=31536000, public, must-revalidate, proxy-revalidate"; add_header Content-Encoding gzip; } # END W3TC Minify cache # BEGIN W3TC Browser Cache gzip on; gzip_types text/css application/x-javascript text/x-component text/richtext image/svg+xml text/plain text/xsd text/xsl text/xml image/x-icon; location ~ \.(css|js|htc)$ { expires 31536000s; add_header Pragma "public"; add_header Cache-Control "max-age=31536000, public, must-revalidate, proxy-revalidate"; add_header X-Powered-By "W3 Total Cache/0.9.2.5b"; } location ~ \.(html|htm|rtf|rtx|svg|svgz|txt|xsd|xsl|xml)$ { expires 3600s; add_header Pragma "public"; add_header Cache-Control "max-age=3600, public, must-revalidate, proxy-revalidate"; add_header X-Powered-By "W3 Total Cache/0.9.2.5b"; try_files $uri $uri/ $uri.html /index.php?$args; } location ~ \.(asf|asx|wax|wmv|wmx|avi|bmp|class|divx|doc|docx|eot|exe|gif|gz|gzip|ico|jpg|jpeg|jpe|mdb|mid|midi|mov|qt|mp3|m4a|mp4|m4v|mpeg|mpg|mpe|mpp|otf|odb|odc|odf|odg|odp|ods|odt|ogg|pdf|png|pot|pps|ppt|pptx|ra|ram|svg|svgz|swf|tar|tif|tiff|ttf|ttc|wav|wma|wri|xla|xls|xlsx|xlt|xlw|zip)$ { expires 31536000s; add_header Pragma "public"; add_header Cache-Control "max-age=31536000, public, must-revalidate, proxy-revalidate"; add_header X-Powered-By "W3 Total Cache/0.9.2.5b"; } # END W3TC Browser Cache # BEGIN W3TC Minify core rewrite ^/wp-content/w3tc/min/w3tc_rewrite_test$ /wp-content/w3tc/min/index.php?w3tc_rewrite_test=1 last; set $w3tc_enc ""; if ($http_accept_encoding ~ gzip) { set $w3tc_enc .gzip; } if (-f $request_filename$w3tc_enc) { rewrite (.*) $1$w3tc_enc break; } rewrite ^/wp-content/w3tc/min/(.+\.(css|js))$ /wp-content/w3tc/min/index.php?file=$1 last; # END W3TC Minify core # BEGIN W3TC Skip 404 error handling by WordPress for static files if (-f $request_filename) { break; } if (-d $request_filename) { break; } if ($request_uri ~ "(robots\.txt|sitemap(_index)?\.xml(\.gz)?|[a-z0-9_\-]+-sitemap([0-9]+)?\.xml(\.gz)?)") { break; } if ($request_uri ~* \.(css|js|htc|htm|rtf|rtx|svg|svgz|txt|xsd|xsl|xml|asf|asx|wax|wmv|wmx|avi|bmp|class|divx|doc|docx|eot|exe|gif|gz|gzip|ico|jpg|jpeg|jpe|mdb|mid|midi|mov|qt|mp3|m4a|mp4|m4v|mpeg|mpg|mpe|mpp|otf|odb|odc|odf|odg|odp|ods|odt|ogg|pdf|png|pot|pps|ppt|pptx|ra|ram|svg|svgz|swf|tar|tif|tiff|ttf|ttc|wav|wma|wri|xla|xls|xlsx|xlt|xlw|zip)$) { return 404; } # END W3TC Skip 404 error handling by WordPress for static files # BEGIN Better WP Security location ~ /\.ht { deny all; } location ~ wp-config.php { deny all; } location ~ readme.html { deny all; } location ~ readme.txt { deny all; } location ~ /install.php { deny all; } set $susquery 0; set $rule_2 0; set $rule_3 0; rewrite ^wp-includes/(.*).php /not_found last; rewrite ^/wp-admin/includes(.*)$ /not_found last; if ($request_method ~* "^(TRACE|DELETE|TRACK)"){ return 403; } set $rule_0 0; if ($request_method ~ "POST"){ set $rule_0 1; } if ($uri ~ "^(.*)wp-comments-post.php*"){ set $rule_0 2$rule_0; } if ($http_user_agent ~ "^$"){ set $rule_0 4$rule_0; } if ($rule_0 = "421"){ return 403; } if ($args ~* "\.\./") { set $susquery 1; } if ($args ~* "boot.ini") { set $susquery 1; } if ($args ~* "tag=") { set $susquery 1; } if ($args ~* "ftp:") { set $susquery 1; } if ($args ~* "http:") { set $susquery 1; } if ($args ~* "https:") { set $susquery 1; } if ($args ~* "(<|%3C).*script.*(>|%3E)") { set $susquery 1; } if ($args ~* "mosConfig_[a-zA-Z_]{1,21}(=|%3D)") { set $susquery 1; } if ($args ~* "base64_encode") { set $susquery 1; } if ($args ~* "(%24&x)") { set $susquery 1; } if ($args ~* "(\[|\]|\(|\)|<|>|ê|\"|;|\?|\*|=$)"){ set $susquery 1; } if ($args ~* "(&#x22;|&#x27;|&#x3C;|&#x3E;|&#x5C;|&#x7B;|&#x7C;|%24&x)"){ set $susquery 1; } if ($args ~* "(%0|%A|%B|%C|%D|%E|%F|127.0)") { set $susquery 1; } if ($args ~* "(globals|encode|localhost|loopback)") { set $susquery 1; } if ($args ~* "(request|select|insert|concat|union|declare)") { set $susquery 1; } if ($http_cookie !~* "wordpress_logged_in_" ) { set $susquery "${susquery}2"; set $rule_2 1; set $rule_3 1; } if ($susquery = 12) { return 403; } # END Better WP Security /etc/php5/fpm/php-fpm.conf: pid = /var/run/php5-fpm.pid error_log = /var/log/php5-fpm.log emergency_restart_threshold = 3 emergency_restart_interval = 1m process_control_timeout = 10s events.mechanism = epoll /etc/php5/fpm/php.ini (only options i changed): open_basedir ="/var/www/" disable_functions = pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,dl,system,shell_exec,fsockopen,parse_ini_file,passthru,popen,proc_open,proc_close,shell_exec,show_source,symlink,proc_close,proc_get_status,proc_nice,proc_open,proc_terminate,shell_exec ,highlight_file,escapeshellcmd,define_syslog_variables,posix_uname,posix_getpwuid,apache_child_terminate,posix_kill,posix_mkfifo,posix_setpgid,posix_setsid,posix_setuid,escapeshellarg,posix_uname,ftp_exec,ftp_connect,ftp_login,ftp_get,ftp_put,ftp_nb_fput,ftp_raw,ftp_rawlist,ini_alter,ini_restore,inject_code,syslog,openlog,define_syslog_variables,apache_setenv,mysql_pconnect,eval,phpAds_XmlRpc,phpA ds_remoteInfo,phpAds_xmlrpcEncode,phpAds_xmlrpcDecode,xmlrpc_entity_decode,fp,fput,virtual,show_source,pclose,readfile,wget expose_php = off max_execution_time = 30 max_input_time = 60 memory_limit = 128M display_errors = Off post_max_size = 2M allow_url_fopen = off default_socket_timeout = 60 APC settings: [APC] apc.enabled = 1 apc.shm_segments = 1 apc.shm_size = 64M apc.optimization = 0 apc.num_files_hint = 4096 apc.ttl = 60 apc.user_ttl = 7200 apc.gc_ttl = 0 apc.cache_by_default = 1 apc.filters = "" apc.mmap_file_mask = "/tmp/apc.XXXXXX" apc.slam_defense = 0 apc.file_update_protection = 2 apc.enable_cli = 0 apc.max_file_size = 10M apc.stat = 1 apc.write_lock = 1 apc.report_autofilter = 0 apc.include_once_override = 0 apc.localcache = 0 apc.localcache.size = 512 apc.coredump_unmap = 0 apc.stat_ctime = 0 /etc/php5/fpm/pool.d/www.conf user = www-data group = www-data listen = /var/run/php5-fpm.sock listen.owner = www-data listen.group = www-data listen.mode = 0666 pm = ondemand pm.max_children = 5 pm.process_idle_timeout = 3s; pm.max_requests = 50 I also started to get 404 errors in front page if i use W3 Total Cache's Page Cache (Disk Enhanced). It worked fine untill somedays ago, and then, out of nowhere, it started to happen. Tonight i will disable my mobile plugin and activate only W3 Total Cache to see if it's a conflict with them... And to finish all this, i have been getting this error: PHP Warning: apc_store(): Unable to allocate memory for pool. in /var/www/wp-content/plugins/w3-total-cache/lib/W3/Cache/Apc.php on line 41 I already modifed my APC settings, but no sucess. So... could anyone help me with those issuees, please? Ooohh... if it helps, i instaled PHP like this: sudo apt-get install php5-fpm php5-suhosin php-apc php5-gd php5-imagick php5-curl And Nginx from the official PPA. Sorry for my bad english and thanks for your time people! (:

    Read the article

  • An Introduction to ASP.NET Web API

    - by Rick Strahl
    Microsoft recently released ASP.NET MVC 4.0 and .NET 4.5 and along with it, the brand spanking new ASP.NET Web API. Web API is an exciting new addition to the ASP.NET stack that provides a new, well-designed HTTP framework for creating REST and AJAX APIs (API is Microsoft’s new jargon for a service, in case you’re wondering). Although Web API ships and installs with ASP.NET MVC 4, you can use Web API functionality in any ASP.NET project, including WebForms, WebPages and MVC or just a Web API by itself. And you can also self-host Web API in your own applications from Console, Desktop or Service applications. If you're interested in a high level overview on what ASP.NET Web API is and how it fits into the ASP.NET stack you can check out my previous post: Where does ASP.NET Web API fit? In the following article, I'll focus on a practical, by example introduction to ASP.NET Web API. All the code discussed in this article is available in GitHub: https://github.com/RickStrahl/AspNetWebApiArticle [republished from my Code Magazine Article and updated for RTM release of ASP.NET Web API] Getting Started To start I’ll create a new empty ASP.NET application to demonstrate that Web API can work with any kind of ASP.NET project. Although you can create a new project based on the ASP.NET MVC/Web API template to quickly get up and running, I’ll take you through the manual setup process, because one common use case is to add Web API functionality to an existing ASP.NET application. This process describes the steps needed to hook up Web API to any ASP.NET 4.0 application. Start by creating an ASP.NET Empty Project. Then create a new folder in the project called Controllers. Add a Web API Controller Class Once you have any kind of ASP.NET project open, you can add a Web API Controller class to it. Web API Controllers are very similar to MVC Controller classes, but they work in any kind of project. Add a new item to this folder by using the Add New Item option in Visual Studio and choose Web API Controller Class, as shown in Figure 1. Figure 1: This is how you create a new Controller Class in Visual Studio   Make sure that the name of the controller class includes Controller at the end of it, which is required in order for Web API routing to find it. Here, the name for the class is AlbumApiController. For this example, I’ll use a Music Album model to demonstrate basic behavior of Web API. The model consists of albums and related songs where an album has properties like Name, Artist and YearReleased and a list of songs with a SongName and SongLength as well as an AlbumId that links it to the album. You can find the code for the model (and the rest of these samples) on Github. To add the file manually, create a new folder called Model, and add a new class Album.cs and copy the code into it. There’s a static AlbumData class with a static CreateSampleAlbumData() method that creates a short list of albums on a static .Current that I’ll use for the examples. Before we look at what goes into the controller class though, let’s hook up routing so we can access this new controller. Hooking up Routing in Global.asax To start, I need to perform the one required configuration task in order for Web API to work: I need to configure routing to the controller. Like MVC, Web API uses routing to provide clean, extension-less URLs to controller methods. Using an extension method to ASP.NET’s static RouteTable class, you can use the MapHttpRoute() (in the System.Web.Http namespace) method to hook-up the routing during Application_Start in global.asax.cs shown in Listing 1.using System; using System.Web.Routing; using System.Web.Http; namespace AspNetWebApi { public class Global : System.Web.HttpApplication { protected void Application_Start(object sender, EventArgs e) { RouteTable.Routes.MapHttpRoute( name: "AlbumVerbs", routeTemplate: "albums/{title}", defaults: new { symbol = RouteParameter.Optional, controller="AlbumApi" } ); } } } This route configures Web API to direct URLs that start with an albums folder to the AlbumApiController class. Routing in ASP.NET is used to create extensionless URLs and allows you to map segments of the URL to specific Route Value parameters. A route parameter, with a name inside curly brackets like {name}, is mapped to parameters on the controller methods. Route parameters can be optional, and there are two special route parameters – controller and action – that determine the controller to call and the method to activate respectively. HTTP Verb Routing Routing in Web API can route requests by HTTP Verb in addition to standard {controller},{action} routing. For the first examples, I use HTTP Verb routing, as shown Listing 1. Notice that the route I’ve defined does not include an {action} route value or action value in the defaults. Rather, Web API can use the HTTP Verb in this route to determine the method to call the controller, and a GET request maps to any method that starts with Get. So methods called Get() or GetAlbums() are matched by a GET request and a POST request maps to a Post() or PostAlbum(). Web API matches a method by name and parameter signature to match a route, query string or POST values. In lieu of the method name, the [HttpGet,HttpPost,HttpPut,HttpDelete, etc] attributes can also be used to designate the accepted verbs explicitly if you don’t want to follow the verb naming conventions. Although HTTP Verb routing is a good practice for REST style resource APIs, it’s not required and you can still use more traditional routes with an explicit {action} route parameter. When {action} is supplied, the HTTP verb routing is ignored. I’ll talk more about alternate routes later. When you’re finished with initial creation of files, your project should look like Figure 2.   Figure 2: The initial project has the new API Controller Album model   Creating a small Album Model Now it’s time to create some controller methods to serve data. For these examples, I’ll use a very simple Album and Songs model to play with, as shown in Listing 2. public class Song { public string AlbumId { get; set; } [Required, StringLength(80)] public string SongName { get; set; } [StringLength(5)] public string SongLength { get; set; } } public class Album { public string Id { get; set; } [Required, StringLength(80)] public string AlbumName { get; set; } [StringLength(80)] public string Artist { get; set; } public int YearReleased { get; set; } public DateTime Entered { get; set; } [StringLength(150)] public string AlbumImageUrl { get; set; } [StringLength(200)] public string AmazonUrl { get; set; } public virtual List<Song> Songs { get; set; } public Album() { Songs = new List<Song>(); Entered = DateTime.Now; // Poor man's unique Id off GUID hash Id = Guid.NewGuid().GetHashCode().ToString("x"); } public void AddSong(string songName, string songLength = null) { this.Songs.Add(new Song() { AlbumId = this.Id, SongName = songName, SongLength = songLength }); } } Once the model has been created, I also added an AlbumData class that generates some static data in memory that is loaded onto a static .Current member. The signature of this class looks like this and that's what I'll access to retrieve the base data:public static class AlbumData { // sample data - static list public static List<Album> Current = CreateSampleAlbumData(); /// <summary> /// Create some sample data /// </summary> /// <returns></returns> public static List<Album> CreateSampleAlbumData() { … }} You can check out the full code for the data generation online. Creating an AlbumApiController Web API shares many concepts of ASP.NET MVC, and the implementation of your API logic is done by implementing a subclass of the System.Web.Http.ApiController class. Each public method in the implemented controller is a potential endpoint for the HTTP API, as long as a matching route can be found to invoke it. The class name you create should end in Controller, which is how Web API matches the controller route value to figure out which class to invoke. Inside the controller you can implement methods that take standard .NET input parameters and return .NET values as results. Web API’s binding tries to match POST data, route values, form values or query string values to your parameters. Because the controller is configured for HTTP Verb based routing (no {action} parameter in the route), any methods that start with Getxxxx() are called by an HTTP GET operation. You can have multiple methods that match each HTTP Verb as long as the parameter signatures are different and can be matched by Web API. In Listing 3, I create an AlbumApiController with two methods to retrieve a list of albums and a single album by its title .public class AlbumApiController : ApiController { public IEnumerable<Album> GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); return albums; } public Album GetAlbum(string title) { var album = AlbumData.Current .SingleOrDefault(alb => alb.AlbumName.Contains(title)); return album; }} To access the first two requests, you can use the following URLs in your browser: http://localhost/aspnetWebApi/albumshttp://localhost/aspnetWebApi/albums/Dirty%20Deeds Note that you’re not specifying the actions of GetAlbum or GetAlbums in these URLs. Instead Web API’s routing uses HTTP GET verb to route to these methods that start with Getxxx() with the first mapping to the parameterless GetAlbums() method and the latter to the GetAlbum(title) method that receives the title parameter mapped as optional in the route. Content Negotiation When you access any of the URLs above from a browser, you get either an XML or JSON result returned back. The album list result for Chrome 17 and Internet Explorer 9 is shown Figure 3. Figure 3: Web API responses can vary depending on the browser used, demonstrating Content Negotiation in action as these two browsers send different HTTP Accept headers.   Notice that the results are not the same: Chrome returns an XML response and IE9 returns a JSON response. Whoa, what’s going on here? Shouldn’t we see the same result in both browsers? Actually, no. Web API determines what type of content to return based on Accept headers. HTTP clients, like browsers, use Accept headers to specify what kind of content they’d like to see returned. Browsers generally ask for HTML first, followed by a few additional content types. Chrome (and most other major browsers) ask for: Accept: text/html, application/xhtml+xml,application/xml; q=0.9,*/*;q=0.8 IE9 asks for: Accept: text/html, application/xhtml+xml, */* Note that Chrome’s Accept header includes application/xml, which Web API finds in its list of supported media types and returns an XML response. IE9 does not include an Accept header type that works on Web API by default, and so it returns the default format, which is JSON. This is an important and very useful feature that was missing from any previous Microsoft REST tools: Web API automatically switches output formats based on HTTP Accept headers. Nowhere in the server code above do you have to explicitly specify the output format. Rather, Web API determines what format the client is requesting based on the Accept headers and automatically returns the result based on the available formatters. This means that a single method can handle both XML and JSON results.. Using this simple approach makes it very easy to create a single controller method that can return JSON, XML, ATOM or even OData feeds by providing the appropriate Accept header from the client. By default you don’t have to worry about the output format in your code. Note that you can still specify an explicit output format if you choose, either globally by overriding the installed formatters, or individually by returning a lower level HttpResponseMessage instance and setting the formatter explicitly. More on that in a minute. Along the same lines, any content sent to the server via POST/PUT is parsed by Web API based on the HTTP Content-type of the data sent. The same formats allowed for output are also allowed on input. Again, you don’t have to do anything in your code – Web API automatically performs the deserialization from the content. Accessing Web API JSON Data with jQuery A very common scenario for Web API endpoints is to retrieve data for AJAX calls from the Web browser. Because JSON is the default format for Web API, it’s easy to access data from the server using jQuery and its getJSON() method. This example receives the albums array from GetAlbums() and databinds it into the page using knockout.js.$.getJSON("albums/", function (albums) { // make knockout template visible $(".album").show(); // create view object and attach array var view = { albums: albums }; ko.applyBindings(view); }); Figure 4 shows this and the next example’s HTML output. You can check out the complete HTML and script code at http://goo.gl/Ix33C (.html) and http://goo.gl/tETlg (.js). Figu Figure 4: The Album Display sample uses JSON data loaded from Web API.   The result from the getJSON() call is a JavaScript object of the server result, which comes back as a JavaScript array. In the code, I use knockout.js to bind this array into the UI, which as you can see, requires very little code, instead using knockout’s data-bind attributes to bind server data to the UI. Of course, this is just one way to use the data – it’s entirely up to you to decide what to do with the data in your client code. Along the same lines, I can retrieve a single album to display when the user clicks on an album. The response returns the album information and a child array with all the songs. The code to do this is very similar to the last example where we pulled the albums array:$(".albumlink").live("click", function () { var id = $(this).data("id"); // title $.getJSON("albums/" + id, function (album) { ko.applyBindings(album, $("#divAlbumDialog")[0]); $("#divAlbumDialog").show(); }); }); Here the URL looks like this: /albums/Dirty%20Deeds, where the title is the ID captured from the clicked element’s data ID attribute. Explicitly Overriding Output Format When Web API automatically converts output using content negotiation, it does so by matching Accept header media types to the GlobalConfiguration.Configuration.Formatters and the SupportedMediaTypes of each individual formatter. You can add and remove formatters to globally affect what formats are available and it’s easy to create and plug in custom formatters.The example project includes a JSONP formatter that can be plugged in to provide JSONP support for requests that have a callback= querystring parameter. Adding, removing or replacing formatters is a global option you can use to manipulate content. It’s beyond the scope of this introduction to show how it works, but you can review the sample code or check out my blog entry on the subject (http://goo.gl/UAzaR). If automatic processing is not desirable in a particular Controller method, you can override the response output explicitly by returning an HttpResponseMessage instance. HttpResponseMessage is similar to ActionResult in ASP.NET MVC in that it’s a common way to return an abstract result message that contains content. HttpResponseMessage s parsed by the Web API framework using standard interfaces to retrieve the response data, status code, headers and so on[MS2] . Web API turns every response – including those Controller methods that return static results – into HttpResponseMessage instances. Explicitly returning an HttpResponseMessage instance gives you full control over the output and lets you mostly bypass WebAPI’s post-processing of the HTTP response on your behalf. HttpResponseMessage allows you to customize the response in great detail. Web API’s attention to detail in the HTTP spec really shows; many HTTP options are exposed as properties and enumerations with detailed IntelliSense comments. Even if you’re new to building REST-based interfaces, the API guides you in the right direction for returning valid responses and response codes. For example, assume that I always want to return JSON from the GetAlbums() controller method and ignore the default media type content negotiation. To do this, I can adjust the output format and headers as shown in Listing 4.public HttpResponseMessage GetAlbums() { var albums = AlbumData.Current.OrderBy(alb => alb.Artist); // Create a new HttpResponse with Json Formatter explicitly var resp = new HttpResponseMessage(HttpStatusCode.OK); resp.Content = new ObjectContent<IEnumerable<Album>>( albums, new JsonMediaTypeFormatter()); // Get Default Formatter based on Content Negotiation //var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); resp.Headers.ConnectionClose = true; resp.Headers.CacheControl = new CacheControlHeaderValue(); resp.Headers.CacheControl.Public = true; return resp; } This example returns the same IEnumerable<Album> value, but it wraps the response into an HttpResponseMessage so you can control the entire HTTP message result including the headers, formatter and status code. In Listing 4, I explicitly specify the formatter using the JsonMediaTypeFormatter to always force the content to JSON.  If you prefer to use the default content negotiation with HttpResponseMessage results, you can create the Response instance using the Request.CreateResponse method:var resp = Request.CreateResponse<IEnumerable<Album>>(HttpStatusCode.OK, albums); This provides you an HttpResponse object that's pre-configured with the default formatter based on Content Negotiation. Once you have an HttpResponse object you can easily control most HTTP aspects on this object. What's sweet here is that there are many more detailed properties on HttpResponse than the core ASP.NET Response object, with most options being explicitly configurable with enumerations that make it easy to pick the right headers and response codes from a list of valid codes. It makes HTTP features available much more discoverable even for non-hardcore REST/HTTP geeks. Non-Serialized Results The output returned doesn’t have to be a serialized value but can also be raw data, like strings, binary data or streams. You can use the HttpResponseMessage.Content object to set a number of common Content classes. Listing 5 shows how to return a binary image using the ByteArrayContent class from a Controller method. [HttpGet] public HttpResponseMessage AlbumArt(string title) { var album = AlbumData.Current.FirstOrDefault(abl => abl.AlbumName.StartsWith(title)); if (album == null) { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found")); return resp; } // kinda silly - we would normally serve this directly // but hey - it's a demo. var http = new WebClient(); var imageData = http.DownloadData(album.AlbumImageUrl); // create response and return var result = new HttpResponseMessage(HttpStatusCode.OK); result.Content = new ByteArrayContent(imageData); result.Content.Headers.ContentType = new MediaTypeHeaderValue("image/jpeg"); return result; } The image retrieval from Amazon is contrived, but it shows how to return binary data using ByteArrayContent. It also demonstrates that you can easily return multiple types of content from a single controller method, which is actually quite common. If an error occurs - such as a resource can’t be found or a validation error – you can return an error response to the client that’s very specific to the error. In GetAlbumArt(), if the album can’t be found, we want to return a 404 Not Found status (and realistically no error, as it’s an image). Note that if you are not using HTTP Verb-based routing or not accessing a method that starts with Get/Post etc., you have to specify one or more HTTP Verb attributes on the method explicitly. Here, I used the [HttpGet] attribute to serve the image. Another option to handle the error could be to return a fixed placeholder image if no album could be matched or the album doesn’t have an image. When returning an error code, you can also return a strongly typed response to the client. For example, you can set the 404 status code and also return a custom error object (ApiMessageError is a class I defined) like this:return Request.CreateResponse<ApiMessageError>( HttpStatusCode.NotFound, new ApiMessageError("Album not found") );   If the album can be found, the image will be returned. The image is downloaded into a byte[] array, and then assigned to the result’s Content property. I created a new ByteArrayContent instance and assigned the image’s bytes and the content type so that it displays properly in the browser. There are other content classes available: StringContent, StreamContent, ByteArrayContent, MultipartContent, and ObjectContent are at your disposal to return just about any kind of content. You can create your own Content classes if you frequently return custom types and handle the default formatter assignments that should be used to send the data out . Although HttpResponseMessage results require more code than returning a plain .NET value from a method, it allows much more control over the actual HTTP processing than automatic processing. It also makes it much easier to test your controller methods as you get a response object that you can check for specific status codes and output messages rather than just a result value. Routing Again Ok, let’s get back to the image example. Using the original routing we have setup using HTTP Verb routing there's no good way to serve the image. In order to return my album art image I’d like to use a URL like this: http://localhost/aspnetWebApi/albums/Dirty%20Deeds/image In order to create a URL like this, I have to create a new Controller because my earlier routes pointed to the AlbumApiController using HTTP Verb routing. HTTP Verb based routing is great for representing a single set of resources such as albums. You can map operations like add, delete, update and read easily using HTTP Verbs. But you cannot mix action based routing into a an HTTP Verb routing controller - you can only map HTTP Verbs and each method has to be unique based on parameter signature. You can't have multiple GET operations to methods with the same signature. So GetImage(string id) and GetAlbum(string title) are in conflict in an HTTP GET routing scenario. In fact, I was unable to make the above Image URL work with any combination of HTTP Verb plus Custom routing using the single Albums controller. There are number of ways around this, but all involve additional controllers.  Personally, I think it’s easier to use explicit Action routing and then add custom routes if you need to simplify your URLs further. So in order to accommodate some of the other examples, I created another controller – AlbumRpcApiController – to handle all requests that are explicitly routed via actions (/albums/rpc/AlbumArt) or are custom routed with explicit routes defined in the HttpConfiguration. I added the AlbumArt() method to this new AlbumRpcApiController class. For the image URL to work with the new AlbumRpcApiController, you need a custom route placed before the default route from Listing 1.RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); Now I can use either of the following URLs to access the image: Custom route: (/albums/rpc/{title}/image)http://localhost/aspnetWebApi/albums/PowerAge/image Action route: (/albums/rpc/action/{title})http://localhost/aspnetWebAPI/albums/rpc/albumart/PowerAge Sending Data to the Server To send data to the server and add a new album, you can use an HTTP POST operation. Since I’m using HTTP Verb-based routing in the original AlbumApiController, I can implement a method called PostAlbum()to accept a new album from the client. Listing 6 shows the Web API code to add a new album.public HttpResponseMessage PostAlbum(Album album) { if (!this.ModelState.IsValid) { // my custom error class var error = new ApiMessageError() { message = "Model is invalid" }; // add errors into our client error model for client foreach (var prop in ModelState.Values) { var modelError = prop.Errors.FirstOrDefault(); if (!string.IsNullOrEmpty(modelError.ErrorMessage)) error.errors.Add(modelError.ErrorMessage); else error.errors.Add(modelError.Exception.Message); } return Request.CreateResponse<ApiMessageError>(HttpStatusCode.Conflict, error); } // update song id which isn't provided foreach (var song in album.Songs) song.AlbumId = album.Id; // see if album exists already var matchedAlbum = AlbumData.Current .SingleOrDefault(alb => alb.Id == album.Id || alb.AlbumName == album.AlbumName); if (matchedAlbum == null) AlbumData.Current.Add(album); else matchedAlbum = album; // return a string to show that the value got here var resp = Request.CreateResponse(HttpStatusCode.OK, string.Empty); resp.Content = new StringContent(album.AlbumName + " " + album.Entered.ToString(), Encoding.UTF8, "text/plain"); return resp; } The PostAlbum() method receives an album parameter, which is automatically deserialized from the POST buffer the client sent. The data passed from the client can be either XML or JSON. Web API automatically figures out what format it needs to deserialize based on the content type and binds the content to the album object. Web API uses model binding to bind the request content to the parameter(s) of controller methods. Like MVC you can check the model by looking at ModelState.IsValid. If it’s not valid, you can run through the ModelState.Values collection and check each binding for errors. Here I collect the error messages into a string array that gets passed back to the client via the result ApiErrorMessage object. When a binding error occurs, you’ll want to return an HTTP error response and it’s best to do that with an HttpResponseMessage result. In Listing 6, I used a custom error class that holds a message and an array of detailed error messages for each binding error. I used this object as the content to return to the client along with my Conflict HTTP Status Code response. If binding succeeds, the example returns a string with the name and date entered to demonstrate that you captured the data. Normally, a method like this should return a Boolean or no response at all (HttpStatusCode.NoConent). The sample uses a simple static list to hold albums, so once you’ve added the album using the Post operation, you can hit the /albums/ URL to see that the new album was added. The client jQuery code to call the POST operation from the client with jQuery is shown in Listing 7. var id = new Date().getTime().toString(); var album = { "Id": id, "AlbumName": "Power Age", "Artist": "AC/DC", "YearReleased": 1977, "Entered": "2002-03-11T18:24:43.5580794-10:00", "AlbumImageUrl": http://ecx.images-amazon.com/images/…, "AmazonUrl": http://www.amazon.com/…, "Songs": [ { "SongName": "Rock 'n Roll Damnation", "SongLength": 3.12}, { "SongName": "Downpayment Blues", "SongLength": 4.22 }, { "SongName": "Riff Raff", "SongLength": 2.42 } ] } $.ajax( { url: "albums/", type: "POST", contentType: "application/json", data: JSON.stringify(album), processData: false, beforeSend: function (xhr) { // not required since JSON is default output xhr.setRequestHeader("Accept", "application/json"); }, success: function (result) { // reload list of albums page.loadAlbums(); }, error: function (xhr, status, p3, p4) { var err = "Error"; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); The code in Listing 7 creates an album object in JavaScript to match the structure of the .NET Album class. This object is passed to the $.ajax() function to send to the server as POST. The data is turned into JSON and the content type set to application/json so that the server knows what to convert when deserializing in the Album instance. The jQuery code hooks up success and failure events. Success returns the result data, which is a string that’s echoed back with an alert box. If an error occurs, jQuery returns the XHR instance and status code. You can check the XHR to see if a JSON object is embedded and if it is, you can extract it by de-serializing it and accessing the .message property. REST standards suggest that updates to existing resources should use PUT operations. REST standards aside, I’m not a big fan of separating out inserts and updates so I tend to have a single method that handles both. But if you want to follow REST suggestions, you can create a PUT method that handles updates by forwarding the PUT operation to the POST method:public HttpResponseMessage PutAlbum(Album album) { return PostAlbum(album); } To make the corresponding $.ajax() call, all you have to change from Listing 7 is the type: from POST to PUT. Model Binding with UrlEncoded POST Variables In the example in Listing 7 I used JSON objects to post a serialized object to a server method that accepted an strongly typed object with the same structure, which is a common way to send data to the server. However, Web API supports a number of different ways that data can be received by server methods. For example, another common way is to use plain UrlEncoded POST  values to send to the server. Web API supports Model Binding that works similar (but not the same) as MVC's model binding where POST variables are mapped to properties of object parameters of the target method. This is actually quite common for AJAX calls that want to avoid serialization and the potential requirement of a JSON parser on older browsers. For example, using jQUery you might use the $.post() method to send a new album to the server (albeit one without songs) using code like the following:$.post("albums/",{AlbumName: "Dirty Deeds", YearReleased: 1976 … },albumPostCallback); Although the code looks very similar to the client code we used before passing JSON, here the data passed is URL encoded values (AlbumName=Dirty+Deeds&YearReleased=1976 etc.). Web API then takes this POST data and maps each of the POST values to the properties of the Album object in the method's parameter. Although the client code is different the server can both handle the JSON object, or the UrlEncoded POST values. Dynamic Access to POST Data There are also a few options available to dynamically access POST data, if you know what type of data you're dealing with. If you have POST UrlEncoded values, you can dynamically using a FormsDataCollection:[HttpPost] public string PostAlbum(FormDataCollection form) { return string.Format("{0} - released {1}", form.Get("AlbumName"),form.Get("RearReleased")); } The FormDataCollection is a very simple object, that essentially provides the same functionality as Request.Form[] in ASP.NET. Request.Form[] still works if you're running hosted in an ASP.NET application. However as a general rule, while ASP.NET's functionality is always available when running Web API hosted inside of an  ASP.NET application, using the built in classes specific to Web API makes it possible to run Web API applications in a self hosted environment outside of ASP.NET. If your client is sending JSON to your server, and you don't want to map the JSON to a strongly typed object because you only want to retrieve a few simple values, you can also accept a JObject parameter in your API methods:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } There quite a few options available to you to receive data with Web API, which gives you more choices for the right tool for the job. Unfortunately one shortcoming of Web API is that POST data is always mapped to a single parameter. This means you can't pass multiple POST parameters to methods that receive POST data. It's possible to accept multiple parameters, but only one can map to the POST content - the others have to come from the query string or route values. I have a couple of Blog POSTs that explain what works and what doesn't here: Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API   Handling Delete Operations Finally, to round out the server API code of the album example we've been discussin, here’s the DELETE verb controller method that allows removal of an album by its title:public HttpResponseMessage DeleteAlbum(string title) { var matchedAlbum = AlbumData.Current.Where(alb => alb.AlbumName == title) .SingleOrDefault(); if (matchedAlbum == null) return new HttpResponseMessage(HttpStatusCode.NotFound); AlbumData.Current.Remove(matchedAlbum); return new HttpResponseMessage(HttpStatusCode.NoContent); } To call this action method using jQuery, you can use:$(".removeimage").live("click", function () { var $el = $(this).parent(".album"); var txt = $el.find("a").text(); $.ajax({ url: "albums/" + encodeURIComponent(txt), type: "Delete", success: function (result) { $el.fadeOut().remove(); }, error: jqError }); }   Note the use of the DELETE verb in the $.ajax() call, which routes to DeleteAlbum on the server. DELETE is a non-content operation, so you supply a resource ID (the title) via route value or the querystring. Routing Conflicts In all requests with the exception of the AlbumArt image example shown so far, I used HTTP Verb routing that I set up in Listing 1. HTTP Verb Routing is a recommendation that is in line with typical REST access to HTTP resources. However, it takes quite a bit of effort to create REST-compliant API implementations based only on HTTP Verb routing only. You saw one example that didn’t really fit – the return of an image where I created a custom route albums/{title}/image that required creation of a second controller and a custom route to work. HTTP Verb routing to a controller does not mix with custom or action routing to the same controller because of the limited mapping of HTTP verbs imposed by HTTP Verb routing. To understand some of the problems with verb routing, let’s look at another example. Let’s say you create a GetSortableAlbums() method like this and add it to the original AlbumApiController accessed via HTTP Verb routing:[HttpGet] public IQueryable<Album> SortableAlbums() { var albums = AlbumData.Current; // generally should be done only on actual queryable results (EF etc.) // Done here because we're running with a static list but otherwise might be slow return albums.AsQueryable(); } If you compile this code and try to now access the /albums/ link, you get an error: Multiple Actions were found that match the request. HTTP Verb routing only allows access to one GET operation per parameter/route value match. If more than one method exists with the same parameter signature, it doesn’t work. As I mentioned earlier for the image display, the only solution to get this method to work is to throw it into another controller. Because I already set up the AlbumRpcApiController I can add the method there. First, I should rename the method to SortableAlbums() so I’m not using a Get prefix for the method. This also makes the action parameter look cleaner in the URL - it looks less like a method and more like a noun. I can then create a new route that handles direct-action mapping:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/rpc/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumRpcApi", action = "GetAblums" } ); As I am explicitly adding a route segment – rpc – into the route template, I can now reference explicit methods in the Web API controller using URLs like this: http://localhost/AspNetWebApi/rpc/SortableAlbums Error Handling I’ve already done some minimal error handling in the examples. For example in Listing 6, I detected some known-error scenarios like model validation failing or a resource not being found and returning an appropriate HttpResponseMessage result. But what happens if your code just blows up or causes an exception? If you have a controller method, like this:[HttpGet] public void ThrowException() { throw new UnauthorizedAccessException("Unauthorized Access Sucka"); } You can call it with this: http://localhost/AspNetWebApi/albums/rpc/ThrowException The default exception handling displays a 500-status response with the serialized exception on the local computer only. When you connect from a remote computer, Web API throws back a 500  HTTP Error with no data returned (IIS then adds its HTML error page). The behavior is configurable in the GlobalConfiguration:GlobalConfiguration .Configuration .IncludeErrorDetailPolicy = IncludeErrorDetailPolicy.Never; If you want more control over your error responses sent from code, you can throw explicit error responses yourself using HttpResponseException. When you throw an HttpResponseException the response parameter is used to generate the output for the Controller action. [HttpGet] public void ThrowError() { var resp = Request.CreateResponse<ApiMessageError>( HttpStatusCode.BadRequest, new ApiMessageError("Your code stinks!")); throw new HttpResponseException(resp); } Throwing an HttpResponseException stops the processing of the controller method and immediately returns the response you passed to the exception. Unlike other Exceptions fired inside of WebAPI, HttpResponseException bypasses the Exception Filters installed and instead just outputs the response you provide. In this case, the serialized ApiMessageError result string is returned in the default serialization format – XML or JSON. You can pass any content to HttpResponseMessage, which includes creating your own exception objects and consistently returning error messages to the client. Here’s a small helper method on the controller that you might use to send exception info back to the client consistently:private void ThrowSafeException(string message, HttpStatusCode statusCode = HttpStatusCode.BadRequest) { var errResponse = Request.CreateResponse<ApiMessageError>(statusCode, new ApiMessageError() { message = message }); throw new HttpResponseException(errResponse); } You can then use it to output any captured errors from code:[HttpGet] public void ThrowErrorSafe() { try { List<string> list = null; list.Add("Rick"); } catch (Exception ex) { ThrowSafeException(ex.Message); } }   Exception Filters Another more global solution is to create an Exception Filter. Filters in Web API provide the ability to pre- and post-process controller method operations. An exception filter looks at all exceptions fired and then optionally creates an HttpResponseMessage result. Listing 8 shows an example of a basic Exception filter implementation.public class UnhandledExceptionFilter : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { HttpStatusCode status = HttpStatusCode.InternalServerError; var exType = context.Exception.GetType(); if (exType == typeof(UnauthorizedAccessException)) status = HttpStatusCode.Unauthorized; else if (exType == typeof(ArgumentException)) status = HttpStatusCode.NotFound; var apiError = new ApiMessageError() { message = context.Exception.Message }; // create a new response and attach our ApiError object // which now gets returned on ANY exception result var errorResponse = context.Request.CreateResponse<ApiMessageError>(status, apiError); context.Response = errorResponse; base.OnException(context); } } Exception Filter Attributes can be assigned to an ApiController class like this:[UnhandledExceptionFilter] public class AlbumRpcApiController : ApiController or you can globally assign it to all controllers by adding it to the HTTP Configuration's Filters collection:GlobalConfiguration.Configuration.Filters.Add(new UnhandledExceptionFilter()); The latter is a great way to get global error trapping so that all errors (short of hard IIS errors and explicit HttpResponseException errors) return a valid error response that includes error information in the form of a known-error object. Using a filter like this allows you to throw an exception as you normally would and have your filter create a response in the appropriate output format that the client expects. For example, an AJAX application can on failure expect to see a JSON error result that corresponds to the real error that occurred rather than a 500 error along with HTML error page that IIS throws up. You can even create some custom exceptions so you can differentiate your own exceptions from unhandled system exceptions - you often don't want to display error information from 'unknown' exceptions as they may contain sensitive system information or info that's not generally useful to users of your application/site. This is just one example of how ASP.NET Web API is configurable and extensible. Exception filters are just one example of how you can plug-in into the Web API request flow to modify output. Many more hooks exist and I’ll take a closer look at extensibility in Part 2 of this article in the future. Summary Web API is a big improvement over previous Microsoft REST and AJAX toolkits. The key features to its usefulness are its ease of use with simple controller based logic, familiar MVC-style routing, low configuration impact, extensibility at all levels and tight attention to exposing and making HTTP semantics easily discoverable and easy to use. Although none of the concepts used in Web API are new or radical, Web API combines the best of previous platforms into a single framework that’s highly functional, easy to work with, and extensible to boot. I think that Microsoft has hit a home run with Web API. Related Resources Where does ASP.NET Web API fit? Sample Source Code on GitHub Passing multiple POST parameters to Web API Controller Methods Mapping UrlEncoded POST Values in ASP.NET Web API Creating a JSONP Formatter for ASP.NET Web API Removing the XML Formatter from ASP.NET Web API Applications© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • SQL Monitor’s data repository: Alerts

    - by Chris Lambrou
    In my previous post, I introduced the SQL Monitor data repository, and described how the monitored objects are stored in a hierarchy in the data schema, in a series of tables with a _Keys suffix. In this post I had planned to describe how the actual data for the monitored objects is stored in corresponding tables with _StableSamples and _UnstableSamples suffixes. However, I’m going to postpone that until my next post, as I’ve had a request from a SQL Monitor user to explain how alerts are stored. In the SQL Monitor data repository, alerts are stored in tables belonging to the alert schema, which contains the following five tables: alert.Alert alert.Alert_Cleared alert.Alert_Comment alert.Alert_Severity alert.Alert_Type In this post, I’m only going to cover the alert.Alert and alert.Alert_Type tables. I may cover the other three tables in a later post. The most important table in this schema is alert.Alert, as each row in this table corresponds to a single alert. So let’s have a look at it. SELECT TOP 100 AlertId, AlertType, TargetObject, [Read], SubType FROM alert.Alert ORDER BY AlertId DESC;  AlertIdAlertTypeTargetObjectReadSubType 165550397:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,9:SqlServer,1,4:Name,s0:,10 265549387:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,7:Machine,1,4:Name,s0:,10 365548187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 465547157:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 565546147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 665545187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 765544157:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 865543147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 965542187:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 1065541147:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 11…     So what are we seeing here, then? Well, AlertId is an auto-incrementing identity column, so ORDER BY AlertId DESC ensures that we see the most recent alerts first. AlertType indicates the type of each alert, such as Job failed (6), Backup overdue (14) or Long-running query (12). The TargetObject column indicates which monitored object the alert is associated with. The Read column acts as a flag to indicate whether or not the alert has been read. And finally the SubType column is used in the case of a Custom metric (40) alert, to indicate which custom metric the alert pertains to. Okay, now lets look at some of those columns in more detail. The AlertType column is an easy one to start with, and it brings use nicely to the next table, data.Alert_Type. Let’s have a look at what’s in this table: SELECT AlertType, Event, Monitoring, Name, Description FROM alert.Alert_Type ORDER BY AlertType;  AlertTypeEventMonitoringNameDescription 1100Processor utilizationProcessor utilization (CPU) on a host machine stays above a threshold percentage for longer than a specified duration 2210SQL Server error log entryAn error is written to the SQL Server error log with a severity level above a specified value. 3310Cluster failoverThe active cluster node fails, causing the SQL Server instance to switch nodes. 4410DeadlockSQL deadlock occurs. 5500Processor under-utilizationProcessor utilization (CPU) on a host machine remains below a threshold percentage for longer than a specified duration 6610Job failedA job does not complete successfully (the job returns an error code). 7700Machine unreachableHost machine (Windows server) cannot be contacted on the network. 8800SQL Server instance unreachableThe SQL Server instance is not running or cannot be contacted on the network. 9900Disk spaceDisk space used on a logical disk drive is above a defined threshold for longer than a specified duration. 101000Physical memoryPhysical memory (RAM) used on the host machine stays above a threshold percentage for longer than a specified duration. 111100Blocked processSQL process is blocked for longer than a specified duration. 121200Long-running queryA SQL query runs for longer than a specified duration. 131400Backup overdueNo full backup exists, or the last full backup is older than a specified time. 141500Log backup overdueNo log backup exists, or the last log backup is older than a specified time. 151600Database unavailableDatabase changes from Online to any other state. 161700Page verificationTorn Page Detection or Page Checksum is not enabled for a database. 171800Integrity check overdueNo entry for an integrity check (DBCC DBINFO returns no date for dbi_dbccLastKnownGood field), or the last check is older than a specified time. 181900Fragmented indexesFragmentation level of one or more indexes is above a threshold percentage. 192400Job duration unusualThe duration of a SQL job duration deviates from its baseline duration by more than a threshold percentage. 202501Clock skewSystem clock time on the Base Monitor computer differs from the system clock time on a monitored SQL Server host machine by a specified number of seconds. 212700SQL Server Agent Service statusThe SQL Server Agent Service status matches the status specified. 222800SQL Server Reporting Service statusThe SQL Server Reporting Service status matches the status specified. 232900SQL Server Full Text Search Service statusThe SQL Server Full Text Search Service status matches the status specified. 243000SQL Server Analysis Service statusThe SQL Server Analysis Service status matches the status specified. 253100SQL Server Integration Service statusThe SQL Server Integration Service status matches the status specified. 263300SQL Server Browser Service statusThe SQL Server Browser Service status matches the status specified. 273400SQL Server VSS Writer Service statusThe SQL Server VSS Writer status matches the status specified. 283501Deadlock trace flag disabledThe monitored SQL Server’s trace flag cannot be enabled. 293600Monitoring stopped (host machine credentials)SQL Monitor cannot contact the host machine because authentication failed. 303700Monitoring stopped (SQL Server credentials)SQL Monitor cannot contact the SQL Server instance because authentication failed. 313800Monitoring error (host machine data collection)SQL Monitor cannot collect data from the host machine. 323900Monitoring error (SQL Server data collection)SQL Monitor cannot collect data from the SQL Server instance. 334000Custom metricThe custom metric value has passed an alert threshold. 344100Custom metric collection errorSQL Monitor cannot collect custom metric data from the target object. Basically, alert.Alert_Type is just a big reference table containing information about the 34 different alert types supported by SQL Monitor (note that the largest id is 41, not 34 – some alert types have been retired since SQL Monitor was first developed). The Name and Description columns are self evident, and I’m going to skip over the Event and Monitoring columns as they’re not very interesting. The AlertId column is the primary key, and is referenced by AlertId in the alert.Alert table. As such, we can rewrite our earlier query to join these two tables, in order to provide a more readable view of the alerts: SELECT TOP 100 AlertId, Name, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType ORDER BY AlertId DESC;  AlertIdNameTargetObjectReadSubType 165550Monitoring error (SQL Server data collection)7:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,9:SqlServer,1,4:Name,s0:,00 265549Monitoring error (host machine data collection)7:Cluster,1,4:Name,s29:srp-mr03.testnet.red-gate.com,7:Machine,1,4:Name,s0:,00 365548Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 465547Log backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 565546Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s15:FavouriteThings,00 665545Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 765544Log backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 865543Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,00 965542Integrity check overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 1065541Backup overdue7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s4:msdb,00 Okay, the next column to discuss in the alert.Alert table is TargetObject. Oh boy, this one’s a bit tricky! The TargetObject of an alert is a serialized string representation of the position in the monitored object hierarchy of the object to which the alert pertains. The serialization format is somewhat convenient for parsing in the C# source code of SQL Monitor, and has some helpful characteristics, but it’s probably very awkward to manipulate in T-SQL. I could document the serialization format here, but it would be very dry reading, so perhaps it’s best to consider an example from the table above. Have a look at the alert with an AlertID of 65543. It’s a Backup overdue alert for the SqlMonitorData database running on the default instance of granger, my laptop. Each different alert type is associated with a specific type of monitored object in the object hierarchy (I described the hierarchy in my previous post). The Backup overdue alert is associated with databases, whose position in the object hierarchy is root → Cluster → SqlServer → Database. The TargetObject value identifies the target object by specifying the key properties at each level in the hierarchy, thus: Cluster: Name = "granger" SqlServer: Name = "" (an empty string, denoting the default instance) Database: Name = "SqlMonitorData" Well, look at the actual TargetObject value for this alert: "7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s14:SqlMonitorData,". It is indeed composed of three parts, one for each level in the hierarchy: Cluster: "7:Cluster,1,4:Name,s7:granger," SqlServer: "9:SqlServer,1,4:Name,s0:," Database: "8:Database,1,4:Name,s14:SqlMonitorData," Each part is handled in exactly the same way, so let’s concentrate on the first part, "7:Cluster,1,4:Name,s7:granger,". It comprises the following: "7:Cluster," – This identifies the level in the hierarchy. "1," – This indicates how many different key properties there are to uniquely identify a cluster (we saw in my last post that each cluster is identified by a single property, its Name). "4:Name,s14:SqlMonitorData," – This represents the Name property, and its corresponding value, SqlMonitorData. It’s split up like this: "4:Name," – Indicates the name of the key property. "s" – Indicates the type of the key property, in this case, it’s a string. "14:SqlMonitorData," – Indicates the value of the property. At this point, you might be wondering about the format of some of these strings. Why is the string "Cluster" stored as "7:Cluster,"? Well an encoding scheme is used, which consists of the following: "7" – This is the length of the string "Cluster" ":" – This is a delimiter between the length of the string and the actual string’s contents. "Cluster" – This is the string itself. 7 characters. "," – This is a final terminating character that indicates the end of the encoded string. You can see that "4:Name,", "8:Database," and "14:SqlMonitorData," also conform to the same encoding scheme. In the example above, the "s" character is used to indicate that the value of the Name property is a string. If you explore the TargetObject property of alerts in your own SQL Monitor data repository, you might find other characters used for other non-string key property values. The different value types you might possibly encounter are as follows: "I" – Denotes a bigint value. For example, "I65432,". "g" – Denotes a GUID value. For example, "g32116732-63ae-4ab5-bd34-7dfdfb084c18,". "d" – Denotes a datetime value. For example, "d634815384796832438,". The value is stored as a bigint, rather than a native SQL datetime value. I’ll describe how datetime values are handled in the SQL Monitor data repostory in a future post. I suggest you have a look at the alerts in your own SQL Monitor data repository for further examples, so you can see how the TargetObject values are composed for each of the different types of alert. Let me give one further example, though, that represents a Custom metric alert, as this will help in describing the final column of interest in the alert.Alert table, SubType. Let me show you the alert I’m interested in: SELECT AlertId, a.AlertType, Name, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType WHERE AlertId = 65769;  AlertIdAlertTypeNameTargetObjectReadSubType 16576940Custom metric7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s6:master,12:CustomMetric,1,8:MetricId,I2,02 An AlertType value of 40 corresponds to the Custom metric alert type. The Name taken from the alert.Alert_Type table is simply Custom metric, but this doesn’t tell us anything about the specific custom metric that this alert pertains to. That’s where the SubType value comes in. For custom metric alerts, this provides us with the Id of the specific custom alert definition that can be found in the settings.CustomAlertDefinitions table. I don’t really want to delve into custom alert definitions yet (maybe in a later post), but an extra join in the previous query shows us that this alert pertains to the CPU pressure (avg runnable task count) custom metric alert. SELECT AlertId, a.AlertType, at.Name, cad.Name AS CustomAlertName, TargetObject, [Read], SubType FROM alert.Alert a JOIN alert.Alert_Type at ON a.AlertType = at.AlertType JOIN settings.CustomAlertDefinitions cad ON a.SubType = cad.Id WHERE AlertId = 65769;  AlertIdAlertTypeNameCustomAlertNameTargetObjectReadSubType 16576940Custom metricCPU pressure (avg runnable task count)7:Cluster,1,4:Name,s7:granger,9:SqlServer,1,4:Name,s0:,8:Database,1,4:Name,s6:master,12:CustomMetric,1,8:MetricId,I2,02 The TargetObject value in this case breaks down like this: "7:Cluster,1,4:Name,s7:granger," – Cluster named "granger". "9:SqlServer,1,4:Name,s0:," – SqlServer named "" (the default instance). "8:Database,1,4:Name,s6:master," – Database named "master". "12:CustomMetric,1,8:MetricId,I2," – Custom metric with an Id of 2. Note that the hierarchy for a custom metric is slightly different compared to the earlier Backup overdue alert. It’s root → Cluster → SqlServer → Database → CustomMetric. Also notice that, unlike Cluster, SqlServer and Database, the key property for CustomMetric is called MetricId (not Name), and the value is a bigint (not a string). Finally, delving into the custom metric tables is beyond the scope of this post, but for the sake of avoiding any future confusion, I’d like to point out that whilst the SubType references a custom alert definition, the MetricID value embedded in the TargetObject value references a custom metric definition. Although in this case both the custom metric definition and custom alert definition share the same Id value of 2, this is not generally the case. Okay, that’s enough for now, not least because as I’m typing this, it’s almost 2am, I have to go to work tomorrow, and my alarm is set for 6am – eek! In my next post, I’ll either cover the remaining three tables in the alert schema, or I’ll delve into the way SQL Monitor stores its monitoring data, as I’d originally planned to cover in this post.

    Read the article

< Previous Page | 69 70 71 72 73 74 75 76 77 78 79 80  | Next Page >