Search Results

Search found 19649 results on 786 pages for 'visual studio integration'.

Page 73/786 | < Previous Page | 69 70 71 72 73 74 75 76 77 78 79 80  | Next Page >

  • Connecting to database on web host in Visual Studio

    - by Anders Svensson
    I have a web site developed locally with a local Sql Server database. I also have a web host that provides one Sql Server database for my site. Now I want to deploy the application, and I would like to be able to manage the remote database from the Server Explorer in Visual Studio. I have the connection string used in the application, which works fine for adding, say, a datasource to a control etc. But I don't know if there's any way to use it to connect the database inside the Server Explorer so that I can add tables etc. I have read that you're supposed to be able to this instead of using the Sql Server Management Studio, but I have'nt read anything about how to connect to the remote database in it. What I have tried so far is this: I have selected Add database in Server Explorer. This brings up first a dialog where I choose Sql Server. And then I get a dialog where I can set Server name (which I tried using the ip address in the connection string below), and Authentication (where I chose Sql Server Authentication, with the user id and password from below). But when I test the connection it fails. Here's the connection string, which works fine when used for datasources in the application (obviously with different user name and password): Any help appreciated!

    Read the article

  • Visual Studio Unit Test failure to start

    - by swmi
    Hi, I am having an issue when starting the tests under debug mode in Visual Studio 2008 Team Test where it gives the following error: "Failed to queue test run '{user@machinename}': Object reference not set to an instance of an object." I googled for the error but no joy. Don't even understand what it means as it is too brief. Has anyone come across this? Note that I can run tests fine if I am not debugging and I get the same error irrespective of the test I run. Thank you, Swati ETA: Being new to Visual Studio Team Test, I didn't know there was a better exception log then what I was seeing. Anyhow, here it is: <Exception> System.NullReferenceException: Object reference not set to an instance of an object. at Microsoft.VisualStudio.TestTools.TestCaseManagement.QualityToolsPackage. ShowToolWindow [T](T&amp; toolWindow, String errorMessage, Boolean show) at Microsoft.VisualStudio.TestTools.TestCaseManagement.QualityToolsPackage. OpenTestResultsToolWindow() at Microsoft.VisualStudio.TestTools.TestCaseManagement.SolutionIntegrationManager. DebugTarget(DebugInfo debugInfo, Boolean prepareEnvironment) at Microsoft.VisualStudio.TestTools.TestManagement.DebugProcessLauncher.Launch( String exeFileName, String args, String workingDir, EventHandler processExitedHandler, Process&amp; process) at Microsoft.VisualStudio.TestTools.TestManagement.LocalControllerProxy.StartProcess( TestRun run) at Microsoft.VisualStudio.TestTools.TestManagement.LocalControllerProxy.RestartProcess( TestRun run) at Microsoft.VisualStudio.TestTools.TestManagement.LocalControllerProxy.PrepareProcess( TestRun run) at Microsoft.VisualStudio.TestTools.TestManagement.LocalControllerProxy. InitializeController(TestRun run) at Microsoft.VisualStudio.TestTools.TestManagement.ControllerProxy.QueueTestRunWorker( Object state) </Exception>

    Read the article

  • Issues with intellisense, references, and builds in Visual Studio 2008

    - by goober
    Hoping you can help me -- the strangest thing seems to have happened with my VS install. System config: Windows 7 Pro x64, Visual Studio 2008 SP1, C#, ASP.NET 3.5. I have two web site projects in a solution. I am referencing NUnit / NHibernate (did this by right-clicking on the project and selecting "Add Reference". I've done this for several projects in the past). Things were working fine but recently stopped working and I can't figure out why. Intellisense completely disappears for any files in my App_Code directory, and none of the references are recognized (they are recognized by any file in the root directory of the web site project. Additionally, pretty simple commands like the following (in Page_Load) fail (assume TextBox1 is definitely an element on the page): if (Page.IsPostBack) { str test1; test1 = TextBox1.Text; } It says that all the page elements are null or that it can't access them. At first I thought it was me, but due to the combination of issues, it seems to be Visual Studio itself. I've tried clearing the temp directories & rebuilding the solution. I've also tried tools -- options -- text editor settings to ensure intellisense is turned on. I'd appreciate any help you can give!

    Read the article

  • using a 64-bit compiler in microsoft visual c++

    - by Ben
    this question is essentially identical to an earlier question i had that didn't receive any answers. hopefully someone can help me out this time. i am trying to compile a vc++ project as 64 bit using visual c++ express 2010. i know that the 64 bit compiler does not come with the default installation of vc++ express so i installed windows sdk for windows 7 as specified here (http://msdn.microsoft.com/en-us/library/9yb4317s.aspx) which includes the 64 bit compiler as i understand. however, there is still no 64 bit option in the configuration manager for vc++. after some searching i found and completed this tutorial (http://jenshuebel.wordpress.com/2009/02/12/visual-c-2008-express-edition-and-64-bit-targets/) as well as the various links at the bottom of this page. despite all my efforts, i still cannot get the 64 bit compiler to show in vc++ (i.e. the 64 bit compiler won't show under "active solutions platform" in the configuration manager). if anyone has any experience/tips with getting this to work i would really appreciate it. fyi - i am running windows 7(x64).

    Read the article

  • Visual Studio hangs when deploying a cube

    - by Richie
    Hello All, I'm having an issue with an Analysis Services project in Visual Studio 2005. My project always builds but only occasionally deploys. No errors are reported and VS just hangs. This is my first Analysis Services project so I am hoping that there is something obvious that I am just missing. Here is the situation I have a cube that I have successfully deployed. I then make some change, e.g., adding a hierarchy to a dimension. When I try to deploy again VS hangs. I have to restart Analysis Services to regain control of VS so I can shut it down. I restart everything sometimes once, sometimes twice or more before the project will eventually deploy. This happens with any change I make there seems to be no pattern to this behaviour. Sometimes I have to delete the cube from Analysis Services before restarting everything to get a successful deploy. Also I have successfully deployed the cube, and then subsequently successfully reprocessed a dimension then when I open a query window in SQL Server Management Studio it says that it can find any cubes. As a test I have deployed a cube successfully. I have then deleted it in Analysis Services and attempted to redeploy it, without making any changes to the cube, only to have the same behaviour mentioned above. VS just hangs with no reason so I have no idea where to start hunting down the problem. It is taking 15-20 minutes to make a change as simple as setting the NameColumn of a dimension attribute. As you can imagine this is taking hours of my time so I would greatly appreciate any assistance anyone can give me.

    Read the article

  • Visual Studio 2010 / ASP.NET MVC 2 / Publish

    - by SevenCentral
    I just did a clean install on Windows 7 x64 Professional with the final release of Visual Studio 2010 Premium. In order to duplicate what I'm experiencing do the following in: Create a new ASP.NET MVC 2 Web Application Right click the project and select Properties On the Web tab, select "Use Local IIS Web Server" Click on Create Virtual Directory Save all Unload the project Edit the project file Change MvcBuildViews to true Save all Reload project Right click the project and select Publish Choose the file system publish method Enter a target location Choose Delete all existing files Select Publish Right click the project Select Publish Each time I do the above I get the following errror: "It is an error to use a section registered as allowDefinition='MachineToApplication' beyond application level..." The error originates from obj\debug\package\packagetmp\web.config, relative to the project directory. I can repeat this all day long with any MVC 2 project I've built. In order to fix this problem, I need to set MvcBuildViews to false in the project file. That's not really an option. This wasn't a problem in Visual Studio 2008 and it seems to be an issue with the way the Publish command stages files beneath the project directory. Can anyone else duplicate this error? Is this a bug or by design? Is there a fix, workaround, etc...? Thanks.

    Read the article

  • Visual Studio 2008 linker wants all symbols to be resolved, not only used ones

    - by user343011
    We recently upgraded to Visual Studio 2008 from 2005, and I think those error started after that. In our solution, we have a multitude of projects. Many of those are utility projects, or projects containing core functionality used by other projects. The output of those is lib files that are linked to when building the projects generating the final binaries using the "Project dependencies..." option. One of the other projects---Let us call it ResultLib---generates a DLL, and it needs one single function from the core project. This function uses only static function from its own source file, but the project in its entirety uses a lot of low-level Windows functions and also imports a DLL---Let us call it Driver.dll. Our problem is that when building ExtLib, the linker complains about a multitude of unresolved externals, for example all functions exported from Driver.dll, since its lib file is not specified when linking. If we try to fix this by adding all lib files used by other projects that use all of the core project, our resulting ResultLib DLL ends up importing Driver.dll and also exporting all functions defined in it. How do we tell Visual Studio to only try to resolve symbols that are actually used?

    Read the article

  • Stop Visual Studio from appending numbers to the end of new controls

    - by techturtle
    I am wondering if there is any way to stop Visual Studio 2010 from appending a number to the end of the ID on new controls I create. For example, when I add a new TextBox, I would prefer that it do this: <asp:TextBox ID="TextBox" runat="server"> <asp:TextBox ID="TextBox" runat="server"> <asp:TextBox ID="TextBox" runat="server"> Instead of this: <asp:TextBox ID="TextBox1" runat="server"> <asp:TextBox ID="TextBox2" runat="server"> <asp:TextBox ID="TextBox3" runat="server"> It would make it easier to rename them appropriately, so I don't have to arrow/mouse over and delete the number each time. As I was writing this, the "Questions that may already have your answer" suggested this: How do I prevent Visual Studio from renaming my controls? which admittedly was the biggest part of my annoyance, but that appears to turn off putting in an ID="" field altogether, not just for pasted controls. It would still be helpful to turn off the numbering for new, non-pasted controls and have it not rename pasted ones as well. At the moment I'm working with ASP.NET, but it would be nice if it there was a way to do it for WinForms as well. Before anyone suggests it, I do know that allowing it to append the numbers prevents name conflicts should I not rename them appropriately. However, I would much rather have it fail to compile so I know to fix the issue now (if I forget to name something properly) rather than find random "TextBox1" items lying around in the code later on.

    Read the article

  • File/Property rename problem in Visual Studio and Explorer

    - by user211377
    I am running Windows 7. In Visual Studio, if I try to rename a file by right-click/rename, it behaves as normal for a couple of seconds, then switches out of edit mode. A similar problem occurs when I try to change a property, for example the name of a control. When I click in the property value, I can start editing, but then it assumes the edit is complete, and if I continue typing it overwrites the text. It does this every couple of seconds, so, for example, if I want to name a control mnuFile, I might get mn, then uFi, then le. S, the control ends upgetting called whatever I typed in the last 2-3 characters. I have the same problem with file rename in Explorer. Looks to me as though some timeout is kicking in and terminating the edit. Well, I was going to try a 'Repair install', but that's not an option in Windows 7! So, I went through the re-install, up to the point where I thought is was going to trash my install, and then cancelled it! By some miracle, that has fixed the problem!#Thanks for the advice about ShellExView, I'll try that next time it happens. Thanks for the answers guys! In my view it is more a Visual Studio issue, since it affects both file renames and properties in VS. In Explorer it only affects file rename, which is (just slightly) less annoying!

    Read the article

  • guide for creating addins for Visual Studio 2010?

    - by JMarsch
    Hello: 2 questions actuall: Is there a good comprensive guide out there for creating add-ins for Visual Studio? Here's a weird specific problem -- I'm trying to get my add-in to load. The code that the wizard stubs into the OnConnect method will add it to the toolbar, but only if it passes this "if" statement: if (connectMode == ext_ConnectMode.ext_cm_UISetup) The problem is that connectMode never seems to equal ext_cm_UISetup. It always seems to equal ext_cm_AfterStartup, and My AddIn never appears on the toolbar. I could cheat and short-circuit the if, but since Visual Studio put that code there, I bet it's right, and I have something else wrong. According to the docs, the value should only ever be ext_cm_UISetup once -- the first time VS encounters the addin. So I probably need to somehow make VS forget about the add-in, but I can't find anywhere to do that. And by the way, isn't that exceptionally delicate? The reason I'm in this pickle is because I happened to get an exception on the first try, so now I can never try again?? Can't be right.

    Read the article

  • Visual Studio Folder Structure

    - by nick
    I am not sure how this works. I am using Visual Studio 2008 and I created a Class Library (say the name is Test). I also selected the option to create a folder for the solution. Following is the directory structure I get: Test - Test - bin - Debug - obj - Debug - Properties - AassemblyInfo.cs - Test.cs - Test.csproj - Test.sln - Test.suo This is default and I have no problems running my code this way. My querry is I see other solutions (class libraries) created in the Subversion by others before have a different structure. The structure for that is as follows: Test - .svn - lib - <<Reference 1>> - <<Reference 2>> - .... - <<Reference N>> - src - bin - Debug - obj - Debug - Properties - AassemblyInfo.cs - Test.cs - Test.csproj - Test.sln - Test.suo My query is how to create this structure? All the references to other projects are maintained in lib folder and source code is maintained in src folder. This is not the case happening with me. When I open the solution in Visual Studio, I cannot see any such folder like lib or src. It shows the same way as mine. Kindly help and forgive me for being so elaborative. Thanks

    Read the article

  • ODI and OBIEE 11g Integration

    - by David Allan
    Here we will see some of the connectivity options to OBIEE 11g using the JDBC driver. You’ll see based upon some connection properties how the physical or presentation layers can be utilized. In the integrators guide for OBIEE 11g you will find a brief statement indicating that there actually is a JDBC driver for OBIEE. In OBIEE 11g its now possible to connect directly to the physical layer, Venkat has an informative post here on this topic. In ODI 11g the Oracle BI technology is shipped with the product along with KMs for reverse engineering, and using OBIEE models for a data source. When you install OBIEE in 11g a light weight demonstration application is preinstalled in the server, when you open this in the BI Administration tool we see the regular 3 panel view within the administration tool. To interrogate this system via JDBC (just like ODI does using the KMs) need a couple of things; the JDBC driver from OBIEE 11g, a java client program and the credentials. In my java client program I want to connect to the OBIEE system, when I connect I can interrogate what the JDBC driver presents for the metadata. The metadata projected via the JDBC connection’s DatabaseMetadata changes depending on whether the property NQ_SESSION.SELECTPHYSICAL is set when the java client connects. Let’s use the sample app to illustrate. I have a java client program here that will print out the tables in the DatabaseMetadata, it will also output the catalog and schema. For example if I execute without any special JDBC properties as follows; java -classpath .;%BIHOMEDIR%\clients\bijdbc.jar meta_jdbc oracle.bi.jdbc.AnaJdbcDriver jdbc:oraclebi://localhost:9703/ weblogic mypass Then I get the following returned representing the presentation layer, the sample I used is XML, and has no schema; Catalog Schema Table Sample Sales Lite null Base Facts Sample Sales Lite null Calculated Facts …     Sample Targets Lite null Base Facts …     Now if I execute with the only difference being the JDBC property NQ_SESSION.SELECTPHYSICAL with the value Yes, then I see a different set of values representing the physical layer in OBIEE; java -classpath .;%BIHOMEDIR%\clients\bijdbc.jar meta_jdbc oracle.bi.jdbc.AnaJdbcDriver jdbc:oraclebi://localhost:9703/ weblogic mypass NQ_SESSION.SELECTPHYSICAL=Yes The following is returned; Catalog Schema Table Sample App Lite Data null D01 Time Day Grain Sample App Lite Data null F10 Revenue Facts (Order grain) …     System DB (Update me)     …     If this was a database system such as Oracle, the catalog value would be the OBIEE database name and the schema would be the Oracle database schema. Other systems which have real catalog structure such as SQLServer would use its catalog value. Its this ‘Catalog’ and ‘Schema’ value that is important when integration OBIEE with ODI. For the demonstration application in OBIEE 11g, the following illustration shows how the information from OBIEE is related via the JDBC driver through to ODI. In the XML example above, within ODI’s physical schema definition on the right, we leave the schema blank since the XML data source has no schema. When I did this at first, I left the default value that ODI places in the Schema field since which was ‘<Undefined>’ (like image below) but this string is actually used in the RKM so ended up not finding any tables in this schema! Entering an empty string resolved this. Below we see a regular Oracle database example that has the database, schema, physical table structure, and how this is defined in ODI.   Remember back to the physical versus presentation layer usage when we passed the special property, well to do this in ODI, the data server has a panel for properties where you can define key/value pairs. So if you want to select physical objects from the OBIEE server, then you must set this property. An additional changed in ODI 11g is the OBIEE connection pool support, this has been implemented via a ‘Connection Pool’ flex field for the Oracle BI data server. So here you set the connection pool name from the OBIEE system that you specifically want to use and this is used by the Oracle BI to Oracle (DBLINK) LKM, so if you are using this you must set this flex field. Hopefully a useful insight into some of the mechanics of how this hangs together.

    Read the article

  • Integration with Multiple Versions of BizTalk HL7 Accelerator Schemas

    - by Paul Petrov
    Microsoft BizTalk Accelerator for HL7 comes with multiple versions of the HL7 implementation. One of the typical integration tasks is to receive one format and transmit another. For example, system A works HL7 v2.4 messages, system B with v2.3, and system C with v2.2. The system A is exchanging messages with B and C. The logical solution is to create schemas in separate namespaces for each system and assign maps on send ports. Schematic diagram of the messaging solution is shown below:   Nothing is complex about that conceptually. On the implementation level things can get nasty though because of the elaborate nature of HL7 schemas and sheer amount of message types involved. If trying to implement maps directly in BizTalk Map Editor one would quickly get buried by thousands of links between subfields of HL7 segments. Since task is repetitive because HL7 segments are reused between message types it's natural to take advantage of such modular structure and reduce amount of work through reuse. Here's where it makes sense to switch from visual map editor to old plain XSLT. The implementation is done in three steps. First, create XSL templates to map from segments of one version to another. This can be done using BizTalk Map Editor subsequently copying and modifying generated XSL code to create one xsl:template per segment. Group all segments for format mapping in one XSL file (we call it SegmentTemplates.xsl). Here's how template for the PID segment (Patient Identification) would look like this: <xsl:template name="PID"> <PID_PatientIdentification> <xsl:if test="PID_PatientIdentification/PID_1_SetIdPatientId"> <PID_1_SetIdPid> <xsl:value-of select="PID_PatientIdentification/PID_1_SetIdPatientId/text()" /> </PID_1_SetIdPid> </xsl:if> <xsl:for-each select="PID_PatientIdentification/PID_2_PatientIdExternalId"> <PID_2_PatientId> <xsl:if test="CX_0_Id"> <CX_0_Id> <xsl:value-of select="CX_0_Id/text()" /> </CX_0_Id> </xsl:if> <xsl:if test="CX_1_CheckDigit"> <CX_1_CheckDigitSt> <xsl:value-of select="CX_1_CheckDigit/text()" /> </CX_1_CheckDigitSt> </xsl:if> <xsl:if test="CX_2_CodeIdentifyingTheCheckDigitSchemeEmployed"> <CX_2_CodeIdentifyingTheCheckDigitSchemeEmployed> <xsl:value-of select="CX_2_CodeIdentifyingTheCheckDigitSchemeEmployed/text()" /> </CX_2_CodeIdentifyingTheCheckDigitSchemeEmployed> . . . // skipped for brevity This is the most tedious and time consuming part. Templates can be created for only those segments that are used in message interchange. Once this is done the rest goes much easier. The next step is to create message type specific XSL that references (imports) segment templates XSL file. Inside this file simple call segment templates in appropriate places. For example, beginning of the mapping XSL for ADT_A01 message would look like this:   <xsl:import href="SegmentTemplates_23_to_24.xslt" />  <xsl:output omit-xml-declaration="yes" method="xml" version="1.0" />   <xsl:template match="/">    <xsl:apply-templates select="s0:ADT_A01_23_GLO_DEF" />  </xsl:template>   <xsl:template match="s0:ADT_A01_23_GLO_DEF">    <ns0:ADT_A01_24_GLO_DEF>      <xsl:call-template name="EVN" />      <xsl:call-template name="PID" />      <xsl:for-each select="PD1_PatientDemographic">        <xsl:call-template name="PD1" />      </xsl:for-each>      <xsl:call-template name="PV1" />      <xsl:for-each select="PV2_PatientVisitAdditionalInformation">        <xsl:call-template name="PV2" />      </xsl:for-each> This code simply calls segment template directly for required singular elements and in for-each loop for optional/repeating elements. And lastly, create BizTalk map (btm) that references message type specific XSL. It is essentially empty map with Custom XSL Path set to appropriate XSL: In the end, you will end up with one segment templates file that is referenced by many message type specific XSL files which in turn used by BizTalk maps. Once all segment maps are created they are widely reusable and all the rest work is very simple and clean.

    Read the article

  • Integration Patterns with Azure Service Bus Relay, Part 2: Anonymous full-trust .NET consumer

    - by Elton Stoneman
    This is the second in the IPASBR series, see also: Integration Patterns with Azure Service Bus Relay, Part 1: Exposing the on-premise service Part 2 is nice and easy. From Part 1 we exposed our service over the Azure Service Bus Relay using the netTcpRelayBinding and verified we could set up our network to listen for relayed messages. Assuming we want to consume that service in .NET from an environment which is fairly unrestricted for us, but quite restricted for attackers, we can use netTcpRelay and shared secret authentication. Pattern applicability This is a good fit for scenarios where: the consumer can run .NET in full trust the environment does not restrict use of external DLLs the runtime environment is secure enough to keep shared secrets the service does not need to know who is consuming it the service does not need to know who the end-user is So for example, the consumer is an ASP.NET website sitting in a cloud VM or Azure worker role, where we can keep the shared secret in web.config and we don't need to flow any identity through to the on-premise service. The service doesn't care who the consumer or end-user is - say it's a reference data service that provides a list of vehicle manufacturers. Provided you can authenticate with ACS and have access to Service Bus endpoint, you can use the service and it doesn't care who you are. In this post, we’ll consume the service from Part 1 in ASP.NET using netTcpRelay. The code for Part 2 (+ Part 1) is on GitHub here: IPASBR Part 2 Authenticating and authorizing with ACS In this scenario the consumer is a server in a controlled environment, so we can use a shared secret to authenticate with ACS, assuming that there is governance around the environment and the codebase which will prevent the identity being compromised. From the provider's side, we will create a dedicated service identity for this consumer, so we can lock down their permissions. The provider controls the identity, so the consumer's rights can be revoked. We'll add a new service identity for the namespace in ACS , just as we did for the serviceProvider identity in Part 1. I've named the identity fullTrustConsumer. We then need to add a rule to map the incoming identity claim to an outgoing authorization claim that allows the identity to send messages to Service Bus (see Part 1 for a walkthrough creating Service Idenitities): Issuer: Access Control Service Input claim type: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier Input claim value: fullTrustConsumer Output claim type: net.windows.servicebus.action Output claim value: Send This sets up a service identity which can send messages into Service Bus, but cannot register itself as a listener, or manage the namespace. Adding a Service Reference The Part 2 sample client code is ready to go, but if you want to replicate the steps, you’re going to add a WSDL reference, add a reference to Microsoft.ServiceBus and sort out the ServiceModel config. In Part 1 we exposed metadata for our service, so we can browse to the WSDL locally at: http://localhost/Sixeyed.Ipasbr.Services/FormatService.svc?wsdl If you add a Service Reference to that in a new project you'll get a confused config section with a customBinding, and a set of unrecognized policy assertions in the namespace http://schemas.microsoft.com/netservices/2009/05/servicebus/connect. If you NuGet the ASB package (“windowsazure.servicebus”) first and add the service reference - you'll get the same messy config. Either way, the WSDL should have downloaded and you should have the proxy code generated. You can delete the customBinding entries and copy your config from the service's web.config (this is already done in the sample project in Sixeyed.Ipasbr.NetTcpClient), specifying details for the client:     <client>       <endpoint address="sb://sixeyed-ipasbr.servicebus.windows.net/net"                 behaviorConfiguration="SharedSecret"                 binding="netTcpRelayBinding"                 contract="FormatService.IFormatService" />     </client>     <behaviors>       <endpointBehaviors>         <behavior name="SharedSecret">           <transportClientEndpointBehavior credentialType="SharedSecret">             <clientCredentials>               <sharedSecret issuerName="fullTrustConsumer"                             issuerSecret="E3feJSMuyGGXksJi2g2bRY5/Bpd2ll5Eb+1FgQrXIqo="/>             </clientCredentials>           </transportClientEndpointBehavior>         </behavior>       </endpointBehaviors>     </behaviors>   The proxy is straight WCF territory, and the same client can run against Azure Service Bus through any relay binding, or directly to the local network service using any WCF binding - the contract is exactly the same. The code is simple, standard WCF stuff: using (var client = new FormatService.FormatServiceClient()) { outputString = client.ReverseString(inputString); } Running the sample First, update Solution Items\AzureConnectionDetails.xml with your service bus namespace, and your service identity credentials for the netTcpClient and the provider:   <!-- ACS credentials for the full trust consumer (Part2): -->   <netTcpClient identityName="fullTrustConsumer"                 symmetricKey="E3feJSMuyGGXksJi2g2bRY5/Bpd2ll5Eb+1FgQrXIqo="/> Then rebuild the solution and verify the unit tests work. If they’re green, your service is listening through Azure. Check out the client by navigating to http://localhost:53835/Sixeyed.Ipasbr.NetTcpClient. Enter a string and hit Go! - your string will be reversed by your on-premise service, routed through Azure: Using shared secret client credentials in this way means ACS is the identity provider for your service, and the claim which allows Send access to Service Bus is consumed by Service Bus. None of the authentication details make it through to your service, so your service is not aware who the consumer is (MSDN calls this "anonymous authentication").

    Read the article

  • Modifying the SL/WIF Integration Bits to support Issued Token Credentials

    - by Your DisplayName here!
    The SL/WIF integration code that ships with the Identity Training Kit only supports Windows and UserName credentials to request tokens from an STS. This is fine for simple single STS scenarios (like a single IdP). But the more common pattern for claims/token based systems is to split the STS roles into an IdP and a Resource STS (or whatever you wanna call it). In this case, the 2nd leg requires to present the issued token from the 1st leg – this is not directly supported by the bits. But they can be easily modified to accomplish this. The Credential Fist we need a class that represents an issued token credential. Here we store the RSTR that got returned from the client to IdP request: public class IssuedTokenCredentials : IRequestCredentials {     public string IssuedToken { get; set; }     public RequestSecurityTokenResponse RSTR { get; set; }     public IssuedTokenCredentials(RequestSecurityTokenResponse rstr)     {         RSTR = rstr;         IssuedToken = rstr.RequestedSecurityToken.RawToken;     } } The Binding Next we need a binding to be used with issued token credential requests. This assumes you have an STS endpoint for mixed mode security with SecureConversation turned off. public class WSTrustBindingIssuedTokenMixed : WSTrustBinding {     public WSTrustBindingIssuedTokenMixed()     {         this.Elements.Add( new HttpsTransportBindingElement() );     } } WSTrustClient The last step is to make some modifications to WSTrustClient to make it issued token aware. In the constructor you have to check for the credential type, and if it is an issued token, store it away. private RequestSecurityTokenResponse _rstr; public WSTrustClient( Binding binding, EndpointAddress remoteAddress, IRequestCredentials credentials )     : base( binding, remoteAddress ) {     if ( null == credentials )     {         throw new ArgumentNullException( "credentials" );     }     if (credentials is UsernameCredentials)     {         UsernameCredentials usernname = credentials as UsernameCredentials;         base.ChannelFactory.Credentials.UserName.UserName = usernname.Username;         base.ChannelFactory.Credentials.UserName.Password = usernname.Password;     }     else if (credentials is IssuedTokenCredentials)     {         var issuedToken = credentials as IssuedTokenCredentials;         _rstr = issuedToken.RSTR;     }     else if (credentials is WindowsCredentials)     { }     else     {         throw new ArgumentOutOfRangeException("credentials", "type was not expected");     } } Next – when WSTrustClient constructs the RST message to the STS, the issued token header must be embedded when needed: private Message BuildRequestAsMessage( RequestSecurityToken request ) {     var message = Message.CreateMessage( base.Endpoint.Binding.MessageVersion ?? MessageVersion.Default,       IssueAction,       (BodyWriter) new WSTrustRequestBodyWriter( request ) );     if (_rstr != null)     {         message.Headers.Add(new IssuedTokenHeader(_rstr));     }     return message; } HTH

    Read the article

  • Access Control Service V2 and Facebook Integration

    - by Your DisplayName here!
    I haven’t been blogging about ACS2 in the past because it was not released and I was kinda busy with other stuff. Needless to say I spent quite some time with ACS2 already (both in customer situations as well as in the classroom and at conferences). ACS2 rocks! It’s IMHO the most interesting and useful (and most unique) part of the whole Azure offering! For my talk at VSLive yesterday, I played a little with the Facebook integration. See Steve’s post on the general setup. One claim that you get back from Facebook is an access token. This token can be used to directly talk to Facebook and query additional properties about the user. Which properties you have access to depends on which authorization your Facebook app requests. You can specify this in the identity provider registration page for Facebook in ACS2. In my example I added access to the home town property of the user. Once you have the access token from ACS you can use e.g. the Facebook SDK from Codeplex (also available via NuGet) to talk to the Facebook API. In my sample I used the WIF ClaimsAuthenticationManager to add the additional home town claim. This is not necessarily how you would do it in a “real” app. Depends ;) The code looks like this (sample code!): public class ClaimsTransformer : ClaimsAuthenticationManager {     public override IClaimsPrincipal Authenticate( string resourceName, IClaimsPrincipal incomingPrincipal)     {         if (!incomingPrincipal.Identity.IsAuthenticated)         {             return base.Authenticate(resourceName, incomingPrincipal);         }         string accessToken;         if (incomingPrincipal.TryGetClaimValue( "http://www.facebook.com/claims/AccessToken", out accessToken))         {             try             {                 var home = GetFacebookHometown(accessToken);                 if (!string.IsNullOrWhiteSpace(home))                 {                     incomingPrincipal.Identities[0].Claims.Add( new Claim("http://www.facebook.com/claims/HomeTown", home));                 }             }             catch { }         }         return incomingPrincipal;     }      private string GetFacebookHometown(string token)     {         var client = new FacebookClient(token);         dynamic parameters = new ExpandoObject();         parameters.fields = "hometown";         dynamic result = client.Get("me", parameters);         return result.hometown.name;     } }  

    Read the article

  • Visual Studio support for coding in MSIL?

    - by jdk
    For the longest time I've been curious to code in Microsoft Intermediate Language (MSIL) just as an academic endeavour and to gain a better understanding of what's "happening under the hood". Is there any sort of Visual Studio support for this in the form of: project templates, IntelliSense integration, and those kind of RAD features?

    Read the article

  • Silverlight 4 Tools for VS 2010 and WCF RIA Services Released

    - by ScottGu
    The final release of the Silverlight 4 Tools for Visual Studio 2010 and WCF RIA Services is now available for download.  Download and Install If you already have Visual Studio 2010 installed (or the free Visual Web Developer 2010 Express), then you can install both the Silverlight 4 Tooling Support as well as WCF RIA Services support by downloading and running this setup package (note: please make sure to uninstall the preview release of the Silverlight 4 Tools for VS 2010 if you have previously installed that).  The Silverlight 4 Tools for VS 2010 package extends the Silverlight support built into Visual Studio 2010 and enables support for Silverlight 4 applications as well.  It also installs WCF RIA Services application templates and libraries: Today’s release includes the English edition of the Silverlight 4 Tooling – localized versions will be available next month for other Visual Studio languages as well. Silverlight Tooling Support Visual Studio 2010 includes rich tooling support for building Silverlight and WPF applications. It includes a WYSIWYG designer surface that enables you to easily use controls to construct UI – including the ability to take advantage of layout containers, and apply styles and resources: The VS 2010 designer enables you to leverage the rich data binding support within Silverlight and WPF, and easily wire-up bindings on controls.  The Data Sources window within Silverlight projects can be used to reference POCO objects (plain old CLR objects), WCF Services, WCF RIA Services client proxies or SharePoint Lists.  For example, let’s assume we add a “Person” class like below to our project: We could then add it to the Data Source window which will cause it to show up like below in the IDE: We can optionally customize the default UI control types that are associated for each property on the object.  For example, below we’ll default the BirthDate property to be represented by a “DatePicker” control: And then when we drag/drop the Person type from the Data Sources onto the design-surface it will automatically create UI controls that are bound to the properties of our Person class: VS 2010 allows you to optionally customize each UI binding further by selecting a control, and then right-click on any of its properties within the property-grid and pull up the “Apply Bindings” dialog: This will bring up a floating data-binding dialog that enables you to easily configure things like the binding path on the data source object, specify a format convertor, specify string-format settings, specify how validation errors should be handled, etc: In addition to providing WYSIWYG designer support for WPF and Silverlight applications, VS 2010 also provides rich XAML intellisense and code editing support – enabling a rich source editing environment. Silverlight 4 Tool Enhancements Today’s Silverlight 4 Tooling Release for VS 2010 includes a bunch of nice new features.  These include: Support for Silverlight Out of Browser Applications and Elevated Trust Applications You can open up a Silverlight application’s project properties window and click the “Enable Running Application Out of Browser” checkbox to enable you to install an offline, out of browser, version of your Silverlight 4 application.  You can then customize a number of “out of browser” settings of your application within Visual Studio: Notice above how you can now indicate that you want to run with elevated trust, with hardware graphics acceleration, as well as customize things like the Window style of the application (allowing you to build a nice polished window style for consumer applications). Support for Implicit Styles and “Go to Value Definition” Support: Silverlight 4 now allows you to define “implicit styles” for your applications.  This allows you to style controls by type (for example: have a default look for all buttons) and avoid you having to explicitly reference styles from each control.  In addition to honoring implicit styles on the designer-surface, VS 2010 also now allows you to right click on any control (or on one of it properties) and choose the “Go to Value Definition…” context menu to jump to the XAML where the style is defined, and from there you can easily navigate onward to any referenced resources.  This makes it much easier to figure out questions like “why is my button red?”: Style Intellisense VS 2010 enables you to easily modify styles you already have in XAML, and now you get intellisense for properties and their values within a style based on the TargetType of the specified control.  For example, below we have a style being set for controls of type “Button” (this is indicated by the “TargetType” property).  Notice how intellisense now automatically shows us properties for the Button control (even within the <Setter> element): Great Video - Watch the Silverlight Designer Features in Action You can see all of the above Silverlight 4 Tools for Visual Studio 2010 features (and some more cool ones I haven’t mentioned) demonstrated in action within this 20 minute Silverlight.TV video on Channel 9: WCF RIA Services Today we also shipped the V1 release of WCF RIA Services.  It is included and automatically installed as part of the Silverlight 4 Tools for Visual Studio 2010 setup. WCF RIA Services makes it much easier to build business applications with Silverlight.  It simplifies the traditional n-tier application pattern by bringing together the ASP.NET and Silverlight platforms using the power of WCF for communication.  WCF RIA Services provides a pattern to write application logic that runs on the mid-tier and controls access to data for queries, changes and custom operations. It also provides end-to-end support for common tasks such as data validation, authentication and authorization based on roles by integrating with Silverlight components on the client and ASP.NET on the mid-tier. Put simply – it makes it much easier to query data stored on a server from a client machine, optionally manipulate/modify the data on the client, and then save it back to the server.  It supports a validation architecture that helps ensure that your data is kept secure and business rules are applied consistently on both the client and middle-tiers. WCF RIA Services uses WCF for communication between the client and the server  It supports both an optimized .NET to .NET binary serialization format, as well as a set of open extensions to the ATOM format known as ODATA and an optional JavaScript Object Notation (JSON) format that can be used by any client. You can hear Nikhil and Dinesh talk a little about WCF RIA Services in this 13 minutes Channel 9 video. Putting it all Together – the Silverlight 4 Training Kit Check out the Silverlight 4 Training Kit to learn more about how to build business applications with Silverlight 4, Visual Studio 2010 and WCF RIA Services. The training kit includes 8 modules, 25 videos, and several hands-on labs that explain Silverlight 4 and WCF RIA Services concepts and walks you through building an end-to-end application with them.    The training kit is available for free and is a great way to get started. Summary I’m really excited about today’s release – as they really complete the Silverlight development story and deliver a great end to end runtime + tooling story for building applications.  All of the above features are available for use both in VS 2010 as well as the free Visual Web Developer 2010 Express Edition – making it really easy to get started building great solutions. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Portal And Content - Content Integration - Best Practices

    - by Stefan Krantz
    Lately we have seen an increase in projects that have failed to either get user friendly content integration or non satisfactory performance. Our intention is to mitigate any knowledge gap that our previous post might have left you with, therefore this post will repeat some recommendation or reference back to old useful post. Moreover this post will help you understand ground up how to design, architect and implement business enabled, responsive and performing portals with complex requirements on business centric information publishing. Design the Information Model The key to successful portal deployments is Information modeling, it's a key task to understand the use case you designing for, therefore I have designed a set of question you need to ask yourself or your customer: Question: Who will own the content, IT or Business? Answer: BusinessQuestion: Who will publish the content, IT or Business? Answer: BusinessQuestion: Will there be multiple publishers? Answer: YesQuestion: Are the publishers computer scientist?Answer: NoQuestion: How often do the information changes, daily, weekly, monthly?Answer: Daily, weekly If your answers to the questions matches at least 2, we strongly recommend you design your content with following principles: Divide your pages in to logical sections, where each section is marked with its purpose Assign capabilities to each section, does it contain text, images, formatting and/or is it static and is populated through other contextual information Select editor/design element type WYSIWYG - Rich Text Plain Text - non-format text Image - Image object Static List - static list of formatted informationDynamic Data List - assembled information from multiple data files through CMIS query The result of such design map could look like following below examples: Based on the outcome of the required elements in the design column 3 from the left you will now simply design a data model in WebCenter Content - Site Studio by creating a Region Definition structure matching your design requirements.For more information on how to create a Region definition see following post: Region Definition Post - note see instruction 7 for details. Each region definition can now be used to instantiate data files, a data file will hold the actual data for each element in the region definition. Another way you can see this is to compare the region definition as an extension to the metadata model in WebCenter Content for each data file item. Design content templates With a solid dependable information model we can now proceed to template creation and page design, in this phase focuses on how to place the content sections from the region definition on the page via a Content Presenter template. Remember by creating content presenter templates you will leverage the latest and most integrated technology WebCenter has to offer. This phase is much easier since the you already have the information model and design wire-frames to base the logic on, however there is still few considerations to pay attention to: Base the template on ADF and make only necessary exceptions to markup when required Leverage ADF design components for Tabs, Accordions and other similar components, this way the design in the content published areas will comply with other design areas based on custom ADF taskflows There is no performance impact when using meta data or region definition based data All data access regardless of type, metadata or xml data it can be accessed via the Content Presenter - Node. See below for applied examples on how to access data Access metadata property from Document - #{node.propertyMap['myProp'].value}myProp in this example can be for instance (dDocName, dDocTitle, xComments or any other available metadata) Access element data from data file xml - #{node.propertyMap['[Region Definition Name]:[Element name]'].asTextHtml}Region Definition Name is the expect region definition that the current data file is instantiatingElement name is the element value you like to grab from the data file I recommend you read following  useful post on content template topic:CMIS queries and template creation - note see instruction 9 for detailsStatic List template rendering For more information on templates:Single Item Content TemplateMulti Item Content TemplateExpression Language Internationalization Considerations When integrating content assets via content presenter you by now probably understand that the content item/data file is wired to the page, what is also pretty common at this stage is that the content item/data file only support one language since its not practical or business friendly to mix that into a complex structure. Therefore you will be left with a very common dilemma that you will have to either build a complete new portal for each locale, which is not an good option! However with little bit of information modeling and clear naming convention this can be addressed. Basically you can simply make sure that all content item/data file are named with a predictable naming convention like "Content1_EN" for the English rendition and "Content1_ES" for the Spanish rendition. This way through simple none complex customizations you will be able to dynamically switch the actual content item/data file just before rendering. By following proposed approach above you not only enable a simple mechanism for internationalized content you also preserve the functionality in the content presenter to support business accessible run-time publishing of information on existing and new pages. I recommend you read following useful post on Internationalization topics:Internationalize with Content Presenter Integrate with Review & Approval processes Today the Review and approval functionality and configuration is based out of WebCenter Content - Criteria Workflows. Criteria Workflows uses the metadata of the checked in document to evaluate if the document is under any review/approval process. So for instance if a Criteria Workflow is configured to force any documents with Version = "2" or "higher" and Content Type is "Instructions", any matching content item version on check in will now enter the workflow before getting released for general access. Few things to consider when configuring Criteria Workflows: Make sure to not trigger on version one for Content Items that are Data Files - if you trigger on version 1 you will not only approve an empty document you will also have a content presenter pointing to a none existing document - since the document will only be available after successful completion of the workflow Approval workflows sometimes requires more complex criteria, the recommendation if that is the case is that the meta data triggering such criteria is automatically populated, this can be achieved through many approaches including Content Profiles Criteria workflows are configured and managed in WebCenter Content Administration Applets where you can configure one or more workflows. When you configured Criteria workflows the Content Presenter will support the editors with the approval process directly inline in the "Contribution mode" of the portal. In addition to approve/reject and details of the task, the content presenter natively support the user to view the current and future version of the change he/she is approving. See below for example: Architectural recommendation To support review&approval processes - minimize the amount of data files per page Each CMIS query can consume significant time depending on the complexity of the query - minimize the amount of CMIS queries per page Use Content Presenter Templates based on ADF - this way you minimize the design considerations and optimize the usage of caching Implement the page in as few Data files as possible - simplifies publishing process, increases performance and simplifies release process Named data file (node) or list of named nodes when integrating to pages increases performance vs. querying for data Named data file (node) or list of named nodes when integrating to pages enables business centric page creation and publishing and reduces the need for IT department interaction Summary Just because one architectural decision solves a business problem it doesn't mean its the right one, when designing portals all architecture has to be in harmony and not impacting each other. For instance the most technical complex solution is not always the best since it will most likely defeat the business accessibility, performance or both, therefore the best approach is to first design for simplicity that even a non-technical user can operate, after that consider the performance impact and final look at the technology challenges these brings and workaround them first with out-of-the-box features, after that design and develop functions to complement the short comings.

    Read the article

  • Integration Patterns with Azure Service Bus Relay, Part 1: Exposing the on-premise service

    - by Elton Stoneman
    We're in the process of delivering an enabling project to expose on-premise WCF services securely to Internet consumers. The Azure Service Bus Relay is doing the clever stuff, we register our on-premise service with Azure, consumers call into our .servicebus.windows.net namespace, and their requests are relayed and serviced on-premise. In theory it's all wonderfully simple; by using the relay we get lots of protocol options, free HTTPS and load balancing, and by integrating to ACS we get plenty of security options. Part of our delivery is a suite of sample consumers for the service - .NET, jQuery, PHP - and this set of posts will cover setting up the service and the consumers. Part 1: Exposing the on-premise service In theory, this is ultra-straightforward. In practice, and on a dev laptop it is - but in a corporate network with firewalls and proxies, it isn't, so we'll walkthrough some of the pitfalls. Note that I'm using the "old" Azure portal which will soon be out of date, but the new shiny portal should have the same steps available and be easier to use. We start with a simple WCF service which takes a string as input, reverses the string and returns it. The Part 1 version of the code is on GitHub here: on GitHub here: IPASBR Part 1. Configuring Azure Service Bus Start by logging into the Azure portal and registering a Service Bus namespace which will be our endpoint in the cloud. Give it a globally unique name, set it up somewhere near you (if you’re in Europe, remember Europe (North) is Ireland, and Europe (West) is the Netherlands), and  enable ACS integration by ticking "Access Control" as a service: Authenticating and authorizing to ACS When we try to register our on-premise service as a listener for the Service Bus endpoint, we need to supply credentials, which means only trusted service providers can act as listeners. We can use the default "owner" credentials, but that has admin permissions so a dedicated service account is better (Neil Mackenzie has a good post On Not Using owner with the Azure AppFabric Service Bus with lots of permission details). Click on "Access Control Service" for the namespace, navigate to Service Identities and add a new one. Give the new account a sensible name and description: Let ACS generate a symmetric key for you (this will be the shared secret we use in the on-premise service to authenticate as a listener), but be sure to set the expiration date to something usable. The portal defaults to expiring new identities after 1 year - but when your year is up *your identity will expire without warning* and everything will stop working. In production, you'll need governance to manage identity expiration and a process to make sure you renew identities and roll new keys regularly. The new service identity needs to be authorized to listen on the service bus endpoint. This is done through claim mapping in ACS - we'll set up a rule that says if the nameidentifier in the input claims has the value serviceProvider, in the output we'll have an action claim with the value Listen. In the ACS portal you'll see that there is already a Relying Party Application set up for ServiceBus, which has a Default rule group. Edit the rule group and click Add to add this new rule: The values to use are: Issuer: Access Control Service Input claim type: http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier Input claim value: serviceProvider Output claim type: net.windows.servicebus.action Output claim value: Listen When your service namespace and identity are set up, open the Part 1 solution and put your own namespace, service identity name and secret key into the file AzureConnectionDetails.xml in Solution Items, e.g: <azure namespace="sixeyed-ipasbr">    <!-- ACS credentials for the listening service (Part1):-->   <service identityName="serviceProvider"            symmetricKey="nuR2tHhlrTCqf4YwjT2RA2BZ/+xa23euaRJNLh1a/V4="/>  </azure> Build the solution, and the T4 template will generate the Web.config for the service project with your Azure details in the transportClientEndpointBehavior:           <behavior name="SharedSecret">             <transportClientEndpointBehavior credentialType="SharedSecret">               <clientCredentials>                 <sharedSecret issuerName="serviceProvider"                               issuerSecret="nuR2tHhlrTCqf4YwjT2RA2BZ/+xa23euaRJNLh1a/V4="/>               </clientCredentials>             </transportClientEndpointBehavior>           </behavior> , and your service namespace in the Azure endpoint:         <!-- Azure Service Bus endpoints -->          <endpoint address="sb://sixeyed-ipasbr.servicebus.windows.net/net"                   binding="netTcpRelayBinding"                   contract="Sixeyed.Ipasbr.Services.IFormatService"                   behaviorConfiguration="SharedSecret">         </endpoint> The sample project is hosted in IIS, but it won't register with Azure until the service is activated. Typically you'd install AppFabric 1.1 for Widnows Server and set the service to auto-start in IIS, but for dev just navigate to the local REST URL, which will activate the service and register it with Azure. Testing the service locally As well as an Azure endpoint, the service has a WebHttpBinding for local REST access:         <!-- local REST endpoint for internal use -->         <endpoint address="rest"                   binding="webHttpBinding"                   behaviorConfiguration="RESTBehavior"                   contract="Sixeyed.Ipasbr.Services.IFormatService" /> Build the service, then navigate to: http://localhost/Sixeyed.Ipasbr.Services/FormatService.svc/rest/reverse?string=abc123 - and you should see the reversed string response: If your network allows it, you'll get the expected response as before, but in the background your service will also be listening in the cloud. Good stuff! Who needs network security? Onto the next post for consuming the service with the netTcpRelayBinding.  Setting up network access to Azure But, if you get an error, it's because your network is secured and it's doing something to stop the relay working. The Service Bus relay bindings try to use direct TCP connections to Azure, so if ports 9350-9354 are available *outbound*, then the relay will run through them. If not, the binding steps down to standard HTTP, and issues a CONNECT across port 443 or 80 to set up a tunnel for the relay. If your network security guys are doing their job, the first option will be blocked by the firewall, and the second option will be blocked by the proxy, so you'll get this error: System.ServiceModel.CommunicationException: Unable to reach sixeyed-ipasbr.servicebus.windows.net via TCP (9351, 9352) or HTTP (80, 443) - and that will probably be the start of lots of discussions. Network guys don't really like giving servers special permissions for the web proxy, and they really don't like opening ports, so they'll need to be convinced about this. The resolution in our case was to put up a dedicated box in a DMZ, tinker with the firewall and the proxy until we got a relay connection working, then run some traffic which the the network guys monitored to do a security assessment afterwards. Along the way we hit a few more issues, diagnosed mainly with Fiddler and Wireshark: System.Net.ProtocolViolationException: Chunked encoding upload is not supported on the HTTP/1.0 protocol - this means the TCP ports are not available, so Azure tries to relay messaging traffic across HTTP. The service can access the endpoint, but the proxy is downgrading traffic to HTTP 1.0, which does not support tunneling, so Azure can’t make its connection. We were using the Squid proxy, version 2.6. The Squid project is incrementally adding HTTP 1.1 support, but there's no definitive list of what's supported in what version (here are some hints). System.ServiceModel.Security.SecurityNegotiationException: The X.509 certificate CN=servicebus.windows.net chain building failed. The certificate that was used has a trust chain that cannot be verified. Replace the certificate or change the certificateValidationMode. The evocation function was unable to check revocation because the revocation server was offline. - by this point we'd given up on the HTTP proxy and opened the TCP ports. We got this error when the relay binding does it's authentication hop to ACS. The messaging traffic is TCP, but the control traffic still goes over HTTP, and as part of the ACS authentication the process checks with a revocation server to see if Microsoft’s ACS cert is still valid, so the proxy still needs some clearance. The service account (the IIS app pool identity) needs access to: www.public-trust.com mscrl.microsoft.com We still got this error periodically with different accounts running the app pool. We fixed that by ensuring the machine-wide proxy settings are set up, so every account uses the correct proxy: netsh winhttp set proxy proxy-server="http://proxy.x.y.z" - and you might need to run this to clear out your credential cache: certutil -urlcache * delete If your network guys end up grudgingly opening ports, they can restrict connections to the IP address range for your chosen Azure datacentre, which might make them happier - see Windows Azure Datacenter IP Ranges. After all that you've hopefully got an on-premise service listening in the cloud, which you can consume from pretty much any technology.

    Read the article

  • Visual Studio Load Testing using Windows Azure

    - by Tarun Arora
    In my opinion the biggest adoption barrier in performance testing on smaller projects is not the tooling but the high infrastructure and administration cost that comes with this phase of testing. Only if a reusable solution was possible and infrastructure management wasn’t as expensive, adoption would certainly spike. It certainly is possible if you bring Visual Studio and Windows Azure into the equation. It is possible to run your test rig in the cloud without getting tangled in SCVMM or Lab Management. All you need is an active Azure subscription, Windows Azure endpoint enabled developer workstation running visual studio ultimate on premise, windows azure endpoint enabled worker roles on azure compute instances set up to run as test controllers and test agents. My test rig is running SQL server 2012 and Visual Studio 2012 RC agents. The beauty is that the solution is reusable, you can open the azure project, change the subscription and certificate, click publish and *BOOM* in less than 15 minutes you could have your own test rig running in the cloud. In this blog post I intend to show you how you can use the power of Windows Azure to effectively abstract the administration cost of infrastructure management and lower the total cost of Load & Performance Testing. As a bonus, I will share a reusable solution that you can use to automate test rig creation for both VS 2010 agents as well as VS 2012 agents. Introduction The slide show below should help you under the high level details of what we are trying to achive... Leveraging Azure for Performance Testing View more PowerPoint from Avanade Scenario 1 – Running a Test Rig in Windows Azure To start off with the basics, in the first scenario I plan to discuss how to, - Automate deployment & configuration of Windows Azure Worker Roles for Test Controller and Test Agent - Automate deployment & configuration of SQL database on Test Controller on the Test Controller Worker Role - Scaling Test Agents on demand - Creating a Web Performance Test and a simple Load Test - Managing Test Controllers right from Visual Studio on Premise Developer Workstation - Viewing results of the Load Test - Cleaning up - Have the above work in the shape of a reusable solution for both VS2010 and VS2012 Test Rig Scenario 2 – The scaled out Test Rig and sharing data using SQL Azure A scaled out version of this implementation would involve running multiple test rigs running in the cloud, in this scenario I will show you how to sync the load test database from these distributed test rigs into one SQL Azure database using Azure sync. The selling point for this scenario is being able to collate the load test efforts from across the organization into one data store. - Deploy multiple test rigs using the reusable solution from scenario 1 - Set up and configure Windows Azure Sync - Test SQL Azure Load Test result database created as a result of Windows Azure Sync - Cleaning up - Have the above work in the shape of a reusable solution for both VS2010 and VS2012 Test Rig The Ingredients Though with an active MSDN ultimate subscription you would already have access to everything and more, you will essentially need the below to try out the scenarios, 1. Windows Azure Subscription 2. Windows Azure Storage – Blob Storage 3. Windows Azure Compute – Worker Role 4. SQL Azure Database 5. SQL Data Sync 6. Windows Azure Connect – End points 7. SQL 2012 Express or SQL 2008 R2 Express 8. Visual Studio All Agents 2012 or Visual Studio All Agents 2010 9. A developer workstation set up with Visual Studio 2012 – Ultimate or Visual Studio 2010 – Ultimate 10. Visual Studio Load Test Unlimited Virtual User Pack. Walkthrough To set up the test rig in the cloud, the test controller, test agent and SQL express installers need to be available when the worker role set up starts, the easiest and most efficient way is to pre upload the required software into Windows Azure Blob storage. SQL express, test controller and test agent expose various switches which we can take advantage of including the quiet install switch. Once all the 3 have been installed the test controller needs to be registered with the test agents and the SQL database needs to be associated to the test controller. By enabling Windows Azure connect on the machines in the cloud and the developer workstation on premise we successfully create a virtual network amongst the machines enabling 2 way communication. All of the above can be done programmatically, let’s see step by step how… Scenario 1 Video Walkthrough–Leveraging Windows Azure for performance Testing Scenario 2 Work in progress, watch this space for more… Solution If you are still reading and are interested in the solution, drop me an email with your windows live id. I’ll add you to my TFS preview project which has a re-usable solution for both VS 2010 and VS 2012 test rigs as well as guidance and demo performance tests.   Conclusion Other posts and resources available here. Possibilities…. Endless!

    Read the article

  • Extending Blend for Visual Studio 2013

    - by Chris Skardon
    Originally posted on: http://geekswithblogs.net/cskardon/archive/2013/11/01/extending-blend-for-visual-studio-2013.aspxSo, I got a comment yesterday on my post about Extending Blend 4 and Blend for Visual Studio 2012 asking if I knew how to get it working for Blend for Visual Studio 2013.. My initial thoughts were, just change the location to get the blend dlls from Visual Studio 11.0 to 12.0 and you’re all set, so I went to do that, only to discover that the dlls I normally reference, well – they don’t exist. So… I’ve made a presumption that the actual process of using MEF etc is still the same. I was wrong. So, the route to discovery – required DotPeek and opening a few of blends dlls.. Browsing through the Blend install directory (./Microsoft Visual Studio 12.0/Blend/) I notice the .addin files: So I decide to peek into the SketchFlow dll, then promptly remember SketchFlow is quite a big thing, and hunting through there is not ideal, luckily there is another dll using an .addin file, ‘Microsoft.Expression.Importers.Host’, so we’ll go for that instead. We can see it’s still using the ‘IPackage’ formula, but where is that sucker? Well, we just press F12 on the ‘IPackage’ bit and DotPeek takes us there, with a very handy comment at the top: // Type: Microsoft.Expression.Framework.IPackage // Assembly: Microsoft.Expression.Framework, Version=12.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a // MVID: E092EA54-4941-463C-BD74-283FD36478E2 // Assembly location: C:\Program Files (x86)\Microsoft Visual Studio 12.0\Blend\Microsoft.Expression.Framework.dll Now we know where the IPackage interface is defined, so let’s just try writing a control. Last time I did a separate dll for the control, this time I’m not, but it still works if you want to do it that way. Let’s build a control! STEP 1 Create a new WPF application Naming doesn’t matter any more! I have gone with ‘Hello2013’ (see what I did there?) STEP 2 Delete: App.Config App.xaml MainWindow.xaml We won’t be needing them STEP 3 Change your application to be a Class Library instead. (You might also want to delete the ‘vshost’ stuff in your output directory now, as they only exist for hosting the WPF app, and just cause clutter) STEP 4 Add a reference to the ‘Microsoft.Expression.Framework.dll’ (which you can find in ‘C:\Program Files\Microsoft Visual Studio 12.0\Blend’ – that’s Program Files (x86) if you’re on an x64 machine!). STEP 5 Add a User Control, I’m going with ‘Hello2013Control’, and following from last time, it’s just a TextBlock in a Grid: <UserControl x:Class="Hello2013.Hello2013Control" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" mc:Ignorable="d" d:DesignHeight="300" d:DesignWidth="300"> <Grid> <TextBlock>Hello Blend for VS 2013</TextBlock> </Grid> </UserControl> STEP 6 Add a class to load the package – I’ve called it – yes you guessed – Hello2013Package, which will look like this: namespace Hello2013 { using Microsoft.Expression.Framework; using Microsoft.Expression.Framework.UserInterface; public class Hello2013Package : IPackage { private Hello2013Control _hello2013Control; private IWindowService _windowService; public void Load(IServices services) { _windowService = services.GetService<IWindowService>(); Initialize(); } private void Initialize() { _hello2013Control = new Hello2013Control(); if (_windowService.PaletteRegistry["HelloPanel"] == null) _windowService.RegisterPalette("HelloPanel", _hello2013Control, "Hello Window"); } public void Unload(){} } } You might note that compared to the 2012 version we’re no longer [Exporting(typeof(IPackage))]. The file you create in STEP 7 covers this for us. STEP 7 Add a new file called: ‘<PROJECT_OUTPUT_NAME>.addin’ – in reality you can call it anything and it’ll still read it in just fine, it’s just nicer if it all matches up, so I have ‘Hello2013.addin’. Content wise, we need to have: <?xml version="1.0" encoding="utf-8"?> <AddIn AssemblyFile="Hello2013.dll" /> obviously, replacing ‘Hello2013.dll’ with whatever your dll is called. STEP 8 We set the ‘addin’ file to be copied to the output directory: STEP 9 Build! STEP 10 Go to your output directory (./bin/debug) and copy the 3 files (Hello2013.dll, Hello2013.pdb, Hello2013.addin) and then paste into the ‘Addins’ folder in your Blend directory (C:\Program Files\Microsoft Visual Studio 12.0\Blend\Addins) STEP 11 Start Blend for Visual Studio 2013 STEP 12 Go to the ‘Window’ menu and select ‘Hello Window’ STEP 13 Marvel at your new control! Feel free to email me / comment with any problems!

    Read the article

  • WSS 3.0 to SharePoint 2010: Tips for delaying the Visual Upgrade

    - by Kelly Jones
    My most recent project has been to migrate a bunch of sites from WSS 3.0 (SharePoint 2007) to SharePoint Server 2010.  The users are currently working with WSS 3.0 and Office 2003, so the new ribbon based UI in 2010 will be completely new.  My client wants to avoid the new SharePoint 2010 look and feel until they’ve had time to train their users, so we’ve been testing the upgrades by keeping them with the 2007 user interface. Permission to perform the Visual Upgrade One of the first things we noticed was the default permissions for who was allowed to switch the UI from 2007 to 2010.  By default, site collection administrators and site owners can do this.  Since we wanted to more tightly control the timing of the new UI, I added a few lines to the PowerShell script that we are using to perform the migration.  This script creates the web application, sets the User Policy, and then does a Mount-SPDatabase to attach the old 2007 content database to the 2010 farm.  I added the following steps after the Mount-SPDatabase step: #Remove the visual upgrade option for site owners # it remains for Site Collection administrators foreach ($sc in $WebApp.Sites){ foreach ($web in $sc.AllWebs){ #Visual Upgrade permissions for the site/subsite (web) $web.UIversionConfigurationEnabled = $false; $web.Update(); } } These script steps loop through each Site Collection in a particular web application ($WebApp) and then it loops through each subsite ($web) in the Site Collection ($sc) and disables the Site Owner’s permission to perform the Visual Upgrade. This is equivalent to going to the Site Collection administrator settings page –> Visual Upgrade and selecting “Hide Visual Upgrade”. Since only IT people have Site Collection administrator privileges, this will allow IT to control the timing of the new 2010 UI rollout. Newly created subsites Our next issue was brought to our attention by SharePoint Joel’s blog post last week (http://www.sharepointjoel.com/Lists/Posts/Post.aspx?ID=524 ).  In it, he lists some updates about the 2010 upgrade, and his fourth point was one that I hadn’t seen yet: 4. If a 2007 upgraded site has not been visually upgraded, the sites created underneath it will look like 2010 sites – While this is something I’ve been aware of, I think many don’t realize how this impacts common look and feel for master pages, and how it impacts good navigation and UI. As well depending on your patch level you may see hanging behavior in the list picker. The site and list creation Silverlight control in Internet Explorer is looking for resources that don’t exist in the galleries in the 2007 site, and hence it continues to spin and spin and eventually time out. The work around is to upgrade to SP1, or use Chrome or Firefox which won’t attempt to render the Silverlight control. When the root site collection is a 2007 site and has it’s set of galleries and the children are 2010 sites there is some strange behavior linked to the way that the galleries work and pull from the parent. Our production SharePoint 2010 Farm has SP1 installed, as well as the December 2011 Cumulative Update, so I think the “hanging behavior” he mentions won’t affect us. However, since we want to control the roll out of the UI, we are concerned that new subsites will have the 2010 look and feel, no matter what the parent site has. Ok, time to dust off my developer skills. I first looked into using feature stapling, but I couldn’t get that to work (although I’m pretty sure I had everything wired up correctly).  Then I stumbled upon SharePoint 2010’s web events – a great way to handle this. Using Visual Studio 2010, I created a new SharePoint project and added a Web Event Receiver: In the Event Receiver class, I used the WebProvisioned method to check if the parent site is a 2007 site (UIVersion = 3), and if so, then set the newly created site to 2007:   /// <summary> /// A site was provisioned. /// </summary> public override void WebProvisioned(SPWebEventProperties properties) { base.WebProvisioned(properties);   try { SPWeb curweb = properties.Web;   if (curweb.ParentWeb != null) {   //check if the parent website has the 2007 look and feel if (curweb.ParentWeb.UIVersion == 3) { //since parent site has 2007 look and feel // we'll apply that look and feel to the current web curweb.UIVersion = 3; curweb.Update(); } } } catch (Exception) { //TODO: Add logging for errors } }   This event is part of a Feature that is scoped to the Site Level (Site Collection).  I added a couple of lines to my migration PowerShell script to activate the Feature for any site collections that we migrate. Plan Going Forward The plan going forward is to perform the visual upgrade after the users for a particular site collection have gone through 2010 training. If we need to do several site collections at once, we’ll use a PowerShell script to loop through each site collection to update the sites to 2010.  If it’s just one or two, we’ll be using the “Update All Sites” button on the Visual Upgrade page for Site Collection Administrators. The custom code for newly created sites won’t need to be changed, since it relies on the UI version of the parent site.  If the parent is 2010, then the new site will look 2010.

    Read the article

  • Version Assemblies with TFS 2010 Continuous Integration

    - by Steve Michelotti
    When I first heard that TFS 2010 had moved to Workflow Foundation for Team Build, I was *extremely* skeptical. I’ve loved MSBuild and didn’t quite understand the reasons for this change. In fact, given that I’ve been exclusively using Cruise Control for Continuous Integration (CI) for the last 5+ years of my career, I was skeptical of TFS for CI in general. However, after going through the learning process for TFS 2010 recently, I’m starting to become a believer. I’m also starting to see some of the benefits with Workflow Foundation for the overall processing because it gives you constructs not available in MSBuild such as parallel tasks, better control flow constructs, and a slightly better customization story. The first customization I had to make to the build process was to version the assemblies of my solution. This is not new. In fact, I’d recommend reading Mike Fourie’s well known post on Versioning Code in TFS before you get started. This post describes several foundational aspects of versioning assemblies regardless of your version of TFS. The main points are: 1) don’t use source control operations for your version file, 2) use a schema like <Major>.<Minor>.<IncrementalNumber>.0, and 3) do not keep AssemblyVersion and AssemblyFileVersion in sync. To do this in TFS 2010, the best post I’ve found has been Jim Lamb’s post of building a custom TFS 2010 workflow activity. Overall, this post is excellent but the primary issue I have with it is that the assembly version numbers produced are based in a date and look like this: “2010.5.15.1”. This is definitely not what I want. I want to be able to communicate to the developers and stakeholders that we are producing the “1.1 release” or “1.2 release” – which would have an assembly version number of “1.1.317.0” for example. In this post, I’ll walk through the process of customizing the assembly version number based on this method – customizing the concepts in Lamb’s post to suit my needs. I’ll also be combining this with the concepts of Fourie’s post – particularly with regards to the standards around how to version the assemblies. The first thing I’ll do is add a file called SolutionAssemblyVersionInfo.cs to the root of my solution that looks like this: 1: using System; 2: using System.Reflection; 3: [assembly: AssemblyVersion("1.1.0.0")] 4: [assembly: AssemblyFileVersion("1.1.0.0")] I’ll then add that file as a Visual Studio link file to each project in my solution by right-clicking the project, “Add – Existing Item…” then when I click the SolutionAssemblyVersionInfo.cs file, making sure I “Add As Link”: Now the Solution Explorer will show our file. We can see that it’s a “link” file because of the black arrow in the icon within all our projects. Of course you’ll need to remove the AssemblyVersion and AssemblyFileVersion attributes from the AssemblyInfo.cs files to avoid the duplicate attributes since they now leave in the SolutionAssemblyVersionInfo.cs file. This is an extremely common technique so that all the projects in our solution can be versioned as a unit. At this point, we’re ready to write our custom activity. The primary consideration is that I want the developer and/or tech lead to be able to easily be in control of the Major.Minor and then I want the CI process to add the third number with a unique incremental number. We’ll leave the fourth position always “0” for now – it’s held in reserve in case the day ever comes where we need to do an emergency patch to Production based on a branched version.   Writing the Custom Workflow Activity Similar to Lamb’s post, I’m going to write two custom workflow activities. The “outer” activity (a xaml activity) will be pretty straight forward. It will check if the solution version file exists in the solution root and, if so, delegate the replacement of version to the AssemblyVersionInfo activity which is a CodeActivity highlighted in red below:   Notice that the arguments of this activity are the “solutionVersionFile” and “tfsBuildNumber” which will be passed in. The tfsBuildNumber passed in will look something like this: “CI_MyApplication.4” and we’ll need to grab the “4” (i.e., the incremental revision number) and put that in the third position. Then we’ll need to honor whatever was specified for Major.Minor in the SolutionAssemblyVersionInfo.cs file. For example, if the SolutionAssemblyVersionInfo.cs file had “1.1.0.0” for the AssemblyVersion (as shown in the first code block near the beginning of this post), then we want to resulting file to have “1.1.4.0”. Before we do anything, let’s put together a unit test for all this so we can know if we get it right: 1: [TestMethod] 2: public void Assembly_version_should_be_parsed_correctly_from_build_name() 3: { 4: // arrange 5: const string versionFile = "SolutionAssemblyVersionInfo.cs"; 6: WriteTestVersionFile(versionFile); 7: var activity = new VersionAssemblies(); 8: var arguments = new Dictionary<string, object> { 9: { "tfsBuildNumber", "CI_MyApplication.4"}, 10: { "solutionVersionFile", versionFile} 11: }; 12:   13: // act 14: var result = WorkflowInvoker.Invoke(activity, arguments); 15:   16: // assert 17: Assert.AreEqual("1.2.4.0", (string)result["newAssemblyFileVersion"]); 18: var lines = File.ReadAllLines(versionFile); 19: Assert.IsTrue(lines.Contains("[assembly: AssemblyVersion(\"1.2.0.0\")]")); 20: Assert.IsTrue(lines.Contains("[assembly: AssemblyFileVersion(\"1.2.4.0\")]")); 21: } 22: 23: private void WriteTestVersionFile(string versionFile) 24: { 25: var fileContents = "using System.Reflection;\n" + 26: "[assembly: AssemblyVersion(\"1.2.0.0\")]\n" + 27: "[assembly: AssemblyFileVersion(\"1.2.0.0\")]"; 28: File.WriteAllText(versionFile, fileContents); 29: }   At this point, the code for our AssemblyVersion activity is pretty straight forward: 1: [BuildActivity(HostEnvironmentOption.Agent)] 2: public class AssemblyVersionInfo : CodeActivity 3: { 4: [RequiredArgument] 5: public InArgument<string> FileName { get; set; } 6:   7: [RequiredArgument] 8: public InArgument<string> TfsBuildNumber { get; set; } 9:   10: public OutArgument<string> NewAssemblyFileVersion { get; set; } 11:   12: protected override void Execute(CodeActivityContext context) 13: { 14: var solutionVersionFile = this.FileName.Get(context); 15: 16: // Ensure that the file is writeable 17: var fileAttributes = File.GetAttributes(solutionVersionFile); 18: File.SetAttributes(solutionVersionFile, fileAttributes & ~FileAttributes.ReadOnly); 19:   20: // Prepare assembly versions 21: var majorMinor = GetAssemblyMajorMinorVersionBasedOnExisting(solutionVersionFile); 22: var newBuildNumber = GetNewBuildNumber(this.TfsBuildNumber.Get(context)); 23: var newAssemblyVersion = string.Format("{0}.{1}.0.0", majorMinor.Item1, majorMinor.Item2); 24: var newAssemblyFileVersion = string.Format("{0}.{1}.{2}.0", majorMinor.Item1, majorMinor.Item2, newBuildNumber); 25: this.NewAssemblyFileVersion.Set(context, newAssemblyFileVersion); 26:   27: // Perform the actual replacement 28: var contents = this.GetFileContents(newAssemblyVersion, newAssemblyFileVersion); 29: File.WriteAllText(solutionVersionFile, contents); 30:   31: // Restore the file's original attributes 32: File.SetAttributes(solutionVersionFile, fileAttributes); 33: } 34:   35: #region Private Methods 36:   37: private string GetFileContents(string newAssemblyVersion, string newAssemblyFileVersion) 38: { 39: var cs = new StringBuilder(); 40: cs.AppendLine("using System.Reflection;"); 41: cs.AppendFormat("[assembly: AssemblyVersion(\"{0}\")]", newAssemblyVersion); 42: cs.AppendLine(); 43: cs.AppendFormat("[assembly: AssemblyFileVersion(\"{0}\")]", newAssemblyFileVersion); 44: return cs.ToString(); 45: } 46:   47: private Tuple<string, string> GetAssemblyMajorMinorVersionBasedOnExisting(string filePath) 48: { 49: var lines = File.ReadAllLines(filePath); 50: var versionLine = lines.Where(x => x.Contains("AssemblyVersion")).FirstOrDefault(); 51:   52: if (versionLine == null) 53: { 54: throw new InvalidOperationException("File does not contain [assembly: AssemblyVersion] attribute"); 55: } 56:   57: return ExtractMajorMinor(versionLine); 58: } 59:   60: private static Tuple<string, string> ExtractMajorMinor(string versionLine) 61: { 62: var firstQuote = versionLine.IndexOf('"') + 1; 63: var secondQuote = versionLine.IndexOf('"', firstQuote); 64: var version = versionLine.Substring(firstQuote, secondQuote - firstQuote); 65: var versionParts = version.Split('.'); 66: return new Tuple<string, string>(versionParts[0], versionParts[1]); 67: } 68:   69: private string GetNewBuildNumber(string buildName) 70: { 71: return buildName.Substring(buildName.LastIndexOf(".") + 1); 72: } 73:   74: #endregion 75: }   At this point the final step is to incorporate this activity into the overall build template. Make a copy of the DefaultTempate.xaml – we’ll call it DefaultTemplateWithVersioning.xaml. Before the build and labeling happens, drag the VersionAssemblies activity in. Then set the LabelName variable to “BuildDetail.BuildDefinition.Name + "-" + newAssemblyFileVersion since the newAssemblyFileVersion was produced by our activity.   Configuring CI Once you add your solution to source control, you can configure CI with the build definition window as shown here. The main difference is that we’ll change the Process tab to reflect a different build number format and choose our custom build process file:   When the build completes, we’ll see the name of our project with the unique revision number:   If we look at the detailed build log for the latest build, we’ll see the label being created with our custom task:     We can now look at the history labels in TFS and see the project name with the labels (the Assignment activity I added to the workflow):   Finally, if we look at the physical assemblies that are produced, we can right-click on any assembly in Windows Explorer and see the assembly version in its properties:   Full Traceability We now have full traceability for our code. There will never be a question of what code was deployed to Production. You can always see the assembly version in the properties of the physical assembly. That can be traced back to a label in TFS where the unique revision number matches. The label in TFS gives you the complete snapshot of the code in your source control repository at the time the code was built. This type of process for full traceability has been used for many years for CI – in fact, I’ve done similar things with CCNet and SVN for quite some time. This is simply the TFS implementation of that pattern. The new features that TFS 2010 give you to make these types of customizations in your build process are quite easy once you get over the initial curve.

    Read the article

< Previous Page | 69 70 71 72 73 74 75 76 77 78 79 80  | Next Page >