Search Results

Search found 18347 results on 734 pages for 'generate password'.

Page 730/734 | < Previous Page | 726 727 728 729 730 731 732 733 734  | Next Page >

  • Tomcat 7 taking ages to start up after upgrade

    - by Lawrence
    I recently updated my server installation from Tomcat 6 to Tomcat 7, in order to take advantage of better connection pooling. My project uses Hibernate, for object persistance, a Mysql 5.5.20 database, and memcached for caching. When I was using Tomcat 6, Tomcat would start in about 8 seconds. After moving to Tomcat 7, it now takes between 75 - 80 seconds to start (this is on a Macbook pro 15", core i7 2Ghz, 8Gb of RAM). The only thing that has really changed between during the move from Tomcat 6 to 7 has been my context.xml file, which controls the connection pooling information: <Context antiJARLocking="true" reloadable="true" path=""> <Resource name="jdbc/test-db" auth="Container" type="javax.sql.DataSource" factory="org.apache.tomcat.jdbc.pool.DataSourceFactory" testOnBorrow="true" testOnReturn="false" testWhileIdle="true" validationQuery="SELECT 1" validationQueryTimeout="20000" validationInterval="30000" timeBetweenEvictionRunsMillis="60000" logValidationErrors="true" autoReconnect="true" username="webuser" password="xxxxxxx" driverClassName="com.mysql.jdbc.Driver" url="jdbc:mysql://databasename.us-east-1.rds.amazonaws.com:3306/test-db" maxActive="15" minIdle="2" maxIdle="10" maxWait="10000" maxAge="7200000"/> </Context> Now, as you can see, the database is running on Amazon RDS (where our live servers are), and thus is about 200ms round trip time away from my machine. I have already checked that I have security permissions to that database from my machine, (and anyway, it connects after 75 secs, so it cant be that). My initial thought was that Tomcat 7 and hibernate are doing something weird (like pre-instantiating a bunch of connections or something), and the latency to the database is amplifying the effects. While trying to diagnose the problem, I used jstack to get a stack trace of the Tomcat 7 server while its doing its startup thing. Here is the stack trace... Full thread dump Java HotSpot(TM) 64-Bit Server VM (20.12-b01-434 mixed mode): "Attach Listener" daemon prio=9 tid=7fa4c0038800 nid=0x10c39a000 waiting on condition [00000000] java.lang.Thread.State: RUNNABLE "Abandoned connection cleanup thread" daemon prio=5 tid=7fa4bb810000 nid=0x10f3ba000 in Object.wait() [10f3b9000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <7f40a0070> (a java.lang.ref.ReferenceQueue$Lock) at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:118) - locked <7f40a0070> (a java.lang.ref.ReferenceQueue$Lock) at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:134) at com.mysql.jdbc.NonRegisteringDriver$1.run(NonRegisteringDriver.java:93) "PoolCleaner[545768040:1352724902327]" daemon prio=5 tid=7fa4be852800 nid=0x10e772000 in Object.wait() [10e771000] java.lang.Thread.State: TIMED_WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <7f40c7c90> (a java.util.TaskQueue) at java.util.TimerThread.mainLoop(Timer.java:509) - locked <7f40c7c90> (a java.util.TaskQueue) at java.util.TimerThread.run(Timer.java:462) "localhost-startStop-1" daemon prio=5 tid=7fa4bd034800 nid=0x10d66b000 runnable [10d668000] java.lang.Thread.State: RUNNABLE at java.net.SocketInputStream.socketRead0(Native Method) at java.net.SocketInputStream.read(SocketInputStream.java:129) at com.mysql.jdbc.util.ReadAheadInputStream.fill(ReadAheadInputStream.java:114) at com.mysql.jdbc.util.ReadAheadInputStream.readFromUnderlyingStreamIfNecessary(ReadAheadInputStream.java:161) at com.mysql.jdbc.util.ReadAheadInputStream.read(ReadAheadInputStream.java:189) - locked <7f3673be0> (a com.mysql.jdbc.util.ReadAheadInputStream) at com.mysql.jdbc.MysqlIO.readFully(MysqlIO.java:3014) at com.mysql.jdbc.MysqlIO.reuseAndReadPacket(MysqlIO.java:3467) at com.mysql.jdbc.MysqlIO.reuseAndReadPacket(MysqlIO.java:3456) at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:3997) at com.mysql.jdbc.MysqlIO.sendCommand(MysqlIO.java:2468) at com.mysql.jdbc.MysqlIO.sqlQueryDirect(MysqlIO.java:2629) at com.mysql.jdbc.ConnectionImpl.execSQL(ConnectionImpl.java:2713) - locked <7f366a1c0> (a com.mysql.jdbc.JDBC4Connection) at com.mysql.jdbc.ConnectionImpl.configureClientCharacterSet(ConnectionImpl.java:1930) at com.mysql.jdbc.ConnectionImpl.initializePropsFromServer(ConnectionImpl.java:3571) at com.mysql.jdbc.ConnectionImpl.connectOneTryOnly(ConnectionImpl.java:2445) at com.mysql.jdbc.ConnectionImpl.createNewIO(ConnectionImpl.java:2215) - locked <7f366a1c0> (a com.mysql.jdbc.JDBC4Connection) at com.mysql.jdbc.ConnectionImpl.<init>(ConnectionImpl.java:813) at com.mysql.jdbc.JDBC4Connection.<init>(JDBC4Connection.java:47) at sun.reflect.GeneratedConstructorAccessor10.newInstance(Unknown Source) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27) at java.lang.reflect.Constructor.newInstance(Constructor.java:513) at com.mysql.jdbc.Util.handleNewInstance(Util.java:411) at com.mysql.jdbc.ConnectionImpl.getInstance(ConnectionImpl.java:399) at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:334) at org.apache.tomcat.jdbc.pool.PooledConnection.connectUsingDriver(PooledConnection.java:278) at org.apache.tomcat.jdbc.pool.PooledConnection.connect(PooledConnection.java:182) at org.apache.tomcat.jdbc.pool.ConnectionPool.createConnection(ConnectionPool.java:699) at org.apache.tomcat.jdbc.pool.ConnectionPool.borrowConnection(ConnectionPool.java:631) at org.apache.tomcat.jdbc.pool.ConnectionPool.init(ConnectionPool.java:485) at org.apache.tomcat.jdbc.pool.ConnectionPool.<init>(ConnectionPool.java:143) at org.apache.tomcat.jdbc.pool.DataSourceProxy.pCreatePool(DataSourceProxy.java:116) - locked <7f34f0dc8> (a org.apache.tomcat.jdbc.pool.DataSource) at org.apache.tomcat.jdbc.pool.DataSourceProxy.createPool(DataSourceProxy.java:103) at org.apache.tomcat.jdbc.pool.DataSourceFactory.createDataSource(DataSourceFactory.java:539) at org.apache.tomcat.jdbc.pool.DataSourceFactory.getObjectInstance(DataSourceFactory.java:237) at org.apache.naming.factory.ResourceFactory.getObjectInstance(ResourceFactory.java:143) at javax.naming.spi.NamingManager.getObjectInstance(NamingManager.java:304) at org.apache.naming.NamingContext.lookup(NamingContext.java:843) at org.apache.naming.NamingContext.lookup(NamingContext.java:154) at org.apache.naming.NamingContext.lookup(NamingContext.java:831) at org.apache.naming.NamingContext.lookup(NamingContext.java:168) at org.apache.catalina.core.NamingContextListener.addResource(NamingContextListener.java:1061) at org.apache.catalina.core.NamingContextListener.createNamingContext(NamingContextListener.java:671) at org.apache.catalina.core.NamingContextListener.lifecycleEvent(NamingContextListener.java:270) at org.apache.catalina.util.LifecycleSupport.fireLifecycleEvent(LifecycleSupport.java:119) at org.apache.catalina.util.LifecycleBase.fireLifecycleEvent(LifecycleBase.java:90) at org.apache.catalina.core.StandardContext.startInternal(StandardContext.java:5173) - locked <7f46b07f0> (a org.apache.catalina.core.StandardContext) at org.apache.catalina.util.LifecycleBase.start(LifecycleBase.java:150) - locked <7f46b07f0> (a org.apache.catalina.core.StandardContext) at org.apache.catalina.core.ContainerBase$StartChild.call(ContainerBase.java:1559) at org.apache.catalina.core.ContainerBase$StartChild.call(ContainerBase.java:1549) at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:303) at java.util.concurrent.FutureTask.run(FutureTask.java:138) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) at java.lang.Thread.run(Thread.java:680) "Catalina-startStop-1" daemon prio=5 tid=7fa4b7a5e800 nid=0x10d568000 waiting on condition [10d567000] java.lang.Thread.State: WAITING (parking) at sun.misc.Unsafe.park(Native Method) - parking to wait for <7f480e970> (a java.util.concurrent.FutureTask$Sync) at java.util.concurrent.locks.LockSupport.park(LockSupport.java:156) at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:811) at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedInterruptibly(AbstractQueuedSynchronizer.java:969) at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.java:1281) at java.util.concurrent.FutureTask$Sync.innerGet(FutureTask.java:218) at java.util.concurrent.FutureTask.get(FutureTask.java:83) at org.apache.catalina.core.ContainerBase.startInternal(ContainerBase.java:1123) - locked <7f453c630> (a org.apache.catalina.core.StandardHost) at org.apache.catalina.core.StandardHost.startInternal(StandardHost.java:800) - locked <7f453c630> (a org.apache.catalina.core.StandardHost) at org.apache.catalina.util.LifecycleBase.start(LifecycleBase.java:150) - locked <7f453c630> (a org.apache.catalina.core.StandardHost) at org.apache.catalina.core.ContainerBase$StartChild.call(ContainerBase.java:1559) at org.apache.catalina.core.ContainerBase$StartChild.call(ContainerBase.java:1549) at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:303) at java.util.concurrent.FutureTask.run(FutureTask.java:138) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) at java.lang.Thread.run(Thread.java:680) "GC Daemon" daemon prio=2 tid=7fa4b9912800 nid=0x10d465000 in Object.wait() [10d464000] java.lang.Thread.State: TIMED_WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <7f4506d28> (a sun.misc.GC$LatencyLock) at sun.misc.GC$Daemon.run(GC.java:100) - locked <7f4506d28> (a sun.misc.GC$LatencyLock) "Low Memory Detector" daemon prio=5 tid=7fa4b480b800 nid=0x10c8ae000 runnable [00000000] java.lang.Thread.State: RUNNABLE "C2 CompilerThread1" daemon prio=9 tid=7fa4b480b000 nid=0x10c7ab000 waiting on condition [00000000] java.lang.Thread.State: RUNNABLE "C2 CompilerThread0" daemon prio=9 tid=7fa4b480a000 nid=0x10c6a8000 waiting on condition [00000000] java.lang.Thread.State: RUNNABLE "Signal Dispatcher" daemon prio=9 tid=7fa4b4809800 nid=0x10c5a5000 runnable [00000000] java.lang.Thread.State: RUNNABLE "Surrogate Locker Thread (Concurrent GC)" daemon prio=5 tid=7fa4b4808800 nid=0x10c4a2000 waiting on condition [00000000] java.lang.Thread.State: RUNNABLE "Finalizer" daemon prio=8 tid=7fa4b793f000 nid=0x10c297000 in Object.wait() [10c296000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <7f451c8f0> (a java.lang.ref.ReferenceQueue$Lock) at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:118) - locked <7f451c8f0> (a java.lang.ref.ReferenceQueue$Lock) at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:134) at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:159) "Reference Handler" daemon prio=10 tid=7fa4b793e000 nid=0x10c194000 in Object.wait() [10c193000] java.lang.Thread.State: WAITING (on object monitor) at java.lang.Object.wait(Native Method) - waiting on <7f452e168> (a java.lang.ref.Reference$Lock) at java.lang.Object.wait(Object.java:485) at java.lang.ref.Reference$ReferenceHandler.run(Reference.java:116) - locked <7f452e168> (a java.lang.ref.Reference$Lock) "main" prio=5 tid=7fa4b7800800 nid=0x104329000 waiting on condition [104327000] java.lang.Thread.State: WAITING (parking) at sun.misc.Unsafe.park(Native Method) - parking to wait for <7f480e9a0> (a java.util.concurrent.FutureTask$Sync) at java.util.concurrent.locks.LockSupport.park(LockSupport.java:156) at java.util.concurrent.locks.AbstractQueuedSynchronizer.parkAndCheckInterrupt(AbstractQueuedSynchronizer.java:811) at java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireSharedInterruptibly(AbstractQueuedSynchronizer.java:969) at java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireSharedInterruptibly(AbstractQueuedSynchronizer.java:1281) at java.util.concurrent.FutureTask$Sync.innerGet(FutureTask.java:218) at java.util.concurrent.FutureTask.get(FutureTask.java:83) at org.apache.catalina.core.ContainerBase.startInternal(ContainerBase.java:1123) - locked <7f451fd90> (a org.apache.catalina.core.StandardEngine) at org.apache.catalina.core.StandardEngine.startInternal(StandardEngine.java:302) - locked <7f451fd90> (a org.apache.catalina.core.StandardEngine) at org.apache.catalina.util.LifecycleBase.start(LifecycleBase.java:150) - locked <7f451fd90> (a org.apache.catalina.core.StandardEngine) at org.apache.catalina.core.StandardService.startInternal(StandardService.java:443) - locked <7f451fd90> (a org.apache.catalina.core.StandardEngine) at org.apache.catalina.util.LifecycleBase.start(LifecycleBase.java:150) - locked <7f453e810> (a org.apache.catalina.core.StandardService) at org.apache.catalina.core.StandardServer.startInternal(StandardServer.java:732) - locked <7f4506d58> (a [Lorg.apache.catalina.Service;) at org.apache.catalina.util.LifecycleBase.start(LifecycleBase.java:150) - locked <7f44f7ba0> (a org.apache.catalina.core.StandardServer) at org.apache.catalina.startup.Catalina.start(Catalina.java:684) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.apache.catalina.startup.Bootstrap.start(Bootstrap.java:322) at org.apache.catalina.startup.Bootstrap.main(Bootstrap.java:451) "VM Thread" prio=9 tid=7fa4b7939800 nid=0x10c091000 runnable "Gang worker#0 (Parallel GC Threads)" prio=9 tid=7fa4b7802000 nid=0x10772b000 runnable "Gang worker#1 (Parallel GC Threads)" prio=9 tid=7fa4b7802800 nid=0x10782e000 runnable "Gang worker#2 (Parallel GC Threads)" prio=9 tid=7fa4b7803000 nid=0x107931000 runnable "Gang worker#3 (Parallel GC Threads)" prio=9 tid=7fa4b7804000 nid=0x107a34000 runnable "Gang worker#4 (Parallel GC Threads)" prio=9 tid=7fa4b7804800 nid=0x107b37000 runnable "Gang worker#5 (Parallel GC Threads)" prio=9 tid=7fa4b7805000 nid=0x107c3a000 runnable "Gang worker#6 (Parallel GC Threads)" prio=9 tid=7fa4b7805800 nid=0x107d3d000 runnable "Gang worker#7 (Parallel GC Threads)" prio=9 tid=7fa4b7806800 nid=0x107e40000 runnable "Concurrent Mark-Sweep GC Thread" prio=9 tid=7fa4b78e3800 nid=0x10bd0b000 runnable "Gang worker#0 (Parallel CMS Threads)" prio=9 tid=7fa4b78e2800 nid=0x10b305000 runnable "Gang worker#1 (Parallel CMS Threads)" prio=9 tid=7fa4b78e3000 nid=0x10b408000 runnable "VM Periodic Task Thread" prio=10 tid=7fa4b4815800 nid=0x10c9b1000 waiting on condition "Exception Catcher Thread" prio=10 tid=7fa4b7801800 nid=0x104554000 runnable JNI global references: 919 The only thing I can figure out from this is that it looks like the mysql jdbc drivers might have something to do with the long start up (the various stack traces I took during the start up process all pretty much look the same as this). Could anyone shed some light on what might be causing this? Have I done something dense in my context.xml? Is hibernate perhaps to blame?

    Read the article

  • Unable to receive any emails using postfix, dovecot, mysql, and virtual domain/mailboxes

    - by stkdev248
    I have been working on configuring my mail server for the last couple of weeks using postfix, dovecot, and mysql. I have one virtual domain and a few virtual mailboxes. Using squirrelmail I have been able to log into my accounts and send emails out (e.g. I can send to googlemail just fine), however I am not able to receive any emails--not from the outside world nor from within my own network. I am able to telnet in using localhost, my private ip, and my public ip on port 25 without any problems (I've tried it from the server itself and from another computer on my network). This is what I get in my logs when I send an email from my googlemail account to my mail server: mail.log Apr 14 07:36:06 server1 postfix/qmgr[1721]: BE01B520538: from=, size=733, nrcpt=1 (queue active) Apr 14 07:36:06 server1 postfix/pipe[3371]: 78BC0520510: to=, relay=dovecot, delay=45421, delays=45421/0/0/0.13, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied) Apr 14 07:36:06 server1 postfix/pipe[3391]: 8261B520534: to=, relay=dovecot, delay=38036, delays=38036/0.06/0/0.12, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) Apr 14 07:36:06 server1 postfix/pipe[3378]: 63927520532: to=, relay=dovecot, delay=38105, delays=38105/0.02/0/0.17, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) Apr 14 07:36:06 server1 postfix/pipe[3375]: 07F65520522: to=, relay=dovecot, delay=39467, delays=39467/0.01/0/0.17, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) Apr 14 07:36:06 server1 postfix/pipe[3381]: EEDE9520527: to=, relay=dovecot, delay=38361, delays=38360/0.04/0/0.15, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) Apr 14 07:36:06 server1 postfix/pipe[3379]: 67DFF520517: to=, relay=dovecot, delay=40475, delays=40475/0.03/0/0.16, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) Apr 14 07:36:06 server1 postfix/pipe[3387]: 3C7A052052E: to=, relay=dovecot, delay=38259, delays=38259/0.05/0/0.13, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) Apr 14 07:36:06 server1 postfix/pipe[3394]: BE01B520538: to=, relay=dovecot, delay=37682, delays=37682/0.07/0/0.11, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) Apr 14 07:36:07 server1 postfix/pipe[3384]: 3C7A052052E: to=, relay=dovecot, delay=38261, delays=38259/0.04/0/1.3, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) Apr 14 07:39:23 server1 postfix/anvil[3368]: statistics: max connection rate 1/60s for (smtp:209.85.213.169) at Apr 14 07:35:32 Apr 14 07:39:23 server1 postfix/anvil[3368]: statistics: max connection count 1 for (smtp:209.85.213.169) at Apr 14 07:35:32 Apr 14 07:39:23 server1 postfix/anvil[3368]: statistics: max cache size 1 at Apr 14 07:35:32 Apr 14 07:41:06 server1 postfix/qmgr[1721]: ED6005203B7: from=, size=1463, nrcpt=1 (queue active) Apr 14 07:41:06 server1 postfix/pipe[4594]: ED6005203B7: to=, relay=dovecot, delay=334, delays=334/0.01/0/0.13, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) Apr 14 07:51:06 server1 postfix/qmgr[1721]: ED6005203B7: from=, size=1463, nrcpt=1 (queue active) Apr 14 07:51:06 server1 postfix/pipe[4604]: ED6005203B7: to=, relay=dovecot, delay=933, delays=933/0.02/0/0.12, dsn=4.3.0, status=deferred (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ) mail-dovecot-log (the log I set for debugging): Apr 14 07:28:26 auth: Info: mysql(127.0.0.1): Connected to database postfixadmin Apr 14 07:28:26 auth: Debug: sql([email protected],127.0.0.1): query: SELECT password FROM mailbox WHERE username = '[email protected]' Apr 14 07:28:26 auth: Debug: client out: OK 1 [email protected] Apr 14 07:28:26 auth: Debug: master in: REQUEST 1809973249 3356 1 7cfb822db820fc5da67d0776b107cb3f Apr 14 07:28:26 auth: Debug: sql([email protected],127.0.0.1): SELECT '/home/vmail/mydomain.com/some.user1' as home, 5000 AS uid, 5000 AS gid FROM mailbox WHERE username = '[email protected]' Apr 14 07:28:26 auth: Debug: master out: USER 1809973249 [email protected] home=/home/vmail/mydomain.com/some.user1 uid=5000 gid=5000 Apr 14 07:28:26 imap-login: Info: Login: user=, method=PLAIN, rip=127.0.0.1, lip=127.0.0.1, mpid=3360, secured Apr 14 07:28:26 imap([email protected]): Debug: Effective uid=5000, gid=5000, home=/home/vmail/mydomain.com/some.user1 Apr 14 07:28:26 imap([email protected]): Debug: maildir++: root=/home/vmail/mydomain.com/some.user1/Maildir, index=/home/vmail/mydomain.com/some.user1/Maildir/indexes, control=, inbox=/home/vmail/mydomain.com/some.user1/Maildir Apr 14 07:48:31 imap([email protected]): Info: Disconnected: Logged out bytes=85/681 From the output above I'm pretty sure that my problems all stem from (temporary failure. Command output: Can't open log file /var/log/mail-dovecot.log: Permission denied ), but I have no idea why I'm getting that error. I've have the permissions to that log set just like the other mail logs: root@server1:~# ls -l /var/log/mail* -rw-r----- 1 syslog adm 196653 2012-04-14 07:58 /var/log/mail-dovecot.log -rw-r----- 1 syslog adm 62778 2012-04-13 21:04 /var/log/mail.err -rw-r----- 1 syslog adm 497767 2012-04-14 08:01 /var/log/mail.log Does anyone have any idea what I may be doing wrong? Here are my main.cf and master.cf files: main.cf: # See /usr/share/postfix/main.cf.dist for a commented, more complete version # Debian specific: Specifying a file name will cause the first # line of that file to be used as the name. The Debian default # is /etc/mailname. #myorigin = /etc/mailname smtpd_banner = $myhostname ESMTP $mail_name (Ubuntu) biff = no # appending .domain is the MUA's job. append_dot_mydomain = no # Uncomment the next line to generate "delayed mail" warnings #delay_warning_time = 4h readme_directory = no # TLS parameters smtpd_tls_cert_file=/etc/ssl/certs/ssl-cert-snakeoil.pem smtpd_tls_key_file=/etc/ssl/private/ssl-cert-snakeoil.key smtpd_use_tls=yes smtpd_tls_session_cache_database = btree:${data_directory}/smtpd_scache smtp_tls_session_cache_database = btree:${data_directory}/smtp_scache # See /usr/share/doc/postfix/TLS_README.gz in the postfix-doc package for # information on enabling SSL in the smtp client. myhostname = server1.mydomain.com alias_maps = hash:/etc/aliases alias_database = hash:/etc/aliases myorigin = /etc/mailname mydestination = relayhost = mynetworks = 127.0.0.0/8 [::ffff:127.0.0.0]/104 [::1]/128 mailbox_command = procmail -a "$EXTENSION" mailbox_size_limit = 0 recipient_delimiter = + inet_interfaces = all # Virtual Configs virtual_uid_maps = static:5000 virtual_gid_maps = static:5000 virtual_mailbox_base = /home/vmail virtual_mailbox_domains = mysql:/etc/postfix/mysql_virtual_mailbox_domains.cf virtual_mailbox_maps = mysql:/etc/postfix/mysql_virtual_mailbox_maps.cf virtual_alias_maps = mysql:/etc/postfix/mysql_virtual_alias_maps.cf relay_domains = mysql:/etc/postfix/mysql_relay_domains.cf smtpd_recipient_restrictions = permit_mynetworks, permit_sasl_authenticated, reject_non_fqdn_hostname, reject_non_fqdn_sender, reject_non_fqdn_recipient, reject_unauth_destination, reject_unauth_pipelining, reject_invalid_hostname smtpd_sasl_auth_enable = yes smtpd_sasl_security_options = noanonymous virtual_transport=dovecot dovecot_destination_recipient_limit = 1 master.cf: # # Postfix master process configuration file. For details on the format # of the file, see the master(5) manual page (command: "man 5 master"). # # Do not forget to execute "postfix reload" after editing this file. # # ========================================================================== # service type private unpriv chroot wakeup maxproc command + args # (yes) (yes) (yes) (never) (100) # ========================================================================== smtp inet n - - - - smtpd #smtp inet n - - - 1 postscreen #smtpd pass - - - - - smtpd #dnsblog unix - - - - 0 dnsblog #tlsproxy unix - - - - 0 tlsproxy #submission inet n - - - - smtpd # -o smtpd_tls_security_level=encrypt # -o smtpd_sasl_auth_enable=yes # -o smtpd_client_restrictions=permit_sasl_authenticated,reject # -o milter_macro_daemon_name=ORIGINATING #smtps inet n - - - - smtpd # -o smtpd_tls_wrappermode=yes # -o smtpd_sasl_auth_enable=yes # -o smtpd_client_restrictions=permit_sasl_authenticated,reject # -o milter_macro_daemon_name=ORIGINATING #628 inet n - - - - qmqpd pickup fifo n - - 60 1 pickup cleanup unix n - - - 0 cleanup qmgr fifo n - n 300 1 qmgr #qmgr fifo n - - 300 1 oqmgr tlsmgr unix - - - 1000? 1 tlsmgr rewrite unix - - - - - trivial-rewrite bounce unix - - - - 0 bounce defer unix - - - - 0 bounce trace unix - - - - 0 bounce verify unix - - - - 1 verify flush unix n - - 1000? 0 flush proxymap unix - - n - - proxymap proxywrite unix - - n - 1 proxymap smtp unix - - - - - smtp # When relaying mail as backup MX, disable fallback_relay to avoid MX loops relay unix - - - - - smtp -o smtp_fallback_relay= # -o smtp_helo_timeout=5 -o smtp_connect_timeout=5 showq unix n - - - - showq error unix - - - - - error retry unix - - - - - error discard unix - - - - - discard local unix - n n - - local virtual unix - n n - - virtual lmtp unix - - - - - lmtp anvil unix - - - - 1 anvil scache unix - - - - 1 scache # # ==================================================================== # Interfaces to non-Postfix software. Be sure to examine the manual # pages of the non-Postfix software to find out what options it wants. # # Many of the following services use the Postfix pipe(8) delivery # agent. See the pipe(8) man page for information about ${recipient} # and other message envelope options. # ==================================================================== # # maildrop. See the Postfix MAILDROP_README file for details. # Also specify in main.cf: maildrop_destination_recipient_limit=1 # maildrop unix - n n - - pipe flags=DRhu user=vmail argv=/usr/bin/maildrop -d ${recipient} # # ==================================================================== # # Recent Cyrus versions can use the existing "lmtp" master.cf entry. # # Specify in cyrus.conf: # lmtp cmd="lmtpd -a" listen="localhost:lmtp" proto=tcp4 # # Specify in main.cf one or more of the following: # mailbox_transport = lmtp:inet:localhost # virtual_transport = lmtp:inet:localhost # # ==================================================================== # # Cyrus 2.1.5 (Amos Gouaux) # Also specify in main.cf: cyrus_destination_recipient_limit=1 # #cyrus unix - n n - - pipe # user=cyrus argv=/cyrus/bin/deliver -e -r ${sender} -m ${extension} ${user} # # ==================================================================== # Old example of delivery via Cyrus. # #old-cyrus unix - n n - - pipe # flags=R user=cyrus argv=/cyrus/bin/deliver -e -m ${extension} ${user} # # ==================================================================== # # See the Postfix UUCP_README file for configuration details. # uucp unix - n n - - pipe flags=Fqhu user=uucp argv=uux -r -n -z -a$sender - $nexthop!rmail ($recipient) # # Other external delivery methods. # ifmail unix - n n - - pipe flags=F user=ftn argv=/usr/lib/ifmail/ifmail -r $nexthop ($recipient) bsmtp unix - n n - - pipe flags=Fq. user=bsmtp argv=/usr/lib/bsmtp/bsmtp -t$nexthop -f$sender $recipient scalemail-backend unix - n n - 2 pipe flags=R user=scalemail argv=/usr/lib/scalemail/bin/scalemail-store ${nexthop} ${user} ${extension} mailman unix - n n - - pipe flags=FR user=list argv=/usr/lib/mailman/bin/postfix-to-mailman.py ${nexthop} ${user} dovecot unix - n n - - pipe flags=DRhu user=vmail:vmail argv=/usr/lib/dovecot/deliver -d ${recipient}

    Read the article

  • Inbound SIP calls through Cisco 881 NAT hang up after a few seconds

    - by MasterRoot24
    I've recently moved to a Cisco 881 router for my WAN link. I was previously using a Cisco Linksys WAG320N as my modem/router/WiFi AP/NAT firewall. The WAG320N is now running in bridged mode, so it's simply acting as a modem with one of it's LAN ports connected to FE4 WAN on my Cisco 881. The Cisco 881 get's a DHCP provided IP from my ISP. My LAN is part of default Vlan 1 (192.168.1.0/24). General internet connectivity is working great, I've managed to setup static NAT rules for my HTTP/HTTPS/SMTP/etc. services which are running on my LAN. I don't know whether it's worth mentioning that I've opted to use NVI NAT (ip nat enable as opposed to the traditional ip nat outside/ip nat inside) setup. My reason for this is that NVI allows NAT loopback from my LAN to the WAN IP and back in to the necessary server on the LAN. I run an Asterisk 1.8 PBX on my LAN, which connects to a SIP provider on the internet. Both inbound and outbound calls through the old setup (WAG320N providing routing/NAT) worked fine. However, since moving to the Cisco 881, inbound calls drop after around 10 seconds, whereas outbound calls work fine. The following message is logged on my Asterisk PBX: [Dec 9 15:27:45] WARNING[27734]: chan_sip.c:3641 retrans_pkt: Retransmission timeout reached on transmission [email protected] for seqno 1 (Critical Response) -- See https://wiki.asterisk.org/wiki/display/AST/SIP+Retransmissions Packet timed out after 6528ms with no response [Dec 9 15:27:45] WARNING[27734]: chan_sip.c:3670 retrans_pkt: Hanging up call [email protected] - no reply to our critical packet (see https://wiki.asterisk.org/wiki/display/AST/SIP+Retransmissions). (I know that this is quite a common issue - I've spend the best part of 2 days solid on this, trawling Google.) I've done as I am told and checked https://wiki.asterisk.org/wiki/display/AST/SIP+Retransmissions. Referring to the section "Other SIP requests" in the page linked above, I believe that the hangup to be caused by the ACK from my SIP provider not being passed back through NAT to Asterisk on my PBX. I tried to ascertain this by dumping the packets on my WAN interface on the 881. I managed to obtain a PCAP dump of packets in/out of my WAN interface. Here's an example of an ACK being reveived by the router from my provider: 689 21.219999 193.x.x.x 188.x.x.x SIP 502 Request: ACK sip:[email protected] | However a SIP trace on the Asterisk server show's that there are no ACK's received in response to the 200 OK from my PBX: http://pastebin.com/wwHpLPPz In the past, I have been strongly advised to disable any sort of SIP ALGs on routers and/or firewalls and the many posts regarding this issue on the internet seem to support this. However, I believe on Cisco IOS, the config command to disable SIP ALG is no ip nat service sip udp port 5060 however, this doesn't appear to help the situation. To confirm that config setting is set: Router1#show running-config | include sip no ip nat service sip udp port 5060 Another interesting twist: for a short period of time, I tried another provider. Luckily, my trial account with them is still available, so I reverted my Asterisk config back to the revision before I integrated with my current provider. I then dialled in to the DDI associated with the trial trunk and the call didn't get hung up and I didn't get the error above! To me, this points at the provider, however I know, like all providers do, will say "There's no issues with our SIP proxies - it's your firewall." I'm tempted to agree with this, as this issue was not apparent with the old WAG320N router when it was doing the NAT'ing. I'm sure you'll want to see my running-config too: ! ! Last configuration change at 15:55:07 UTC Sun Dec 9 2012 by xxx version 15.2 no service pad service tcp-keepalives-in service tcp-keepalives-out service timestamps debug datetime msec localtime show-timezone service timestamps log datetime msec localtime show-timezone no service password-encryption service sequence-numbers ! hostname Router1 ! boot-start-marker boot-end-marker ! ! security authentication failure rate 10 log security passwords min-length 6 logging buffered 4096 logging console critical enable secret 4 xxx ! aaa new-model ! ! aaa authentication login local_auth local ! ! ! ! ! aaa session-id common ! memory-size iomem 10 ! crypto pki trustpoint TP-self-signed-xxx enrollment selfsigned subject-name cn=IOS-Self-Signed-Certificate-xxx revocation-check none rsakeypair TP-self-signed-xxx ! ! crypto pki certificate chain TP-self-signed-xxx certificate self-signed 01 quit no ip source-route no ip gratuitous-arps ip auth-proxy max-login-attempts 5 ip admission max-login-attempts 5 ! ! ! ! ! no ip bootp server ip domain name dmz.merlin.local ip domain list dmz.merlin.local ip domain list merlin.local ip name-server x.x.x.x ip inspect audit-trail ip inspect udp idle-time 1800 ip inspect dns-timeout 7 ip inspect tcp idle-time 14400 ip inspect name autosec_inspect ftp timeout 3600 ip inspect name autosec_inspect http timeout 3600 ip inspect name autosec_inspect rcmd timeout 3600 ip inspect name autosec_inspect realaudio timeout 3600 ip inspect name autosec_inspect smtp timeout 3600 ip inspect name autosec_inspect tftp timeout 30 ip inspect name autosec_inspect udp timeout 15 ip inspect name autosec_inspect tcp timeout 3600 ip cef login block-for 3 attempts 3 within 3 no ipv6 cef ! ! multilink bundle-name authenticated license udi pid CISCO881-SEC-K9 sn ! ! username xxx privilege 15 secret 4 xxx username xxx secret 4 xxx ! ! ! ! ! ip ssh time-out 60 ! ! ! ! ! ! ! ! ! interface FastEthernet0 no ip address ! interface FastEthernet1 no ip address ! interface FastEthernet2 no ip address ! interface FastEthernet3 switchport access vlan 2 no ip address ! interface FastEthernet4 ip address dhcp no ip redirects no ip unreachables no ip proxy-arp ip nat enable duplex auto speed auto ! interface Vlan1 ip address 192.168.1.1 255.255.255.0 no ip redirects no ip unreachables no ip proxy-arp ip nat enable ! interface Vlan2 ip address 192.168.0.2 255.255.255.0 ! ip forward-protocol nd ip http server ip http access-class 1 ip http authentication local ip http secure-server ip http timeout-policy idle 60 life 86400 requests 10000 ! ! no ip nat service sip udp port 5060 ip nat source list 1 interface FastEthernet4 overload ip nat source static tcp x.x.x.x 80 interface FastEthernet4 80 ip nat source static tcp x.x.x.x 443 interface FastEthernet4 443 ip nat source static tcp x.x.x.x 25 interface FastEthernet4 25 ip nat source static tcp x.x.x.x 587 interface FastEthernet4 587 ip nat source static tcp x.x.x.x 143 interface FastEthernet4 143 ip nat source static tcp x.x.x.x 993 interface FastEthernet4 993 ip nat source static tcp x.x.x.x 1723 interface FastEthernet4 1723 ! ! logging trap debugging logging facility local2 access-list 1 permit 192.168.1.0 0.0.0.255 access-list 1 permit 192.168.0.0 0.0.0.255 no cdp run ! ! ! ! control-plane ! ! banner motd Authorized Access only ! line con 0 login authentication local_auth length 0 transport output all line aux 0 exec-timeout 15 0 login authentication local_auth transport output all line vty 0 1 access-class 1 in logging synchronous login authentication local_auth length 0 transport preferred none transport input telnet transport output all line vty 2 4 access-class 1 in login authentication local_auth length 0 transport input ssh transport output all ! ! end ...and, if it's of any use, here's my Asterisk SIP config: [general] context=default ; Default context for calls allowoverlap=no ; Disable overlap dialing support. (Default is yes) udpbindaddr=0.0.0.0 ; IP address to bind UDP listen socket to (0.0.0.0 binds to all) ; Optionally add a port number, 192.168.1.1:5062 (default is port 5060) tcpenable=no ; Enable server for incoming TCP connections (default is no) tcpbindaddr=0.0.0.0 ; IP address for TCP server to bind to (0.0.0.0 binds to all interfaces) ; Optionally add a port number, 192.168.1.1:5062 (default is port 5060) srvlookup=yes ; Enable DNS SRV lookups on outbound calls ; Note: Asterisk only uses the first host ; in SRV records ; Disabling DNS SRV lookups disables the ; ability to place SIP calls based on domain ; names to some other SIP users on the Internet ; Specifying a port in a SIP peer definition or ; when dialing outbound calls will supress SRV ; lookups for that peer or call. directmedia=no ; Don't allow direct RTP media between extensions (doesn't work through NAT) externhost=<MY DYNDNS HOSTNAME> ; Our external hostname to resolve to IP and be used in NAT'ed packets localnet=192.168.1.0/24 ; Define our local network so we know which packets need NAT'ing qualify=yes ; Qualify peers by default dtmfmode=rfc2833 ; Set the default DTMF mode disallow=all ; Disallow all codecs by default allow=ulaw ; Allow G.711 u-law allow=alaw ; Allow G.711 a-law ; ---------------------- ; SIP Trunk Registration ; ---------------------- ; Orbtalk register => <MY SIP PROVIDER USER NAME>:[email protected]/<MY DDI> ; Main Orbtalk number ; ---------- ; Trunks ; ---------- [orbtalk] ; Main Orbtalk trunk type=peer insecure=invite host=sipgw3.orbtalk.co.uk nat=yes username=<MY SIP PROVIDER USER NAME> defaultuser=<MY SIP PROVIDER USER NAME> fromuser=<MY SIP PROVIDER USER NAME> secret=xxx context=inbound I really don't know where to go with this. If anyone can help me find out why these calls are being dropped off, I'd be grateful if you could chime in! Please let me know if any further info is required.

    Read the article

  • Unable to PPTP through NAT on Cisco 881

    - by MasterRoot24
    I'm trying to connect to a PPTP server which is sat behind a Cisco 881 NAT router. The server is running Ubuntu Server 12.04 and is running Poptop pptpd as the PPTP daemon listening for connections. As discussed in my other question, I'm trying to setup a Cisco 881 router to replace my old Linksys WAG320N. This same server and WAN connection worked fine with the WAG320N with no special configuration, other than allowing 1723 in through the firewall. On the Cisco 881, I'm using the newer ip nat enable or NAT NVI to setup static routes in through the firewall for the services running behind the router. My reason being that I can't run another copy of my live DNS domains internally with local IP addresses in. For the purposes of this question, though, I have rebuilt the router with ip nat inside/outside style NAT'ing, but this issue is still apparent. HTTP/SMTP/IMAP etc. all work ok from both the WAN and LAN interfaces of the router. I'm only having issues with SIP (see other question) and PPTP. My issue is that the GRE doesn't appear to be passing through NAT correctly and one end of the connection is not receiving GRE traffic when it should be, so the server hangs up the connection. Here's an example of /var/log/syslog with debug enabled in /etc/pptpd.conf: Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: MGR: Launching /usr/sbin/pptpctrl to handle client Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: local address = 192.168.1.50 Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: remote address = 192.168.1.51 Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: pppd options file = /etc/ppp/pptpd-options Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: Client 82.132.248.216 control connection started Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: Received PPTP Control Message (type: 1) Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: Made a START CTRL CONN RPLY packet Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: I wrote 156 bytes to the client. Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: Sent packet to client Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: Received PPTP Control Message (type: 7) Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: Set parameters to 100000000 maxbps, 64 window size Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: Made a OUT CALL RPLY packet Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: Starting call (launching pppd, opening GRE) Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: pty_fd = 6 Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: tty_fd = 7 Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: I wrote 32 bytes to the client. Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: CTRL: Sent packet to client Dec 11 21:06:30 <HOSTNAME> pptpd[22627]: CTRL (PPPD Launcher): program binary = /usr/sbin/pppd Dec 11 21:06:30 <HOSTNAME> pptpd[22627]: CTRL (PPPD Launcher): local address = 192.168.1.50 Dec 11 21:06:30 <HOSTNAME> pptpd[22627]: CTRL (PPPD Launcher): remote address = 192.168.1.51 Dec 11 21:06:30 <HOSTNAME> pppd[22627]: Plugin /usr/lib/pptpd/pptpd-logwtmp.so loaded. Dec 11 21:06:30 <HOSTNAME> pppd[22627]: pppd 2.4.5 started by root, uid 0 Dec 11 21:06:30 <HOSTNAME> pppd[22627]: Using interface ppp0 Dec 11 21:06:30 <HOSTNAME> pppd[22627]: Connect: ppp0 <--> /dev/pts/3 Dec 11 21:06:30 <HOSTNAME> pptpd[22626]: GRE: Bad checksum from pppd. Dec 11 21:06:31 <HOSTNAME> pptpd[22626]: CTRL: Received PPTP Control Message (type: 15) Dec 11 21:06:31 <HOSTNAME> pptpd[22626]: CTRL: Got a SET LINK INFO packet with standard ACCMs Dec 11 21:07:00 <HOSTNAME> pppd[22627]: LCP: timeout sending Config-Requests Dec 11 21:07:00 <HOSTNAME> pppd[22627]: Connection terminated. Dec 11 21:07:00 <HOSTNAME> avahi-daemon[1042]: Withdrawing workstation service for ppp0. Dec 11 21:07:00 <HOSTNAME> pppd[22627]: Modem hangup Dec 11 21:07:00 <HOSTNAME> pppd[22627]: Exit. Dec 11 21:07:00 <HOSTNAME> pptpd[22626]: GRE: read(fd=6,buffer=6075a0,len=8196) from PTY failed: status = -1 error = Input/output error, usually caused by unexpected termination of pppd, check option syntax and pppd logs Dec 11 21:07:00 <HOSTNAME> pptpd[22626]: CTRL: PTY read or GRE write failed (pty,gre)=(6,7) Dec 11 21:07:00 <HOSTNAME> pptpd[22626]: CTRL: Reaping child PPP[22627] Dec 11 21:07:00 <HOSTNAME> pptpd[22626]: CTRL: Client 82.132.248.216 control connection finished Dec 11 21:07:00 <HOSTNAME> pptpd[22626]: CTRL: Exiting now Dec 11 21:07:00 <HOSTNAME> pptpd[5803]: MGR: Reaped child 22626 As far as Cisco are concerned, all I need is ip nat source static tcp <SERVER LAN IP> 1723 interface FastEthernet4 1723 but of course this doesn't seem to the be helping the GRE traffic through as it should. Trying the connection to the LAN IP of the server from the same LAN as the server (behind the router), the PPTP connection works fine, so I'm confident that the server's config is ok. Furthermore, all I needed on my WAG320N was to open 1723 in the firewall. Here's my current router config: ! ! Last configuration change at 20:20:15 UTC Tue Dec 11 2012 by xxx version 15.2 no service pad service timestamps debug datetime msec service timestamps log datetime msec service password-encryption ! hostname xxx ! boot-start-marker boot-end-marker ! ! enable secret 4 xxxx ! aaa new-model ! ! aaa authentication login local_auth local ! ! ! ! ! aaa session-id common ! memory-size iomem 10 ! crypto pki trustpoint TP-self-signed-xxx enrollment selfsigned subject-name cn=IOS-Self-Signed-Certificate-xxx revocation-check none rsakeypair TP-self-signed-xxx ! ! crypto pki certificate chain TP-self-signed-xxx certificate self-signed 01 xxx quit ip gratuitous-arps ip auth-proxy max-login-attempts 5 ip admission max-login-attempts 5 ! ! ! ! ! ip domain list dmz.xxx.local ip domain list xxx.local ip domain name dmz.xxx.local ip name-server 192.168.1.x ip cef login block-for 3 attempts 3 within 3 no ipv6 cef ! ! multilink bundle-name authenticated license udi pid CISCO881-SEC-K9 sn xxx ! ! username admin privilege 15 secret 4 xxx username joe secret 4 xxx ! ! ! ! ! ip ssh time-out 60 ! ! ! ! ! ! ! ! ! interface FastEthernet0 no ip address ! interface FastEthernet1 no ip address ! interface FastEthernet2 no ip address ! interface FastEthernet3 switchport access vlan 2 no ip address ! interface FastEthernet4 ip address dhcp ip nat enable duplex auto speed auto ! interface Vlan1 ip address 192.168.1.x 255.255.255.0 no ip redirects no ip unreachables no ip proxy-arp ip nat enable ! interface Vlan2 ip address 192.168.0.x 255.255.255.0 ! ip forward-protocol nd ip http server ip http access-class 1 ip http authentication local ip http secure-server ! ! ip nat source list 1 interface FastEthernet4 overload ip nat source list 2 interface FastEthernet4 overload ip nat source static tcp 192.168.1.x 1723 interface FastEthernet4 1723 ! ! access-list 1 permit 192.168.0.0 0.0.0.255 access-list 2 permit 192.168.1.0 0.0.0.255 ! ! ! ! control-plane ! ! banner motd Authorized Access only ! line con 0 exec-timeout 15 0 login authentication local_auth line aux 0 exec-timeout 15 0 login authentication local_auth line vty 0 4 access-class 2 in login authentication local_auth length 0 transport input all ! ! end UPDATE 16/12/2012: The only progress that I have been able to make on this issue is that I'm confident that the issue is caused by the GRE tunnels (which are required for the PPTP connection to complete) are being blocked. When attempting a connection, I can see in show ip nat nvi translations that both a TCP translation on 1723 is setup and also a GRE translation is setup also. I appear to be able to see GRE related packets on the LAN that the server is on, so I am lead to believe that the server is sending(?) GRE packets, however running Wireshark on a client PC when attempting a connection shows absolutely no GRE packets. Whilst there are no configuration directives in my config posted above (that I can pin point) which would specifically block them, it would appear that the GRE packets are not being allowed in/out of the router's firewall, even though a NAT translation entry is setup to the server's LAN address. Would anyone be able to provide me with some help to ensure that GRE packets are not blocked by the router's firewall, so that this can be ruled out as a possible issue please?

    Read the article

  • MVC2 EditorTemplate for DropDownList

    - by tschreck
    I've spent the majority of the past week knee deep in the new templating functionality baked into MVC2. I had a hard time trying to get a DropDownList template working. The biggest problem I've been working to solve is how to get the source data for the drop down list to the template. I saw a lot of examples where you can put the source data in the ViewData dictionary (ViewData["DropDownSourceValuesKey"]) then retrieve them in the template itself (var sourceValues = ViewData["DropDownSourceValuesKey"];) This works, but I did not like having a silly string as the lynch pin for making this work. Below is an approach I've come up with and wanted to get opinions on this approach: here are my design goals: The view model should contain the source data for the drop down list Limit Silly Strings Not use ViewData dictionary Controller is responsible for filling the property with the source data for the drop down list Here's my View Model: public class CustomerViewModel { [ScaffoldColumn(false)] public String CustomerCode{ get; set; } [UIHint("DropDownList")] [DropDownList(DropDownListTargetProperty = "CustomerCode"] [DisplayName("Customer Code")] public IEnumerable<SelectListItem> CustomerCodeList { get; set; } public String FirstName { get; set; } public String LastName { get; set; } public String PhoneNumber { get; set; } public String Address1 { get; set; } public String Address2 { get; set; } public String City { get; set; } public String State { get; set; } public String Zip { get; set; } } My View Model has a CustomerCode property which is a value that the user selects from a list of values. I have a CustomerCodeList property that is a list of possible CustomerCode values and is the source for a drop down list. I've created a DropDownList attribute with a DropDownListTargetProperty. DropDownListTargetProperty points to the property which will be populated based on the user selection from the generated drop down (in this case, the CustomerCode property). Notice that the CustomerCode property has [ScaffoldColumn(false)] which forces the generator to skip the field in the generated output. My DropDownList.ascx file will generate a dropdown list form element with the source data from the CustomerCodeList property. The generated dropdown list will use the value of the DropDownListTargetProperty from the DropDownList attribute as the Id and the Name attributes of the Select form element. So the generated code will look like this: <select id="CustomerCode" name="CustomerCode"> <option>... </select> This works out great because when the form is submitted, MVC will populate the target property with the selected value from the drop down list because the name of the generated dropdown list IS the target property. I kinda visualize it as the CustomerCodeList property is an extension of sorts of the CustomerCode property. I've coupled the source data to the property. Here's my code for the controller: public ActionResult Create() { //retrieve CustomerCodes from a datasource of your choosing List<CustomerCode> customerCodeList = modelService.GetCustomerCodeList(); CustomerViewModel viewModel= new CustomerViewModel(); viewModel.CustomerCodeList = customerCodeList.Select(s => new SelectListItem() { Text = s.CustomerCode, Value = s.CustomerCode, Selected = (s.CustomerCode == viewModel.CustomerCode) }).AsEnumerable(); return View(viewModel); } Here's my code for the DropDownListAttribute: namespace AutoForm.Attributes { public class DropDownListAttribute : Attribute { public String DropDownListTargetProperty { get; set; } } } Here's my code for the template (DropDownList.ascx): <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl<IEnumerable<SelectListItem>>" %> <%@ Import Namespace="AutoForm.Attributes"%> <script runat="server"> DropDownListAttribute GetDropDownListAttribute() { var dropDownListAttribute = new DropDownListAttribute(); if (ViewData.ModelMetadata.AdditionalValues.ContainsKey("DropDownListAttribute")) { dropDownListAttribute = (DropDownListAttribute)ViewData.ModelMetadata.AdditionalValues["DropDownListAttribute"]; } return dropDownListAttribute; } </script> <% DropDownListAttribute attribute = GetDropDownListAttribute();%> <select id="<%= attribute.DropDownListTargetProperty %>" name="<%= attribute.DropDownListTargetProperty %>"> <% foreach(SelectListItem item in ViewData.Model) {%> <% if (item.Selected == true) {%> <option value="<%= item.Value %>" selected="true"><%= item.Text %></option> <% } %> <% else {%> <option value="<%= item.Value %>"><%= item.Text %></option> <% } %> <% } %> </select> I tried using the Html.DropDownList helper, but it would not allow me to change the Id and Name attributes of the generated Select element. NOTE: you have to override the CreateMetadata method of the DataAnnotationsModelMetadataProvider for the DropDownListAttribute. Here's the code for that: public class MetadataProvider : DataAnnotationsModelMetadataProvider { protected override ModelMetadata CreateMetadata(IEnumerable<Attribute> attributes, Type containerType, Func<object> modelAccessor, Type modelType, string propertyName) { var metadata = base.CreateMetadata(attributes, containerType, modelAccessor, modelType, propertyName); var additionalValues = attributes.OfType<DropDownListAttribute>().FirstOrDefault(); if (additionalValues != null) { metadata.AdditionalValues.Add("DropDownListAttribute", additionalValues); } return metadata; } } Then you have to make a call to the new MetadataProvider in Application_Start of Global.asax.cs: protected void Application_Start() { RegisterRoutes(RouteTable.Routes); ModelMetadataProviders.Current = new MetadataProvider(); } Well, I hope this makes sense and I hope this approach may save you some time. I'd like some feedback on this approach please. Is there a better approach?

    Read the article

  • yui compressor maven plugin doesnt compress the js files

    - by hanumant
    I am using yui compressor to compress the js files in my web app. I have configured the plugin as indicated on yui maven plugin site yui compressor maven plugin. This is the pom plugin conf <plugin> <groupId>net.sf.alchim</groupId> <artifactId>yuicompressor-maven-plugin</artifactId> <version>0.7.1</version> <executions> <execution> <phase>compile</phase> <goals> <goal>jslint</goal> <goal>compress</goal> </goals> </execution> </executions> <configuration> <failOnWarning>true</failOnWarning> <nosuffix>true</nosuffix> <force>true</force> <aggregations> <aggregation> <!-- remove files after aggregation (default: false) --> <removeIncluded>false</removeIncluded> <!-- insert new line after each concatenation (default: false) --> <insertNewLine>false</insertNewLine> <output>${project.basedir}/${webcontent.dir}/js/compressedAll.js</output> <!-- files to include, path relative to output's directory or absolute path--> <!--inputDir>base directory for non absolute includes, default to parent dir of output</inputDir--> <includes> <include>**/autocomplete.js</include> <include>**/calendar.js</include> <include>**/dialogs.js</include> <include>**/download.js</include> <include>**/folding.js</include> <include>**/jquery-1.4.2.min.js</include> <include>**/jquery.bgiframe.min.js</include> <include>**/jquery.loadmask.js</include> <include>**/jquery.printelement-1.1.js</include> <include>**/jquery.tablesorter.mod.js</include> <include>**/jquery.tablesorter.pager.js</include> <include>**/jquery.dialogs.plugin.js</include> <include>**/jquery.ui.autocomplete.js</include> <include>**/jquery.validate.js</include> <include>**/jquery-ui-1.8.custom.min.js</include> <include>**/languageDropdown.js</include> <include>**/messages.js</include> <include>**/print.js</include> <include>**/tables.js</include> <include>**/tabs.js</include> <include>**/uwTooltip.js</include> </includes> <!-- files to exclude, path relative to output's directory--> </aggregation> </aggregations> </configuration> <dependencies> <dependency> <groupId>rhino</groupId> <artifactId>js</artifactId> <scope>compile</scope> <version>1.6R5</version> </dependency> <dependency> <groupId>org.apache.maven</groupId> <artifactId>maven-plugin-api</artifactId> <version>2.0.7</version> <scope>provided</scope> </dependency> <dependency> <groupId>org.apache.maven</groupId> <artifactId>maven-project</artifactId> <version>2.0.7</version> <scope>provided</scope> </dependency><dependency> <groupId>net.sf.retrotranslator</groupId> <artifactId>retrotranslator-runtime</artifactId> <version>1.2.9</version> <scope>runtime</scope> </dependency> </dependencies> </plugin> And here is the log at compress time These will use the artifact files already in the core ClassRealm instead, to allow them to be included in PluginDescriptor.getArtifacts(). [DEBUG] Configuring mojo 'net.sf.alchim:yuicompressor-maven-plugin:0.7.1:jslint' [DEBUG] (f) failOnWarning = true [DEBUG] (f) jswarn = true [DEBUG] (f) outputDirectory = C:\test\target\classes [DEBUG] (f) project = MavenProject: com.test.test1:test2:19-SNAPSHOT @ C:\test\pom.xml [DEBUG] (f) resources = [Resource {targetPath: null, filtering: false, FileSet {directory: C:\test\src, PatternSet [includes: {}, excludes: {**/*.class, **/*.java, site/*}]}}] [DEBUG] (f) sourceDirectory = C:\test\src\..\js [DEBUG] (f) warSourceDirectory = C:\test\src\main\webapp [DEBUG] (f) webappDirectory = C:\test\target\test2-19-SNAPSHOT [DEBUG] -- end configuration -- [INFO] [yuicompressor:jslint {execution: default}] [INFO] nb warnings: 0, nb errors: 0 [DEBUG] Configuring mojo 'net.sf.alchim:yuicompressor-maven-plugin:0.7.1:compress' -- [DEBUG] (f) removeIncluded = false [DEBUG] (f) insertNewLine = false [DEBUG] (f) output = C:\test\WebContent\js\compressedAll.js [DEBUG] (f) includes = [**/autocomplete.js, **/calendar.js, **/dialogs.js, **/download.js, **/folding.js, **/jquery-1.4.2.min.js, **/jquery.bgifram e.min.js, **/jquery.loadmask.js, **/jquery.printelement-1.1.js, **/jquery.tablesorter.mod.js, **/jquery.tablesorter.pager.js, **/jquery.dialogs.p lugin.js, **/jquery.ui.autocomplete.js, **/jquery.validate.js, **/jquery-ui-1.8.custom.min.js, **/languageDropdown.js, **/messages.js, **/print.js, * */tables.js, **/tabs.js, **/uwTooltip.js] [DEBUG] (f) aggregations = [net.sf.alchim.mojo.yuicompressor.Aggregation@65646564] [DEBUG] (f) disableOptimizations = false [DEBUG] (f) encoding = Cp1252 [DEBUG] (f) failOnWarning = true [DEBUG] (f) force = true [DEBUG] (f) gzip = false [DEBUG] (f) jswarn = true [DEBUG] (f) linebreakpos = 0 [DEBUG] (f) nomunge = false [DEBUG] (f) nosuffix = true [DEBUG] (f) outputDirectory = C:\test\target\classes [DEBUG] (f) preserveAllSemiColons = false [DEBUG] (f) project = MavenProject: com.test.test1:test2:19-SNAPSHOT @ C:\test\pom.xml [DEBUG] (f) resources = [Resource {targetPath: null, filtering: false, FileSet {directory: C:\test\src, PatternSet [includes: {}, excludes: {**/*.class, **/*.java, site/*}]}}] [DEBUG] (f) sourceDirectory = C:\test\src\..\js [DEBUG] (f) statistics = true [DEBUG] (f) suffix = -min [DEBUG] (f) warSourceDirectory = C:\test\src\main\webapp [DEBUG] (f) webappDirectory = C:\test\target\test2-19-SNAPSHOT [DEBUG] -- end configuration -- [INFO] [yuicompressor:compress {execution: default}] [INFO] generate aggregation : C:\test\WebContent\js\compressedAll.js [INFO] compressedAll.js (407505b) [INFO] nb warnings: 0, nb errors: 0 [DEBUG] Configuring mojo 'org.apache.maven.plugins:maven-resources-plugin:2.2:testResources' -- [DEBUG] (f) filters = [] [DEBUG] (f) outputDirectory = C:\test\target\test-classes [DEBUG] (f) project = MavenProject: com.test.test1:test2:19-SNAPSHOT @ C:\test\pom.xml [DEBUG] (f) resources = [Resource {targetPath: null, filtering: false, FileSet {directory: C:\test\test , PatternSet [includes: {}, excludes: {**/*.class, **/*.java}]}}] [DEBUG] -- end configuration -- The problem is the files are getting aggregated into one file but without compressing. The link above uses version 1.1 and the plugin version I am using is 0.7.1. Is this going to make any diff. Can someone tell what is wrong here. PS: I have obfuscated some text in log to follow the compliance in my firm. So you may find it mismatching somewhere.

    Read the article

  • Build-Essentials installation failing

    - by Brickman
    I am having trouble accessing the several critical header files that show to be a part of the build process. The "Ubuntu Software Center" shows "Build Essentials" as installed: Next I did the following two commands, which did not improve the problem: ~$ sudo apt-get install build-essential [sudo] password for: Reading package lists... Done Building dependency tree Reading state information... Done build-essential is already the newest version. 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. :~$ sudo apt-get install -f Reading package lists... Done Building dependency tree Reading state information... Done 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. :~$ Dump of headers after installation attempts. > /usr/include/boost/interprocess/detail/atomic.hpp > /usr/include/boost/interprocess/smart_ptr/detail/sp_counted_base_atomic.hpp > /usr/include/qt4/Qt/qatomic.h /usr/include/qt4/Qt/qbasicatomic.h > /usr/include/qt4/QtCore/qatomic.h > /usr/include/qt4/QtCore/qbasicatomic.h > /usr/share/doc/git-annex/html/bugs/git_annex_unlock_is_not_atomic.html > /usr/src/linux-headers-3.11.0-15/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-15/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-15/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-15/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-15/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-15-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-17/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-17/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-17/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-17/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-17-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-18/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-18/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-18/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-18/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-18-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-19/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-19/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-19/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-19/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-19-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-20/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-20/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-20/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-20/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-20-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-22/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-22/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-22/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-22/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-22-generic/include/linux/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/include/asm-generic/atomic.h > /usr/src/linux-headers-3.14.4-031404/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.14.4-031404/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.14.4-031404/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.14.4-031404/include/linux/atomic.h > /usr/src/linux-headers-3.14.4-031404-generic/include/linux/atomic.h > /usr/src/linux-headers-3.14.4-031404-lowlatency/include/linux/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/alpha/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/arc/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/arm/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/arm64/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/avr32/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/blackfin/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/cris/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/frv/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/h8300/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/hexagon/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/ia64/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/m32r/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/m68k/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/metag/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/microblaze/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/mips/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/mn10300/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/parisc/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/powerpc/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/s390/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/score/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/sh/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/sparc/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/tile/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/x86/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/xtensa/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/asm-generic/atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/asm-generic/bitops/atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/linux/atomic.h > /usr/src/linux-lts-saucy-3.11.0/ubuntu/lttng/lib/ringbuffer/vatomic.h > /usr/src/linux-lts-saucy-3.11.0/ubuntu/lttng/wrapper/ringbuffer/vatomic.h > /usr/src/linux-lts-saucy-3.11.0/ubuntu/lttng-modules/lib/ringbuffer/vatomic.h > /usr/src/linux-lts-saucy-3.11.0/ubuntu/lttng-modules/wrapper/ringbuffer/vatomic.h Yes, I know there are multiple headers of the same type here, but they are different versions. Version "linux-headers-3.14.4-031404" shows to be the latest. Ubuntu shows "Nothing needed to be installed." However, the following C/C++ headers files show to be missing for Eclipse and QT4. #include <linux/version.h> #include <linux/module.h> #include <linux/socket.h> #include <linux/miscdevice.h> #include <linux/list.h> #include <linux/vmalloc.h> #include <linux/slab.h> #include <linux/init.h> #include <asm/uaccess.h> #include <asm/atomic.h> #include <linux/delay.h> #include <linux/usb.h> This problem appears on my 32-bit version of Ubuntu and on both of my 64-bit versions. What I am doing wrong?

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • How LINQ to Object statements work

    - by rajbk
    This post goes into detail as to now LINQ statements work when querying a collection of objects. This topic assumes you have an understanding of how generics, delegates, implicitly typed variables, lambda expressions, object/collection initializers, extension methods and the yield statement work. I would also recommend you read my previous two posts: Using Delegates in C# Part 1 Using Delegates in C# Part 2 We will start by writing some methods to filter a collection of data. Assume we have an Employee class like so: 1: public class Employee { 2: public int ID { get; set;} 3: public string FirstName { get; set;} 4: public string LastName {get; set;} 5: public string Country { get; set; } 6: } and a collection of employees like so: 1: var employees = new List<Employee> { 2: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 3: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 4: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 5: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 6: }; Filtering We wish to  find all employees that have an even ID. We could start off by writing a method that takes in a list of employees and returns a filtered list of employees with an even ID. 1: static List<Employee> GetEmployeesWithEvenID(List<Employee> employees) { 2: var filteredEmployees = new List<Employee>(); 3: foreach (Employee emp in employees) { 4: if (emp.ID % 2 == 0) { 5: filteredEmployees.Add(emp); 6: } 7: } 8: return filteredEmployees; 9: } The method can be rewritten to return an IEnumerable<Employee> using the yield return keyword. 1: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 2: foreach (Employee emp in employees) { 3: if (emp.ID % 2 == 0) { 4: yield return emp; 5: } 6: } 7: } We put these together in a console application. 1: using System; 2: using System.Collections.Generic; 3: //No System.Linq 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 15: }; 16: var filteredEmployees = GetEmployeesWithEvenID(employees); 17:  18: foreach (Employee emp in filteredEmployees) { 19: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 20: emp.ID, emp.FirstName, emp.LastName, emp.Country); 21: } 22:  23: Console.ReadLine(); 24: } 25: 26: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 27: foreach (Employee emp in employees) { 28: if (emp.ID % 2 == 0) { 29: yield return emp; 30: } 31: } 32: } 33: } 34:  35: public class Employee { 36: public int ID { get; set;} 37: public string FirstName { get; set;} 38: public string LastName {get; set;} 39: public string Country { get; set; } 40: } Output: ID 2 First_Name Jim Last_Name Ashlock Country UK ID 4 First_Name Jill Last_Name Anderson Country AUS Our filtering method is too specific. Let us change it so that it is capable of doing different types of filtering and lets give our method the name Where ;-) We will add another parameter to our Where method. This additional parameter will be a delegate with the following declaration. public delegate bool Filter(Employee emp); The idea is that the delegate parameter in our Where method will point to a method that contains the logic to do our filtering thereby freeing our Where method from any dependency. The method is shown below: 1: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 2: foreach (Employee emp in employees) { 3: if (filter(emp)) { 4: yield return emp; 5: } 6: } 7: } Making the change to our app, we create a new instance of the Filter delegate on line 14 with a target set to the method EmployeeHasEvenId. Running the code will produce the same output. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, filterDelegate); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  37: public class Employee { 38: public int ID { get; set;} 39: public string FirstName { get; set;} 40: public string LastName {get; set;} 41: public string Country { get; set; } 42: } Lets use lambda expressions to inline the contents of the EmployeeHasEvenId method in place of the method. The next code snippet shows this change (see line 15).  For brevity, the Employee class declaration has been skipped. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  The output displays the same two employees.  Our Where method is too restricted since it works with a collection of Employees only. Lets change it so that it works with any IEnumerable<T>. In addition, you may recall from my previous post,  that .NET 3.5 comes with a lot of predefined delegates including public delegate TResult Func<T, TResult>(T arg); We will get rid of our Filter delegate and use the one above instead. We apply these two changes to our code. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14:  15: foreach (Employee emp in filteredEmployees) { 16: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 17: emp.ID, emp.FirstName, emp.LastName, emp.Country); 18: } 19: Console.ReadLine(); 20: } 21: 22: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 23: foreach (var x in source) { 24: if (filter(x)) { 25: yield return x; 26: } 27: } 28: } 29: } We have successfully implemented a way to filter any IEnumerable<T> based on a  filter criteria. Projection Now lets enumerate on the items in the IEnumerable<Employee> we got from the Where method and copy them into a new IEnumerable<EmployeeFormatted>. The EmployeeFormatted class will only have a FullName and ID property. 1: public class EmployeeFormatted { 2: public int ID { get; set; } 3: public string FullName {get; set;} 4: } We could “project” our existing IEnumerable<Employee> into a new collection of IEnumerable<EmployeeFormatted> with the help of a new method. We will call this method Select ;-) 1: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 2: foreach (var emp in employees) { 3: yield return new EmployeeFormatted { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; 7: } 8: } The changes are applied to our app. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14: var formattedEmployees = Select(filteredEmployees); 15:  16: foreach (EmployeeFormatted emp in formattedEmployees) { 17: Console.WriteLine("ID {0} Full_Name {1}", 18: emp.ID, emp.FullName); 19: } 20: Console.ReadLine(); 21: } 22:  23: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 24: foreach (var x in source) { 25: if (filter(x)) { 26: yield return x; 27: } 28: } 29: } 30: 31: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 32: foreach (var emp in employees) { 33: yield return new EmployeeFormatted { 34: ID = emp.ID, 35: FullName = emp.LastName + ", " + emp.FirstName 36: }; 37: } 38: } 39: } 40:  41: public class Employee { 42: public int ID { get; set;} 43: public string FirstName { get; set;} 44: public string LastName {get; set;} 45: public string Country { get; set; } 46: } 47:  48: public class EmployeeFormatted { 49: public int ID { get; set; } 50: public string FullName {get; set;} 51: } Output: ID 2 Full_Name Ashlock, Jim ID 4 Full_Name Anderson, Jill We have successfully selected employees who have an even ID and then shaped our data with the help of the Select method so that the final result is an IEnumerable<EmployeeFormatted>.  Lets make our Select method more generic so that the user is given the freedom to shape what the output would look like. We can do this, like before, with lambda expressions. Our Select method is changed to accept a delegate as shown below. TSource will be the type of data that comes in and TResult will be the type the user chooses (shape of data) as returned from the selector delegate. 1:  2: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 3: foreach (var x in source) { 4: yield return selector(x); 5: } 6: } We see the new changes to our app. On line 15, we use lambda expression to specify the shape of the data. In this case the shape will be of type EmployeeFormatted. 1:  2: public class Program 3: { 4: [STAThread] 5: static void Main(string[] args) 6: { 7: var employees = new List<Employee> { 8: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 9: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 10: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 11: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 12: }; 13:  14: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 15: var formattedEmployees = Select(filteredEmployees, (emp) => 16: new EmployeeFormatted { 17: ID = emp.ID, 18: FullName = emp.LastName + ", " + emp.FirstName 19: }); 20:  21: foreach (EmployeeFormatted emp in formattedEmployees) { 22: Console.WriteLine("ID {0} Full_Name {1}", 23: emp.ID, emp.FullName); 24: } 25: Console.ReadLine(); 26: } 27: 28: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 29: foreach (var x in source) { 30: if (filter(x)) { 31: yield return x; 32: } 33: } 34: } 35: 36: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 37: foreach (var x in source) { 38: yield return selector(x); 39: } 40: } 41: } The code outputs the same result as before. On line 14 we filter our data and on line 15 we project our data. What if we wanted to be more expressive and concise? We could combine both line 14 and 15 into one line as shown below. Assuming you had to perform several operations like this on our collection, you would end up with some very unreadable code! 1: var formattedEmployees = Select(Where(employees, emp => emp.ID % 2 == 0), (emp) => 2: new EmployeeFormatted { 3: ID = emp.ID, 4: FullName = emp.LastName + ", " + emp.FirstName 5: }); A cleaner way to write this would be to give the appearance that the Select and Where methods were part of the IEnumerable<T>. This is exactly what extension methods give us. Extension methods have to be defined in a static class. Let us make the Select and Where extension methods on IEnumerable<T> 1: public static class MyExtensionMethods { 2: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 3: foreach (var x in source) { 4: if (filter(x)) { 5: yield return x; 6: } 7: } 8: } 9: 10: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 11: foreach (var x in source) { 12: yield return selector(x); 13: } 14: } 15: } The creation of the extension method makes the syntax much cleaner as shown below. We can write as many extension methods as we want and keep on chaining them using this technique. 1: var formattedEmployees = employees 2: .Where(emp => emp.ID % 2 == 0) 3: .Select (emp => new EmployeeFormatted { ID = emp.ID, FullName = emp.LastName + ", " + emp.FirstName }); Making these changes and running our code produces the same result. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new EmployeeFormatted { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (EmployeeFormatted emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } 55:  56: public class EmployeeFormatted { 57: public int ID { get; set; } 58: public string FullName {get; set;} 59: } Let’s change our code to return a collection of anonymous types and get rid of the EmployeeFormatted type. We see that the code produces the same output. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (var emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: public static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } To be more expressive, C# allows us to write our extension method calls as a query expression. Line 16 can be rewritten a query expression like so: 1: var formattedEmployees = from emp in employees 2: where emp.ID % 2 == 0 3: select new { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; When the compiler encounters an expression like the above, it simply rewrites it as calls to our extension methods.  So far we have been using our extension methods. The System.Linq namespace contains several extension methods for objects that implement the IEnumerable<T>. You can see a listing of these methods in the Enumerable class in the System.Linq namespace. Let’s get rid of our extension methods (which I purposefully wrote to be of the same signature as the ones in the Enumerable class) and use the ones provided in the Enumerable class. Our final code is shown below: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; //Added 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 15: }; 16:  17: var formattedEmployees = from emp in employees 18: where emp.ID % 2 == 0 19: select new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: }; 23:  24: foreach (var emp in formattedEmployees) { 25: Console.WriteLine("ID {0} Full_Name {1}", 26: emp.ID, emp.FullName); 27: } 28: Console.ReadLine(); 29: } 30: } 31:  32: public class Employee { 33: public int ID { get; set;} 34: public string FirstName { get; set;} 35: public string LastName {get; set;} 36: public string Country { get; set; } 37: } 38:  39: public class EmployeeFormatted { 40: public int ID { get; set; } 41: public string FullName {get; set;} 42: } This post has shown you a basic overview of LINQ to Objects work by showning you how an expression is converted to a sequence of calls to extension methods when working directly with objects. It gets more interesting when working with LINQ to SQL where an expression tree is constructed – an in memory data representation of the expression. The C# compiler compiles these expressions into code that builds an expression tree at runtime. The provider can then traverse the expression tree and generate the appropriate SQL query. You can read more about expression trees in this MSDN article.

    Read the article

  • Hibernate/Spring: failed to lazily initialize - no session or session was closed

    - by Niko
    I know something similar has been asked already, but unfortunately I wasn't able to find a reliable answer - even with searching for over 2 days. The basic problem is the same as asked multiple time. I have a simple program with two POJOs Event and User - where a user can have multiple events. @Entity @Table public class Event { private Long id; private String name; private User user; @Column @Id @GeneratedValue public Long getId() {return id;} public void setId(Long id) { this.id = id; } @Column public String getName() {return name;} public void setName(String name) {this.name = name;} @ManyToOne @JoinColumn(name="user_id") public User getUser() {return user;} public void setUser(User user) {this.user = user;} } @Entity @Table public class User { private Long id; private String name; private List events; @Column @Id @GeneratedValue public Long getId() { return id; } public void setId(Long id) { this.id = id; } @Column public String getName() { return name; } public void setName(String name) { this.name = name; } @OneToMany(mappedBy="user", fetch=FetchType.LAZY) public List getEvents() { return events; } public void setEvents(List events) { this.events = events; } } Note: This is a sample project. I really want to use Lazy fetching here. I use spring and hibernate and have a simple basic-db.xml for loading: <?xml version="1.0" encoding="UTF-8"? <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:aop="http://www.springframework.org/schema/aop" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-3.0.xsd" <bean id="myDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close" scope="thread" <property name="driverClassName" value="com.mysql.jdbc.Driver" / <property name="url" value="jdbc:mysql://192.168.1.34:3306/hibernateTest" / <property name="username" value="root" / <property name="password" value="" / <aop:scoped-proxy/ </bean <bean class="org.springframework.beans.factory.config.CustomScopeConfigurer" <property name="scopes" <map <entry key="thread" <bean class="org.springframework.context.support.SimpleThreadScope" / </entry </map </property </bean <bean id="mySessionFactory" class="org.springframework.orm.hibernate3.annotation.AnnotationSessionFactoryBean" scope="thread" <property name="dataSource" ref="myDataSource" / <property name="annotatedClasses" <list <valuedata.model.User</value <valuedata.model.Event</value </list </property <property name="hibernateProperties" <props <prop key="hibernate.dialect"org.hibernate.dialect.MySQLDialect</prop <prop key="hibernate.show_sql"true</prop <prop key="hibernate.hbm2ddl.auto"create</prop </props </property <aop:scoped-proxy/ </bean <bean id="myUserDAO" class="data.dao.impl.UserDaoImpl" <property name="sessionFactory" ref="mySessionFactory" / </bean <bean id="myEventDAO" class="data.dao.impl.EventDaoImpl" <property name="sessionFactory" ref="mySessionFactory" / </bean </beans Note: I played around with the CustomScopeConfigurer and SimpleThreadScope, but that didnt change anything. I have a simple dao-impl (only pasting the userDao - the EventDao is pretty much the same - except with out the "listWith" function: public class UserDaoImpl implements UserDao{ private HibernateTemplate hibernateTemplate; public void setSessionFactory(SessionFactory sessionFactory) { this.hibernateTemplate = new HibernateTemplate(sessionFactory); } @SuppressWarnings("unchecked") @Override public List listUser() { return hibernateTemplate.find("from User"); } @Override public void saveUser(User user) { hibernateTemplate.saveOrUpdate(user); } @Override public List listUserWithEvent() { List users = hibernateTemplate.find("from User"); for (User user : users) { System.out.println("LIST : " + user.getName() + ":"); user.getEvents().size(); } return users; } } I am getting the org.hibernate.LazyInitializationException - failed to lazily initialize a collection of role: data.model.User.events, no session or session was closed at the line with user.getEvents().size(); And last but not least here is the Test class I use: public class HibernateTest { public static void main(String[] args) { ClassPathXmlApplicationContext ac = new ClassPathXmlApplicationContext("basic-db.xml"); UserDao udao = (UserDao) ac.getBean("myUserDAO"); EventDao edao = (EventDao) ac.getBean("myEventDAO"); System.out.println("New user..."); User user = new User(); user.setName("test"); Event event1 = new Event(); event1.setName("Birthday1"); event1.setUser(user); Event event2 = new Event(); event2.setName("Birthday2"); event2.setUser(user); udao.saveUser(user); edao.saveEvent(event1); edao.saveEvent(event2); List users = udao.listUserWithEvent(); System.out.println("Events for users"); for (User u : users) { System.out.println(u.getId() + ":" + u.getName() + " --"); for (Event e : u.getEvents()) { System.out.println("\t" + e.getId() + ":" + e.getName()); } } ((ConfigurableApplicationContext)ac).close(); } } and here is the Exception I get: 1621 [main] ERROR org.hibernate.LazyInitializationException - failed to lazily initialize a collection of role: data.model.User.events, no session or session was closed org.hibernate.LazyInitializationException: failed to lazily initialize a collection of role: data.model.User.events, no session or session was closed at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationException(AbstractPersistentCollection.java:380) at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationExceptionIfNotConnected(AbstractPersistentCollection.java:372) at org.hibernate.collection.AbstractPersistentCollection.readSize(AbstractPersistentCollection.java:119) at org.hibernate.collection.PersistentBag.size(PersistentBag.java:248) at data.dao.impl.UserDaoImpl.listUserWithEvent(UserDaoImpl.java:38) at HibernateTest.main(HibernateTest.java:44) Exception in thread "main" org.hibernate.LazyInitializationException: failed to lazily initialize a collection of role: data.model.User.events, no session or session was closed at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationException(AbstractPersistentCollection.java:380) at org.hibernate.collection.AbstractPersistentCollection.throwLazyInitializationExceptionIfNotConnected(AbstractPersistentCollection.java:372) at org.hibernate.collection.AbstractPersistentCollection.readSize(AbstractPersistentCollection.java:119) at org.hibernate.collection.PersistentBag.size(PersistentBag.java:248) at data.dao.impl.UserDaoImpl.listUserWithEvent(UserDaoImpl.java:38) at HibernateTest.main(HibernateTest.java:44) Things I tried but did not work: assign a threadScope and using beanfactory (I used "request" or "thread" - no difference noticed): // scope stuff Scope threadScope = new SimpleThreadScope(); ConfigurableListableBeanFactory beanFactory = ac.getBeanFactory(); beanFactory.registerScope("request", threadScope); ac.refresh(); ... Setting up a transaction by getting the session object from the deo: ... Transaction tx = ((UserDaoImpl)udao).getSession().beginTransaction(); tx.begin(); users = udao.listUserWithEvent(); ... getting a transaction within the listUserWithEvent() public List listUserWithEvent() { SessionFactory sf = hibernateTemplate.getSessionFactory(); Session s = sf.openSession(); Transaction tx = s.beginTransaction(); tx.begin(); List users = hibernateTemplate.find("from User"); for (User user : users) { System.out.println("LIST : " + user.getName() + ":"); user.getEvents().size(); } tx.commit(); return users; } I am really out of ideas by now. Also, using the listUser or listEvent just work fine.

    Read the article

  • Spring Security Configuration Leads to Perpetual Authentication Request

    - by Sammy
    Hello, I have configured my web application with the following config file: <beans xmlns="http://www.springframework.org/schema/beans" xmlns:security="http://www.springframework.org/schema/security" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/security http://www.springframework.org/schema/security/spring-security-3.0.xsd"> <security:global-method-security secured-annotations="enabled" pre-post-annotations="enabled" /> <!-- Filter chain; this is referred to from the web.xml file. Each filter is defined and configured as a bean later on. --> <!-- Note: anonumousProcessingFilter removed. --> <bean id="filterChainProxy" class="org.springframework.security.web.FilterChainProxy"> <security:filter-chain-map path-type="ant"> <security:filter-chain pattern="/**" filters="securityContextPersistenceFilter, basicAuthenticationFilter, exceptionTranslationFilter, filterSecurityInterceptor" /> </security:filter-chain-map> </bean> <!-- This filter is responsible for session management, or rather the lack thereof. --> <bean id="securityContextPersistenceFilter" class="org.springframework.security.web.context.SecurityContextPersistenceFilter"> <property name="securityContextRepository"> <bean class="org.springframework.security.web.context.HttpSessionSecurityContextRepository"> <property name="allowSessionCreation" value="false" /> </bean> </property> </bean> <!-- Basic authentication filter. --> <bean id="basicAuthenticationFilter" class="org.springframework.security.web.authentication.www.BasicAuthenticationFilter"> <property name="authenticationManager" ref="authenticationManager" /> <property name="authenticationEntryPoint" ref="authenticationEntryPoint" /> </bean> <!-- Basic authentication entry point. --> <bean id="authenticationEntryPoint" class="org.springframework.security.web.authentication.www.BasicAuthenticationEntryPoint"> <property name="realmName" value="Ayudo Web Service" /> </bean> <!-- An anonymous authentication filter, which is chained after the normal authentication mechanisms and automatically adds an AnonymousAuthenticationToken to the SecurityContextHolder if there is no existing Authentication held there. --> <!-- <bean id="anonymousProcessingFilter" class="org.springframework.security.web.authentication.AnonymousProcessingFilter"> <property name="key" value="ayudo" /> <property name="userAttribute" value="anonymousUser, ROLE_ANONYMOUS" /> </bean> --> <!-- Authentication manager that chains our main authentication provider and anonymous authentication provider. --> <bean id="authenticationManager" class="org.springframework.security.authentication.ProviderManager"> <property name="providers"> <list> <ref local="daoAuthenticationProvider" /> <ref local="inMemoryAuthenticationProvider" /> <!-- <ref local="anonymousAuthenticationProvider" /> --> </list> </property> </bean> <!-- Main authentication provider; in this case, memory implementation. --> <bean id="inMemoryAuthenticationProvider" class="org.springframework.security.authentication.dao.DaoAuthenticationProvider"> <property name="userDetailsService" ref="propertiesUserDetails" /> </bean> <security:user-service id="propertiesUserDetails" properties="classpath:operators.properties" /> <!-- Main authentication provider. --> <bean id="daoAuthenticationProvider" class="org.springframework.security.authentication.dao.DaoAuthenticationProvider"> <property name="userDetailsService" ref="userDetailsService" /> </bean> <!-- An anonymous authentication provider which is chained into the ProviderManager so that AnonymousAuthenticationTokens are accepted. --> <!-- <bean id="anonymousAuthenticationProvider" class="org.springframework.security.authentication.AnonymousAuthenticationProvider"> <property name="key" value="ayudo" /> </bean> --> <bean id="userDetailsService" class="org.springframework.security.core.userdetails.jdbc.JdbcDaoImpl"> <property name="dataSource" ref="dataSource" /> </bean> <bean id="exceptionTranslationFilter" class="org.springframework.security.web.access.ExceptionTranslationFilter"> <property name="authenticationEntryPoint" ref="authenticationEntryPoint" /> <property name="accessDeniedHandler"> <bean class="org.springframework.security.web.access.AccessDeniedHandlerImpl" /> </property> </bean> <bean id="filterSecurityInterceptor" class="org.springframework.security.web.access.intercept.FilterSecurityInterceptor"> <property name="securityMetadataSource"> <security:filter-security-metadata-source use-expressions="true"> <security:intercept-url pattern="/*.html" access="permitAll" /> <security:intercept-url pattern="/version" access="permitAll" /> <security:intercept-url pattern="/users/activate" access="permitAll" /> <security:intercept-url pattern="/**" access="isAuthenticated()" /> </security:filter-security-metadata-source> </property> <property name="authenticationManager" ref="authenticationManager" /> <property name="accessDecisionManager" ref="accessDecisionManager" /> </bean> <bean id="accessDecisionManager" class="org.springframework.security.access.vote.AffirmativeBased"> <property name="decisionVoters"> <list> <bean class="org.springframework.security.access.vote.RoleVoter" /> <bean class="org.springframework.security.web.access.expression.WebExpressionVoter" /> </list> </property> </bean> As soon as I run my application on tomcat, I get a request for username/password basic authentication dialog. Even when I try to access: localhost:8080/myapp/version, which is explicitly set to permitAll, I get the authentication request dialog. Help! Thank, Sammy

    Read the article

  • HTTP Builder/Groovy - lost 302 (redirect) handling?

    - by Misha Koshelev
    Dear All: I am reading here http://groovy.codehaus.org/modules/http-builder/doc/handlers.html "In cases where a response sends a redirect status code, this is handled internally by Apache HttpClient, which by default will simply follow the redirect by re-sending the request to the new URL. You do not need to do anything special in order to follow 302 responses." This seems to work fine when I simply use the get() or post() methods without a closure. However, when I use a closure, I seem to lose 302 handling. Is there some way I can handle this myself? Thank you p.s. Here is my log output showing it is a 302 response [java] FINER: resp.statusLine: "HTTP/1.1 302 Found" Here is the relevant code: // Copyright (C) 2010 Misha Koshelev. All Rights Reserved. package com.mksoft.fbbday.main import groovyx.net.http.ContentType import java.util.logging.Level import java.util.logging.Logger class HTTPBuilder { def dataDirectory HTTPBuilder(dataDirectory) { this.dataDirectory=dataDirectory } // Main logic def logger=Logger.getLogger(this.class.name) def closure={resp,reader-> logger.finer("resp.statusLine: \"${resp.statusLine}\"") if (logger.isLoggable(Level.FINEST)) { def respHeadersString='Headers:'; resp.headers.each() { header->respHeadersString+="\n\t${header.name}=\"${header.value}\"" } logger.finest(respHeadersString) } def text=reader.text def lastHtml=new File("${dataDirectory}${File.separator}last.html") if (lastHtml.exists()) { lastHtml.delete() } lastHtml<<text new XmlSlurper(new org.cyberneko.html.parsers.SAXParser()).parseText(text) } def processArgs(args) { if (logger.isLoggable(Level.FINER)) { def argsString='Args:'; args.each() { arg->argsString+="\n\t${arg.key}=\"${arg.value}\"" } logger.finer(argsString) } args.contentType=groovyx.net.http.ContentType.TEXT args } // HTTPBuilder methods def httpBuilder=new groovyx.net.http.HTTPBuilder () def get(args) { httpBuilder.get(processArgs(args),closure) } def post(args) { args.contentType=groovyx.net.http.ContentType.TEXT httpBuilder.post(processArgs(args),closure) } } Here is a specific tester: #!/usr/bin/env groovy import groovyx.net.http.HTTPBuilder import groovyx.net.http.Method import static groovyx.net.http.ContentType.URLENC import java.util.logging.ConsoleHandler import java.util.logging.Level import java.util.logging.Logger // MUST ENTER VALID FACEBOOK EMAIL AND PASSWORD BELOW !!! def email='' def pass='' // Remove default loggers def logger=Logger.getLogger('') def handlers=logger.handlers handlers.each() { handler->logger.removeHandler(handler) } // Log ALL to Console logger.setLevel Level.ALL def consoleHandler=new ConsoleHandler() consoleHandler.setLevel Level.ALL logger.addHandler(consoleHandler) // Facebook - need to get main page to capture cookies def http = new HTTPBuilder() http.get(uri:'http://www.facebook.com') // Login def html=http.post(uri:'https://login.facebook.com/login.php?login_attempt=1',body:[email:email,pass:pass]) assert html==null // Why null? html=http.post(uri:'https://login.facebook.com/login.php?login_attempt=1',body:[email:email,pass:pass]) { resp,reader-> assert resp.statusLine.statusCode==302 // Shouldn't we be redirected??? // http://groovy.codehaus.org/modules/http-builder/doc/handlers.html // "In cases where a response sends a redirect status code, this is handled internally by Apache HttpClient, which by default will simply follow the redirect by re-sending the request to the new URL. You do not need to do anything special in order to follow 302 responses. " } Here are relevant logs: FINE: Receiving response: HTTP/1.1 302 Found Jun 4, 2010 4:37:22 PM org.apache.http.impl.conn.DefaultClientConnection receiveResponseHeader FINE: << HTTP/1.1 302 Found Jun 4, 2010 4:37:22 PM org.apache.http.impl.conn.DefaultClientConnection receiveResponseHeader FINE: << Cache-Control: private, no-store, no-cache, must-revalidate, post-check=0, pre-check=0 Jun 4, 2010 4:37:22 PM org.apache.http.impl.conn.DefaultClientConnection receiveResponseHeader FINE: << Expires: Sat, 01 Jan 2000 00:00:00 GMT Jun 4, 2010 4:37:22 PM org.apache.http.impl.conn.DefaultClientConnection receiveResponseHeader FINE: << Location: http://www.facebook.com/home.php? Jun 4, 2010 4:37:22 PM org.apache.http.impl.conn.DefaultClientConnection receiveResponseHeader FINE: << P3P: CP="DSP LAW" Jun 4, 2010 4:37:22 PM org.apache.http.impl.conn.DefaultClientConnection receiveResponseHeader FINE: << Pragma: no-cache Jun 4, 2010 4:37:22 PM org.apache.http.impl.conn.DefaultClientConnection receiveResponseHeader FINE: << Set-Cookie: datr=1275687438-9ff6ae60a89d444d0fd9917abf56e085d370277a6e9ed50c1ba79; expires=Sun, 03-Jun-2012 21:37:24 GMT; path=/; domain=.facebook.com Jun 4, 2010 4:37:22 PM org.apache.http.impl.conn.DefaultClientConnection receiveResponseHeader FINE: << Set-Cookie: lxe=koshelev%40post.harvard.edu; expires=Tue, 28-Sep-2010 15:24:04 GMT; path=/; domain=.facebook.com; httponly Jun 4, 2010 4:37:22 PM org.apache.http.impl.conn.DefaultClientConnection receiveResponseHeader FINE: << Set-Cookie: lxr=deleted; expires=Thu, 04-Jun-2009 21:37:23 GMT; path=/; domain=.facebook.com; httponly Jun 4, 2010 4:37:22 PM org.apache.http.impl.conn.DefaultClientConnection receiveResponseHeader FINE: << Set-Cookie: pk=183883c0a9afab1608e95d59164cc7dd; path=/; domain=.facebook.com; httponly Jun 4, 2010 4:37:22 PM org.apache.http.impl.conn.DefaultClientConnection receiveResponseHeader FINE: << Content-Type: text/html; charset=utf-8 Jun 4, 2010 4:37:22 PM org.apache.http.impl.conn.DefaultClientConnection receiveResponseHeader FINE: << X-Cnection: close Jun 4, 2010 4:37:22 PM org.apache.http.impl.conn.DefaultClientConnection receiveResponseHeader FINE: << Date: Fri, 04 Jun 2010 21:37:24 GMT Jun 4, 2010 4:37:22 PM org.apache.http.impl.conn.DefaultClientConnection receiveResponseHeader FINE: << Content-Length: 0 Jun 4, 2010 4:37:22 PM org.apache.http.client.protocol.ResponseProcessCookies processCookies FINE: Cookie accepted: "[version: 0][name: datr][value: 1275687438-9ff6ae60a89d444d0fd9917abf56e085d370277a6e9ed50c1ba79][domain: .facebook.com][path: /][expiry: Sun Jun 03 16:37:24 CDT 2012]". Jun 4, 2010 4:37:22 PM org.apache.http.client.protocol.ResponseProcessCookies processCookies FINE: Cookie accepted: "[version: 0][name: lxe][value: koshelev%40post.harvard.edu][domain: .facebook.com][path: /][expiry: Tue Sep 28 10:24:04 CDT 2010]". Jun 4, 2010 4:37:22 PM org.apache.http.client.protocol.ResponseProcessCookies processCookies FINE: Cookie accepted: "[version: 0][name: lxr][value: deleted][domain: .facebook.com][path: /][expiry: Thu Jun 04 16:37:23 CDT 2009]". Jun 4, 2010 4:37:22 PM org.apache.http.client.protocol.ResponseProcessCookies processCookies FINE: Cookie accepted: "[version: 0][name: pk][value: 183883c0a9afab1608e95d59164cc7dd][domain: .facebook.com][path: /][expiry: null]". Jun 4, 2010 4:37:22 PM org.apache.http.impl.client.DefaultRequestDirector execute FINE: Connection can be kept alive indefinitely Jun 4, 2010 4:37:22 PM groovyx.net.http.HTTPBuilder doRequest FINE: Response code: 302; found handler: post302$_run_closure2@7023d08b Jun 4, 2010 4:37:22 PM groovyx.net.http.HTTPBuilder doRequest FINEST: response handler result: null Jun 4, 2010 4:37:22 PM org.apache.http.impl.conn.SingleClientConnManager releaseConnection FINE: Releasing connection org.apache.http.impl.conn.SingleClientConnManager$ConnAdapter@605b28c9 You can see there is clearly a location argument. Thank you Misha

    Read the article

  • Understanding and Implementing a Force based graph layout algorithm

    - by zcourts
    I'm trying to implement a force base graph layout algorithm, based on http://en.wikipedia.org/wiki/Force-based_algorithms_(graph_drawing) My first attempt didn't work so I looked at http://blog.ivank.net/force-based-graph-drawing-in-javascript.html and https://github.com/dhotson/springy I changed my implementation based on what I thought I understood from those two but I haven't managed to get it right and I'm hoping someone can help? JavaScript isn't my strong point so be gentle... If you're wondering why write my own. In reality I have no real reason to write my own I'm just trying to understand how the algorithm is implemented. Especially in my first link, that demo is brilliant. This is what I've come up with //support function.bind - https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/bind#Compatibility if (!Function.prototype.bind) { Function.prototype.bind = function (oThis) { if (typeof this !== "function") { // closest thing possible to the ECMAScript 5 internal IsCallable function throw new TypeError("Function.prototype.bind - what is trying to be bound is not callable"); } var aArgs = Array.prototype.slice.call(arguments, 1), fToBind = this, fNOP = function () {}, fBound = function () { return fToBind.apply(this instanceof fNOP ? this : oThis || window, aArgs.concat(Array.prototype.slice.call(arguments))); }; fNOP.prototype = this.prototype; fBound.prototype = new fNOP(); return fBound; }; } (function() { var lastTime = 0; var vendors = ['ms', 'moz', 'webkit', 'o']; for(var x = 0; x < vendors.length && !window.requestAnimationFrame; ++x) { window.requestAnimationFrame = window[vendors[x]+'RequestAnimationFrame']; window.cancelAnimationFrame = window[vendors[x]+'CancelAnimationFrame'] || window[vendors[x]+'CancelRequestAnimationFrame']; } if (!window.requestAnimationFrame) window.requestAnimationFrame = function(callback, element) { var currTime = new Date().getTime(); var timeToCall = Math.max(0, 16 - (currTime - lastTime)); var id = window.setTimeout(function() { callback(currTime + timeToCall); }, timeToCall); lastTime = currTime + timeToCall; return id; }; if (!window.cancelAnimationFrame) window.cancelAnimationFrame = function(id) { clearTimeout(id); }; }()); function Graph(o){ this.options=o; this.vertices={}; this.edges={};//form {vertexID:{edgeID:edge}} } /** *Adds an edge to the graph. If the verticies in this edge are not already in the *graph then they are added */ Graph.prototype.addEdge=function(e){ //if vertex1 and vertex2 doesn't exist in this.vertices add them if(typeof(this.vertices[e.vertex1])==='undefined') this.vertices[e.vertex1]=new Vertex(e.vertex1); if(typeof(this.vertices[e.vertex2])==='undefined') this.vertices[e.vertex2]=new Vertex(e.vertex2); //add the edge if(typeof(this.edges[e.vertex1])==='undefined') this.edges[e.vertex1]={}; this.edges[e.vertex1][e.id]=e; } /** * Add a vertex to the graph. If a vertex with the same ID already exists then * the existing vertex's .data property is replaced with the @param v.data */ Graph.prototype.addVertex=function(v){ if(typeof(this.vertices[v.id])==='undefined') this.vertices[v.id]=v; else this.vertices[v.id].data=v.data; } function Vertex(id,data){ this.id=id; this.data=data?data:{}; //initialize to data.[x|y|z] or generate random number for each this.x = this.data.x?this.data.x:-100 + Math.random()*200; this.y = this.data.y?this.data.y:-100 + Math.random()*200; this.z = this.data.y?this.data.y:-100 + Math.random()*200; //set initial velocity to 0 this.velocity = new Point(0, 0, 0); this.mass=this.data.mass?this.data.mass:Math.random(); this.force=new Point(0,0,0); } function Edge(vertex1ID,vertex2ID){ vertex1ID=vertex1ID?vertex1ID:Math.random() vertex2ID=vertex2ID?vertex2ID:Math.random() this.id=vertex1ID+"->"+vertex2ID; this.vertex1=vertex1ID; this.vertex2=vertex2ID; } function Point(x, y, z) { this.x = x; this.y = y; this.z = z; } Point.prototype.plus=function(p){ this.x +=p.x this.y +=p.y this.z +=p.z } function ForceLayout(o){ this.repulsion = o.repulsion?o.repulsion:200; this.attraction = o.attraction?o.attraction:0.06; this.damping = o.damping?o.damping:0.9; this.graph = o.graph?o.graph:new Graph(); this.total_kinetic_energy =0; this.animationID=-1; } ForceLayout.prototype.draw=function(){ //vertex velocities initialized to (0,0,0) when a vertex is created //vertex positions initialized to random position when created cc=0; do{ this.total_kinetic_energy =0; //for each vertex for(var i in this.graph.vertices){ var thisNode=this.graph.vertices[i]; // running sum of total force on this particular node var netForce=new Point(0,0,0) //for each other node for(var j in this.graph.vertices){ if(thisNode!=this.graph.vertices[j]){ //net-force := net-force + Coulomb_repulsion( this_node, other_node ) netForce.plus(this.CoulombRepulsion( thisNode,this.graph.vertices[j])) } } //for each spring connected to this node for(var k in this.graph.edges[thisNode.id]){ //(this node, node its connected to) //pass id of this node and the node its connected to so hookesattraction //can update the force on both vertices and return that force to be //added to the net force this.HookesAttraction(thisNode.id, this.graph.edges[thisNode.id][k].vertex2 ) } // without damping, it moves forever // this_node.velocity := (this_node.velocity + timestep * net-force) * damping thisNode.velocity.x=(thisNode.velocity.x+thisNode.force.x)*this.damping; thisNode.velocity.y=(thisNode.velocity.y+thisNode.force.y)*this.damping; thisNode.velocity.z=(thisNode.velocity.z+thisNode.force.z)*this.damping; //this_node.position := this_node.position + timestep * this_node.velocity thisNode.x=thisNode.velocity.x; thisNode.y=thisNode.velocity.y; thisNode.z=thisNode.velocity.z; //normalize x,y,z??? //total_kinetic_energy := total_kinetic_energy + this_node.mass * (this_node.velocity)^2 this.total_kinetic_energy +=thisNode.mass*((thisNode.velocity.x+thisNode.velocity.y+thisNode.velocity.z)* (thisNode.velocity.x+thisNode.velocity.y+thisNode.velocity.z)) } cc+=1; }while(this.total_kinetic_energy >0.5) console.log(cc,this.total_kinetic_energy,this.graph) this.cancelAnimation(); } ForceLayout.prototype.HookesAttraction=function(v1ID,v2ID){ var a=this.graph.vertices[v1ID] var b=this.graph.vertices[v2ID] var force=new Point(this.attraction*(b.x - a.x),this.attraction*(b.y - a.y),this.attraction*(b.z - a.z)) // hook's attraction a.force.x += force.x; a.force.y += force.y; a.force.z += force.z; b.force.x += this.attraction*(a.x - b.x); b.force.y += this.attraction*(a.y - b.y); b.force.z += this.attraction*(a.z - b.z); return force; } ForceLayout.prototype.CoulombRepulsion=function(vertex1,vertex2){ //http://en.wikipedia.org/wiki/Coulomb's_law // distance squared = ((x1-x2)*(x1-x2)) + ((y1-y2)*(y1-y2)) + ((z1-z2)*(z1-z2)) var distanceSquared = ( (vertex1.x-vertex2.x)*(vertex1.x-vertex2.x)+ (vertex1.y-vertex2.y)*(vertex1.y-vertex2.y)+ (vertex1.z-vertex2.z)*(vertex1.z-vertex2.z) ); if(distanceSquared==0) distanceSquared = 0.001; var coul = this.repulsion / distanceSquared; return new Point(coul * (vertex1.x-vertex2.x),coul * (vertex1.y-vertex2.y), coul * (vertex1.z-vertex2.z)); } ForceLayout.prototype.animate=function(){ if(this.animating) this.animationID=requestAnimationFrame(this.animate.bind(this)); this.draw(); } ForceLayout.prototype.cancelAnimation=function(){ cancelAnimationFrame(this.animationID); this.animating=false; } ForceLayout.prototype.redraw=function(){ this.animating=true; this.animate(); } $(document).ready(function(){ var g= new Graph(); for(var i=0;i<=100;i++){ var v1=new Vertex(Math.random(), {}) var v2=new Vertex(Math.random(), {}) var e1= new Edge(v1.id,v2.id); g.addEdge(e1); } console.log(g); var l=new ForceLayout({ graph:g }); l.redraw(); });

    Read the article

  • .NET file Decryption - Bad Data

    - by Jon
    I am in the process of rewriting an old application. The old app stored data in a scoreboard file that was encrypted with the following code: private const String SSecretKey = @"?B?n?Mj?"; public DataTable GetScoreboardFromFile() { FileInfo f = new FileInfo(scoreBoardLocation); if (!f.Exists) { return setupNewScoreBoard(); } DESCryptoServiceProvider DES = new DESCryptoServiceProvider(); //A 64 bit key and IV is required for this provider. //Set secret key For DES algorithm. DES.Key = ASCIIEncoding.ASCII.GetBytes(SSecretKey); //Set initialization vector. DES.IV = ASCIIEncoding.ASCII.GetBytes(SSecretKey); //Create a file stream to read the encrypted file back. FileStream fsread = new FileStream(scoreBoardLocation, FileMode.Open, FileAccess.Read); //Create a DES decryptor from the DES instance. ICryptoTransform desdecrypt = DES.CreateDecryptor(); //Create crypto stream set to read and do a //DES decryption transform on incoming bytes. CryptoStream cryptostreamDecr = new CryptoStream(fsread, desdecrypt, CryptoStreamMode.Read); DataTable dTable = new DataTable("scoreboard"); dTable.ReadXml(new StreamReader(cryptostreamDecr)); cryptostreamDecr.Close(); fsread.Close(); return dTable; } This works fine. I have copied the code into my new app so that I can create a legacy loader and convert the data into the new format. The problem is I get a "Bad Data" error: System.Security.Cryptography.CryptographicException was unhandled Message="Bad Data.\r\n" Source="mscorlib" The error fires at this line: dTable.ReadXml(new StreamReader(cryptostreamDecr)); The encrypted file was created today on the same machine with the old code. I guess that maybe the encryption / decryption process uses the application name / file or something and therefore means I can not open it. Does anyone have an idea as to: A) Be able explain why this isn't working? B) Offer a solution that would allow me to be able to open files that were created with the legacy application and be able to convert them please? Here is the whole class that deals with loading and saving the scoreboard: using System; using System.Collections.Generic; using System.Text; using System.Security.Cryptography; using System.Runtime.InteropServices; using System.IO; using System.Data; using System.Xml; using System.Threading; namespace JawBreaker { [Serializable] class ScoreBoardLoader { private Jawbreaker jawbreaker; private String sSecretKey = @"?B?n?Mj?"; private String scoreBoardFileLocation = ""; private bool keepScoreBoardUpdated = true; private int intTimer = 180000; public ScoreBoardLoader(Jawbreaker jawbreaker, String scoreBoardFileLocation) { this.jawbreaker = jawbreaker; this.scoreBoardFileLocation = scoreBoardFileLocation; } // Call this function to remove the key from memory after use for security [System.Runtime.InteropServices.DllImport("KERNEL32.DLL", EntryPoint = "RtlZeroMemory")] public static extern bool ZeroMemory(IntPtr Destination, int Length); // Function to Generate a 64 bits Key. private string GenerateKey() { // Create an instance of Symetric Algorithm. Key and IV is generated automatically. DESCryptoServiceProvider desCrypto = (DESCryptoServiceProvider)DESCryptoServiceProvider.Create(); // Use the Automatically generated key for Encryption. return ASCIIEncoding.ASCII.GetString(desCrypto.Key); } public void writeScoreboardToFile() { DataTable tempScoreBoard = getScoreboardFromFile(); //add in the new scores to the end of the file. for (int i = 0; i < jawbreaker.Scoreboard.Rows.Count; i++) { DataRow row = tempScoreBoard.NewRow(); row.ItemArray = jawbreaker.Scoreboard.Rows[i].ItemArray; tempScoreBoard.Rows.Add(row); } //before it is written back to the file make sure we update the sync info if (jawbreaker.SyncScoreboard) { //connect to webservice, login and update all the scores that have not been synced. for (int i = 0; i < tempScoreBoard.Rows.Count; i++) { try { //check to see if that row has been synced to the server if (!Boolean.Parse(tempScoreBoard.Rows[i].ItemArray[7].ToString())) { //sync info to server //update the row to say that it has been updated object[] tempArray = tempScoreBoard.Rows[i].ItemArray; tempArray[7] = true; tempScoreBoard.Rows[i].ItemArray = tempArray; tempScoreBoard.AcceptChanges(); } } catch (Exception ex) { jawbreaker.writeErrorToLog("ERROR OCCURED DURING SYNC TO SERVER UPDATE: " + ex.Message); } } } FileStream fsEncrypted = new FileStream(scoreBoardFileLocation, FileMode.Create, FileAccess.Write); DESCryptoServiceProvider DES = new DESCryptoServiceProvider(); DES.Key = ASCIIEncoding.ASCII.GetBytes(sSecretKey); DES.IV = ASCIIEncoding.ASCII.GetBytes(sSecretKey); ICryptoTransform desencrypt = DES.CreateEncryptor(); CryptoStream cryptostream = new CryptoStream(fsEncrypted, desencrypt, CryptoStreamMode.Write); MemoryStream ms = new MemoryStream(); tempScoreBoard.WriteXml(ms, XmlWriteMode.WriteSchema); ms.Position = 0; byte[] bitarray = new byte[ms.Length]; ms.Read(bitarray, 0, bitarray.Length); cryptostream.Write(bitarray, 0, bitarray.Length); cryptostream.Close(); ms.Close(); //now the scores have been added to the file remove them from the datatable jawbreaker.Scoreboard.Rows.Clear(); } public void startPeriodicScoreboardWriteToFile() { while (keepScoreBoardUpdated) { //three minute sleep. Thread.Sleep(intTimer); writeScoreboardToFile(); } } public void stopPeriodicScoreboardWriteToFile() { keepScoreBoardUpdated = false; } public int IntTimer { get { return intTimer; } set { intTimer = value; } } public DataTable getScoreboardFromFile() { FileInfo f = new FileInfo(scoreBoardFileLocation); if (!f.Exists) { jawbreaker.writeInfoToLog("Scoreboard not there so creating new one"); return setupNewScoreBoard(); } else { DESCryptoServiceProvider DES = new DESCryptoServiceProvider(); //A 64 bit key and IV is required for this provider. //Set secret key For DES algorithm. DES.Key = ASCIIEncoding.ASCII.GetBytes(sSecretKey); //Set initialization vector. DES.IV = ASCIIEncoding.ASCII.GetBytes(sSecretKey); //Create a file stream to read the encrypted file back. FileStream fsread = new FileStream(scoreBoardFileLocation, FileMode.Open, FileAccess.Read); //Create a DES decryptor from the DES instance. ICryptoTransform desdecrypt = DES.CreateDecryptor(); //Create crypto stream set to read and do a //DES decryption transform on incoming bytes. CryptoStream cryptostreamDecr = new CryptoStream(fsread, desdecrypt, CryptoStreamMode.Read); DataTable dTable = new DataTable("scoreboard"); dTable.ReadXml(new StreamReader(cryptostreamDecr)); cryptostreamDecr.Close(); fsread.Close(); return dTable; } } public DataTable setupNewScoreBoard() { //scoreboard info into dataset DataTable scoreboard = new DataTable("scoreboard"); scoreboard.Columns.Add(new DataColumn("playername", System.Type.GetType("System.String"))); scoreboard.Columns.Add(new DataColumn("score", System.Type.GetType("System.Int32"))); scoreboard.Columns.Add(new DataColumn("ballnumber", System.Type.GetType("System.Int32"))); scoreboard.Columns.Add(new DataColumn("xsize", System.Type.GetType("System.Int32"))); scoreboard.Columns.Add(new DataColumn("ysize", System.Type.GetType("System.Int32"))); scoreboard.Columns.Add(new DataColumn("gametype", System.Type.GetType("System.String"))); scoreboard.Columns.Add(new DataColumn("date", System.Type.GetType("System.DateTime"))); scoreboard.Columns.Add(new DataColumn("synced", System.Type.GetType("System.Boolean"))); scoreboard.AcceptChanges(); return scoreboard; } private void Run() { // For additional security Pin the key. GCHandle gch = GCHandle.Alloc(sSecretKey, GCHandleType.Pinned); // Remove the Key from memory. ZeroMemory(gch.AddrOfPinnedObject(), sSecretKey.Length * 2); gch.Free(); } } }

    Read the article

  • Why should you choose Oracle WebLogic 12c instead of JBoss EAP 6?

    - by Ricardo Ferreira
    In this post, I will cover some technical differences between Oracle WebLogic 12c and JBoss EAP 6, which was released a couple days ago from Red Hat. This article claims to help you in the evaluation of key points that you should consider when choosing for an Java EE application server. In the following sections, I will present to you some important aspects that most customers ask us when they are seriously evaluating for an middleware infrastructure, specially if you are considering JBoss for some reason. I would suggest that you keep the following question in mind while you are reading the points: "Why should I choose JBoss instead of WebLogic?" 1) Multi Datacenter Deployment and Clustering - D/R ("Disaster & Recovery") architecture support is embedded on the WebLogic Server 12c product. JBoss EAP 6 on the other hand has no direct D/R support included, Red Hat relies on third-part tools with higher prices. When you consider a middleware solution to host your business critical application, you should worry with every architectural aspect that are related with the solution. Fail-over support is one little aspect of a truly reliable solution. If you do not worry about D/R, your solution will not be reliable. Having said that, with Red Hat and JBoss EAP 6, you have this extra cost that will increase considerably the total cost of ownership of the solution. As we commonly hear from analysts, open-source are not so cheaper when you start seeing the big picture. - WebLogic Server 12c supports advanced LAN clustering, detection of death servers and have a common alert framework. JBoss EAP 6 on the other hand has limited LAN clustering support with no server death detection. They do not generate any alerts when servers goes down (only if you buy JBoss ON which is a separated technology, but until now does not support JBoss EAP 6) and manual intervention are required when servers goes down. In most cases, admin people must rely on "kill -9", "tail -f someFile.log" and "ps ax | grep java" commands to manage failures and clustering anomalies. - WebLogic Server 12c supports the concept of Node Manager, which is a separated process that runs on the physical | virtual servers that allows extend the administration of the cluster to WebLogic managed servers that are often distributed across multiple machines and geographic locations. JBoss EAP 6 on the other hand has no equivalent technology. Whole server instances must be managed individually. - WebLogic Server 12c Node Manager supports Coherence to boost performance when managing servers. JBoss EAP 6 on the other hand has no similar technology. There is no way to coordinate JBoss and infiniband instances provided by JBoss using high throughput and low latency protocols like InfiniBand. The Node Manager feature also allows another very important feature that JBoss EAP lacks: secure the administration. When using WebLogic Node Manager, all the administration tasks are sent to the managed servers in a secure tunel protected by a certificate, which means that the transport layer that separates the WebLogic administration console from the managed servers are secured by SSL. - WebLogic Server 12c are now integrated with OTD ("Oracle Traffic Director") which is a web server technology derived from the former Sun iPlanet Web Server. This software complements the web server support offered by OHS ("Oracle HTTP Server"). Using OTD, WebLogic instances are load-balanced by a high powerful software that knows how to handle SDP ("Socket Direct Protocol") over InfiniBand, which boost performance when used with engineered systems technologies like Oracle Exalogic Elastic Cloud. JBoss EAP 6 on the other hand only offers support to Apache Web Server with custom modules created to deal with JBoss clusters, but only across standard TCP/IP networks.  2) Application and Runtime Diagnostics - WebLogic Server 12c have diagnostics capabilities embedded on the server called WLDF ("WebLogic Diagnostic Framework") so there is no need to rely on third-part tools. JBoss EAP 6 on the other hand has no diagnostics capabilities. Their only diagnostics tool is the log generated by the application server. Admin people are encouraged to analyse thousands of log lines to find out what is going on. - WebLogic Server 12c complement WLDF with JRockit MC ("Mission Control"), which provides to administrators and developers a complete insight about the JVM performance, behavior and possible bottlenecks. WebLogic Server 12c also have an classloader analysis tool embedded, and even a log analyzer tool that enables administrators and developers to view logs of multiple servers at the same time. JBoss EAP 6 on the other hand relies on third-part tools to do something similar. Again, only log searching are offered to find out whats going on. - WebLogic Server 12c offers end-to-end traceability and monitoring available through Oracle EM ("Enterprise Manager"), including monitoring of business transactions that flows through web servers, ESBs, application servers and database servers, all of this with high deep JVM analysis and diagnostics. JBoss EAP 6 on the other hand, even using JBoss ON ("Operations Network"), which is a separated technology, does not support those features. Red Hat relies on third-part tools to provide direct Oracle database traceability across JVMs. One of those tools are Oracle EM for non-Oracle middleware that manage JBoss, Tomcat, Websphere and IIS transparently. - WebLogic Server 12c with their JRockit support offers a tool called JRockit Flight Recorder, which can give developers a complete visibility of a certain period of application production monitoring with zero extra overhead. This automatic recording allows you to deep analyse threads latency, memory leaks, thread contention, resource utilization, stack overflow damages and GC ("Garbage Collection") cycles, to observe in real time stop-the-world phenomenons, generational, reference count and parallel collects and mutator threads analysis. JBoss EAP 6 don't even dream to support something similar, even because they don't have their own JVM. 3) Application Server Administration - WebLogic Server 12c offers a complete administration console complemented with scripting and macro-like recording capabilities. A single WebLogic console can managed up to hundreds of WebLogic servers belonging to the same domain. JBoss EAP 6 on the other hand has a limited console and provides a XML centric administration. JBoss, after ten years, started the development of a rudimentary centralized administration that still leave a lot of administration tasks aside, so admin people and developers must touch scripts and XML configuration files for most advanced and even simple administration tasks. This lead applications to error prone and risky deployments. Even using JBoss ON, JBoss EAP are not able to offer decent administration features for admin people which must be high skilled in JBoss internal architecture and its managing capabilities. - Oracle EM is available to manage multiple domains, databases, application servers, operating systems and virtualization, with a complete end-to-end visibility. JBoss ON does not provide management capabilities across the complete architecture, only basic monitoring. Even deployment must be done aside JBoss ON which does no integrate well with others softwares than JBoss. Until now, JBoss ON does not supports JBoss EAP 6, so even their minimal support for JBoss are not available for JBoss EAP 6 leaving customers uncovered and subject to high skilled JBoss admin people. - WebLogic Server 12c has the same administration model whatever is the topology selected by the customer. JBoss EAP 6 on the other hand differentiates between two operational models: standalone-mode and domain-mode, that are not consistent with each other. Depending on the mode used, the administration skill is different. - WebLogic Server 12c has no point-of-failures processes, and it does not need to define any specialized server. Domain model in WebLogic is available for years (at least ten years or more) and is production proven. JBoss EAP 6 on the other hand needs special processes to garantee JBoss integrity, the PC ("Process-Controller") and the HC ("Host-Controller"). Different from WebLogic, the domain model in JBoss is quite new (one year at tops) of maturity, and need to mature considerably until start doing things like WebLogic domain model does. - WebLogic Server 12c supports parallel deployment model which enables some artifacts being deployed at the same time. JBoss EAP 6 on the other hand does not have any similar feature. Every deployment are done atomically in the containers. This means that if you have a huge EAR (an EAR of 120 MB of size for instance) and deploy onto JBoss EAP 6, this EAR will take some minutes in order to starting accept thread requests. The same EAR deployed onto WebLogic Server 12c will reduce the deployment time at least in 2X compared to JBoss. 4) Support and Upgrades - WebLogic Server 12c has patch management available. JBoss EAP 6 on the other hand has no patch management available, each JBoss EAP instance should be patched manually. To achieve such feature, you need to buy a separated technology called JBoss ON ("Operations Network") that manage this type of stuff. But until now, JBoss ON does not support JBoss EAP 6 so, in practice, JBoss EAP 6 does not have this feature. - WebLogic Server 12c supports previuous WebLogic domains without any reconfiguration since its kernel is robust and mature since its creation in 1995. JBoss EAP 6 on the other hand has a proven lack of supportability between JBoss AS 4, 5, 6 and 7. Different kernels and messaging engines were implemented in JBoss stack in the last five years reveling their incapacity to create a well architected and proven middleware technology. - WebLogic Server 12c has patch prescription based on customer configuration. JBoss EAP 6 on the other hand has no such capability. People need to create ticket supports and have their installations revised by Red Hat support guys to gain some patch prescription from them. - Oracle WebLogic Server independent of the version has 8 years of support of new patches and has lifetime release of existing patches beyond that. JBoss EAP 6 on the other hand provides patches for a specific application server version up to 5 years after the release date. JBoss EAP 4 and previous versions had only 4 years. A good question that Red Hat will argue to answer is: "what happens when you find issues after year 5"?  5) RAC ("Real Application Clusters") Support - WebLogic Server 12c ships with a specific JDBC driver to leverage Oracle RAC clustering capabilities (Fast-Application-Notification, Transaction Affinity, Fast-Connection-Failover, etc). Oracle JDBC thin driver are also available. JBoss EAP 6 on the other hand ships only the standard Oracle JDBC thin driver. Load balancing with Oracle RAC are not supported. Manual intervention in case of planned or unplanned RAC downtime are necessary. In JBoss EAP 6, situation does not reestablish automatically after downtime. - WebLogic Server 12c has a feature called Active GridLink for Oracle RAC which provides up to 3X performance on OLTP applications. This seamless integration between WebLogic and Oracle database enable more value added to critical business applications leveraging their investments in Oracle database technology and Oracle middleware. JBoss EAP 6 on the other hand has no performance gains at all, even when admin people implement some kind of connection-pooling tuning. - WebLogic Server 12c also supports transaction and web session affinity to the Oracle RAC, which provides aditional gains of performance. This is particularly interesting if you are creating a reliable solution that are distributed not only in an LAN cluster, but into a different data center. JBoss EAP 6 on the other hand has no such support. 6) Standards and Technology Support - WebLogic Server 12c is fully Java EE 6 compatible and production ready since december of 2011. JBoss EAP 6 on the other hand became fully compatible with Java EE 6 only in the community version after three months, and production ready only in a few days considering that this article was written in June of 2012. Red Hat says that they are the masters of innovation and technology proliferation, but compared with Oracle and even other proprietary vendors like IBM, they historically speaking are lazy to deliver the most newest technologies and standards adherence. - Oracle is the steward of Java, driving innovation into the platform from commercial and open-source vendors. Red Hat on the other hand does not have its own JVM and relies on third-part JVMs to complete their application server offer. 95% of Red Hat customers are using Oracle HotSpot as JVM, which means that without Oracle involvement, their support are limited exclusively to the application server layer and we all know that most problems are happens in the JVM layer. - WebLogic Server 12c supports natively JDK 7, which empower developers to explore the maximum of the Java platform productivity when writing code. This feature differentiate WebLogic from others application servers (except GlassFish that are also managed by Oracle) because the usage of JDK 7 introduce such remarkable productivity features like the "try-with-resources" enhancement, catching multiple exceptions with one try block, Strings in the switch statements, JVM improvements in terms of JDBC, I/O, networking, security, concurrency and of course, the most important feature of Java 7: native support for multiple non-Java languages. More features regarding JDK 7 can be found here. JBoss EAP 6 on the other hand does not support JDK 7 officially, they comment in their community version that "Java SE 7 can be used with JBoss 7" which does not gives you any guarantees of enterprise support for JDK 7. - Oracle WebLogic Server 12c supports integration with Spring framework allowing Spring applications to use WebLogic special transaction manager, exposing bean interfaces to WebLogic MBeans to take advantage of all WebLogic monitoring and administration advantages. JBoss EAP 6 on the other hand has no special integration with Spring. In fact, Red Hat offers a suspicious package called "JBoss Web Platform" that in theory supports Spring, but in practice this package does not offers any special integration. It is just a facility for Red Hat customers to have support from both JBoss and Spring technology using the same customer support. 7) Lightweight Development - Oracle WebLogic Server 12c and Oracle GlassFish are completely integrated and can share applications without any modifications. Starting with the 12c version, WebLogic now understands natively GlassFish deployment descriptors and specific configurations in order to offer you a truly and reliable migration path from a community Java EE application server to a enterprise middleware product like WebLogic. JBoss EAP 6 on the other hand has no support to natively reuse an existing (or still in development) application from JBoss AS community server. Users of JBoss suffer of critical issues during deployment time that includes: changing the libraries and dependencies of the application, patching the DTD or XSD deployment descriptors, refactoring of the application layers due classloading issues and anomalies, rebuilding of persistence, business and web layers due issues with "usage of the certified version of an certain dependency" or "frameworks that Red Hat potentially does not recommend" etc. If you have the culture or enterprise IT directive of developing Java EE applications using community middleware to in a certain future, transition to enterprise (supported by a vendor) middleware, Oracle WebLogic plus Oracle GlassFish offers you a more sustainable solution. - WebLogic Server 12c has a very light ZIP distribution (less than 165 MB). JBoss EAP 6 ZIP size is around 130 MB, together with JBoss ON you have more 100 MB resulting in a higher download footprint. This is particularly interesting if you plan to use automated setup of application server instances (for example, to rapidly setup a development or staging environment) using Maven or Hudson. - WebLogic Server 12c has a complete integration with Maven allowing developers to setup WebLogic domains with few commands. Tasks like downloading WebLogic, installation, domain creation, data sources deployment are completely integrated. JBoss EAP 6 on the other hand has a limited offer integration with those tools.  - WebLogic Server 12c has a startup mode called WLX that turns-off EJB, JMS and JCA containers leaving enabled only the web container with Java EE 6 web profile. JBoss EAP 6 on the other hand has no such feature, you need to disable manually the containers that you do not want to use. - WebLogic Server 12c supports fastswap, which enables you to change classes without redeployment. This is particularly interesting if you are developing patches for the application that is already deployed and you do not want to redeploy the entire application. This is the same behavior that most application servers offers to JSP pages, but with WebLogic Server 12c, you have the same feature for Java classes in general. JBoss EAP 6 on the other hand has no such support. Even JBoss EAP 5 does not support this until now. 8) JMS and Messaging - WebLogic Server 12c has a proven and high scalable JMS implementation since its initial release in 1995. JBoss EAP 6 on the other hand has a still immature technology called HornetQ, which was introduced in JBoss EAP 5 replacing everything that was implemented in the previous versions. Red Hat loves to introduce new technologies across JBoss versions, playing around with customers and their investments. And when they are asked about why they have changed the implementation and caused such a mess, their answer is always: "the previous implementation was inadequate and not aligned with the community strategy so we are creating a new a improved one". This Red Hat practice leads to uncomfortable investments that in a near future (sometimes less than a year) will be affected in someway. - WebLogic Server 12c has troubleshooting and monitoring features included on the WebLogic console and WLDF. JBoss EAP 6 on the other hand has no direct monitoring on the console, activity is reflected only on the logs, no debug logs available in case of JMS issues. - WebLogic Server 12c has extremely good performance and scalability. JBoss EAP 6 on the other hand has a JMS storage mechanism relying on Oracle database or MySQL. This means that if an issue in production happens and Red Hat affirms that an performance issue is happening due to database problems, they will not support you on the performance issue. They will orient you to call Oracle instead. - WebLogic Server 12c supports messaging enterprise features like SAF ("Store and Forward"), Distributed Queues/Topics and Foreign JMS providers support that leverage JMS implementations without compromise developer code making things completely transparent. JBoss EAP 6 on the other hand do not even dream to support such features. 9) Caching and Grid - Coherence, which is the leading and most mature data grid technology from Oracle, is available since early 2000 and was integrated with WebLogic in 2009. Coherence and WebLogic clusters can be both managed from WebLogic administrative console. Even Node Manager supports Coherence. JBoss on the other hand discontinued JBoss Cache, which was their caching implementation just like they did with the messaging implementation (JBossMQ) which was a issue for long term customers. JBoss EAP 6 ships InfiniSpan version 1.0 which is immature and lack a proven record of successful cases and reliability. - WebLogic Server 12c has a feature called ActiveCache which uses Coherence to, without any code changes, replicate HTTP sessions from both WebLogic and other application servers like JBoss, Tomcat, Websphere, GlassFish and even Microsoft IIS. JBoss EAP 6 on the other hand does have such support and even when they do in the future, they probably will support only their own application server. - Coherence can be used to manage both L1 and L2 cache levels, providing support to Oracle TopLink and others JPA compliant implementations, even Hibernate. JBoss EAP 6 and Infinispan on the other hand supports only Hibernate. And most important of all: Infinispan does not have any successful case of L1 or L2 caching level support using Hibernate, which lead us to reflect about its viability. 10) Performance - WebLogic Server 12c is certified with Oracle Exalogic Elastic Cloud and can run unchanged applications at this engineered system. This approach can benefit customers from Exalogic optimization's of both kernel and JVM layers to boost performance in terms of 10X for web, OLTP, JMS and grid applications. JBoss EAP 6 on the other hand has no investment on engineered systems: customers do not have the choice to deploy on a Java ultra fast system if their project becomes relevant and performance issues are detected. - WebLogic Server 12c maintains a performance gain across each new release: starting on WebLogic 5.1, the overall performance gain has been close to 4X, which close to a 20% gain release by release. JBoss on the other hand does not provide SPECJAppServer or SPECJEnterprise performance benchmarks. Their so called "performance gains" remains hidden in their customer environments, which lead us to think if it is true or not since we will never get access to those environments. - WebLogic Server 12c has industry performance benchmarks with submissions across platforms and configurations leading SPECJ. Oracle WebLogic leads SPECJAppServer performance in multiple categories, fitting all customer topologies like: dual-node, single-node, multi-node and multi-node with RAC. JBoss... again, does not provide any SPECJAppServer performance benchmarks. - WebLogic Server 12c has a feature called work manager which allows your application to embrace new performance levels based on critical resource utilization of the CPUs usage. Work managers prioritizes work and allocates threads based on an execution model that takes into account administrator-defined parameters and actual run-time performance and throughput. JBoss EAP 6 on the other hand has no compared feature and probably they never will. Not supporting such feature like work managers, JBoss EAP 6 forces admin people and specially developers to uncover performance gains in a intrusive way, rewriting the code and doing performance refactorings. 11) Professional Services Support - WebLogic Server 12c and any other technology sold by Oracle give customers the possibility of hire OCS ("Oracle Consulting Services") to manage critical scenarios, deployment assistance of new applications, high skilled consultancy of architecture, best practices and people allocation together with customer teams. All OCS services are available without any restrictions, having the customer bought software from Oracle or just starting their implementation before any acquisition. JBoss EAP 6 or Red Hat to be more specifically, only offers professional services if you buy subscriptions from them. If you are developing a new critical application for your business and need the help of Red Hat for a serious issue or architecture decision, they will probably say: "OK... I can help you but after you buy subscriptions from me". Red Hat also does not allows their professional services consultants to manage environments that uses community based software. They will probably force you to first buy a subscription, download their "enterprise" version and them, optionally hire their consultants. - Oracle provides you our university to educate your team into our technologies, including of course specialized trainings of WebLogic application server. At any time and location, you can hire Oracle to train your team so you get trustful knowledge according to your specific needs. Certifications for the products are also available if your technical people desire to differentiate themselves as professionals. Red Hat on the other hand have a limited pool of resources to train your team in their technologies. Basically they are selling training and certification for RHEL ("Red Hat Enterprise Linux") but if you demand more specialized training in JBoss middleware, they will probably connect you to some "certified" partner localized training since they are apparently discontinuing their education center, at least here in Brazil. They were not able to reproduce their success with RHEL education to their middleware division since they need first sell the subscriptions to after gives you specialized training. And again, they only offer you specialized training based on their enterprise version (EAP in the case of JBoss) which means that the courses will be a quite outdated. There are reports of developers that took official training's from Red Hat at this year (2012) and in a certain JBoss advanced course, Red Hat supposedly covered JBossMQ as the messaging subsystem, and even the printed material provided was based on JBossMQ since the training was created for JBoss EAP 4.3. 12) Encouraging Transparency without Ulterior Motives - WebLogic Server 12c like any other software from Oracle can be downloaded any time from anywhere, you should only possess an OTN ("Oracle Technology Network") credential and you can download any enterprise software how many times you want. And is not some kind of "trial" version. It is the official binaries that will be running for ever in your data center. Oracle does not encourages the usage of "specific versions" of our software. The binaries you buy from Oracle are the same binaries anyone in the world could download and use for testing and personal education. JBoss EAP 6 on the other hand are not available for download unless you buy a subscription and get access to the Red Hat enterprise repositories. If you need to test, learn or just start creating your application using Red Hat's middleware software, you should download it from the community website. You are not allowed to download the enterprise version that, according to Red Hat are more secure, reliable and robust. But no one of us want to start the development of a software with an unsecured, unreliable and not scalable middleware right? So what you do? You are "invited" by Red Hat to buy subscriptions from them to get access to the "cool" version of the software. - WebLogic Server 12c prices are publicly available in the Oracle website. If you want to know right now how much WebLogic will cost to your organization, just click here and get access to our price list. In the case of WebLogic, check out the "US Oracle Technology Commercial Price List". Oracle also encourages you to get in touch with a sales representative to discuss discounts that would make possible the investment into our technology. But you are not required to do this, only if you are interested in buying our technology or maybe you want to discuss some discount scenarios. JBoss EAP 6 on the other hand does not have its cost publicly available in Red Hat's website or in any other media, at least is not so easy to get such information. The only link you will possibly find in their website is a "Contact a Sales Representative" link. This is not a very good relationship between an customer and an vendor. This is not an example of transparency, mainly when the software are sold as open. In this situations, customers expects to see the software prices publicly available, so they can have the chance to decide, based on the existing features of the software, if the cost is fair or not. Conclusion Oracle WebLogic is the most mature, secure, reliable and scalable Java EE application server of the market, and have a proven record of success around the globe to prove it's majority. Don't lose the chance to discover today how WebLogic could fit your needs and sustain your global IT middleware strategy, no matter if your strategy are completely based on the Cloud or not.

    Read the article

  • What&rsquo;s New in ASP.NET 4.0 Part Two: WebForms and Visual Studio Enhancements

    - by Rick Strahl
    In the last installment I talked about the core changes in the ASP.NET runtime that I’ve been taking advantage of. In this column, I’ll cover the changes to the Web Forms engine and some of the cool improvements in Visual Studio that make Web and general development easier. WebForms The WebForms engine is the area that has received most significant changes in ASP.NET 4.0. Probably the most widely anticipated features are related to managing page client ids and of ViewState on WebForm pages. Take Control of Your ClientIDs Unique ClientID generation in ASP.NET has been one of the most complained about “features” in ASP.NET. Although there’s a very good technical reason for these unique generated ids - they guarantee unique ids for each and every server control on a page - these unique and generated ids often get in the way of client-side JavaScript development and CSS styling as it’s often inconvenient and fragile to work with the long, generated ClientIDs. In ASP.NET 4.0 you can now specify an explicit client id mode on each control or each naming container parent control to control how client ids are generated. By default, ASP.NET generates mangled client ids for any control contained in a naming container (like a Master Page, or a User Control for example). The key to ClientID management in ASP.NET 4.0 are the new ClientIDMode and ClientIDRowSuffix properties. ClientIDMode supports four different ClientID generation settings shown below. For the following examples, imagine that you have a Textbox control named txtName inside of a master page control container on a WebForms page. <%@Page Language="C#"      MasterPageFile="~/Site.Master"     CodeBehind="WebForm2.aspx.cs"     Inherits="WebApplication1.WebForm2"  %> <asp:Content ID="content"  ContentPlaceHolderID="content"               runat="server"               ClientIDMode="Static" >       <asp:TextBox runat="server" ID="txtName" /> </asp:Content> The four available ClientIDMode values are: AutoID This is the existing behavior in ASP.NET 1.x-3.x where full naming container munging takes place. <input name="ctl00$content$txtName" type="text"        id="ctl00_content_txtName" /> This should be familiar to any ASP.NET developer and results in fairly unpredictable client ids that can easily change if the containership hierarchy changes. For example, removing the master page changes the name in this case, so if you were to move a block of script code that works against the control to a non-Master page, the script code immediately breaks. Static This option is the most deterministic setting that forces the control’s ClientID to use its ID value directly. No naming container naming at all is applied and you end up with clean client ids: <input name="ctl00$content$txtName"         type="text" id="txtName" /> Note that the name property which is used for postback variables to the server still is munged, but the ClientID property is displayed simply as the ID value that you have assigned to the control. This option is what most of us want to use, but you have to be clear on that because it can potentially cause conflicts with other controls on the page. If there are several instances of the same naming container (several instances of the same user control for example) there can easily be a client id naming conflict. Note that if you assign Static to a data-bound control, like a list child control in templates, you do not get unique ids either, so for list controls where you rely on unique id for child controls, you’ll probably want to use Predictable rather than Static. I’ll write more on this a little later when I discuss ClientIDRowSuffix. Predictable The previous two values are pretty self-explanatory. Predictable however, requires some explanation. To me at least it’s not in the least bit predictable. MSDN defines this value as follows: This algorithm is used for controls that are in data-bound controls. The ClientID value is generated by concatenating the ClientID value of the parent naming container with the ID value of the control. If the control is a data-bound control that generates multiple rows, the value of the data field specified in the ClientIDRowSuffix property is added at the end. For the GridView control, multiple data fields can be specified. If the ClientIDRowSuffix property is blank, a sequential number is added at the end instead of a data-field value. Each segment is separated by an underscore character (_). The key that makes this value a bit confusing is that it relies on the parent NamingContainer’s ClientID to build its own ClientID value. This effectively means that the value is not predictable at all but rather very tightly coupled to the parent naming container’s ClientIDMode setting. For my simple textbox example, if the ClientIDMode property of the parent naming container (Page in this case) is set to “Predictable” you’ll get this: <input name="ctl00$content$txtName" type="text"         id="content_txtName" /> which gives an id that based on walking up to the currently active naming container (the MasterPage content container) and starting the id formatting from there downward. Think of this as a semi unique name that’s guaranteed unique only for the naming container. If, on the other hand, the Page is set to “AutoID” you get the following with Predictable on txtName: <input name="ctl00$content$txtName" type="text"         id="ctl00_content_txtName" /> The latter is effectively the same as if you specified AutoID because it inherits the AutoID naming from the Page and Content Master Page control of the page. But again - predictable behavior always depends on the parent naming container and how it generates its id, so the id may not always be exactly the same as the AutoID generated value because somewhere in the NamingContainer chain the ClientIDMode setting may be set to a different value. For example, if you had another naming container in the middle that was set to Static you’d end up effectively with an id that starts with the NamingContainers id rather than the whole ctl000_content munging. The most common use for Predictable is likely to be for data-bound controls, which results in each data bound item getting a unique ClientID. Unfortunately, even here the behavior can be very unpredictable depending on which data-bound control you use - I found significant differences in how template controls in a GridView behave from those that are used in a ListView control. For example, GridView creates clean child ClientIDs, while ListView still has a naming container in the ClientID, presumably because of the template container on which you can’t set ClientIDMode. Predictable is useful, but only if all naming containers down the chain use this setting. Otherwise you’re right back to the munged ids that are pretty unpredictable. Another property, ClientIDRowSuffix, can be used in combination with ClientIDMode of Predictable to force a suffix onto list client controls. For example: <asp:GridView runat="server" ID="gvItems"              AutoGenerateColumns="false"             ClientIDMode="Static"              ClientIDRowSuffix="Id">     <Columns>     <asp:TemplateField>         <ItemTemplate>             <asp:Label runat="server" id="txtName"                        Text='<%# Eval("Name") %>'                   ClientIDMode="Predictable"/>         </ItemTemplate>     </asp:TemplateField>     <asp:TemplateField>         <ItemTemplate>         <asp:Label runat="server" id="txtId"                     Text='<%# Eval("Id") %>'                     ClientIDMode="Predictable" />         </ItemTemplate>     </asp:TemplateField>     </Columns>  </asp:GridView> generates client Ids inside of a column in the master page described earlier: <td>     <span id="txtName_0">Rick</span> </td> where the value after the underscore is the ClientIDRowSuffix field - in this case “Id” of the item data bound to the control. Note that all of the child controls require ClientIDMode=”Predictable” in order for the ClientIDRowSuffix to be applied, and the parent GridView controls need to be set to Static either explicitly or via Naming Container inheritance to give these simple names. It’s a bummer that ClientIDRowSuffix doesn’t work with Static to produce this automatically. Another real problem is that other controls process the ClientIDMode differently. For example, a ListView control processes the Predictable ClientIDMode differently and produces the following with the Static ListView and Predictable child controls: <span id="ctrl0_txtName_0">Rick</span> I couldn’t even figure out a way using ClientIDMode to get a simple ID that also uses a suffix short of falling back to manually generated ids using <%= %> expressions instead. Given the inconsistencies inside of list controls using <%= %>, ids for the ListView might not be a bad idea anyway. Inherit The final setting is Inherit, which is the default for all controls except Page. This means that controls by default inherit the parent naming container’s ClientIDMode setting. For more detailed information on ClientID behavior and different scenarios you can check out a blog post of mine on this subject: http://www.west-wind.com/weblog/posts/54760.aspx. ClientID Enhancements Summary The ClientIDMode property is a welcome addition to ASP.NET 4.0. To me this is probably the most useful WebForms feature as it allows me to generate clean IDs simply by setting ClientIDMode="Static" on either the page or inside of Web.config (in the Pages section) which applies the setting down to the entire page which is my 95% scenario. For the few cases when it matters - for list controls and inside of multi-use user controls or custom server controls) - I can use Predictable or even AutoID to force controls to unique names. For application-level page development, this is easy to accomplish and provides maximum usability for working with client script code against page controls. ViewStateMode Another area of large criticism for WebForms is ViewState. ViewState is used internally by ASP.NET to persist page-level changes to non-postback properties on controls as pages post back to the server. It’s a useful mechanism that works great for the overall mechanics of WebForms, but it can also cause all sorts of overhead for page operation as ViewState can very quickly get out of control and consume huge amounts of bandwidth in your page content. ViewState can also wreak havoc with client-side scripting applications that modify control properties that are tracked by ViewState, which can produce very unpredictable results on a Postback after client-side updates. Over the years in my own development, I’ve often turned off ViewState on pages to reduce overhead. Yes, you lose some functionality, but you can easily implement most of the common functionality in non-ViewState workarounds. Relying less on heavy ViewState controls and sticking with simpler controls or raw HTML constructs avoids getting around ViewState problems. In ASP.NET 3.x and prior, it wasn’t easy to control ViewState - you could turn it on or off and if you turned it off at the page or web.config level, you couldn’t turn it back on for specific controls. In short, it was an all or nothing approach. With ASP.NET 4.0, the new ViewStateMode property gives you more control. It allows you to disable ViewState globally either on the page or web.config level and then turn it back on for specific controls that might need it. ViewStateMode only works when EnableViewState="true" on the page or web.config level (which is the default). You can then use ViewStateMode of Disabled, Enabled or Inherit to control the ViewState settings on the page. If you’re shooting for minimal ViewState usage, the ideal situation is to set ViewStateMode to disabled on the Page or web.config level and only turn it back on particular controls: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"        ClientIDMode="Static"                ViewStateMode="Disabled"     EnableViewState="true"  %> <!-- this control has viewstate  --> <asp:TextBox runat="server" ID="txtName"  ViewStateMode="Enabled" />       <!-- this control has no viewstate - it inherits  from parent container --> <asp:TextBox runat="server" ID="txtAddress" /> Note that the EnableViewState="true" at the Page level isn’t required since it’s the default, but it’s important that the value is true. ViewStateMode has no effect if EnableViewState="false" at the page level. The main benefit of ViewStateMode is that it allows you to more easily turn off ViewState for most of the page and enable only a few key controls that might need it. For me personally, this is a perfect combination as most of my WebForm apps can get away without any ViewState at all. But some controls - especially third party controls - often don’t work well without ViewState enabled, and now it’s much easier to selectively enable controls rather than the old way, which required you to pretty much turn off ViewState for all controls that you didn’t want ViewState on. Inline HTML Encoding HTML encoding is an important feature to prevent cross-site scripting attacks in data entered by users on your site. In order to make it easier to create HTML encoded content, ASP.NET 4.0 introduces a new Expression syntax using <%: %> to encode string values. The encoding expression syntax looks like this: <%: "<script type='text/javascript'>" +     "alert('Really?');</script>" %> which produces properly encoded HTML: &lt;script type=&#39;text/javascript&#39; &gt;alert(&#39;Really?&#39;);&lt;/script&gt; Effectively this is a shortcut to: <%= HttpUtility.HtmlEncode( "<script type='text/javascript'>" + "alert('Really?');</script>") %> Of course the <%: %> syntax can also evaluate expressions just like <%= %> so the more common scenario applies this expression syntax against data your application is displaying. Here’s an example displaying some data model values: <%: Model.Address.Street %> This snippet shows displaying data from your application’s data store or more importantly, from data entered by users. Anything that makes it easier and less verbose to HtmlEncode text is a welcome addition to avoid potential cross-site scripting attacks. Although I listed Inline HTML Encoding here under WebForms, anything that uses the WebForms rendering engine including ASP.NET MVC, benefits from this feature. ScriptManager Enhancements The ASP.NET ScriptManager control in the past has introduced some nice ways to take programmatic and markup control over script loading, but there were a number of shortcomings in this control. The ASP.NET 4.0 ScriptManager has a number of improvements that make it easier to control script loading and addresses a few of the shortcomings that have often kept me from using the control in favor of manual script loading. The first is the AjaxFrameworkMode property which finally lets you suppress loading the ASP.NET AJAX runtime. Disabled doesn’t load any ASP.NET AJAX libraries, but there’s also an Explicit mode that lets you pick and choose the library pieces individually and reduce the footprint of ASP.NET AJAX script included if you are using the library. There’s also a new EnableCdn property that forces any script that has a new WebResource attribute CdnPath property set to a CDN supplied URL. If the script has this Attribute property set to a non-null/empty value and EnableCdn is enabled on the ScriptManager, that script will be served from the specified CdnPath. [assembly: WebResource(    "Westwind.Web.Resources.ww.jquery.js",    "application/x-javascript",    CdnPath =  "http://mysite.com/scripts/ww.jquery.min.js")] Cool, but a little too static for my taste since this value can’t be changed at runtime to point at a debug script as needed, for example. Assembly names for loading scripts from resources can now be simple names rather than fully qualified assembly names, which make it less verbose to reference scripts from assemblies loaded from your bin folder or the assembly reference area in web.config: <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <Scripts>         <asp:ScriptReference          Name="Westwind.Web.Resources.ww.jquery.js"         Assembly="Westwind.Web" />     </Scripts>        </asp:ScriptManager> The ScriptManager in 4.0 also supports script combining via the CompositeScript tag, which allows you to very easily combine scripts into a single script resource served via ASP.NET. Even nicer: You can specify the URL that the combined script is served with. Check out the following script manager markup that combines several static file scripts and a script resource into a single ASP.NET served resource from a static URL (allscripts.js): <asp:ScriptManager runat="server" id="Id"          EnableCdn="true"         AjaxFrameworkMode="disabled">     <CompositeScript          Path="~/scripts/allscripts.js">         <Scripts>             <asp:ScriptReference                    Path="~/scripts/jquery.js" />             <asp:ScriptReference                    Path="~/scripts/ww.jquery.js" />             <asp:ScriptReference            Name="Westwind.Web.Resources.editors.js"                 Assembly="Westwind.Web" />         </Scripts>     </CompositeScript> </asp:ScriptManager> When you render this into HTML, you’ll see a single script reference in the page: <script src="scripts/allscripts.debug.js"          type="text/javascript"></script> All you need to do to make this work is ensure that allscripts.js and allscripts.debug.js exist in the scripts folder of your application - they can be empty but the file has to be there. This is pretty cool, but you want to be real careful that you use unique URLs for each combination of scripts you combine or else browser and server caching will easily screw you up royally. The script manager also allows you to override native ASP.NET AJAX scripts now as any script references defined in the Scripts section of the ScriptManager trump internal references. So if you want custom behavior or you want to fix a possible bug in the core libraries that normally are loaded from resources, you can now do this simply by referencing the script resource name in the Name property and pointing at System.Web for the assembly. Not a common scenario, but when you need it, it can come in real handy. Still, there are a number of shortcomings in this control. For one, the ScriptManager and ClientScript APIs still have no common entry point so control developers are still faced with having to check and support both APIs to load scripts so that controls can work on pages that do or don’t have a ScriptManager on the page. The CdnUrl is static and compiled in, which is very restrictive. And finally, there’s still no control over where scripts get loaded on the page - ScriptManager still injects scripts into the middle of the HTML markup rather than in the header or optionally the footer. This, in turn, means there is little control over script loading order, which can be problematic for control developers. MetaDescription, MetaKeywords Page Properties There are also a number of additional Page properties that correspond to some of the other features discussed in this column: ClientIDMode, ClientTarget and ViewStateMode. Another minor but useful feature is that you can now directly access the MetaDescription and MetaKeywords properties on the Page object to set the corresponding meta tags programmatically. Updating these values programmatically previously required either <%= %> expressions in the page markup or dynamic insertion of literal controls into the page. You can now just set these properties programmatically on the Page object in any Control derived class on the page or the Page itself: Page.MetaKeywords = "ASP.NET,4.0,New Features"; Page.MetaDescription = "This article discusses the new features in ASP.NET 4.0"; Note, that there’s no corresponding ASP.NET tag for the HTML Meta element, so the only way to specify these values in markup and access them is via the @Page tag: <%@Page Language="C#"      CodeBehind="WebForm2.aspx.cs"     Inherits="Westwind.WebStore.WebForm2"      ClientIDMode="Static"                MetaDescription="Article that discusses what's                      new in ASP.NET 4.0"     MetaKeywords="ASP.NET,4.0,New Features" %> Nothing earth shattering but quite convenient. Visual Studio 2010 Enhancements for Web Development For Web development there are also a host of editor enhancements in Visual Studio 2010. Some of these are not Web specific but they are useful for Web developers in general. Text Editors Throughout Visual Studio 2010, the text editors have all been updated to a new core engine based on WPF which provides some interesting new features for various code editors including the nice ability to zoom in and out with Ctrl-MouseWheel to quickly change the size of text. There are many more API options to control the editor and although Visual Studio 2010 doesn’t yet use many of these features, we can look forward to enhancements in add-ins and future editor updates from the various language teams that take advantage of the visual richness that WPF provides to editing. On the negative side, I’ve noticed that occasionally the code editor and especially the HTML and JavaScript editors will lose the ability to use various navigation keys like arrows, back and delete keys, which requires closing and reopening the documents at times. This issue seems to be well documented so I suspect this will be addressed soon with a hotfix or within the first service pack. Overall though, the code editors work very well, especially given that they were re-written completely using WPF, which was one of my big worries when I first heard about the complete redesign of the editors. Multi-Targeting Visual Studio now targets all versions of the .NET framework from 2.0 forward. You can use Visual Studio 2010 to work on your ASP.NET 2, 3.0 and 3.5 applications which is a nice way to get your feet wet with the new development environment without having to make changes to existing applications. It’s nice to have one tool to work in for all the different versions. Multi-Monitor Support One cool feature of Visual Studio 2010 is the ability to drag windows out of the Visual Studio environment and out onto the desktop including onto another monitor easily. Since Web development often involves working with a host of designers at the same time - visual designer, HTML markup window, code behind and JavaScript editor - it’s really nice to be able to have a little more screen real estate to work on each of these editors. Microsoft made a welcome change in the environment. IntelliSense Snippets for HTML and JavaScript Editors The HTML and JavaScript editors now finally support IntelliSense scripts to create macro-based template expansions that have been in the core C# and Visual Basic code editors since Visual Studio 2005. Snippets allow you to create short XML-based template definitions that can act as static macros or real templates that can have replaceable values that can be embedded into the expanded text. The XML syntax for these snippets is straight forward and it’s pretty easy to create custom snippets manually. You can easily create snippets using XML and store them in your custom snippets folder (C:\Users\rstrahl\Documents\Visual Studio 2010\Code Snippets\Visual Web Developer\My HTML Snippets and My JScript Snippets), but it helps to use one of the third-party tools that exist to simplify the process for you. I use SnippetEditor, by Bill McCarthy, which makes short work of creating snippets interactively (http://snippeteditor.codeplex.com/). Note: You may have to manually add the Visual Studio 2010 User specific Snippet folders to this tool to see existing ones you’ve created. Code snippets are some of the biggest time savers and HTML editing more than anything deals with lots of repetitive tasks that lend themselves to text expansion. Visual Studio 2010 includes a slew of built-in snippets (that you can also customize!) and you can create your own very easily. If you haven’t done so already, I encourage you to spend a little time examining your coding patterns and find the repetitive code that you write and convert it into snippets. I’ve been using CodeRush for this for years, but now you can do much of the basic expansion natively for HTML and JavaScript snippets. jQuery Integration Is Now Native jQuery is a popular JavaScript library and recently Microsoft has recently stated that it will become the primary client-side scripting technology to drive higher level script functionality in various ASP.NET Web projects that Microsoft provides. In Visual Studio 2010, the default full project template includes jQuery as part of a new project including the support files that provide IntelliSense (-vsdoc files). IntelliSense support for jQuery is now also baked into Visual Studio 2010, so unlike Visual Studio 2008 which required a separate download, no further installs are required for a rich IntelliSense experience with jQuery. Summary ASP.NET 4.0 brings many useful improvements to the platform, but thankfully most of the changes are incremental changes that don’t compromise backwards compatibility and they allow developers to ease into the new features one feature at a time. None of the changes in ASP.NET 4.0 or Visual Studio 2010 are monumental or game changers. The bigger features are language and .NET Framework changes that are also optional. This ASP.NET and tools release feels more like fine tuning and getting some long-standing kinks worked out of the platform. It shows that the ASP.NET team is dedicated to paying attention to community feedback and responding with changes to the platform and development environment based on this feedback. If you haven’t gotten your feet wet with ASP.NET 4.0 and Visual Studio 2010, there’s no reason not to give it a shot now - the ASP.NET 4.0 platform is solid and Visual Studio 2010 works very well for a brand new release. Check it out. © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Custom rails route problem with 2.3.8 and Mongrel

    - by CHsurfer
    I have a controller called 'exposures' which I created automatically with the script/generate scaffold call. The scaffold pages work fine. I created a custom action called 'test' in the exposures controller. When I try to call the page (http://127.0.0.1:3000/exposures/test/1) I get a blank, white screen with no text at all in the source. I am using Rails 2.3.8 and mongrel in the development environment. There are no entries in development.log and the console that was used to open mongrel has the following error: You might have expected an instance of Array. The error occurred while evaluating nil.split D:/Rails/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.8/lib/action_controller/cgi_process.rb:52:in dispatch_cgi' D:/Rails/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.8/lib/action_controller/dispatcher.rb:101:in dispatch_cgi' D:/Rails/ruby/lib/ruby/gems/1.8/gems/actionpack-2.3.8/lib/action_controller/dispatcher.rb:27:in dispatch' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel/rails.rb:76:in process' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel/rails.rb:74:in synchronize' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel/rails.rb:74:in process' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:159:in process_client' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:158:in each' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:158:in process_client' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:285:in run' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:285:in initialize' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:285:in new' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:285:in run' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:268:in initialize' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:268:in new' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel.rb:268:in run' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel/configurator.rb:282:in run' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel/configurator.rb:281:in each' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel/configurator.rb:281:in run' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/mongrel_rails:128:in run' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/../lib/mongrel/command.rb:212:in run' D:/Rails/ruby/lib/ruby/gems/1.8/gems/mongrel-1.1.2-x86-mswin32/bin/mongrel_rails:281 D:/Rails/ruby/bin/mongrel_rails:19:in load' D:/Rails/ruby/bin/mongrel_rails:19 Here is the exposures_controller code: class ExposuresController < ApplicationController # GET /exposures # GET /exposures.xml def index @exposures = Exposure.all respond_to do |format| format.html # index.html.erb format.xml { render :xml => @exposures } end end #/exposure/graph/1 def graph @exposure = Exposure.find(params[:id]) project_name = @exposure.tender.project.name group_name = @exposure.tender.user.group.name tender_desc = @exposure.tender.description direction = "Cash Out" direction = "Cash In" if @exposure.supply currency_1_and_2 = "#{@exposure.currency_in} = #{@exposure.currency_out}" title = "#{project_name}:#{group_name}:#{tender_desc}/n" title += "#{direction}:#{currency_1_and_2}" factors = Array.new carrieds = Array.new days = Array.new @exposure.rates.each do |r| factors << r.factor carrieds << r.carried days << r.day.to_s end max = (factors+carrieds).max min = (factors+carrieds).min g = Graph.new g.title(title, '{font-size: 12px;}') g.set_data(factors) g.line_hollow(2, 4, '0x80a033', 'Bounces', 10) g.set_x_labels(days) g.set_x_label_style( 10, '#CC3399', 2 ); g.set_y_min(min*0.9) g.set_y_max(max*1.1) g.set_y_label_steps(5) render :text = g.render end def test render :text = "this works" end # GET /exposures/1 # GET /exposures/1.xml def show @exposure = Exposure.find(params[:id]) @graph = open_flash_chart_object(700,250, "/exposures/graph/#{@exposure.id}") #@graph = "/exposures/graph/#{@exposure.id}" respond_to do |format| format.html # show.html.erb format.xml { render :xml => @exposure } end end # GET /exposures/new # GET /exposures/new.xml def new @exposure = Exposure.new respond_to do |format| format.html # new.html.erb format.xml { render :xml => @exposure } end end # GET /exposures/1/edit def edit @exposure = Exposure.find(params[:id]) end # POST /exposures # POST /exposures.xml def create @exposure = Exposure.new(params[:exposure]) respond_to do |format| if @exposure.save flash[:notice] = 'Exposure was successfully created.' format.html { redirect_to(@exposure) } format.xml { render :xml => @exposure, :status => :created, :location => @exposure } else format.html { render :action => "new" } format.xml { render :xml => @exposure.errors, :status => :unprocessable_entity } end end end # PUT /exposures/1 # PUT /exposures/1.xml def update @exposure = Exposure.find(params[:id]) respond_to do |format| if @exposure.update_attributes(params[:exposure]) flash[:notice] = 'Exposure was successfully updated.' format.html { redirect_to(@exposure) } format.xml { head :ok } else format.html { render :action => "edit" } format.xml { render :xml => @exposure.errors, :status => :unprocessable_entity } end end end # DELETE /exposures/1 # DELETE /exposures/1.xml def destroy @exposure = Exposure.find(params[:id]) @exposure.destroy respond_to do |format| format.html { redirect_to(exposures_url) } format.xml { head :ok } end end end Clever readers will notice the 'graph' action. This is what I really want to work, but if I can't even get the test action working, then I'm sure I have no chance. Any ideas? I have restarted mongrel a few times with no change. Here is the output of Rake routes (but I don't believe this is the problem. The error would be in the form of and HTML error response). D:\Rails\rails_apps\fxrake routes (in D:/Rails/rails_apps/fx) DEPRECATION WARNING: Rake tasks in vendor/plugins/open_flash_chart/tasks are deprecated. Use lib/tasks instead. (called from D:/ by/gems/1.8/gems/rails-2.3.8/lib/tasks/rails.rb:10) rates GET /rates(.:format) {:controller="rates", :action="index"} POST /rates(.:format) {:controller="rates", :action="create"} new_rate GET /rates/new(.:format) {:controller="rates", :action="new"} edit_rate GET /rates/:id/edit(.:format) {:controller="rates", :action="edit"} rate GET /rates/:id(.:format) {:controller="rates", :action="show"} PUT /rates/:id(.:format) {:controller="rates", :action="update"} DELETE /rates/:id(.:format) {:controller="rates", :action="destroy"} tenders GET /tenders(.:format) {:controller="tenders", :action="index"} POST /tenders(.:format) {:controller="tenders", :action="create"} new_tender GET /tenders/new(.:format) {:controller="tenders", :action="new"} edit_tender GET /tenders/:id/edit(.:format) {:controller="tenders", :action="edit"} tender GET /tenders/:id(.:format) {:controller="tenders", :action="show"} PUT /tenders/:id(.:format) {:controller="tenders", :action="update"} DELETE /tenders/:id(.:format) {:controller="tenders", :action="destroy"} exposures GET /exposures(.:format) {:controller="exposures", :action="index"} POST /exposures(.:format) {:controller="exposures", :action="create"} new_exposure GET /exposures/new(.:format) {:controller="exposures", :action="new"} edit_exposure GET /exposures/:id/edit(.:format) {:controller="exposures", :action="edit"} exposure GET /exposures/:id(.:format) {:controller="exposures", :action="show"} PUT /exposures/:id(.:format) {:controller="exposures", :action="update"} DELETE /exposures/:id(.:format) {:controller="exposures", :action="destroy"} currencies GET /currencies(.:format) {:controller="currencies", :action="index"} POST /currencies(.:format) {:controller="currencies", :action="create"} new_currency GET /currencies/new(.:format) {:controller="currencies", :action="new"} edit_currency GET /currencies/:id/edit(.:format) {:controller="currencies", :action="edit"} currency GET /currencies/:id(.:format) {:controller="currencies", :action="show"} PUT /currencies/:id(.:format) {:controller="currencies", :action="update"} DELETE /currencies/:id(.:format) {:controller="currencies", :action="destroy"} projects GET /projects(.:format) {:controller="projects", :action="index"} POST /projects(.:format) {:controller="projects", :action="create"} new_project GET /projects/new(.:format) {:controller="projects", :action="new"} edit_project GET /projects/:id/edit(.:format) {:controller="projects", :action="edit"} project GET /projects/:id(.:format) {:controller="projects", :action="show"} PUT /projects/:id(.:format) {:controller="projects", :action="update"} DELETE /projects/:id(.:format) {:controller="projects", :action="destroy"} groups GET /groups(.:format) {:controller="groups", :action="index"} POST /groups(.:format) {:controller="groups", :action="create"} new_group GET /groups/new(.:format) {:controller="groups", :action="new"} edit_group GET /groups/:id/edit(.:format) {:controller="groups", :action="edit"} group GET /groups/:id(.:format) {:controller="groups", :action="show"} PUT /groups/:id(.:format) {:controller="groups", :action="update"} DELETE /groups/:id(.:format) {:controller="groups", :action="destroy"} users GET /users(.:format) {:controller="users", :action="index"} POST /users(.:format) {:controller="users", :action="create"} new_user GET /users/new(.:format) {:controller="users", :action="new"} edit_user GET /users/:id/edit(.:format) {:controller="users", :action="edit"} user GET /users/:id(.:format) {:controller="users", :action="show"} PUT /users/:id(.:format) {:controller="users", :action="update"} DELETE /users/:id(.:format) {:controller="users", :action="destroy"} /:controller/:action/:id /:controller/:action/:id(.:format) D:\Rails\rails_apps\fxrails -v Rails 2.3.8 Thanks in advance for the help -Jon

    Read the article

  • OpenLDAP and SSL

    - by Stormshadow
    I am having trouble trying to connect to a secure OpenLDAP server which I have set up. On running my LDAP client code java -Djavax.net.debug=ssl LDAPConnector I get the following exception trace (java version 1.6.0_17) trigger seeding of SecureRandom done seeding SecureRandom %% No cached client session *** ClientHello, TLSv1 RandomCookie: GMT: 1256110124 bytes = { 224, 19, 193, 148, 45, 205, 108, 37, 101, 247, 112, 24, 157, 39, 111, 177, 43, 53, 206, 224, 68, 165, 55, 185, 54, 203, 43, 91 } Session ID: {} Cipher Suites: [SSL_RSA_WITH_RC4_128_MD5, SSL_RSA_WITH_RC4_128_SHA, TLS_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_RSA_WITH_AES_128_CBC_SHA, TLS_DHE_DSS_WITH_AES_128_CBC_SHA, SSL_RSA_W ITH_3DES_EDE_CBC_SHA, SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA, SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA, SSL_RSA_WITH_DES_CBC_SHA, SSL_DHE_RSA_WITH_DES_CBC_SHA, SSL_DHE_DSS_WITH_DES_CBC_SH A, SSL_RSA_EXPORT_WITH_RC4_40_MD5, SSL_RSA_EXPORT_WITH_DES40_CBC_SHA, SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA, SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA] Compression Methods: { 0 } *** Thread-0, WRITE: TLSv1 Handshake, length = 73 Thread-0, WRITE: SSLv2 client hello message, length = 98 Thread-0, received EOFException: error Thread-0, handling exception: javax.net.ssl.SSLHandshakeException: Remote host closed connection during handshake Thread-0, SEND TLSv1 ALERT: fatal, description = handshake_failure Thread-0, WRITE: TLSv1 Alert, length = 2 Thread-0, called closeSocket() main, handling exception: javax.net.ssl.SSLHandshakeException: Remote host closed connection during handshake javax.naming.CommunicationException: simple bind failed: ldap.natraj.com:636 [Root exception is javax.net.ssl.SSLHandshakeException: Remote host closed connection during hands hake] at com.sun.jndi.ldap.LdapClient.authenticate(Unknown Source) at com.sun.jndi.ldap.LdapCtx.connect(Unknown Source) at com.sun.jndi.ldap.LdapCtx.<init>(Unknown Source) at com.sun.jndi.ldap.LdapCtxFactory.getUsingURL(Unknown Source) at com.sun.jndi.ldap.LdapCtxFactory.getUsingURLs(Unknown Source) at com.sun.jndi.ldap.LdapCtxFactory.getLdapCtxInstance(Unknown Source) at com.sun.jndi.ldap.LdapCtxFactory.getInitialContext(Unknown Source) at javax.naming.spi.NamingManager.getInitialContext(Unknown Source) at javax.naming.InitialContext.getDefaultInitCtx(Unknown Source) at javax.naming.InitialContext.init(Unknown Source) at javax.naming.InitialContext.<init>(Unknown Source) at javax.naming.directory.InitialDirContext.<init>(Unknown Source) at LDAPConnector.CallSecureLDAPServer(LDAPConnector.java:43) at LDAPConnector.main(LDAPConnector.java:237) Caused by: javax.net.ssl.SSLHandshakeException: Remote host closed connection during handshake at com.sun.net.ssl.internal.ssl.SSLSocketImpl.readRecord(Unknown Source) at com.sun.net.ssl.internal.ssl.SSLSocketImpl.performInitialHandshake(Unknown Source) at com.sun.net.ssl.internal.ssl.SSLSocketImpl.readDataRecord(Unknown Source) at com.sun.net.ssl.internal.ssl.AppInputStream.read(Unknown Source) at java.io.BufferedInputStream.fill(Unknown Source) at java.io.BufferedInputStream.read1(Unknown Source) at java.io.BufferedInputStream.read(Unknown Source) at com.sun.jndi.ldap.Connection.run(Unknown Source) at java.lang.Thread.run(Unknown Source) Caused by: java.io.EOFException: SSL peer shut down incorrectly at com.sun.net.ssl.internal.ssl.InputRecord.read(Unknown Source) ... 9 more I am able to connect to the same secure LDAP server however if I use another version of java (1.6.0_14) I have created and installed the server certificates in the cacerts of both the JRE's as mentioned in this guide -- OpenLDAP with SSL When I run ldapsearch -x on the server I get # extended LDIF # # LDAPv3 # base <dc=localdomain> (default) with scope subtree # filter: (objectclass=*) # requesting: ALL # # localdomain dn: dc=localdomain objectClass: top objectClass: dcObject objectClass: organization o: localdomain dc: localdomain # admin, localdomain dn: cn=admin,dc=localdomain objectClass: simpleSecurityObject objectClass: organizationalRole cn: admin description: LDAP administrator # search result search: 2 result: 0 Success # numResponses: 3 # numEntries: 2 On running openssl s_client -connect ldap.natraj.com:636 -showcerts , I obtain the self signed certificate. My slapd.conf file is as follows ####################################################################### # Global Directives: # Features to permit #allow bind_v2 # Schema and objectClass definitions include /etc/ldap/schema/core.schema include /etc/ldap/schema/cosine.schema include /etc/ldap/schema/nis.schema include /etc/ldap/schema/inetorgperson.schema # Where the pid file is put. The init.d script # will not stop the server if you change this. pidfile /var/run/slapd/slapd.pid # List of arguments that were passed to the server argsfile /var/run/slapd/slapd.args # Read slapd.conf(5) for possible values loglevel none # Where the dynamically loaded modules are stored modulepath /usr/lib/ldap moduleload back_hdb # The maximum number of entries that is returned for a search operation sizelimit 500 # The tool-threads parameter sets the actual amount of cpu's that is used # for indexing. tool-threads 1 ####################################################################### # Specific Backend Directives for hdb: # Backend specific directives apply to this backend until another # 'backend' directive occurs backend hdb ####################################################################### # Specific Backend Directives for 'other': # Backend specific directives apply to this backend until another # 'backend' directive occurs #backend <other> ####################################################################### # Specific Directives for database #1, of type hdb: # Database specific directives apply to this databasse until another # 'database' directive occurs database hdb # The base of your directory in database #1 suffix "dc=localdomain" # rootdn directive for specifying a superuser on the database. This is needed # for syncrepl. rootdn "cn=admin,dc=localdomain" # Where the database file are physically stored for database #1 directory "/var/lib/ldap" # The dbconfig settings are used to generate a DB_CONFIG file the first # time slapd starts. They do NOT override existing an existing DB_CONFIG # file. You should therefore change these settings in DB_CONFIG directly # or remove DB_CONFIG and restart slapd for changes to take effect. # For the Debian package we use 2MB as default but be sure to update this # value if you have plenty of RAM dbconfig set_cachesize 0 2097152 0 # Sven Hartge reported that he had to set this value incredibly high # to get slapd running at all. See http://bugs.debian.org/303057 for more # information. # Number of objects that can be locked at the same time. dbconfig set_lk_max_objects 1500 # Number of locks (both requested and granted) dbconfig set_lk_max_locks 1500 # Number of lockers dbconfig set_lk_max_lockers 1500 # Indexing options for database #1 index objectClass eq # Save the time that the entry gets modified, for database #1 lastmod on # Checkpoint the BerkeleyDB database periodically in case of system # failure and to speed slapd shutdown. checkpoint 512 30 # Where to store the replica logs for database #1 # replogfile /var/lib/ldap/replog # The userPassword by default can be changed # by the entry owning it if they are authenticated. # Others should not be able to see it, except the # admin entry below # These access lines apply to database #1 only access to attrs=userPassword,shadowLastChange by dn="cn=admin,dc=localdomain" write by anonymous auth by self write by * none # Ensure read access to the base for things like # supportedSASLMechanisms. Without this you may # have problems with SASL not knowing what # mechanisms are available and the like. # Note that this is covered by the 'access to *' # ACL below too but if you change that as people # are wont to do you'll still need this if you # want SASL (and possible other things) to work # happily. access to dn.base="" by * read # The admin dn has full write access, everyone else # can read everything. access to * by dn="cn=admin,dc=localdomain" write by * read # For Netscape Roaming support, each user gets a roaming # profile for which they have write access to #access to dn=".*,ou=Roaming,o=morsnet" # by dn="cn=admin,dc=localdomain" write # by dnattr=owner write ####################################################################### # Specific Directives for database #2, of type 'other' (can be hdb too): # Database specific directives apply to this databasse until another # 'database' directive occurs #database <other> # The base of your directory for database #2 #suffix "dc=debian,dc=org" ####################################################################### # SSL: # Uncomment the following lines to enable SSL and use the default # snakeoil certificates. #TLSCertificateFile /etc/ssl/certs/ssl-cert-snakeoil.pem #TLSCertificateKeyFile /etc/ssl/private/ssl-cert-snakeoil.key TLSCipherSuite TLS_RSA_AES_256_CBC_SHA TLSCACertificateFile /etc/ldap/ssl/server.pem TLSCertificateFile /etc/ldap/ssl/server.pem TLSCertificateKeyFile /etc/ldap/ssl/server.pem My ldap.conf file is # # LDAP Defaults # # See ldap.conf(5) for details # This file should be world readable but not world writable. HOST ldap.natraj.com PORT 636 BASE dc=localdomain URI ldaps://ldap.natraj.com TLS_CACERT /etc/ldap/ssl/server.pem TLS_REQCERT allow #SIZELIMIT 12 #TIMELIMIT 15 #DEREF never

    Read the article

  • validation in datagrid while insert update in asp.net

    - by abhi
    <%@ Page Language="C#" AutoEventWireup="true" CodeFile="Default7.aspx.cs" Inherits="Default7" % <%@ Register Assembly="Telerik.Web.UI" Namespace="Telerik.Web.UI" TagPrefix="telerik" % Untitled Page   <telerik:GridTemplateColumn Visible="false"> <ItemTemplate> <asp:Label ID="lblEmpID" runat="server" Text='<%# bind("pid") %>'> </asp:Label> </ItemTemplate> </telerik:GridTemplateColumn> <telerik:GridBoundColumn UniqueName="Fname" HeaderText="Fname" DataField="Fname" CurrentFilterFunction="NotIsNull" SortExpression="Fname"> </telerik:GridBoundColumn> <telerik:GridBoundColumn UniqueName="Lname" HeaderText="Lname" DataField="Lname" CurrentFilterFunction="NotIsNull" SortExpression="Lname"> </telerik:GridBoundColumn> <telerik:GridBoundColumn UniqueName="Designation" HeaderText="Designation" DataField="Designation" CurrentFilterFunction="NotIsNull" SortExpression="Designation"> </telerik:GridBoundColumn> <telerik:GridEditCommandColumn> </telerik:GridEditCommandColumn> <telerik:GridButtonColumn CommandName="Delete" Text="Delete" UniqueName="column"> </telerik:GridButtonColumn> </Columns> <EditFormSettings> <FormTemplate> <table> <tr> <td>Fname*</td> <td> <asp:HiddenField ID="Fname" runat="server" Visible="false" /> <asp:TextBox ID="txtFname" runat="server" Text='<%#("Fname")%>'> </asp:TextBox> <asp:RequiredFieldValidator ID="EvalFname" ControlToValidate="txtFname" ErrorMessage="Enter Name" runat="server" ValidationGroup="Update"> *</asp:RequiredFieldValidator> </td> </tr> <tr> <td>Lname*</td> <td> <asp:HiddenField ID="HiddenField1" runat="server" Visible="false" /> <asp:TextBox ID="txtLname" runat="server" Text='<%#("Lname")%>'> </asp:TextBox> <asp:RequiredFieldValidator ID="RequiredFieldValidator1" ControlToValidate="txtLname" ErrorMessage="Enter Name" runat="server" ValidationGroup="Update"> *</asp:RequiredFieldValidator> </td> </tr> <tr> <td>Designation* </td> <td> <asp:HiddenField ID="HiddenField2" runat="server" Visible="false" /> <asp:TextBox ID="txtDesignation" runat="server" Text='<%#("Designation")%>'> </asp:TextBox> <asp:RequiredFieldValidator ID="RequiredFieldValidator2" ControlToValidate="txtDesignation" ErrorMessage="Enter Designation" runat="server" ValidationGroup="Update"> *</asp:RequiredFieldValidator> </td> </tr> </table> </FormTemplate> <EditColumn UpdateText="Update record" UniqueName="EditCommandColumn1" CancelText="Cancel edit"> </EditColumn> </EditFormSettings> </MasterTableView> </telerik:RadGrid> </form> this is my code i want to perform validation using the required validators but i think m missing smthin so pls help, here's my code behind using System; using System.Data; using System.Configuration; using System.Collections; using System.Web; using System.Web.Security; using System.Web.UI; using System.Web.UI.WebControls; using System.Web.UI.WebControls.WebParts; using System.Web.UI.HtmlControls; using System.Data.SqlClient; using Telerik.Web.UI; public partial class Default7 : System.Web.UI.Page { string strQry; public SqlDataAdapter da; public DataSet ds; public SqlCommand cmd; public DataTable dt; string strCon = "Data Source=MINETDEVDATA; Initial Catalog=ML_SuppliersProd; User Id=sa; Password=@MinetApps7;"; public SqlConnection con; protected void Page_Load(object sender, EventArgs e) { } protected void RadGrid1_NeedDataSource(object source, Telerik.Web.UI.GridNeedDataSourceEventArgs e) { dt = new DataTable(); con = new SqlConnection(strCon); da = new SqlDataAdapter(); try { strQry = "SELECT * FROM table2"; con.Open(); da.SelectCommand = new SqlCommand(strQry,con); da.Fill(dt); RadGrid1.DataSource = dt; } finally { con.Close(); } } protected void RadGrid1_DeleteCommand(object source, Telerik.Web.UI.GridCommandEventArgs e) { con = new SqlConnection(strCon); cmd = new SqlCommand(); GridDataItem item = (GridDataItem)e.Item; string pid = item.OwnerTableView.DataKeyValues[item.ItemIndex]["pid"].ToString(); con.Open(); string delete = "DELETE from table2 where pid='"+pid+"'"; cmd.CommandText = delete; cmd.Connection = con; cmd.ExecuteNonQuery(); con.Close(); } protected void RadGrid1_UpdateCommand(object source, GridCommandEventArgs e) { GridEditableItem radgriditem = e.Item as GridEditableItem; string pid = radgriditem.OwnerTableView.DataKeyValues[radgriditem.ItemIndex]["pid"].ToString(); string firstname = (radgriditem["Fname"].Controls[0] as TextBox).Text; string lastname = (radgriditem["Lname"].Controls[0] as TextBox).Text; string designation = (radgriditem["Designation"].Controls[0] as TextBox).Text; con = new SqlConnection(strCon); cmd = new SqlCommand(); try { con.Open(); string update = "UPDATE table2 set Fname='" + firstname + "',Lname='" + lastname + "',Designation='" + designation + "' WHERE pid='" + pid + "'"; cmd.CommandText = update; cmd.Connection = con; cmd.ExecuteNonQuery(); con.Close(); } catch (Exception ex) { RadGrid1.Controls.Add(new LiteralControl("Unable to update Reason: " + ex.Message)); e.Canceled = true; } } protected void RadGrid1_InsertCommand(object source, GridCommandEventArgs e) { GridEditFormInsertItem insertitem = (GridEditFormInsertItem)e.Item; string firstname = (insertitem["Fname"].Controls[0] as TextBox).Text; string lastname = (insertitem["Lname"].Controls[0] as TextBox).Text; string designation = (insertitem["Designation"].Controls[0] as TextBox).Text; con = new SqlConnection(strCon); cmd = new SqlCommand(); try { con.Open(); String insertQuery = "INSERT into table1(Fname,Lname,Designation) Values ('" + firstname + "','" + lastname + "','" + designation + "')"; cmd.CommandText = insertQuery; cmd.Connection = con; cmd.ExecuteNonQuery(); con.Close(); } catch(Exception ex) { RadGrid1.Controls.Add(new LiteralControl("Unable to insert Reason:" + ex.Message)); e.Canceled = true; } } }

    Read the article

  • Problem rendering VBO

    - by Onno
    I'm developing a game engine using OpenTK. I'm trying to get to grips with the use of VBO's. I've run into some trouble because somehow it doesn't render correctly. Thus far I've used immediate mode to render a test object, a test cube with a texture. namespace SharpEngine.Utility.Mesh { using System; using System.Collections.Generic; using OpenTK; using OpenTK.Graphics; using OpenTK.Graphics.OpenGL; using SharpEngine.Utility; using System.Drawing; public class ImmediateFaceBasedCube : IMesh { private IList<Face> faces = new List<Face>(); public ImmediateFaceBasedCube() { IList<Vector3> allVertices = new List<Vector3>(); //rechtsbovenvoor allVertices.Add(new Vector3(1.0f, 1.0f, 1.0f)); //0 //rechtsbovenachter allVertices.Add(new Vector3(1.0f, 1.0f, -1.0f)); //1 //linksbovenachter allVertices.Add(new Vector3(-1.0f, 1.0f, -1.0f)); //2 //linksbovenvoor allVertices.Add(new Vector3(-1.0f, 1.0f, 1.0f)); //3 //rechtsondervoor allVertices.Add(new Vector3(1.0f, -1.0f, 1.0f)); //4 //rechtsonderachter allVertices.Add(new Vector3(1.0f, -1.0f, -1.0f)); //5 //linksonderachter allVertices.Add(new Vector3(-1.0f, -1.0f, -1.0f)); //6 //linksondervoor allVertices.Add(new Vector3(-1.0f, -1.0f, 1.0f)); //7 IList<Vector2> textureCoordinates = new List<Vector2>(); textureCoordinates.Add(new Vector2(0, 0)); //AA - 0 textureCoordinates.Add(new Vector2(0, 0.3333333f)); //AB - 1 textureCoordinates.Add(new Vector2(0, 0.6666666f)); //AC - 2 textureCoordinates.Add(new Vector2(0, 1)); //AD - 3 textureCoordinates.Add(new Vector2(0.3333333f, 0)); //BA - 4 textureCoordinates.Add(new Vector2(0.3333333f, 0.3333333f)); //BB - 5 textureCoordinates.Add(new Vector2(0.3333333f, 0.6666666f)); //BC - 6 textureCoordinates.Add(new Vector2(0.3333333f, 1)); //BD - 7 textureCoordinates.Add(new Vector2(0.6666666f, 0)); //CA - 8 textureCoordinates.Add(new Vector2(0.6666666f, 0.3333333f)); //CB - 9 textureCoordinates.Add(new Vector2(0.6666666f, 0.6666666f)); //CC -10 textureCoordinates.Add(new Vector2(0.6666666f, 1)); //CD -11 textureCoordinates.Add(new Vector2(1, 0)); //DA -12 textureCoordinates.Add(new Vector2(1, 0.3333333f)); //DB -13 textureCoordinates.Add(new Vector2(1, 0.6666666f)); //DC -14 textureCoordinates.Add(new Vector2(1, 1)); //DD -15 Vector3 copy1 = new Vector3(-2.0f, -2.5f, -3.5f); IList<Vector3> normals = new List<Vector3>(); normals.Add(new Vector3(0, 1.0f, 0)); //0 normals.Add(new Vector3(0, 0, 1.0f)); //1 normals.Add(new Vector3(1.0f, 0, 0)); //2 normals.Add(new Vector3(0, 0, -1.0f)); //3 normals.Add(new Vector3(-1.0f, 0, 0)); //4 normals.Add(new Vector3(0, -1.0f, 0)); //5 //todo: move vertex normal and texture data to datastructure //todo: VBO based rendering //top face //1 IList<VertexData> verticesT1 = new List<VertexData>(); VertexData T1a = new VertexData(); T1a.Normal = normals[0]; T1a.TexCoord = textureCoordinates[5]; T1a.Position = allVertices[3]; verticesT1.Add(T1a); VertexData T1b = new VertexData(); T1b.Normal = normals[0]; T1b.TexCoord = textureCoordinates[9]; T1b.Position = allVertices[0]; verticesT1.Add(T1b); VertexData T1c = new VertexData(); T1c.Normal = normals[0]; T1c.TexCoord = textureCoordinates[10]; T1c.Position = allVertices[1]; verticesT1.Add(T1c); Face F1 = new Face(verticesT1); faces.Add(F1); //2 IList<VertexData> verticesT2 = new List<VertexData>(); VertexData T2a = new VertexData(); T2a.Normal = normals[0]; T2a.TexCoord = textureCoordinates[10]; T2a.Position = allVertices[1]; verticesT2.Add(T2a); VertexData T2b = new VertexData(); T2b.Normal = normals[0]; T2b.TexCoord = textureCoordinates[6]; T2b.Position = allVertices[2]; verticesT2.Add(T2b); VertexData T2c = new VertexData(); T2c.Normal = normals[0]; T2c.TexCoord = textureCoordinates[5]; T2c.Position = allVertices[3]; verticesT2.Add(T2c); Face F2 = new Face(verticesT2); faces.Add(F2); //front face //3 IList<VertexData> verticesT3 = new List<VertexData>(); VertexData T3a = new VertexData(); T3a.Normal = normals[1]; T3a.TexCoord = textureCoordinates[1]; T3a.Position = allVertices[3]; verticesT3.Add(T3a); VertexData T3b = new VertexData(); T3b.Normal = normals[1]; T3b.TexCoord = textureCoordinates[0]; T3b.Position = allVertices[7]; verticesT3.Add(T3b); VertexData T3c = new VertexData(); T3c.Normal = normals[1]; T3c.TexCoord = textureCoordinates[5]; T3c.Position = allVertices[0]; verticesT3.Add(T3c); Face F3 = new Face(verticesT3); faces.Add(F3); //4 IList<VertexData> verticesT4 = new List<VertexData>(); VertexData T4a = new VertexData(); T4a.Normal = normals[1]; T4a.TexCoord = textureCoordinates[5]; T4a.Position = allVertices[0]; verticesT4.Add(T4a); VertexData T4b = new VertexData(); T4b.Normal = normals[1]; T4b.TexCoord = textureCoordinates[0]; T4b.Position = allVertices[7]; verticesT4.Add(T4b); VertexData T4c = new VertexData(); T4c.Normal = normals[1]; T4c.TexCoord = textureCoordinates[4]; T4c.Position = allVertices[4]; verticesT4.Add(T4c); Face F4 = new Face(verticesT4); faces.Add(F4); //right face //5 IList<VertexData> verticesT5 = new List<VertexData>(); VertexData T5a = new VertexData(); T5a.Normal = normals[2]; T5a.TexCoord = textureCoordinates[2]; T5a.Position = allVertices[0]; verticesT5.Add(T5a); VertexData T5b = new VertexData(); T5b.Normal = normals[2]; T5b.TexCoord = textureCoordinates[1]; T5b.Position = allVertices[4]; verticesT5.Add(T5b); VertexData T5c = new VertexData(); T5c.Normal = normals[2]; T5c.TexCoord = textureCoordinates[6]; T5c.Position = allVertices[1]; verticesT5.Add(T5c); Face F5 = new Face(verticesT5); faces.Add(F5); //6 IList<VertexData> verticesT6 = new List<VertexData>(); VertexData T6a = new VertexData(); T6a.Normal = normals[2]; T6a.TexCoord = textureCoordinates[1]; T6a.Position = allVertices[4]; verticesT6.Add(T6a); VertexData T6b = new VertexData(); T6b.Normal = normals[2]; T6b.TexCoord = textureCoordinates[5]; T6b.Position = allVertices[5]; verticesT6.Add(T6b); VertexData T6c = new VertexData(); T6c.Normal = normals[2]; T6c.TexCoord = textureCoordinates[6]; T6c.Position = allVertices[1]; verticesT6.Add(T6c); Face F6 = new Face(verticesT6); faces.Add(F6); //back face //7 IList<VertexData> verticesT7 = new List<VertexData>(); VertexData T7a = new VertexData(); T7a.Normal = normals[3]; T7a.TexCoord = textureCoordinates[4]; T7a.Position = allVertices[5]; verticesT7.Add(T7a); VertexData T7b = new VertexData(); T7b.Normal = normals[3]; T7b.TexCoord = textureCoordinates[9]; T7b.Position = allVertices[2]; verticesT7.Add(T7b); VertexData T7c = new VertexData(); T7c.Normal = normals[3]; T7c.TexCoord = textureCoordinates[5]; T7c.Position = allVertices[1]; verticesT7.Add(T7c); Face F7 = new Face(verticesT7); faces.Add(F7); //8 IList<VertexData> verticesT8 = new List<VertexData>(); VertexData T8a = new VertexData(); T8a.Normal = normals[3]; T8a.TexCoord = textureCoordinates[9]; T8a.Position = allVertices[2]; verticesT8.Add(T8a); VertexData T8b = new VertexData(); T8b.Normal = normals[3]; T8b.TexCoord = textureCoordinates[4]; T8b.Position = allVertices[5]; verticesT8.Add(T8b); VertexData T8c = new VertexData(); T8c.Normal = normals[3]; T8c.TexCoord = textureCoordinates[8]; T8c.Position = allVertices[6]; verticesT8.Add(T8c); Face F8 = new Face(verticesT8); faces.Add(F8); //left face //9 IList<VertexData> verticesT9 = new List<VertexData>(); VertexData T9a = new VertexData(); T9a.Normal = normals[4]; T9a.TexCoord = textureCoordinates[8]; T9a.Position = allVertices[6]; verticesT9.Add(T9a); VertexData T9b = new VertexData(); T9b.Normal = normals[4]; T9b.TexCoord = textureCoordinates[13]; T9b.Position = allVertices[3]; verticesT9.Add(T9b); VertexData T9c = new VertexData(); T9c.Normal = normals[4]; T9c.TexCoord = textureCoordinates[9]; T9c.Position = allVertices[2]; verticesT9.Add(T9c); Face F9 = new Face(verticesT9); faces.Add(F9); //10 IList<VertexData> verticesT10 = new List<VertexData>(); VertexData T10a = new VertexData(); T10a.Normal = normals[4]; T10a.TexCoord = textureCoordinates[8]; T10a.Position = allVertices[6]; verticesT10.Add(T10a); VertexData T10b = new VertexData(); T10b.Normal = normals[4]; T10b.TexCoord = textureCoordinates[12]; T10b.Position = allVertices[7]; verticesT10.Add(T10b); VertexData T10c = new VertexData(); T10c.Normal = normals[4]; T10c.TexCoord = textureCoordinates[13]; T10c.Position = allVertices[3]; verticesT10.Add(T10c); Face F10 = new Face(verticesT10); faces.Add(F10); //bottom face //11 IList<VertexData> verticesT11 = new List<VertexData>(); VertexData T11a = new VertexData(); T11a.Normal = normals[5]; T11a.TexCoord = textureCoordinates[10]; T11a.Position = allVertices[7]; verticesT11.Add(T11a); VertexData T11b = new VertexData(); T11b.Normal = normals[5]; T11b.TexCoord = textureCoordinates[9]; T11b.Position = allVertices[6]; verticesT11.Add(T11b); VertexData T11c = new VertexData(); T11c.Normal = normals[5]; T11c.TexCoord = textureCoordinates[14]; T11c.Position = allVertices[4]; verticesT11.Add(T11c); Face F11 = new Face(verticesT11); faces.Add(F11); //12 IList<VertexData> verticesT12 = new List<VertexData>(); VertexData T12a = new VertexData(); T12a.Normal = normals[5]; T12a.TexCoord = textureCoordinates[13]; T12a.Position = allVertices[5]; verticesT12.Add(T12a); VertexData T12b = new VertexData(); T12b.Normal = normals[5]; T12b.TexCoord = textureCoordinates[14]; T12b.Position = allVertices[4]; verticesT12.Add(T12b); VertexData T12c = new VertexData(); T12c.Normal = normals[5]; T12c.TexCoord = textureCoordinates[9]; T12c.Position = allVertices[6]; verticesT12.Add(T12c); Face F12 = new Face(verticesT12); faces.Add(F12); } public void draw() { GL.Begin(BeginMode.Triangles); foreach (Face face in faces) { foreach (VertexData datapoint in face.verticesWithTexCoords) { GL.Normal3(datapoint.Normal); GL.TexCoord2(datapoint.TexCoord); GL.Vertex3(datapoint.Position); } } GL.End(); } } } Gets me this very nice picture: The immediate mode cube renders nicely and taught me a bit on how to use OpenGL, but VBO's are the way to go. Since I read on the OpenTK forums that OpenTK has problems doing VA's or DL's, I decided to skip using those. Now, I've tried to change this cube to a VBO by using the same vertex, normal and tc collections, and making float arrays from them by using the coordinates in combination with uint arrays which contain the index numbers from the immediate cube. (see the private functions at end of the code sample) Somehow this only renders two triangles namespace SharpEngine.Utility.Mesh { using System; using System.Collections.Generic; using OpenTK; using OpenTK.Graphics; using OpenTK.Graphics.OpenGL; using SharpEngine.Utility; using System.Drawing; public class VBOFaceBasedCube : IMesh { private int VerticesVBOID; private int VerticesVBOStride; private int VertexCount; private int ELementBufferObjectID; private int textureCoordinateVBOID; private int textureCoordinateVBOStride; //private int textureCoordinateArraySize; private int normalVBOID; private int normalVBOStride; public VBOFaceBasedCube() { IList<Vector3> allVertices = new List<Vector3>(); //rechtsbovenvoor allVertices.Add(new Vector3(1.0f, 1.0f, 1.0f)); //0 //rechtsbovenachter allVertices.Add(new Vector3(1.0f, 1.0f, -1.0f)); //1 //linksbovenachter allVertices.Add(new Vector3(-1.0f, 1.0f, -1.0f)); //2 //linksbovenvoor allVertices.Add(new Vector3(-1.0f, 1.0f, 1.0f)); //3 //rechtsondervoor allVertices.Add(new Vector3(1.0f, -1.0f, 1.0f)); //4 //rechtsonderachter allVertices.Add(new Vector3(1.0f, -1.0f, -1.0f)); //5 //linksonderachter allVertices.Add(new Vector3(-1.0f, -1.0f, -1.0f)); //6 //linksondervoor allVertices.Add(new Vector3(-1.0f, -1.0f, 1.0f)); //7 IList<Vector2> textureCoordinates = new List<Vector2>(); textureCoordinates.Add(new Vector2(0, 0)); //AA - 0 textureCoordinates.Add(new Vector2(0, 0.3333333f)); //AB - 1 textureCoordinates.Add(new Vector2(0, 0.6666666f)); //AC - 2 textureCoordinates.Add(new Vector2(0, 1)); //AD - 3 textureCoordinates.Add(new Vector2(0.3333333f, 0)); //BA - 4 textureCoordinates.Add(new Vector2(0.3333333f, 0.3333333f)); //BB - 5 textureCoordinates.Add(new Vector2(0.3333333f, 0.6666666f)); //BC - 6 textureCoordinates.Add(new Vector2(0.3333333f, 1)); //BD - 7 textureCoordinates.Add(new Vector2(0.6666666f, 0)); //CA - 8 textureCoordinates.Add(new Vector2(0.6666666f, 0.3333333f)); //CB - 9 textureCoordinates.Add(new Vector2(0.6666666f, 0.6666666f)); //CC -10 textureCoordinates.Add(new Vector2(0.6666666f, 1)); //CD -11 textureCoordinates.Add(new Vector2(1, 0)); //DA -12 textureCoordinates.Add(new Vector2(1, 0.3333333f)); //DB -13 textureCoordinates.Add(new Vector2(1, 0.6666666f)); //DC -14 textureCoordinates.Add(new Vector2(1, 1)); //DD -15 Vector3 copy1 = new Vector3(-2.0f, -2.5f, -3.5f); IList<Vector3> normals = new List<Vector3>(); normals.Add(new Vector3(0, 1.0f, 0)); //0 normals.Add(new Vector3(0, 0, 1.0f)); //1 normals.Add(new Vector3(1.0f, 0, 0)); //2 normals.Add(new Vector3(0, 0, -1.0f)); //3 normals.Add(new Vector3(-1.0f, 0, 0)); //4 normals.Add(new Vector3(0, -1.0f, 0)); //5 //todo: VBO based rendering uint[] vertexElements = { 3,0,1, //01 1,2,3, //02 3,7,0, //03 0,7,4, //04 0,4,1, //05 4,5,1, //06 5,2,1, //07 2,5,6, //08 6,3,2, //09 6,7,5, //10 7,6,4, //11 5,4,6 //12 }; VertexCount = vertexElements.Length; IList<uint> vertexElementList = new List<uint>(vertexElements); uint[] normalElements = { 0,0,0, 0,0,0, 1,1,1, 1,1,1, 2,2,2, 2,2,2, 3,3,3, 3,3,3, 4,4,4, 4,4,4, 5,5,5, 5,5,5 }; IList<uint> normalElementList = new List<uint>(normalElements); uint[] textureIndexArray = { 5,9,10, 10,6,5, 1,0,5, 5,0,4, 2,1,6, 1,5,6, 4,9,5, 9,4,8, 8,13,9, 8,12,13, 10,9,14, 13,14,9 }; //textureCoordinateArraySize = textureIndexArray.Length; IList<uint> textureIndexList = new List<uint>(textureIndexArray); LoadVBO(allVertices, normals, textureCoordinates, vertexElements, normalElementList, textureIndexList); } public void draw() { //bind vertices //bind elements //bind normals //bind texture coordinates GL.EnableClientState(ArrayCap.VertexArray); GL.EnableClientState(ArrayCap.NormalArray); GL.EnableClientState(ArrayCap.TextureCoordArray); GL.BindBuffer(BufferTarget.ArrayBuffer, VerticesVBOID); GL.VertexPointer(3, VertexPointerType.Float, VerticesVBOStride, 0); GL.BindBuffer(BufferTarget.ArrayBuffer, normalVBOID); GL.NormalPointer(NormalPointerType.Float, normalVBOStride, 0); GL.BindBuffer(BufferTarget.ArrayBuffer, textureCoordinateVBOID); GL.TexCoordPointer(2, TexCoordPointerType.Float, textureCoordinateVBOStride, 0); GL.BindBuffer(BufferTarget.ElementArrayBuffer, ELementBufferObjectID); GL.DrawElements(BeginMode.Polygon, VertexCount, DrawElementsType.UnsignedShort, 0); } //loads a static VBO void LoadVBO(IList<Vector3> vertices, IList<Vector3> normals, IList<Vector2> texcoords, uint[] elements, IList<uint> normalIndices, IList<uint> texCoordIndices) { int size; //todo // To create a VBO: // 1) Generate the buffer handles for the vertex and element buffers. // 2) Bind the vertex buffer handle and upload your vertex data. Check that the buffer was uploaded correctly. // 3) Bind the element buffer handle and upload your element data. Check that the buffer was uploaded correctly. float[] verticesArray = convertVector3fListToFloatArray(vertices); float[] normalsArray = createFloatArrayFromListOfVector3ElementsAndIndices(normals, normalIndices); float[] textureCoordinateArray = createFloatArrayFromListOfVector2ElementsAndIndices(texcoords, texCoordIndices); GL.GenBuffers(1, out VerticesVBOID); GL.BindBuffer(BufferTarget.ArrayBuffer, VerticesVBOID); Console.WriteLine("load 1 - vertices"); VerticesVBOStride = BlittableValueType.StrideOf(verticesArray); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(verticesArray.Length * sizeof(float)), verticesArray, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ArrayBuffer, BufferParameterName.BufferSize, out size); if (verticesArray.Length * BlittableValueType.StrideOf(verticesArray) != size) { throw new ApplicationException("Vertex data not uploaded correctly"); } else { Console.WriteLine("load 1 finished ok"); size = 0; } Console.WriteLine("load 2 - elements"); GL.GenBuffers(1, out ELementBufferObjectID); GL.BindBuffer(BufferTarget.ElementArrayBuffer, ELementBufferObjectID); GL.BufferData(BufferTarget.ElementArrayBuffer, (IntPtr)(elements.Length * sizeof(uint)), elements, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ElementArrayBuffer, BufferParameterName.BufferSize, out size); if (elements.Length * sizeof(uint) != size) { throw new ApplicationException("Element data not uploaded correctly"); } else { size = 0; Console.WriteLine("load 2 finished ok"); } GL.GenBuffers(1, out normalVBOID); GL.BindBuffer(BufferTarget.ArrayBuffer, normalVBOID); Console.WriteLine("load 3 - normals"); normalVBOStride = BlittableValueType.StrideOf(normalsArray); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(normalsArray.Length * sizeof(float)), normalsArray, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ArrayBuffer, BufferParameterName.BufferSize, out size); Console.WriteLine("load 3 - pre check"); if (normalsArray.Length * BlittableValueType.StrideOf(normalsArray) != size) { throw new ApplicationException("Normal data not uploaded correctly"); } else { Console.WriteLine("load 3 finished ok"); size = 0; } GL.GenBuffers(1, out textureCoordinateVBOID); GL.BindBuffer(BufferTarget.ArrayBuffer, textureCoordinateVBOID); Console.WriteLine("load 4- texture coordinates"); textureCoordinateVBOStride = BlittableValueType.StrideOf(textureCoordinateArray); GL.BufferData(BufferTarget.ArrayBuffer, (IntPtr)(textureCoordinateArray.Length * textureCoordinateVBOStride), textureCoordinateArray, BufferUsageHint.StaticDraw); GL.GetBufferParameter(BufferTarget.ArrayBuffer, BufferParameterName.BufferSize, out size); if (textureCoordinateArray.Length * BlittableValueType.StrideOf(textureCoordinateArray) != size) { throw new ApplicationException("texture coordinate data not uploaded correctly"); } else { Console.WriteLine("load 3 finished ok"); size = 0; } } //used to convert vertex arrayss for use with VBO's private float[] convertVector3fListToFloatArray(IList<Vector3> input) { int arrayElementCount = input.Count * 3; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (Vector3 v in input) { output[fillCount] = v.X; output[fillCount + 1] = v.Y; output[fillCount + 2] = v.Z; fillCount += 3; } return output; } //used for converting texture coordinate arrays for use with VBO's private float[] convertVector2List_to_floatArray(IList<Vector2> input) { int arrayElementCount = input.Count * 2; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (Vector2 v in input) { output[fillCount] = v.X; output[fillCount + 1] = v.Y; fillCount += 2; } return output; } //used to create an array of floats from private float[] createFloatArrayFromListOfVector3ElementsAndIndices(IList<Vector3> inputVectors, IList<uint> indices) { int arrayElementCount = inputVectors.Count * indices.Count * 3; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (int i in indices) { output[fillCount] = inputVectors[i].X; output[fillCount + 1] = inputVectors[i].Y; output[fillCount + 2] = inputVectors[i].Z; fillCount += 3; } return output; } private float[] createFloatArrayFromListOfVector2ElementsAndIndices(IList<Vector2> inputVectors, IList<uint> indices) { int arrayElementCount = inputVectors.Count * indices.Count * 2; float[] output = new float[arrayElementCount]; int fillCount = 0; foreach (int i in indices) { output[fillCount] = inputVectors[i].X; output[fillCount + 1] = inputVectors[i].Y; fillCount += 2; } return output; } } } This code will only render two triangles and they're nothing like I had in mind: I've done some searching. In some other questions I read that, if I did something wrong, I'd get no rendering at all. Clearly, something gets sent to the GFX card, but it might be that I'm not sending the right data. I've tried altering the sequence in which the triangles are rendered by swapping some of the index numbers in the vert, tc and normal index arrays, but this doesn't seem to be of any effect. I'm slightly lost here. What am I doing wrong here?

    Read the article

  • Automating Solaris 11 Zones Installation Using The Automated Install Server

    - by Orgad Kimchi
    Introduction How to use the Oracle Solaris 11 Automated install server in order to automate the Solaris 11 Zones installation. In this document I will demonstrate how to setup the Automated Install server in order to provide hands off installation process for the Global Zone and two Non Global Zones located on the same system. Architecture layout: Figure 1. Architecture layout Prerequisite Setup the Automated install server (AI) using the following instructions “How to Set Up Automated Installation Services for Oracle Solaris 11” The first step in this setup will be creating two Solaris 11 Zones configuration files. Step 1: Create the Solaris 11 Zones configuration files  The Solaris Zones configuration files should be in the format of the zonecfg export command. # zonecfg -z zone1 export > /var/tmp/zone1# cat /var/tmp/zone1 create -b set brand=solaris set zonepath=/rpool/zones/zone1 set autoboot=true set ip-type=exclusive add anet set linkname=net0 set lower-link=auto set configure-allowed-address=true set link-protection=mac-nospoof set mac-address=random end  Create a backup copy of this file under a different name, for example, zone2. # cp /var/tmp/zone1 /var/tmp/zone2 Modify the second configuration file with the zone2 configuration information You should change the zonepath for example: set zonepath=/rpool/zones/zone2 Step2: Copy and share the Zones configuration files  Create the NFS directory for the Zones configuration files # mkdir /export/zone_config Share the directory for the Zones configuration file # share –o ro /export/zone_config Copy the Zones configuration files into the NFS shared directory # cp /var/tmp/zone1 /var/tmp/zone2  /export/zone_config Verify that the NFS share has been created using the following command # share export_zone_config      /export/zone_config     nfs     sec=sys,ro Step 3: Add the Global Zone as client to the Install Service Use the installadm create-client command to associate client (Global Zone) with the install service To find the MAC address of a system, use the dladm command as described in the dladm(1M) man page. The following command adds the client (Global Zone) with MAC address 0:14:4f:2:a:19 to the s11x86service install service. # installadm create-client -e “0:14:4f:2:a:19" -n s11x86service You can verify the client creation using the following command # installadm list –c Service Name  Client Address     Arch   Image Path ------------  --------------     ----   ---------- s11x86service 00:14:4F:02:0A:19  i386   /export/auto_install/s11x86service We can see the client install service name (s11x86service), MAC address (00:14:4F:02:0A:19 and Architecture (i386). Step 4: Global Zone manifest setup  First, get a list of the installation services and the manifests associated with them: # installadm list -m Service Name   Manifest        Status ------------   --------        ------ default-i386   orig_default   Default s11x86service  orig_default   Default Then probe the s11x86service and the default manifest associated with it. The -m switch reflects the name of the manifest associated with a service. Since we want to capture that output into a file, we redirect the output of the command as follows: # installadm export -n s11x86service -m orig_default >  /var/tmp/orig_default.xml Create a backup copy of this file under a different name, for example, orig-default2.xml, and edit the copy. # cp /var/tmp/orig_default.xml /var/tmp/orig_default2.xml Use the configuration element in the AI manifest for the client system to specify non-global zones. Use the name attribute of the configuration element to specify the name of the zone. Use the source attribute to specify the location of the config file for the zone.The source location can be any http:// or file:// location that the client can access during installation. The following sample AI manifest specifies two Non-Global Zones: zone1 and zone2 You should replace the server_ip with the ip address of the NFS server. <!DOCTYPE auto_install SYSTEM "file:///usr/share/install/ai.dtd.1"> <auto_install>   <ai_instance>     <target>       <logical>         <zpool name="rpool" is_root="true">           <filesystem name="export" mountpoint="/export"/>           <filesystem name="export/home"/>           <be name="solaris"/>         </zpool>       </logical>     </target>     <software type="IPS">       <source>         <publisher name="solaris">           <origin name="http://pkg.oracle.com/solaris/release"/>         </publisher>       </source>       <software_data action="install">         <name>pkg:/entire@latest</name>         <name>pkg:/group/system/solaris-large-server</name>       </software_data>     </software>     <configuration type="zone" name="zone1" source="file:///net/server_ip/export/zone_config/zone1"/>     <configuration type="zone" name="zone2" source="file:///net/server_ip/export/zone_config/zone2"/>   </ai_instance> </auto_install> The following example adds the /var/tmp/orig_default2.xml AI manifest to the s11x86service install service # installadm create-manifest -n s11x86service -f /var/tmp/orig_default2.xml -m gzmanifest You can verify the manifest creation using the following command # installadm list -n s11x86service  -m Service/Manifest Name  Status   Criteria ---------------------  ------   -------- s11x86service    orig_default        Default  None    gzmanifest          Inactive None We can see from the command output that the new manifest named gzmanifest has been created and associated with the s11x86service install service. Step 5: Non Global Zone manifest setup The AI manifest for non-global zone installation is similar to the AI manifest for installing the global zone. If you do not provide a custom AI manifest for a non-global zone, the default AI manifest for Zones is used The default AI manifest for Zones is available at /usr/share/auto_install/manifest/zone_default.xml. In this example we should use the default AI manifest for zones The following sample default AI manifest for zones # cat /usr/share/auto_install/manifest/zone_default.xml <?xml version="1.0" encoding="UTF-8"?> <!--  Copyright (c) 2011, 2012, Oracle and/or its affiliates. All rights reserved. --> <!DOCTYPE auto_install SYSTEM "file:///usr/share/install/ai.dtd.1"> <auto_install>     <ai_instance name="zone_default">         <target>             <logical>                 <zpool name="rpool">                     <!--                       Subsequent <filesystem> entries instruct an installer                       to create following ZFS datasets:                           <root_pool>/export         (mounted on /export)                           <root_pool>/export/home    (mounted on /export/home)                       Those datasets are part of standard environment                       and should be always created.                       In rare cases, if there is a need to deploy a zone                       without these datasets, either comment out or remove                       <filesystem> entries. In such scenario, it has to be also                       assured that in case of non-interactive post-install                       configuration, creation of initial user account is                       disabled in related system configuration profile.                       Otherwise the installed zone would fail to boot.                     -->                     <filesystem name="export" mountpoint="/export"/>                     <filesystem name="export/home"/>                     <be name="solaris">                         <options>                             <option name="compression" value="on"/>                         </options>                     </be>                 </zpool>             </logical>         </target>         <software type="IPS">             <destination>                 <image>                     <!-- Specify locales to install -->                     <facet set="false">facet.locale.*</facet>                     <facet set="true">facet.locale.de</facet>                     <facet set="true">facet.locale.de_DE</facet>                     <facet set="true">facet.locale.en</facet>                     <facet set="true">facet.locale.en_US</facet>                     <facet set="true">facet.locale.es</facet>                     <facet set="true">facet.locale.es_ES</facet>                     <facet set="true">facet.locale.fr</facet>                     <facet set="true">facet.locale.fr_FR</facet>                     <facet set="true">facet.locale.it</facet>                     <facet set="true">facet.locale.it_IT</facet>                     <facet set="true">facet.locale.ja</facet>                     <facet set="true">facet.locale.ja_*</facet>                     <facet set="true">facet.locale.ko</facet>                     <facet set="true">facet.locale.ko_*</facet>                     <facet set="true">facet.locale.pt</facet>                     <facet set="true">facet.locale.pt_BR</facet>                     <facet set="true">facet.locale.zh</facet>                     <facet set="true">facet.locale.zh_CN</facet>                     <facet set="true">facet.locale.zh_TW</facet>                 </image>             </destination>             <software_data action="install">                 <name>pkg:/group/system/solaris-small-server</name>             </software_data>         </software>     </ai_instance> </auto_install> (optional) We can customize the default AI manifest for Zones Create a backup copy of this file under a different name, for example, zone_default2.xml and edit the copy # cp /usr/share/auto_install/manifest/zone_default.xml /var/tmp/zone_default2.xml Edit the copy (/var/tmp/zone_default2.xml) The following example adds the /var/tmp/zone_default2.xml AI manifest to the s11x86service install service and specifies that zone1 and zone2 should use this manifest. # installadm create-manifest -n s11x86service -f /var/tmp/zone_default2.xml -m zones_manifest -c zonename="zone1 zone2" Note: Do not use the following elements or attributes in a non-global zone AI manifest:     The auto_reboot attribute of the ai_instance element     The http_proxy attribute of the ai_instance element     The disk child element of the target element     The noswap attribute of the logical element     The nodump attribute of the logical element     The configuration element Step 6: Global Zone profile setup We are going to create a global zone configuration profile which includes the host information for example: host name, ip address name services etc… # sysconfig create-profile –o /var/tmp/gz_profile.xml You need to provide the host information for example:     Default router     Root password     DNS information The output should eventually disappear and be replaced by the initial screen of the System Configuration Tool (see Figure 2), where you can do the final configuration. Figure 2. Profile creation menu You can validate the profile using the following command # installadm validate -n s11x86service –P /var/tmp/gz_profile.xml Validating static profile gz_profile.xml...  Passed Next, instantiate a profile with the install service. In our case, use the following syntax for doing this # installadm create-profile -n s11x86service  -f /var/tmp/gz_profile.xml -p  gz_profile You can verify profile creation using the following command # installadm list –n s11x86service  -p Service/Profile Name  Criteria --------------------  -------- s11x86service    gz_profile         None We can see that the gz_profie has been created and associated with the s11x86service Install service. Step 7: Setup the Solaris Zones configuration profiles The step should be similar to the Global zone profile creation on step 6 # sysconfig create-profile –o /var/tmp/zone1_profile.xml # sysconfig create-profile –o /var/tmp/zone2_profile.xml You can validate the profiles using the following command # installadm validate -n s11x86service -P /var/tmp/zone1_profile.xml Validating static profile zone1_profile.xml...  Passed # installadm validate -n s11x86service -P /var/tmp/zone2_profile.xml Validating static profile zone2_profile.xml...  Passed Next, associate the profiles with the install service The following example adds the zone1_profile.xml configuration profile to the s11x86service  install service and specifies that zone1 should use this profile. # installadm create-profile -n s11x86service  -f  /var/tmp/zone1_profile.xml -p zone1_profile -c zonename=zone1 The following example adds the zone2_profile.xml configuration profile to the s11x86service  install service and specifies that zone2 should use this profile. # installadm create-profile -n s11x86service  -f  /var/tmp/zone2_profile.xml -p zone2_profile -c zonename=zone2 You can verify the profiles creation using the following command # installadm list -n s11x86service -p Service/Profile Name  Criteria --------------------  -------- s11x86service    zone1_profile      zonename = zone1    zone2_profile      zonename = zone2    gz_profile         None We can see that we have three profiles in the s11x86service  install service     Global Zone  gz_profile     zone1            zone1_profile     zone2            zone2_profile. Step 8: Global Zone setup Associate the global zone client with the manifest and the profile that we create in the previous steps The following example adds the manifest and profile to the client (global zone), where: gzmanifest  is the name of the manifest. gz_profile  is the name of the configuration profile. mac="0:14:4f:2:a:19" is the client (global zone) mac address s11x86service is the install service name. # installadm set-criteria -m  gzmanifest  –p  gz_profile  -c mac="0:14:4f:2:a:19" -n s11x86service You can verify the manifest and profile association using the following command # installadm list -n s11x86service -p  -m Service/Manifest Name  Status   Criteria ---------------------  ------   -------- s11x86service    gzmanifest                   mac  = 00:14:4F:02:0A:19    orig_default        Default  None Service/Profile Name  Criteria --------------------  -------- s11x86service    gz_profile         mac      = 00:14:4F:02:0A:19    zone2_profile      zonename = zone2    zone1_profile      zonename = zone1 Step 9: Provision the host with the Non-Global Zones The next step is to boot the client system off the network and provision it using the Automated Install service that we just set up. First, boot the client system. Figure 3 shows the network boot attempt (when done on an x86 system): Figure 3. Network Boot Then you will be prompted by a GRUB menu, with a timer, as shown in Figure 4. The default selection (the "Text Installer and command line" option) is highlighted.  Press the down arrow to highlight the second option labeled Automated Install, and then press Enter. The reason we need to do this is because we want to prevent a system from being automatically re-installed if it were to be booted from the network accidentally. Figure 4. GRUB Menu What follows is the continuation of a networked boot from the Automated Install server,. The client downloads a mini-root (a small set of files in which to successfully run the installer), identifies the location of the Automated Install manifest on the network, retrieves that manifest, and then processes it to identify the address of the IPS repository from which to obtain the desired software payload. Non-Global Zones are installed and configured on the first reboot after the Global Zone is installed. You can list all the Solaris Zones status using the following command # zoneadm list -civ Once the Zones are in running state you can login into the Zone using the following command # zlogin –z zone1 Troubleshooting Automated Installations If an installation to a client system failed, you can find the client log at /system/volatile/install_log. NOTE: Zones are not installed if any of the following errors occurs:     A zone config file is not syntactically correct.     A collision exists among zone names, zone paths, or delegated ZFS datasets in the set of zones to be installed     Required datasets are not configured in the global zone. For more troubleshooting information see “Installing Oracle Solaris 11 Systems” Conclusion This paper demonstrated the benefits of using the Automated Install server to simplify the Non Global Zones setup, including the creation and configuration of the global zone manifest and the Solaris Zones profiles.

    Read the article

  • memory leak error when using an iterator

    - by Adnane Jaafari
    please i'm having this error if any one can explain it : while using an iterator in my methode public void createDemandeP() { if (demandep.getDateDebut().after(demandep.getDateFin())) { FacesContext .getCurrentInstance() .addMessage( null, new FacesMessage(FacesMessage.SEVERITY_WARN, "Attention aux dates", "la date de debut doit être avant la date de fin!")); } else if (demandep.getDateDebut().before(demandep.getDateFin())) { List<DemandeP> list = new ArrayList<DemandeP>(); list.addAll(chaletService.getChaletBylibelle(chaletChoisi).get(0) .getListDemandesP()); Iterator<DemandeP> it = list.iterator(); DemandeP d = it.next(); while (it.hasNext()) { if ((d.getDateDebut().compareTo(demandep.getDateDebut()) == 0) || (d.getDateFin().compareTo(demandep.getDateDebut()) == 0) || (d.getDateFin().compareTo(demandep.getDateFin()) == 0) || (d.getDateDebut().compareTo(demandep.getDateDebut()) == 0) || (d.getDateDebut().before(demandep.getDateDebut()) && d .getDateFin().after(demandep.getDateFin())) || (d.getDateDebut().before(demandep.getDateFin()) && d .getDateDebut().after(demandep.getDateDebut())) || (d.getDateFin().after(demandep.getDateDebut()) && d .getDateFin().before(demandep.getDateFin()))) { FacesContext.getCurrentInstance().getMessageList().clear(); FacesContext .getCurrentInstance() .addMessage( null, new FacesMessage( FacesMessage.SEVERITY_FATAL, "Periode Ou chalet indisponicle ", "Veillez choisir une autre marge de date !")); } } } else { demandep.setEtat("En traitement"); DateFormat dateFormat = new SimpleDateFormat("dd/MM/yyyy"); Date date = new Date(); try { demandep.setDateDemande(dateFormat.parse(dateFormat .format(date))); } catch (ParseException e) { System.out.println("errooor date"); e.printStackTrace(); } nameUser = auth.getName(); // System.out.println(nameUser); adherent = utilisateurService.findAdherentByNom(nameUser).get(0); demandep.setUtilisateur(adherent); // System.out.println(chaletService.getChaletBylibelle(chaletChoisi).get(0).getLibelle()); demandep.setChalet(chaletService.getChaletBylibelle(chaletChoisi) .get(0)); demandep.setNouvelleDemande(true); demandePService.ajouterDemandeP(demandep); } } oct. 23, 2013 7:19:30 PM org.apache.catalina.core.StandardContext reload INFO: Le rechargement du contexte [/ONICLFINAL] a démarré oct. 23, 2013 7:19:30 PM org.apache.catalina.core.StandardWrapper unload INFO: Waiting for 1 instance(s) to be deallocated oct. 23, 2013 7:19:31 PM org.apache.catalina.core.StandardWrapper unload INFO: Waiting for 1 instance(s) to be deallocated oct. 23, 2013 7:19:32 PM org.apache.catalina.core.StandardWrapper unload INFO: Waiting for 1 instance(s) to be deallocated oct. 23, 2013 7:19:32 PM org.apache.catalina.core.ApplicationContext log INFO: Closing Spring root WebApplicationContext oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearReferencesJdbc SEVERE: The web application [/ONICLFINAL] registered the JDBC driver [com.mysql.jdbc.Driver] b but failed to unregister it when the web application was stopped. To prevent a memory leak, the JDBC Driver has been forcibly unregistered. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearReferencesThreads SEVERE: The web application [/ONICLFINAL] appears to have started a thread named [MySQL Statement Cancellation Timer] but has failed to stop it. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearReferencesThreads SE VERE: The web application [/ONICLFINAL] is still processing a request that has yet to finish. This is very likely to create a memory leak. You can control the time allowed for requests to finish by using the unloadDelay attribute of the standard Context implementation. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [org.springframework.core.NamedThreadLocal] (value [Hibernate Sessions registered for deferred close]) and a value of type [java.util.HashMap] (value [{org.hibernate.impl.SessionFactoryImpl@f6e256=[SessionImpl(PersistenceContext[entityKeys=[EntityKey[bo.DemandeP#1], EntityKey[bo.Utilisateur#3], EntityKey[bo.Chalet#1], EntityKey[bo.Role#2], EntityKey[bo.DemandeP#2]],collectionKeys=[CollectionKey[bo.Role.ListeUsers#2], CollectionKey[bo.Chalet.listPeriodes#1], CollectionKey[bo.Utilisateur.demandes#3], CollectionKey[bo.Utilisateur.demandesP#3], CollectionKey[bo.Chalet.listDemandesP#1]]];ActionQueue[insertions=[] updates=[] deletions=[] collectionCreations=[] collectionRemovals=[] collectionUpdates=[]])]}]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [org.springframework.core.NamedThreadLocal] (value [Request attributes]) and a value of type [org.springframework.web.context.request.ServletRequestAttributes] (value [org.apache.catalina.connector.RequestFacade@17f3488]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [java.lang.ThreadLocal] (value [java.lang.ThreadLocal@51f78b]) and a value of type [org.springframework.security.core.context.SecurityContextImpl] (value [org.springframework.security.core.context.SecurityContextImpl@8e463c8b: Authentication: org.springframework.security.authentication.UsernamePasswordAuthenticationToken@8e463c8b: Principal: org.springframework.security.core.userdetails.User@311aa119: Username: maatouf; Password: [PROTECTED]; Enabled: true; AccountNonExpired: true; credentialsNonExpired: true; AccountNonLocked: true; Granted Authorities: ROLE_ADHER; Credentials: [PROTECTED]; Authenticated: true; Details: org.springframework.security.web.authentication.WebAuthenticationDetails@ffff4c9c: RemoteIpAddress: 0:0:0:0:0:0:0:1; SessionId: 14CD5D4E8E0E3AEB0367AB7115038FED; Granted Authorities: ROLE_ADHER]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [java.lang.ThreadLocal] (value [java.lang.ThreadLocal@152e9b7]) and a value of type [net.sf.cglib.proxy.Callback[]] (value [[Lnet.sf.cglib.proxy.Callback;@6e1f4c]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [javax.faces.context.FacesContext$1] (value [javax.faces.context.FacesContext$1@9ecc6d]) and a value of type [com.sun.faces.context.FacesContextImpl] (value [com.sun.faces.context.FacesContextImpl@1c8bbed]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [java.lang.ThreadLocal] (value [java.lang.ThreadLocal@1a9e75f]) and a value of type [com.sun.faces.context.FacesContextImpl] (value [com.sun.faces.context.FacesContextImpl@1c8bbed]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [org.springframework.core.NamedThreadLocal] (value [Locale context]) and a value of type [org.springframework.context.i18n.SimpleLocaleContext] (value [fr_FR]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:32 PM org.apache.catalina.loader.WebappClassLoader clearThreadLocalMap SEVERE: The web application [/ONICLFINAL] created a ThreadLocal with key of type [com.sun.faces.application.ApplicationAssociate$1] (value [com.sun.faces.application.ApplicationAssociate$1@195266b]) and a value of type [com.sun.faces.application.ApplicationAssociate] (value [com.sun.faces.application.ApplicationAssociate@10d595c]) but failed to remove it when the web application was stopped. This is very likely to create a memory leak. oct. 23, 2013 7:19:33 PM org.apache.catalina.loader.WebappClassLoader validateJarFile INFO: validateJarFile(D:\newWorkSpace\.metadata\.plugins\org.eclipse.wst.server.core\tmp0\wtpwebapps\ONICLF INAL\WEB-INF\lib\servlet-api-2.5.jar) - jar not loaded. See Servlet Spec 2.3, section 9.7.2. Offending class: javax/servlet/Servlet.class oct. 23, 2013 7:19:33 PM org.apache.catalina.core.ApplicationContext log

    Read the article

  • program not working as expected!

    - by wilson88
    Can anyone just help spot why my program is not returning the expected output.related to my previous question.Am passing a vector by refrence, I want to see whats in the container before I copy them to another loaction.if u remove comments on loadRage, u will see bids are generated by the trader. #include <iostream> #include <vector> #include <string> #include <algorithm> #include <cstdlib> #include <iomanip> using namespace std; const int NUMSELLER = 1; const int NUMBUYER = 1; const int NUMBIDS = 20; const int MINQUANTITY = 1; const int MAXQUANTITY = 30; const int MINPRICE =100; const int MAXPRICE = 150; int s=0; int trdId; // Bid, simple container for values struct Bid { int bidId, trdId, qty, price; char type; // for sort and find. bool operator<(const Bid &other) const { return price < other.price; } bool operator==(int bidId) const { return this->bidId == bidId; } }; // alias to the list, make type consistent typedef vector<Bid> BidList; // this class generates bids! class Trader { private: int nextBidId; public: Trader(); Bid getNextBid(); Bid getNextBid(char type); // generate a number of bids void loadRange(BidList &, int size); void loadRange(BidList &, char type, int size); void setVector(); }; Trader::Trader() : nextBidId(1) {} #define RAND_RANGE(min, max) ((rand() % (max-min+1)) + min) Bid Trader::getNextBid() { char type = RAND_RANGE('A','B'); return getNextBid(type); } Bid Trader::getNextBid(char type) { for(int i = 0; i < NUMSELLER+NUMBUYER; i++) { // int trdId = RAND_RANGE(1,9); if (s<10){trdId=0;type='A';} else {trdId=1;type='B';} s++; int qty = RAND_RANGE(MINQUANTITY, MAXQUANTITY); int price = RAND_RANGE(MINPRICE, MAXPRICE); Bid bid = {nextBidId++, trdId, qty, price, type}; return bid; } } //void Trader::loadRange(BidList &list, int size) { // for (int i=0; i<size; i++) { list.push_back(getNextBid()); } //} // //void Trader::loadRange(BidList &list, char type, int size) { // for (int i=0; i<size; i++) { list.push_back(getNextBid(type)); } //} //---------------------------AUCTIONEER------------------------------------------- class Auctioneer { vector<Auctioneer> List; Trader trader; vector<Bid> list; public: Auctioneer(){}; void accept_bids(const BidList& bid); }; typedef vector<Auctioneer*> bidlist; void Auctioneer::accept_bids(const BidList& bid){ BidList list; //copy (BidList.begin(),BidList.end(),list); } //all the happy display commands void show(const Bid &bid) { cout << "\tBid\t(" << setw(3) << bid.bidId << "\t " << setw(3) << bid.trdId << "\t " << setw(3) << bid.type <<"\t " << setw(3) << bid.qty <<"\t " << setw(3) << bid.price <<")\t\n " ; } void show(const BidList &list) { cout << "\t\tBidID | TradID | Type | Qty | Price \n\n"; for(BidList::const_iterator itr=list.begin(); itr != list.end(); ++itr) { //cout <<"\t\t"; show(*itr); cout << endl; } cout << endl; } //search now checks for failure void show(const char *msg, const BidList &list) { cout << msg << endl; show(list); } void searchTest(BidList &list, int bidId) { cout << "Searching for Bid " << bidId << endl; BidList::const_iterator itr = find(list.begin(), list.end(), bidId); if (itr==list.end()) { cout << "Bid not found."; } else { cout << "Bid has been found. Its : "; show(*itr); } cout << endl; } //comparator function for price: returns true when x belongs before y bool compareBidList(Bid one, Bid two) { if (one.type == 'A' && two.type == 'B') return (one.price < two.price); return false; } void sort(BidList &bidlist) { sort(bidlist.begin(), bidlist.end(), compareBidList); } int main(int argc, char **argv) { Trader trader; BidList bidlist; Auctioneer auctioneer; //bidlist list; auctioneer.accept_bids(bidlist); //trader.loadRange(bidlist, NUMBIDS); show("Bids before sort:", bidlist); sort(bidlist); show("Bids after sort:", bidlist); system("pause"); return 0; }

    Read the article

  • Solving embarassingly parallel problems using Python multiprocessing

    - by gotgenes
    How does one use multiprocessing to tackle embarrassingly parallel problems? Embarassingly parallel problems typically consist of three basic parts: Read input data (from a file, database, tcp connection, etc.). Run calculations on the input data, where each calculation is independent of any other calculation. Write results of calculations (to a file, database, tcp connection, etc.). We can parallelize the program in two dimensions: Part 2 can run on multiple cores, since each calculation is independent; order of processing doesn't matter. Each part can run independently. Part 1 can place data on an input queue, part 2 can pull data off the input queue and put results onto an output queue, and part 3 can pull results off the output queue and write them out. This seems a most basic pattern in concurrent programming, but I am still lost in trying to solve it, so let's write a canonical example to illustrate how this is done using multiprocessing. Here is the example problem: Given a CSV file with rows of integers as input, compute their sums. Separate the problem into three parts, which can all run in parallel: Process the input file into raw data (lists/iterables of integers) Calculate the sums of the data, in parallel Output the sums Below is traditional, single-process bound Python program which solves these three tasks: #!/usr/bin/env python # -*- coding: UTF-8 -*- # basicsums.py """A program that reads integer values from a CSV file and writes out their sums to another CSV file. """ import csv import optparse import sys def make_cli_parser(): """Make the command line interface parser.""" usage = "\n\n".join(["python %prog INPUT_CSV OUTPUT_CSV", __doc__, """ ARGUMENTS: INPUT_CSV: an input CSV file with rows of numbers OUTPUT_CSV: an output file that will contain the sums\ """]) cli_parser = optparse.OptionParser(usage) return cli_parser def parse_input_csv(csvfile): """Parses the input CSV and yields tuples with the index of the row as the first element, and the integers of the row as the second element. The index is zero-index based. :Parameters: - `csvfile`: a `csv.reader` instance """ for i, row in enumerate(csvfile): row = [int(entry) for entry in row] yield i, row def sum_rows(rows): """Yields a tuple with the index of each input list of integers as the first element, and the sum of the list of integers as the second element. The index is zero-index based. :Parameters: - `rows`: an iterable of tuples, with the index of the original row as the first element, and a list of integers as the second element """ for i, row in rows: yield i, sum(row) def write_results(csvfile, results): """Writes a series of results to an outfile, where the first column is the index of the original row of data, and the second column is the result of the calculation. The index is zero-index based. :Parameters: - `csvfile`: a `csv.writer` instance to which to write results - `results`: an iterable of tuples, with the index (zero-based) of the original row as the first element, and the calculated result from that row as the second element """ for result_row in results: csvfile.writerow(result_row) def main(argv): cli_parser = make_cli_parser() opts, args = cli_parser.parse_args(argv) if len(args) != 2: cli_parser.error("Please provide an input file and output file.") infile = open(args[0]) in_csvfile = csv.reader(infile) outfile = open(args[1], 'w') out_csvfile = csv.writer(outfile) # gets an iterable of rows that's not yet evaluated input_rows = parse_input_csv(in_csvfile) # sends the rows iterable to sum_rows() for results iterable, but # still not evaluated result_rows = sum_rows(input_rows) # finally evaluation takes place as a chain in write_results() write_results(out_csvfile, result_rows) infile.close() outfile.close() if __name__ == '__main__': main(sys.argv[1:]) Let's take this program and rewrite it to use multiprocessing to parallelize the three parts outlined above. Below is a skeleton of this new, parallelized program, that needs to be fleshed out to address the parts in the comments: #!/usr/bin/env python # -*- coding: UTF-8 -*- # multiproc_sums.py """A program that reads integer values from a CSV file and writes out their sums to another CSV file, using multiple processes if desired. """ import csv import multiprocessing import optparse import sys NUM_PROCS = multiprocessing.cpu_count() def make_cli_parser(): """Make the command line interface parser.""" usage = "\n\n".join(["python %prog INPUT_CSV OUTPUT_CSV", __doc__, """ ARGUMENTS: INPUT_CSV: an input CSV file with rows of numbers OUTPUT_CSV: an output file that will contain the sums\ """]) cli_parser = optparse.OptionParser(usage) cli_parser.add_option('-n', '--numprocs', type='int', default=NUM_PROCS, help="Number of processes to launch [DEFAULT: %default]") return cli_parser def main(argv): cli_parser = make_cli_parser() opts, args = cli_parser.parse_args(argv) if len(args) != 2: cli_parser.error("Please provide an input file and output file.") infile = open(args[0]) in_csvfile = csv.reader(infile) outfile = open(args[1], 'w') out_csvfile = csv.writer(outfile) # Parse the input file and add the parsed data to a queue for # processing, possibly chunking to decrease communication between # processes. # Process the parsed data as soon as any (chunks) appear on the # queue, using as many processes as allotted by the user # (opts.numprocs); place results on a queue for output. # # Terminate processes when the parser stops putting data in the # input queue. # Write the results to disk as soon as they appear on the output # queue. # Ensure all child processes have terminated. # Clean up files. infile.close() outfile.close() if __name__ == '__main__': main(sys.argv[1:]) These pieces of code, as well as another piece of code that can generate example CSV files for testing purposes, can be found on github. I would appreciate any insight here as to how you concurrency gurus would approach this problem. Here are some questions I had when thinking about this problem. Bonus points for addressing any/all: Should I have child processes for reading in the data and placing it into the queue, or can the main process do this without blocking until all input is read? Likewise, should I have a child process for writing the results out from the processed queue, or can the main process do this without having to wait for all the results? Should I use a processes pool for the sum operations? If yes, what method do I call on the pool to get it to start processing the results coming into the input queue, without blocking the input and output processes, too? apply_async()? map_async()? imap()? imap_unordered()? Suppose we didn't need to siphon off the input and output queues as data entered them, but could wait until all input was parsed and all results were calculated (e.g., because we know all the input and output will fit in system memory). Should we change the algorithm in any way (e.g., not run any processes concurrently with I/O)?

    Read the article

< Previous Page | 726 727 728 729 730 731 732 733 734  | Next Page >