Search Results

Search found 8550 results on 342 pages for 'datetime operation'.

Page 74/342 | < Previous Page | 70 71 72 73 74 75 76 77 78 79 80 81  | Next Page >

  • SQL SERVER – Log File Growing for Model Database – model Database Log File Grew Too Big

    - by pinaldave
    After reading my earlier article SQL SERVER – master Database Log File Grew Too Big, I received an email recently from another reader asking why does the log file of model database grow every day when he is not carrying out any operation in the model database. As per the email, he is absolutely sure that he is doing nothing on his model database; he had used policy management to catch any T-SQL operation in the model database and there were none. This was indeed surprising to me. I sent a request to access to his server, which he happily agreed for and within a min, we figured out the issue. He was taking the backup of the model database every day taking the database backup every night. When I explained the same to him, he did not believe it; so I quickly wrote down the following script. The results before and after the usage of the script were very clear. What is a model database? The model database is used as the template for all databases created on an instance of SQL Server. Any object you create in the model database will be automatically created in subsequent user database created on the server. NOTE: Do not run this in production environment. During the demo, the model database was in full recovery mode and only full backup operation was performed (no log backup). Before Backup Script Backup Script in loop DECLARE @FLAG INT SET @FLAG = 1 WHILE(@FLAG < 1000) BEGIN BACKUP DATABASE [model] TO  DISK = N'D:\model.bak' SET @FLAG = @FLAG + 1 END GO After Backup Script Why did this happen? The model database was in full recovery mode and taking full backup is logged operation. As there was no log backup and only full backup was performed on the model database, the size of the log file kept growing. Resolution: Change the backup mode of model database from “Full Recovery” to “Simple Recovery.”. Take full backup of the model database “only” when you change something in the model database. Let me know if you have encountered a situation like this? If so, how did you resolve it? It will be interesting to know about your experience. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Backup and Restore, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • PTLQueue : a scalable bounded-capacity MPMC queue

    - by Dave
    Title: Fast concurrent MPMC queue -- I've used the following concurrent queue algorithm enough that it warrants a blog entry. I'll sketch out the design of a fast and scalable multiple-producer multiple-consumer (MPSC) concurrent queue called PTLQueue. The queue has bounded capacity and is implemented via a circular array. Bounded capacity can be a useful property if there's a mismatch between producer rates and consumer rates where an unbounded queue might otherwise result in excessive memory consumption by virtue of the container nodes that -- in some queue implementations -- are used to hold values. A bounded-capacity queue can provide flow control between components. Beware, however, that bounded collections can also result in resource deadlock if abused. The put() and take() operators are partial and wait for the collection to become non-full or non-empty, respectively. Put() and take() do not allocate memory, and are not vulnerable to the ABA pathologies. The PTLQueue algorithm can be implemented equally well in C/C++ and Java. Partial operators are often more convenient than total methods. In many use cases if the preconditions aren't met, there's nothing else useful the thread can do, so it may as well wait via a partial method. An exception is in the case of work-stealing queues where a thief might scan a set of queues from which it could potentially steal. Total methods return ASAP with a success-failure indication. (It's tempting to describe a queue or API as blocking or non-blocking instead of partial or total, but non-blocking is already an overloaded concurrency term. Perhaps waiting/non-waiting or patient/impatient might be better terms). It's also trivial to construct partial operators by busy-waiting via total operators, but such constructs may be less efficient than an operator explicitly and intentionally designed to wait. A PTLQueue instance contains an array of slots, where each slot has volatile Turn and MailBox fields. The array has power-of-two length allowing mod/div operations to be replaced by masking. We assume sensible padding and alignment to reduce the impact of false sharing. (On x86 I recommend 128-byte alignment and padding because of the adjacent-sector prefetch facility). Each queue also has PutCursor and TakeCursor cursor variables, each of which should be sequestered as the sole occupant of a cache line or sector. You can opt to use 64-bit integers if concerned about wrap-around aliasing in the cursor variables. Put(null) is considered illegal, but the caller or implementation can easily check for and convert null to a distinguished non-null proxy value if null happens to be a value you'd like to pass. Take() will accordingly convert the proxy value back to null. An advantage of PTLQueue is that you can use atomic fetch-and-increment for the partial methods. We initialize each slot at index I with (Turn=I, MailBox=null). Both cursors are initially 0. All shared variables are considered "volatile" and atomics such as CAS and AtomicFetchAndIncrement are presumed to have bidirectional fence semantics. Finally T is the templated type. I've sketched out a total tryTake() method below that allows the caller to poll the queue. tryPut() has an analogous construction. Zebra stripping : alternating row colors for nice-looking code listings. See also google code "prettify" : https://code.google.com/p/google-code-prettify/ Prettify is a javascript module that yields the HTML/CSS/JS equivalent of pretty-print. -- pre:nth-child(odd) { background-color:#ff0000; } pre:nth-child(even) { background-color:#0000ff; } border-left: 11px solid #ccc; margin: 1.7em 0 1.7em 0.3em; background-color:#BFB; font-size:12px; line-height:65%; " // PTLQueue : Put(v) : // producer : partial method - waits as necessary assert v != null assert Mask = 1 && (Mask & (Mask+1)) == 0 // Document invariants // doorway step // Obtain a sequence number -- ticket // As a practical concern the ticket value is temporally unique // The ticket also identifies and selects a slot auto tkt = AtomicFetchIncrement (&PutCursor, 1) slot * s = &Slots[tkt & Mask] // waiting phase : // wait for slot's generation to match the tkt value assigned to this put() invocation. // The "generation" is implicitly encoded as the upper bits in the cursor // above those used to specify the index : tkt div (Mask+1) // The generation serves as an epoch number to identify a cohort of threads // accessing disjoint slots while s-Turn != tkt : Pause assert s-MailBox == null s-MailBox = v // deposit and pass message Take() : // consumer : partial method - waits as necessary auto tkt = AtomicFetchIncrement (&TakeCursor,1) slot * s = &Slots[tkt & Mask] // 2-stage waiting : // First wait for turn for our generation // Acquire exclusive "take" access to slot's MailBox field // Then wait for the slot to become occupied while s-Turn != tkt : Pause // Concurrency in this section of code is now reduced to just 1 producer thread // vs 1 consumer thread. // For a given queue and slot, there will be most one Take() operation running // in this section. // Consumer waits for producer to arrive and make slot non-empty // Extract message; clear mailbox; advance Turn indicator // We have an obvious happens-before relation : // Put(m) happens-before corresponding Take() that returns that same "m" for T v = s-MailBox if v != null : s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 // unlock slot to admit next producer and consumer return v Pause tryTake() : // total method - returns ASAP with failure indication for auto tkt = TakeCursor slot * s = &Slots[tkt & Mask] if s-Turn != tkt : return null T v = s-MailBox // presumptive return value if v == null : return null // ratify tkt and v values and commit by advancing cursor if CAS (&TakeCursor, tkt, tkt+1) != tkt : continue s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 return v The basic idea derives from the Partitioned Ticket Lock "PTL" (US20120240126-A1) and the MultiLane Concurrent Bag (US8689237). The latter is essentially a circular ring-buffer where the elements themselves are queues or concurrent collections. You can think of the PTLQueue as a partitioned ticket lock "PTL" augmented to pass values from lock to unlock via the slots. Alternatively, you could conceptualize of PTLQueue as a degenerate MultiLane bag where each slot or "lane" consists of a simple single-word MailBox instead of a general queue. Each lane in PTLQueue also has a private Turn field which acts like the Turn (Grant) variables found in PTL. Turn enforces strict FIFO ordering and restricts concurrency on the slot mailbox field to at most one simultaneous put() and take() operation. PTL uses a single "ticket" variable and per-slot Turn (grant) fields while MultiLane has distinct PutCursor and TakeCursor cursors and abstract per-slot sub-queues. Both PTL and MultiLane advance their cursor and ticket variables with atomic fetch-and-increment. PTLQueue borrows from both PTL and MultiLane and has distinct put and take cursors and per-slot Turn fields. Instead of a per-slot queues, PTLQueue uses a simple single-word MailBox field. PutCursor and TakeCursor act like a pair of ticket locks, conferring "put" and "take" access to a given slot. PutCursor, for instance, assigns an incoming put() request to a slot and serves as a PTL "Ticket" to acquire "put" permission to that slot's MailBox field. To better explain the operation of PTLQueue we deconstruct the operation of put() and take() as follows. Put() first increments PutCursor obtaining a new unique ticket. That ticket value also identifies a slot. Put() next waits for that slot's Turn field to match that ticket value. This is tantamount to using a PTL to acquire "put" permission on the slot's MailBox field. Finally, having obtained exclusive "put" permission on the slot, put() stores the message value into the slot's MailBox. Take() similarly advances TakeCursor, identifying a slot, and then acquires and secures "take" permission on a slot by waiting for Turn. Take() then waits for the slot's MailBox to become non-empty, extracts the message, and clears MailBox. Finally, take() advances the slot's Turn field, which releases both "put" and "take" access to the slot's MailBox. Note the asymmetry : put() acquires "put" access to the slot, but take() releases that lock. At any given time, for a given slot in a PTLQueue, at most one thread has "put" access and at most one thread has "take" access. This restricts concurrency from general MPMC to 1-vs-1. We have 2 ticket locks -- one for put() and one for take() -- each with its own "ticket" variable in the form of the corresponding cursor, but they share a single "Grant" egress variable in the form of the slot's Turn variable. Advancing the PutCursor, for instance, serves two purposes. First, we obtain a unique ticket which identifies a slot. Second, incrementing the cursor is the doorway protocol step to acquire the per-slot mutual exclusion "put" lock. The cursors and operations to increment those cursors serve double-duty : slot-selection and ticket assignment for locking the slot's MailBox field. At any given time a slot MailBox field can be in one of the following states: empty with no pending operations -- neutral state; empty with one or more waiting take() operations pending -- deficit; occupied with no pending operations; occupied with one or more waiting put() operations -- surplus; empty with a pending put() or pending put() and take() operations -- transitional; or occupied with a pending take() or pending put() and take() operations -- transitional. The partial put() and take() operators can be implemented with an atomic fetch-and-increment operation, which may confer a performance advantage over a CAS-based loop. In addition we have independent PutCursor and TakeCursor cursors. Critically, a put() operation modifies PutCursor but does not access the TakeCursor and a take() operation modifies the TakeCursor cursor but does not access the PutCursor. This acts to reduce coherence traffic relative to some other queue designs. It's worth noting that slow threads or obstruction in one slot (or "lane") does not impede or obstruct operations in other slots -- this gives us some degree of obstruction isolation. PTLQueue is not lock-free, however. The implementation above is expressed with polite busy-waiting (Pause) but it's trivial to implement per-slot parking and unparking to deschedule waiting threads. It's also easy to convert the queue to a more general deque by replacing the PutCursor and TakeCursor cursors with Left/Front and Right/Back cursors that can move either direction. Specifically, to push and pop from the "left" side of the deque we would decrement and increment the Left cursor, respectively, and to push and pop from the "right" side of the deque we would increment and decrement the Right cursor, respectively. We used a variation of PTLQueue for message passing in our recent OPODIS 2013 paper. ul { list-style:none; padding-left:0; padding:0; margin:0; margin-left:0; } ul#myTagID { padding: 0px; margin: 0px; list-style:none; margin-left:0;} -- -- There's quite a bit of related literature in this area. I'll call out a few relevant references: Wilson's NYU Courant Institute UltraComputer dissertation from 1988 is classic and the canonical starting point : Operating System Data Structures for Shared-Memory MIMD Machines with Fetch-and-Add. Regarding provenance and priority, I think PTLQueue or queues effectively equivalent to PTLQueue have been independently rediscovered a number of times. See CB-Queue and BNPBV, below, for instance. But Wilson's dissertation anticipates the basic idea and seems to predate all the others. Gottlieb et al : Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors Orozco et al : CB-Queue in Toward high-throughput algorithms on many-core architectures which appeared in TACO 2012. Meneghin et al : BNPVB family in Performance evaluation of inter-thread communication mechanisms on multicore/multithreaded architecture Dmitry Vyukov : bounded MPMC queue (highly recommended) Alex Otenko : US8607249 (highly related). John Mellor-Crummey : Concurrent queues: Practical fetch-and-phi algorithms. Technical Report 229, Department of Computer Science, University of Rochester Thomasson : FIFO Distributed Bakery Algorithm (very similar to PTLQueue). Scott and Scherer : Dual Data Structures I'll propose an optimization left as an exercise for the reader. Say we wanted to reduce memory usage by eliminating inter-slot padding. Such padding is usually "dark" memory and otherwise unused and wasted. But eliminating the padding leaves us at risk of increased false sharing. Furthermore lets say it was usually the case that the PutCursor and TakeCursor were numerically close to each other. (That's true in some use cases). We might still reduce false sharing by incrementing the cursors by some value other than 1 that is not trivially small and is coprime with the number of slots. Alternatively, we might increment the cursor by one and mask as usual, resulting in a logical index. We then use that logical index value to index into a permutation table, yielding an effective index for use in the slot array. The permutation table would be constructed so that nearby logical indices would map to more distant effective indices. (Open question: what should that permutation look like? Possibly some perversion of a Gray code or De Bruijn sequence might be suitable). As an aside, say we need to busy-wait for some condition as follows : "while C == 0 : Pause". Lets say that C is usually non-zero, so we typically don't wait. But when C happens to be 0 we'll have to spin for some period, possibly brief. We can arrange for the code to be more machine-friendly with respect to the branch predictors by transforming the loop into : "if C == 0 : for { Pause; if C != 0 : break; }". Critically, we want to restructure the loop so there's one branch that controls entry and another that controls loop exit. A concern is that your compiler or JIT might be clever enough to transform this back to "while C == 0 : Pause". You can sometimes avoid this by inserting a call to a some type of very cheap "opaque" method that the compiler can't elide or reorder. On Solaris, for instance, you could use :"if C == 0 : { gethrtime(); for { Pause; if C != 0 : break; }}". It's worth noting the obvious duality between locks and queues. If you have strict FIFO lock implementation with local spinning and succession by direct handoff such as MCS or CLH,then you can usually transform that lock into a queue. Hidden commentary and annotations - invisible : * And of course there's a well-known duality between queues and locks, but I'll leave that topic for another blog post. * Compare and contrast : PTLQ vs PTL and MultiLane * Equivalent : Turn; seq; sequence; pos; position; ticket * Put = Lock; Deposit Take = identify and reserve slot; wait; extract & clear; unlock * conceptualize : Distinct PutLock and TakeLock implemented as ticket lock or PTL Distinct arrival cursors but share per-slot "Turn" variable provides exclusive role-based access to slot's mailbox field put() acquires exclusive access to a slot for purposes of "deposit" assigns slot round-robin and then acquires deposit access rights/perms to that slot take() acquires exclusive access to slot for purposes of "withdrawal" assigns slot round-robin and then acquires withdrawal access rights/perms to that slot At any given time, only one thread can have withdrawal access to a slot at any given time, only one thread can have deposit access to a slot Permissible for T1 to have deposit access and T2 to simultaneously have withdrawal access * round-robin for the purposes of; role-based; access mode; access role mailslot; mailbox; allocate/assign/identify slot rights; permission; license; access permission; * PTL/Ticket hybrid Asymmetric usage ; owner oblivious lock-unlock pairing K-exclusion add Grant cursor pass message m from lock to unlock via Slots[] array Cursor performs 2 functions : + PTL ticket + Assigns request to slot in round-robin fashion Deconstruct protocol : explication put() : allocate slot in round-robin fashion acquire PTL for "put" access store message into slot associated with PTL index take() : Acquire PTL for "take" access // doorway step seq = fetchAdd (&Grant, 1) s = &Slots[seq & Mask] // waiting phase while s-Turn != seq : pause Extract : wait for s-mailbox to be full v = s-mailbox s-mailbox = null Release PTL for both "put" and "take" access s-Turn = seq + Mask + 1 * Slot round-robin assignment and lock "doorway" protocol leverage the same cursor and FetchAdd operation on that cursor FetchAdd (&Cursor,1) + round-robin slot assignment and dispersal + PTL/ticket lock "doorway" step waiting phase is via "Turn" field in slot * PTLQueue uses 2 cursors -- put and take. Acquire "put" access to slot via PTL-like lock Acquire "take" access to slot via PTL-like lock 2 locks : put and take -- at most one thread can access slot's mailbox Both locks use same "turn" field Like multilane : 2 cursors : put and take slot is simple 1-capacity mailbox instead of queue Borrow per-slot turn/grant from PTL Provides strict FIFO Lock slot : put-vs-put take-vs-take at most one put accesses slot at any one time at most one put accesses take at any one time reduction to 1-vs-1 instead of N-vs-M concurrency Per slot locks for put/take Release put/take by advancing turn * is instrumental in ... * P-V Semaphore vs lock vs K-exclusion * See also : FastQueues-excerpt.java dice-etc/queue-mpmc-bounded-blocking-circular-xadd/ * PTLQueue is the same as PTLQB - identical * Expedient return; ASAP; prompt; immediately * Lamport's Bakery algorithm : doorway step then waiting phase Threads arriving at doorway obtain a unique ticket number Threads enter in ticket order * In the terminology of Reed and Kanodia a ticket lock corresponds to the busy-wait implementation of a semaphore using an eventcount and a sequencer It can also be thought of as an optimization of Lamport's bakery lock was designed for fault-tolerance rather than performance Instead of spinning on the release counter, processors using a bakery lock repeatedly examine the tickets of their peers --

    Read the article

  • C#/.NET Little Wonders: The Generic Func Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Back in one of my three original “Little Wonders” Trilogy of posts, I had listed generic delegates as one of the Little Wonders of .NET.  Later, someone posted a comment saying said that they would love more detail on the generic delegates and their uses, since my original entry just scratched the surface of them. Last week, I began our look at some of the handy generic delegates built into .NET with a description of delegates in general, and the Action family of delegates.  For this week, I’ll launch into a look at the Func family of generic delegates and how they can be used to support generic, reusable algorithms and classes. Quick Delegate Recap Delegates are similar to function pointers in C++ in that they allow you to store a reference to a method.  They can store references to either static or instance methods, and can actually be used to chain several methods together in one delegate. Delegates are very type-safe and can be satisfied with any standard method, anonymous method, or a lambda expression.  They can also be null as well (refers to no method), so care should be taken to make sure that the delegate is not null before you invoke it. Delegates are defined using the keyword delegate, where the delegate’s type name is placed where you would typically place the method name: 1: // This delegate matches any method that takes string, returns nothing 2: public delegate void Log(string message); This delegate defines a delegate type named Log that can be used to store references to any method(s) that satisfies its signature (whether instance, static, lambda expression, etc.). Delegate instances then can be assigned zero (null) or more methods using the operator = which replaces the existing delegate chain, or by using the operator += which adds a method to the end of a delegate chain: 1: // creates a delegate instance named currentLogger defaulted to Console.WriteLine (static method) 2: Log currentLogger = Console.Out.WriteLine; 3:  4: // invokes the delegate, which writes to the console out 5: currentLogger("Hi Standard Out!"); 6:  7: // append a delegate to Console.Error.WriteLine to go to std error 8: currentLogger += Console.Error.WriteLine; 9:  10: // invokes the delegate chain and writes message to std out and std err 11: currentLogger("Hi Standard Out and Error!"); While delegates give us a lot of power, it can be cumbersome to re-create fairly standard delegate definitions repeatedly, for this purpose the generic delegates were introduced in various stages in .NET.  These support various method types with particular signatures. Note: a caveat with generic delegates is that while they can support multiple parameters, they do not match methods that contains ref or out parameters. If you want to a delegate to represent methods that takes ref or out parameters, you will need to create a custom delegate. We’ve got the Func… delegates Just like it’s cousin, the Action delegate family, the Func delegate family gives us a lot of power to use generic delegates to make classes and algorithms more generic.  Using them keeps us from having to define a new delegate type when need to make a class or algorithm generic. Remember that the point of the Action delegate family was to be able to perform an “action” on an item, with no return results.  Thus Action delegates can be used to represent most methods that take 0 to 16 arguments but return void.  You can assign a method The Func delegate family was introduced in .NET 3.5 with the advent of LINQ, and gives us the power to define a function that can be called on 0 to 16 arguments and returns a result.  Thus, the main difference between Action and Func, from a delegate perspective, is that Actions return nothing, but Funcs return a result. The Func family of delegates have signatures as follows: Func<TResult> – matches a method that takes no arguments, and returns value of type TResult. Func<T, TResult> – matches a method that takes an argument of type T, and returns value of type TResult. Func<T1, T2, TResult> – matches a method that takes arguments of type T1 and T2, and returns value of type TResult. Func<T1, T2, …, TResult> – and so on up to 16 arguments, and returns value of type TResult. These are handy because they quickly allow you to be able to specify that a method or class you design will perform a function to produce a result as long as the method you specify meets the signature. For example, let’s say you were designing a generic aggregator, and you wanted to allow the user to define how the values will be aggregated into the result (i.e. Sum, Min, Max, etc…).  To do this, we would ask the user of our class to pass in a method that would take the current total, the next value, and produce a new total.  A class like this could look like: 1: public sealed class Aggregator<TValue, TResult> 2: { 3: // holds method that takes previous result, combines with next value, creates new result 4: private Func<TResult, TValue, TResult> _aggregationMethod; 5:  6: // gets or sets the current result of aggregation 7: public TResult Result { get; private set; } 8:  9: // construct the aggregator given the method to use to aggregate values 10: public Aggregator(Func<TResult, TValue, TResult> aggregationMethod = null) 11: { 12: if (aggregationMethod == null) throw new ArgumentNullException("aggregationMethod"); 13:  14: _aggregationMethod = aggregationMethod; 15: } 16:  17: // method to add next value 18: public void Aggregate(TValue nextValue) 19: { 20: // performs the aggregation method function on the current result and next and sets to current result 21: Result = _aggregationMethod(Result, nextValue); 22: } 23: } Of course, LINQ already has an Aggregate extension method, but that works on a sequence of IEnumerable<T>, whereas this is designed to work more with aggregating single results over time (such as keeping track of a max response time for a service). We could then use this generic aggregator to find the sum of a series of values over time, or the max of a series of values over time (among other things): 1: // creates an aggregator that adds the next to the total to sum the values 2: var sumAggregator = new Aggregator<int, int>((total, next) => total + next); 3:  4: // creates an aggregator (using static method) that returns the max of previous result and next 5: var maxAggregator = new Aggregator<int, int>(Math.Max); So, if we were timing the response time of a web method every time it was called, we could pass that response time to both of these aggregators to get an idea of the total time spent in that web method, and the max time spent in any one call to the web method: 1: // total will be 13 and max 13 2: int responseTime = 13; 3: sumAggregator.Aggregate(responseTime); 4: maxAggregator.Aggregate(responseTime); 5:  6: // total will be 20 and max still 13 7: responseTime = 7; 8: sumAggregator.Aggregate(responseTime); 9: maxAggregator.Aggregate(responseTime); 10:  11: // total will be 40 and max now 20 12: responseTime = 20; 13: sumAggregator.Aggregate(responseTime); 14: maxAggregator.Aggregate(responseTime); The Func delegate family is useful for making generic algorithms and classes, and in particular allows the caller of the method or user of the class to specify a function to be performed in order to generate a result. What is the result of a Func delegate chain? If you remember, we said earlier that you can assign multiple methods to a delegate by using the += operator to chain them.  So how does this affect delegates such as Func that return a value, when applied to something like the code below? 1: Func<int, int, int> combo = null; 2:  3: // What if we wanted to aggregate the sum and max together? 4: combo += (total, next) => total + next; 5: combo += Math.Max; 6:  7: // what is the result? 8: var comboAggregator = new Aggregator<int, int>(combo); Well, in .NET if you chain multiple methods in a delegate, they will all get invoked, but the result of the delegate is the result of the last method invoked in the chain.  Thus, this aggregator would always result in the Math.Max() result.  The other chained method (the sum) gets executed first, but it’s result is thrown away: 1: // result is 13 2: int responseTime = 13; 3: comboAggregator.Aggregate(responseTime); 4:  5: // result is still 13 6: responseTime = 7; 7: comboAggregator.Aggregate(responseTime); 8:  9: // result is now 20 10: responseTime = 20; 11: comboAggregator.Aggregate(responseTime); So remember, you can chain multiple Func (or other delegates that return values) together, but if you do so you will only get the last executed result. Func delegates and co-variance/contra-variance in .NET 4.0 Just like the Action delegate, as of .NET 4.0, the Func delegate family is contra-variant on its arguments.  In addition, it is co-variant on its return type.  To support this, in .NET 4.0 the signatures of the Func delegates changed to: Func<out TResult> – matches a method that takes no arguments, and returns value of type TResult (or a more derived type). Func<in T, out TResult> – matches a method that takes an argument of type T (or a less derived type), and returns value of type TResult(or a more derived type). Func<in T1, in T2, out TResult> – matches a method that takes arguments of type T1 and T2 (or less derived types), and returns value of type TResult (or a more derived type). Func<in T1, in T2, …, out TResult> – and so on up to 16 arguments, and returns value of type TResult (or a more derived type). Notice the addition of the in and out keywords before each of the generic type placeholders.  As we saw last week, the in keyword is used to specify that a generic type can be contra-variant -- it can match the given type or a type that is less derived.  However, the out keyword, is used to specify that a generic type can be co-variant -- it can match the given type or a type that is more derived. On contra-variance, if you are saying you need an function that will accept a string, you can just as easily give it an function that accepts an object.  In other words, if you say “give me an function that will process dogs”, I could pass you a method that will process any animal, because all dogs are animals.  On the co-variance side, if you are saying you need a function that returns an object, you can just as easily pass it a function that returns a string because any string returned from the given method can be accepted by a delegate expecting an object result, since string is more derived.  Once again, in other words, if you say “give me a method that creates an animal”, I can pass you a method that will create a dog, because all dogs are animals. It really all makes sense, you can pass a more specific thing to a less specific parameter, and you can return a more specific thing as a less specific result.  In other words, pay attention to the direction the item travels (parameters go in, results come out).  Keeping that in mind, you can always pass more specific things in and return more specific things out. For example, in the code below, we have a method that takes a Func<object> to generate an object, but we can pass it a Func<string> because the return type of object can obviously accept a return value of string as well: 1: // since Func<object> is co-variant, this will access Func<string>, etc... 2: public static string Sequence(int count, Func<object> generator) 3: { 4: var builder = new StringBuilder(); 5:  6: for (int i=0; i<count; i++) 7: { 8: object value = generator(); 9: builder.Append(value); 10: } 11:  12: return builder.ToString(); 13: } Even though the method above takes a Func<object>, we can pass a Func<string> because the TResult type placeholder is co-variant and accepts types that are more derived as well: 1: // delegate that's typed to return string. 2: Func<string> stringGenerator = () => DateTime.Now.ToString(); 3:  4: // This will work in .NET 4.0, but not in previous versions 5: Sequence(100, stringGenerator); Previous versions of .NET implemented some forms of co-variance and contra-variance before, but .NET 4.0 goes one step further and allows you to pass or assign an Func<A, BResult> to a Func<Y, ZResult> as long as A is less derived (or same) as Y, and BResult is more derived (or same) as ZResult. Sidebar: The Func and the Predicate A method that takes one argument and returns a bool is generally thought of as a predicate.  Predicates are used to examine an item and determine whether that item satisfies a particular condition.  Predicates are typically unary, but you may also have binary and other predicates as well. Predicates are often used to filter results, such as in the LINQ Where() extension method: 1: var numbers = new[] { 1, 2, 4, 13, 8, 10, 27 }; 2:  3: // call Where() using a predicate which determines if the number is even 4: var evens = numbers.Where(num => num % 2 == 0); As of .NET 3.5, predicates are typically represented as Func<T, bool> where T is the type of the item to examine.  Previous to .NET 3.5, there was a Predicate<T> type that tended to be used (which we’ll discuss next week) and is still supported, but most developers recommend using Func<T, bool> now, as it prevents confusion with overloads that accept unary predicates and binary predicates, etc.: 1: // this seems more confusing as an overload set, because of Predicate vs Func 2: public static SomeMethod(Predicate<int> unaryPredicate) { } 3: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } 4:  5: // this seems more consistent as an overload set, since just uses Func 6: public static SomeMethod(Func<int, bool> unaryPredicate) { } 7: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } Also, even though Predicate<T> and Func<T, bool> match the same signatures, they are separate types!  Thus you cannot assign a Predicate<T> instance to a Func<T, bool> instance and vice versa: 1: // the same method, lambda expression, etc can be assigned to both 2: Predicate<int> isEven = i => (i % 2) == 0; 3: Func<int, bool> alsoIsEven = i => (i % 2) == 0; 4:  5: // but the delegate instances cannot be directly assigned, strongly typed! 6: // ERROR: cannot convert type... 7: isEven = alsoIsEven; 8:  9: // however, you can assign by wrapping in a new instance: 10: isEven = new Predicate<int>(alsoIsEven); 11: alsoIsEven = new Func<int, bool>(isEven); So, the general advice that seems to come from most developers is that Predicate<T> is still supported, but we should use Func<T, bool> for consistency in .NET 3.5 and above. Sidebar: Func as a Generator for Unit Testing One area of difficulty in unit testing can be unit testing code that is based on time of day.  We’d still want to unit test our code to make sure the logic is accurate, but we don’t want the results of our unit tests to be dependent on the time they are run. One way (of many) around this is to create an internal generator that will produce the “current” time of day.  This would default to returning result from DateTime.Now (or some other method), but we could inject specific times for our unit testing.  Generators are typically methods that return (generate) a value for use in a class/method. For example, say we are creating a CacheItem<T> class that represents an item in the cache, and we want to make sure the item shows as expired if the age is more than 30 seconds.  Such a class could look like: 1: // responsible for maintaining an item of type T in the cache 2: public sealed class CacheItem<T> 3: { 4: // helper method that returns the current time 5: private static Func<DateTime> _timeGenerator = () => DateTime.Now; 6:  7: // allows internal access to the time generator 8: internal static Func<DateTime> TimeGenerator 9: { 10: get { return _timeGenerator; } 11: set { _timeGenerator = value; } 12: } 13:  14: // time the item was cached 15: public DateTime CachedTime { get; private set; } 16:  17: // the item cached 18: public T Value { get; private set; } 19:  20: // item is expired if older than 30 seconds 21: public bool IsExpired 22: { 23: get { return _timeGenerator() - CachedTime > TimeSpan.FromSeconds(30.0); } 24: } 25:  26: // creates the new cached item, setting cached time to "current" time 27: public CacheItem(T value) 28: { 29: Value = value; 30: CachedTime = _timeGenerator(); 31: } 32: } Then, we can use this construct to unit test our CacheItem<T> without any time dependencies: 1: var baseTime = DateTime.Now; 2:  3: // start with current time stored above (so doesn't drift) 4: CacheItem<int>.TimeGenerator = () => baseTime; 5:  6: var target = new CacheItem<int>(13); 7:  8: // now add 15 seconds, should still be non-expired 9: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(15); 10:  11: Assert.IsFalse(target.IsExpired); 12:  13: // now add 31 seconds, should now be expired 14: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(31); 15:  16: Assert.IsTrue(target.IsExpired); Now we can unit test for 1 second before, 1 second after, 1 millisecond before, 1 day after, etc.  Func delegates can be a handy tool for this type of value generation to support more testable code.  Summary Generic delegates give us a lot of power to make truly generic algorithms and classes.  The Func family of delegates is a great way to be able to specify functions to calculate a result based on 0-16 arguments.  Stay tuned in the weeks that follow for other generic delegates in the .NET Framework!   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Func, Delegates

    Read the article

  • Evolution crashes

    - by allenskd
    Well, somehow it started to crash for no reason This the what I'm getting in terminal, not sure yet: ** Message: secret service operation failed: The name org.freedesktop.secrets was not provided by any .service files ** Message: secret service operation failed: The name org.freedesktop.secrets was not provided by any .service files (evolution:8246): gtkhtml-editor-WARNING **: lc: No such language ** Gtk:ERROR:/build/buildd/gtk+2.0-2.22.0/gtk/gtkrecentmanager.c:1942:get_icon_fallback: assertion failed: (retval != NULL) Aborted It has happened to a few GTK Apps I've installed in my Kubuntu, any ideas on how to fix this?

    Read the article

  • MapReduce in DryadLINQ and PLINQ

    - by JoshReuben
    MapReduce See http://en.wikipedia.org/wiki/Mapreduce The MapReduce pattern aims to handle large-scale computations across a cluster of servers, often involving massive amounts of data. "The computation takes a set of input key/value pairs, and produces a set of output key/value pairs. The developer expresses the computation as two Func delegates: Map and Reduce. Map - takes a single input pair and produces a set of intermediate key/value pairs. The MapReduce function groups results by key and passes them to the Reduce function. Reduce - accepts an intermediate key I and a set of values for that key. It merges together these values to form a possibly smaller set of values. Typically just zero or one output value is produced per Reduce invocation. The intermediate values are supplied to the user's Reduce function via an iterator." the canonical MapReduce example: counting word frequency in a text file.     MapReduce using DryadLINQ see http://research.microsoft.com/en-us/projects/dryadlinq/ and http://connect.microsoft.com/Dryad DryadLINQ provides a simple and straightforward way to implement MapReduce operations. This The implementation has two primary components: A Pair structure, which serves as a data container. A MapReduce method, which counts word frequency and returns the top five words. The Pair Structure - Pair has two properties: Word is a string that holds a word or key. Count is an int that holds the word count. The structure also overrides ToString to simplify printing the results. The following example shows the Pair implementation. public struct Pair { private string word; private int count; public Pair(string w, int c) { word = w; count = c; } public int Count { get { return count; } } public string Word { get { return word; } } public override string ToString() { return word + ":" + count.ToString(); } } The MapReduce function  that gets the results. the input data could be partitioned and distributed across the cluster. 1. Creates a DryadTable<LineRecord> object, inputTable, to represent the lines of input text. For partitioned data, use GetPartitionedTable<T> instead of GetTable<T> and pass the method a metadata file. 2. Applies the SelectMany operator to inputTable to transform the collection of lines into collection of words. The String.Split method converts the line into a collection of words. SelectMany concatenates the collections created by Split into a single IQueryable<string> collection named words, which represents all the words in the file. 3. Performs the Map part of the operation by applying GroupBy to the words object. The GroupBy operation groups elements with the same key, which is defined by the selector delegate. This creates a higher order collection, whose elements are groups. In this case, the delegate is an identity function, so the key is the word itself and the operation creates a groups collection that consists of groups of identical words. 4. Performs the Reduce part of the operation by applying Select to groups. This operation reduces the groups of words from Step 3 to an IQueryable<Pair> collection named counts that represents the unique words in the file and how many instances there are of each word. Each key value in groups represents a unique word, so Select creates one Pair object for each unique word. IGrouping.Count returns the number of items in the group, so each Pair object's Count member is set to the number of instances of the word. 5. Applies OrderByDescending to counts. This operation sorts the input collection in descending order of frequency and creates an ordered collection named ordered. 6. Applies Take to ordered to create an IQueryable<Pair> collection named top, which contains the 100 most common words in the input file, and their frequency. Test then uses the Pair object's ToString implementation to print the top one hundred words, and their frequency.   public static IQueryable<Pair> MapReduce( string directory, string fileName, int k) { DryadDataContext ddc = new DryadDataContext("file://" + directory); DryadTable<LineRecord> inputTable = ddc.GetTable<LineRecord>(fileName); IQueryable<string> words = inputTable.SelectMany(x => x.line.Split(' ')); IQueryable<IGrouping<string, string>> groups = words.GroupBy(x => x); IQueryable<Pair> counts = groups.Select(x => new Pair(x.Key, x.Count())); IQueryable<Pair> ordered = counts.OrderByDescending(x => x.Count); IQueryable<Pair> top = ordered.Take(k);   return top; }   To Test: IQueryable<Pair> results = MapReduce(@"c:\DryadData\input", "TestFile.txt", 100); foreach (Pair words in results) Debug.Print(words.ToString());   Note: DryadLINQ applications can use a more compact way to represent the query: return inputTable         .SelectMany(x => x.line.Split(' '))         .GroupBy(x => x)         .Select(x => new Pair(x.Key, x.Count()))         .OrderByDescending(x => x.Count)         .Take(k);     MapReduce using PLINQ The pattern is relevant even for a single multi-core machine, however. We can write our own PLINQ MapReduce in a few lines. the Map function takes a single input value and returns a set of mapped values àLINQ's SelectMany operator. These are then grouped according to an intermediate key à LINQ GroupBy operator. The Reduce function takes each intermediate key and a set of values for that key, and produces any number of outputs per key à LINQ SelectMany again. We can put all of this together to implement MapReduce in PLINQ that returns a ParallelQuery<T> public static ParallelQuery<TResult> MapReduce<TSource, TMapped, TKey, TResult>( this ParallelQuery<TSource> source, Func<TSource, IEnumerable<TMapped>> map, Func<TMapped, TKey> keySelector, Func<IGrouping<TKey, TMapped>, IEnumerable<TResult>> reduce) { return source .SelectMany(map) .GroupBy(keySelector) .SelectMany(reduce); } the map function takes in an input document and outputs all of the words in that document. The grouping phase groups all of the identical words together, such that the reduce phase can then count the words in each group and output a word/count pair for each grouping: var files = Directory.EnumerateFiles(dirPath, "*.txt").AsParallel(); var counts = files.MapReduce( path => File.ReadLines(path).SelectMany(line => line.Split(delimiters)), word => word, group => new[] { new KeyValuePair<string, int>(group.Key, group.Count()) });

    Read the article

  • Error occurred in deployment step 'Recycle IIS Application Pool'

    - by shehan
    Encountered this error while trying to deploy a SharePoint 2010 project from Visual Studio 2010:Error occurred in deployment step 'Recycle IIS Application Pool': The open operation did not complete within the allotted timeout of 00:01:00. The time allotted to this operation may have been a portion of a longer timeout.All my other projects in the solution deploy just fine. To fix this, I had to retract the offending project (through Visual Studio) and re-deploy.

    Read the article

  • Live Webcast Oracle VM-Design Considerations For Enterprise Scale Deployment – June 10

    - by Roxana Babiciu
    The Oracle Managed Cloud Services team serves up thousands of Oracle applications to end users on a daily basis. With nearly 20,000 Oracle VM instances powering this operation, it’s imperative to maintain a highly available environment. Curious as to how this is done? Join the Oracle Managed Cloud Services expert in this live webcast to gain valuable insights into architectural design and management best practices to build and run this highly successful hosted cloud operation.

    Read the article

  • Script to UPDATE STATISTICS with time window

    - by Bill Graziano
    I recently spent some time troubleshooting odd query plans and came to the conclusion that we needed better statistics.  We’ve been running sp_updatestats but apparently it wasn’t sampling enough of the table to get us what we needed.  I have a pretty limited window at night where I can hammer the disks while this runs.  The script below just calls UPDATE STATITICS on all tables that “need” updating.  It defines need as any table whose statistics are older than the number of days you specify (30 by default).  It also has a throttle so it breaks out of the loop after a set amount of time (60 minutes).  That means it won’t start processing a new table after this time but it might take longer than this to finish what it’s doing.  It always processes the oldest statistics first so it will eventually get to all of them.  It defaults to sample 25% of the table.  I’m not sure that’s a good default but it works for now.  I’ve tested this in SQL Server 2005 and SQL Server 2008.  I liked the way Michelle parameterized her re-index script and I took the same approach. CREATE PROCEDURE dbo.UpdateStatistics ( @timeLimit smallint = 60 ,@debug bit = 0 ,@executeSQL bit = 1 ,@samplePercent tinyint = 25 ,@printSQL bit = 1 ,@minDays tinyint = 30 )AS/******************************************************************* Copyright Bill Graziano 2010*******************************************************************/SET NOCOUNT ON;PRINT '[ ' + CAST(GETDATE() AS VARCHAR(100)) + ' ] ' + 'Launching...'IF OBJECT_ID('tempdb..#status') IS NOT NULL DROP TABLE #status;CREATE TABLE #status( databaseID INT , databaseName NVARCHAR(128) , objectID INT , page_count INT , schemaName NVARCHAR(128) Null , objectName NVARCHAR(128) Null , lastUpdateDate DATETIME , scanDate DATETIME CONSTRAINT PK_status_tmp PRIMARY KEY CLUSTERED(databaseID, objectID));DECLARE @SQL NVARCHAR(MAX);DECLARE @dbName nvarchar(128);DECLARE @databaseID INT;DECLARE @objectID INT;DECLARE @schemaName NVARCHAR(128);DECLARE @objectName NVARCHAR(128);DECLARE @lastUpdateDate DATETIME;DECLARE @startTime DATETIME;SELECT @startTime = GETDATE();DECLARE cDB CURSORREAD_ONLYFOR select [name] from master.sys.databases where database_id > 4OPEN cDBFETCH NEXT FROM cDB INTO @dbNameWHILE (@@fetch_status <> -1)BEGIN IF (@@fetch_status <> -2) BEGIN SELECT @SQL = ' use ' + QUOTENAME(@dbName) + ' select DB_ID() as databaseID , DB_NAME() as databaseName ,t.object_id ,sum(used_page_count) as page_count ,s.[name] as schemaName ,t.[name] AS objectName , COALESCE(d.stats_date, ''1900-01-01'') , GETDATE() as scanDate from sys.dm_db_partition_stats ps join sys.tables t on t.object_id = ps.object_id join sys.schemas s on s.schema_id = t.schema_id join ( SELECT object_id, MIN(stats_date) as stats_date FROM ( select object_id, stats_date(object_id, stats_id) as stats_date from sys.stats) as d GROUP BY object_id ) as d ON d.object_id = t.object_id where ps.row_count > 0 group by s.[name], t.[name], t.object_id, COALESCE(d.stats_date, ''1900-01-01'') ' SET ANSI_WARNINGS OFF; Insert #status EXEC ( @SQL); SET ANSI_WARNINGS ON; END FETCH NEXT FROM cDB INTO @dbNameENDCLOSE cDBDEALLOCATE cDBDECLARE cStats CURSORREAD_ONLYFOR SELECT databaseID , databaseName , objectID , schemaName , objectName , lastUpdateDate FROM #status WHERE DATEDIFF(dd, lastUpdateDate, GETDATE()) >= @minDays ORDER BY lastUpdateDate ASC, page_count desc, [objectName] ASC OPEN cStatsFETCH NEXT FROM cStats INTO @databaseID, @dbName, @objectID, @schemaName, @objectName, @lastUpdateDateWHILE (@@fetch_status <> -1)BEGIN IF (@@fetch_status <> -2) BEGIN IF DATEDIFF(mi, @startTime, GETDATE()) > @timeLimit BEGIN PRINT '[ ' + CAST(GETDATE() AS VARCHAR(100)) + ' ] ' + '*** Time Limit Reached ***'; GOTO __DONE; END SELECT @SQL = 'UPDATE STATISTICS ' + QUOTENAME(@dBName) + '.' + QUOTENAME(@schemaName) + '.' + QUOTENAME(@ObjectName) + ' WITH SAMPLE ' + CAST(@samplePercent AS NVARCHAR(100)) + ' PERCENT;'; IF @printSQL = 1 PRINT '[ ' + CAST(GETDATE() AS VARCHAR(100)) + ' ] ' + @SQL + ' (Last Updated: ' + CAST(@lastUpdateDate AS VARCHAR(100)) + ')' IF @executeSQL = 1 BEGIN EXEC (@SQL); END END FETCH NEXT FROM cStats INTO @databaseID, @dbName, @objectID, @schemaName, @objectName, @lastUpdateDateEND__DONE:CLOSE cStatsDEALLOCATE cStatsPRINT '[ ' + CAST(GETDATE() AS VARCHAR(100)) + ' ] ' + 'Completed.'GO

    Read the article

  • Tuple - .NET 4.0 new feature

    - by nmarun
    Something I hit while playing with .net 4.0 – Tuple. MSDN says ‘Provides static methods for creating tuple objects.’ and the example below is: 1: var primes = Tuple.Create(2, 3, 5, 7, 11, 13, 17, 19); Honestly, I’m still not sure with what intention MS provided us with this feature, but the moment I saw this, I said to myself – I could use it instead of anonymous types. In order to put this to test, I created an XML file: 1: <Activities> 2: <Activity id="1" name="Learn Tuples" eventDate="4/1/2010" /> 3: <Activity id="2" name="Finish Project" eventDate="4/29/2010" /> 4: <Activity id="3" name="Attend Birthday" eventDate="4/17/2010" /> 5: <Activity id="4" name="Pay bills" eventDate="4/12/2010" /> 6: </Activities> In my console application, I read this file and let’s say I want to pull all the attributes of the node with id value of 1. Now, I have two ways – either define a class/struct that has these three properties and use in the LINQ query or create an anonymous type on the fly. But if we go the .NET 4.0 way, we can do this using Tuples as well. Let’s see the code I’ve written below: 1: var myActivity = (from activity in loaded.Descendants("Activity") 2:       where (int)activity.Attribute("id") == 1 3:       select Tuple.Create( 4: int.Parse(activity.Attribute("id").Value), 5: activity.Attribute("name").Value, 6: DateTime.Parse(activity.Attribute("eventDate").Value))).FirstOrDefault(); Line 3 is where I’m using a Tuple.Create to define my return type. There are three ‘items’ (that’s what the elements are called) in ‘myActivity’ type.. aptly declared as Item1, Item2, Item3. So there you go, you have another way of creating anonymous types. Just out of curiosity, wanted to see what the type actually looked like. So I did a: 1: Console.WriteLine(myActivity.GetType().FullName); and the return was (formatted for better readability): "System.Tuple`3[                            [System.Int32, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],                            [System.String, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089],                            [System.DateTime, mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089]                           ]" The `3 specifies the number of items in the tuple. The other interesting thing about the tuple is that it knows the data type of the elements it’s holding. This is shown in the above snippet and also when you hover over myActivity.Item1, it shows the type as an int, Item2 as string and Item3 as DateTime. So you can safely do: 1: int id = myActivity.Item1; 2: string name = myActivity.Item2; 3: DateTime eventDate = myActivity.Item3; Wow.. all I can say is: HAIL 4.0.. HAIL 4.0.. HAIL 4.0

    Read the article

  • I am trying to create an windows application watcher? [migrated]

    - by Broken_Code
    I recently started coding in c #(in may this year) and well I find it best to learn by working with code. this application http://www.c-sharpcorner.com/UploadFile/satisharveti/ActiveApplicationWatcher01252007024921AM/ActiveApplicationWatcher.aspx. I am trying to recreate it however mine will be saving the information into an sql database(new at this as well). I am having some coding problems though as it does not do what I expect it to do. THis is the main code I am using. private void GetTotalTimer() { DateTime now = DateTime.Now; IntPtr hwnd = APIFunc.getforegroundWindow(); Int32 pid = APIFunc.GetWindowProcessID(hwnd); Process p = Process.GetProcessById(pid); appName = p.ProcessName; const int nChars = 256; int handle = 0; StringBuilder Buff = new StringBuilder(nChars); handle = GetForegroundWindow(); appltitle = APIFunc.ActiveApplTitle().Trim().Replace("\0", ""); //if (GetWindowText(handle, Buff, nChars) > 0) //{ // string strbuff = Buff.ToString(); // StrWindow = strbuff; #region insert statement try { if (Conn.State == ConnectionState.Closed) { Conn.Open(); } if (Conn.State == ConnectionState.Open) { SqlCommand com = new SqlCommand("Select top 1 [Window Title] From TimerLogs ORDER BY [Time of Event] DESC", Conn); SqlDataReader reader = com.ExecuteReader(); startTime = DateTime.Now; string time = now.ToString(); if (!reader.HasRows) { reader.Close(); cmd = new SqlCommand("insert into [TimerLogs] values(@time,@appName,@appltitle,@Elapsed_Time,@userName)", Conn); cmd.Parameters.AddWithValue("@time", time); cmd.Parameters.AddWithValue("@appName", appName); cmd.Parameters.AddWithValue("@appltitle", appltitle); cmd.Parameters.AddWithValue("@Elapsed_Time", blank.ToString()); cmd.Parameters.AddWithValue("@userName", userName); cmd.ExecuteNonQuery(); Conn.Close(); } else if(reader.HasRows) { reader.Read(); if (appltitle != reader.ToString()) { reader.Close(); endTime = DateTime.Now; appduration = endTime.Subtract(startTime); cmd = new SqlCommand("insert into [TimerLogs] values (@time,@appName,@appltitle,@Elapsed_Time,@userName)", Conn); cmd.Parameters.AddWithValue("@time", time); cmd.Parameters.AddWithValue("@appName", appName); cmd.Parameters.AddWithValue("@appltitle", appltitle); cmd.Parameters.AddWithValue("@Elapsed_Time", appduration.ToString()); cmd.Parameters.AddWithValue("@userName", userName); cmd.ExecuteNonQuery(); reader.Close(); Conn.Close(); } } } } catch (Exception) { } //} #endregion ActivityTimer.Start(); Processing = "Working"; } Unfortunately this is the result. it is not saving the data as I expect it to. What am i doing wrong I had thought that with the sql reader it would first check for a value and only save if they do not match however it is saving whether there is a match or not.

    Read the article

  • WMI Remote Process Starting

    - by Goober
    Scenario I've written a WMI Wrapper that seems to be quite sufficient, however whenever I run the code to start a remote process on a server, I see the process name appear in the task manager but the process itself does not start like it should (as in, I don't see the command line log window of the process that prints out what it's doing etc.) The process I am trying to start is just a C# application executable that I have written. Below is my WMI Wrapper Code and the code I am using to start running the process. Question Is the process actually running? - Even if it is only displaying the process name in the task manager and not actually launching the application to the users window? Code To Start The Process IPHostEntry hostEntry = Dns.GetHostEntry("InsertServerName"); WMIWrapper wrapper = new WMIWrapper("Insert User Name", "Insert Password", hostEntry.HostName); List<Process> processes = wrapper.GetProcesses(); foreach (Process process in processes) { if (process.Caption.Equals("MyAppName.exe")) { Console.WriteLine(process.Caption); Console.WriteLine(process.CommandLine); int processId; wrapper.StartProcess("E:\\MyData\\Data\\MyAppName.exe", out processId); Console.WriteLine(processId.ToString()); } } Console.ReadLine(); WMI Wrapper Code using System; using System.Collections.Generic; using System.Management; using System.Runtime.InteropServices; using Common.WMI.Objects; using System.Net; namespace Common.WMIWrapper { public class WMIWrapper : IDisposable { #region Constructor /// <summary> /// Creates a new instance of the wrapper /// </summary> /// <param jobName="username"></param> /// <param jobName="password"></param> /// <param jobName="server"></param> public WMIWrapper(string server) { Initialise(server); } /// <summary> /// Creates a new instance of the wrapper /// </summary> /// <param jobName="username"></param> /// <param jobName="password"></param> /// <param jobName="server"></param> public WMIWrapper(string username, string password, string server) { Initialise(username, password, server); } #endregion #region Destructor /// <summary> /// Clean up unmanaged references /// </summary> ~WMIWrapper() { Dispose(false); } #endregion #region Initialise /// <summary> /// Initialise the WMI Connection (local machine) /// </summary> /// <param name="server"></param> private void Initialise(string server) { m_server = server; // set connection options m_connectOptions = new ConnectionOptions(); IPHostEntry host = Dns.GetHostEntry(Environment.MachineName); } /// <summary> /// Initialise the WMI connection /// </summary> /// <param jobName="username">Username to connect to server with</param> /// <param jobName="password">Password to connect to server with</param> /// <param jobName="server">Server to connect to</param> private void Initialise(string username, string password, string server) { m_server = server; // set connection options m_connectOptions = new ConnectionOptions(); IPHostEntry host = Dns.GetHostEntry(Environment.MachineName); if (host.HostName.Equals(server, StringComparison.OrdinalIgnoreCase)) return; m_connectOptions.Username = username; m_connectOptions.Password = password; m_connectOptions.Impersonation = ImpersonationLevel.Impersonate; m_connectOptions.EnablePrivileges = true; } #endregion /// <summary> /// Return a list of available wmi namespaces /// </summary> /// <returns></returns> public List<String> GetWMINamespaces() { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root", this.Server), this.ConnectionOptions); List<String> wmiNamespaceList = new List<String>(); ManagementClass wmiNamespaces = new ManagementClass(wmiScope, new ManagementPath("__namespace"), null); ; foreach (ManagementObject ns in wmiNamespaces.GetInstances()) wmiNamespaceList.Add(ns["Name"].ToString()); return wmiNamespaceList; } /// <summary> /// Return a list of available classes in a namespace /// </summary> /// <param jobName="wmiNameSpace">Namespace to get wmi classes for</param> /// <returns>List of classes in the requested namespace</returns> public List<String> GetWMIClassList(string wmiNameSpace) { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root\\{1}", this.Server, wmiNameSpace), this.ConnectionOptions); List<String> wmiClasses = new List<String>(); ManagementObjectSearcher wmiSearcher = new ManagementObjectSearcher(wmiScope, new WqlObjectQuery("SELECT * FROM meta_Class"), null); foreach (ManagementClass wmiClass in wmiSearcher.Get()) wmiClasses.Add(wmiClass["__CLASS"].ToString()); return wmiClasses; } /// <summary> /// Get a list of wmi properties for the specified class /// </summary> /// <param jobName="wmiNameSpace">WMI Namespace</param> /// <param jobName="wmiClass">WMI Class</param> /// <returns>List of properties for the class</returns> public List<String> GetWMIClassPropertyList(string wmiNameSpace, string wmiClass) { List<String> wmiClassProperties = new List<string>(); ManagementClass managementClass = GetWMIClass(wmiNameSpace, wmiClass); foreach (PropertyData property in managementClass.Properties) wmiClassProperties.Add(property.Name); return wmiClassProperties; } /// <summary> /// Returns a list of methods for the class /// </summary> /// <param jobName="wmiNameSpace"></param> /// <param jobName="wmiClass"></param> /// <returns></returns> public List<String> GetWMIClassMethodList(string wmiNameSpace, string wmiClass) { List<String> wmiClassMethods = new List<string>(); ManagementClass managementClass = GetWMIClass(wmiNameSpace, wmiClass); foreach (MethodData method in managementClass.Methods) wmiClassMethods.Add(method.Name); return wmiClassMethods; } /// <summary> /// Retrieve the specified management class /// </summary> /// <param jobName="wmiNameSpace">Namespace of the class</param> /// <param jobName="wmiClass">Type of the class</param> /// <returns></returns> public ManagementClass GetWMIClass(string wmiNameSpace, string wmiClass) { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root\\{1}", this.Server, wmiNameSpace), this.ConnectionOptions); ManagementClass managementClass = null; ManagementObjectSearcher wmiSearcher = new ManagementObjectSearcher(wmiScope, new WqlObjectQuery(String.Format("SELECT * FROM meta_Class WHERE __CLASS = '{0}'", wmiClass)), null); foreach (ManagementClass wmiObject in wmiSearcher.Get()) managementClass = wmiObject; return managementClass; } /// <summary> /// Get an instance of the specficied class /// </summary> /// <param jobName="wmiNameSpace">Namespace of the classes</param> /// <param jobName="wmiClass">Type of the classes</param> /// <returns>Array of management classes</returns> public ManagementObject[] GetWMIClassObjects(string wmiNameSpace, string wmiClass) { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root\\{1}", this.Server, wmiNameSpace), this.ConnectionOptions); List<ManagementObject> wmiClasses = new List<ManagementObject>(); ManagementObjectSearcher wmiSearcher = new ManagementObjectSearcher(wmiScope, new WqlObjectQuery(String.Format("SELECT * FROM {0}", wmiClass)), null); foreach (ManagementObject wmiObject in wmiSearcher.Get()) wmiClasses.Add(wmiObject); return wmiClasses.ToArray(); } /// <summary> /// Get a full list of services /// </summary> /// <returns></returns> public List<Service> GetServices() { return GetService(null); } /// <summary> /// Get a list of services /// </summary> /// <returns></returns> public List<Service> GetService(string name) { ManagementObject[] services = GetWMIClassObjects("CIMV2", "WIN32_Service"); List<Service> serviceList = new List<Service>(); for (int i = 0; i < services.Length; i++) { ManagementObject managementObject = services[i]; Service service = new Service(managementObject); service.Status = (string)managementObject["Status"]; service.Name = (string)managementObject["Name"]; service.DisplayName = (string)managementObject["DisplayName"]; service.PathName = (string)managementObject["PathName"]; service.ProcessId = (uint)managementObject["ProcessId"]; service.Started = (bool)managementObject["Started"]; service.StartMode = (string)managementObject["StartMode"]; service.ServiceType = (string)managementObject["ServiceType"]; service.InstallDate = (string)managementObject["InstallDate"]; service.Description = (string)managementObject["Description"]; service.Caption = (string)managementObject["Caption"]; if (String.IsNullOrEmpty(name) || name.Equals(service.Name, StringComparison.OrdinalIgnoreCase)) serviceList.Add(service); } return serviceList; } /// <summary> /// Get a list of processes /// </summary> /// <returns></returns> public List<Process> GetProcesses() { return GetProcess(null); } /// <summary> /// Get a list of processes /// </summary> /// <returns></returns> public List<Process> GetProcess(uint? processId) { ManagementObject[] processes = GetWMIClassObjects("CIMV2", "WIN32_Process"); List<Process> processList = new List<Process>(); for (int i = 0; i < processes.Length; i++) { ManagementObject managementObject = processes[i]; Process process = new Process(managementObject); process.Priority = (uint)managementObject["Priority"]; process.ProcessId = (uint)managementObject["ProcessId"]; process.Status = (string)managementObject["Status"]; DateTime createDate; if (ConvertFromWmiDate((string)managementObject["CreationDate"], out createDate)) process.CreationDate = createDate.ToString("dd-MMM-yyyy HH:mm:ss"); process.Caption = (string)managementObject["Caption"]; process.CommandLine = (string)managementObject["CommandLine"]; process.Description = (string)managementObject["Description"]; process.ExecutablePath = (string)managementObject["ExecutablePath"]; process.ExecutionState = (string)managementObject["ExecutionState"]; process.MaximumWorkingSetSize = (UInt32?)managementObject ["MaximumWorkingSetSize"]; process.MinimumWorkingSetSize = (UInt32?)managementObject["MinimumWorkingSetSize"]; process.KernelModeTime = (UInt64)managementObject["KernelModeTime"]; process.ThreadCount = (UInt32)managementObject["ThreadCount"]; process.UserModeTime = (UInt64)managementObject["UserModeTime"]; process.VirtualSize = (UInt64)managementObject["VirtualSize"]; process.WorkingSetSize = (UInt64)managementObject["WorkingSetSize"]; if (processId == null || process.ProcessId == processId.Value) processList.Add(process); } return processList; } /// <summary> /// Start the specified process /// </summary> /// <param jobName="commandLine"></param> /// <returns></returns> public bool StartProcess(string command, out int processId) { processId = int.MaxValue; ManagementClass processClass = GetWMIClass("CIMV2", "WIN32_Process"); object[] objectsIn = new object[4]; objectsIn[0] = command; processClass.InvokeMethod("Create", objectsIn); if (objectsIn[3] == null) return false; processId = int.Parse(objectsIn[3].ToString()); return true; } /// <summary> /// Schedule a process on the remote machine /// </summary> /// <param name="command"></param> /// <param name="scheduleTime"></param> /// <param name="jobName"></param> /// <returns></returns> public bool ScheduleProcess(string command, DateTime scheduleTime, out string jobName) { jobName = String.Empty; ManagementClass scheduleClass = GetWMIClass("CIMV2", "Win32_ScheduledJob"); object[] objectsIn = new object[7]; objectsIn[0] = command; objectsIn[1] = String.Format("********{0:00}{1:00}{2:00}.000000+060", scheduleTime.Hour, scheduleTime.Minute, scheduleTime.Second); objectsIn[5] = true; scheduleClass.InvokeMethod("Create", objectsIn); if (objectsIn[6] == null) return false; UInt32 scheduleid = (uint)objectsIn[6]; jobName = scheduleid.ToString(); return true; } /// <summary> /// Returns the current time on the remote server /// </summary> /// <returns></returns> public DateTime Now() { ManagementScope wmiScope = new ManagementScope(String.Format("\\\\{0}\\root\\{1}", this.Server, "CIMV2"), this.ConnectionOptions); ManagementClass managementClass = null; ManagementObjectSearcher wmiSearcher = new ManagementObjectSearcher(wmiScope, new WqlObjectQuery(String.Format("SELECT * FROM Win32_LocalTime")), null); DateTime localTime = DateTime.MinValue; foreach (ManagementObject time in wmiSearcher.Get()) { UInt32 day = (UInt32)time["Day"]; UInt32 month = (UInt32)time["Month"]; UInt32 year = (UInt32)time["Year"]; UInt32 hour = (UInt32)time["Hour"]; UInt32 minute = (UInt32)time["Minute"]; UInt32 second = (UInt32)time["Second"]; localTime = new DateTime((int)year, (int)month, (int)day, (int)hour, (int)minute, (int)second); }; return localTime; } /// <summary> /// Converts a wmi date into a proper date /// </summary> /// <param jobName="wmiDate">Wmi formatted date</param> /// <returns>Date time object</returns> private static bool ConvertFromWmiDate(string wmiDate, out DateTime properDate) { properDate = DateTime.MinValue; string properDateString; // check if string is populated if (String.IsNullOrEmpty(wmiDate)) return false; wmiDate = wmiDate.Trim().ToLower().Replace("*", "0"); string[] months = new string[] { "Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" }; try { properDateString = String.Format("{0}-{1}-{2} {3}:{4}:{5}.{6}", wmiDate.Substring(6, 2), months[int.Parse(wmiDate.Substring(4, 2)) - 1], wmiDate.Substring(0, 4), wmiDate.Substring(8, 2), wmiDate.Substring(10, 2), wmiDate.Substring(12, 2), wmiDate.Substring(15, 6)); } catch (InvalidCastException) { return false; } catch (ArgumentOutOfRangeException) { return false; } // try and parse the new date if (!DateTime.TryParse(properDateString, out properDate)) return false; // true if conversion successful return true; } private bool m_disposed; #region IDisposable Members /// <summary> /// Managed dispose /// </summary> public void Dispose() { Dispose(true); GC.SuppressFinalize(this); } /// <summary> /// Dispose of managed and unmanaged objects /// </summary> /// <param jobName="disposing"></param> public void Dispose(bool disposing) { if (disposing) { m_connectOptions = null; } } #endregion #region Properties private ConnectionOptions m_connectOptions; /// <summary> /// Gets or sets the management scope /// </summary> private ConnectionOptions ConnectionOptions { get { return m_connectOptions; } set { m_connectOptions = value; } } private String m_server; /// <summary> /// Gets or sets the server to connect to /// </summary> public String Server { get { return m_server; } set { m_server = value; } } #endregion } }

    Read the article

  • how to map SubclassMap and HasManyToMany in Fluent NHibernate

    - by Davide Orazio Montersino
    Hi everyone. My problem is fluent nhibernate mapping a many to many relationship, they end up referencing a non existent Id. public UserMap() { Id(x => x.Id); Map(x => x.Name); Map(x => x.Password); Map(x => x.Confirmed); HasMany(x => x.Nodes).Cascade.SaveUpdate(); HasManyToMany<Node>(x => x.Events).Cascade.SaveUpdate().Table("RSVPs"); } public EventMap() { Map(x => x.Starts); Map(x => x.Ends); HasManyToMany<User>(x => x.Rsvps).Cascade.SaveUpdate().Table("RSVPs"); } public NodeMap() { Id(x => x.Id); Map(x => x.Title); Map(x => x.Body).CustomSqlType("text"); Map(x => x.CreationDate); References(x => x.Author).Cascade.SaveUpdate(); Map(x => x.Permalink).Unique().Not.Nullable(); } Those are my classes -notice that Event inherits from Node: public class Event : Node//, IEvent { private DateTime _starts = DateTime.MinValue; private DateTime _ends = DateTime.MaxValue; public virtual IList<User> Rsvps { get; set; } } The problem is, the generated RSVPs table is like that: Event_id User_id Node_id Of course the Event table has no ID - only a Node_id. When trying to save a relationship it will try to save a NULL event_id thus generating an error.

    Read the article

  • How to force multiple Interfaces to include certain the same properties?

    - by Jed
    I am trying to figure out a way to force all of my Interfaces to include properties of the same name/type. For example: I have two Interfaces; IGetAlarms and IGetDiagnostics. Each of the Interfaces will contain properties that are specific to the Interface itself, however I want to force the two Interfaces (and all other Interfaces that may be added later) to include properties of the same name. So, the result may look something like the this: interface IGetAlarms { string GetAlarms(); DateTime LastRuntime { get; set; } } interface IGetDiagnostics { string GetDiagnostics(); DateTime LastRuntime { get; set; } } Notice that both Interfaces include a DateTime property named LastRuntime. I would like to know if there is some way I can force other Interfaces that will be added later to include the DateTime LastRuntime property. I have naively attempted to have all my Interfaces implement another Interface (IService) - which includes the LastRuntime property. However, that doesn't solve my problem as that simply forces the class to implement the property - not all the Interfaces. Thanks.

    Read the article

  • C#: Regex to extract portions of file name

    - by jakesankey
    I have text files formatted as such: R156484COMP_004A7001_20100104_065119.txt I need to consistently extract the R****COMP, the 004A7001 number, 20100104 (date), and don't care about the 065119 number. the problem is that not ALL of the files being parsed have the exact naming convention. some may be like this: R168166CRIT_156B2075_SU2_20091223_123456.txt or R285476COMP_SU1_125A6025_20100407_123456.txt So how could I use regex instead of split to ensure I am always getting that serial (ex. 004A7001), the date (ex. 20100104), and the R****COMP (or CRIT)??? Here is what I do now but it only gets the files formatted like my first example. if (file.Count(c => c == '_') != 3) continue; and further down in the code I have: string RNumber = Path.GetFileNameWithoutExtension(file); string RNumberE = RNumber.Split('_')[0]; string RNumberD = RNumber.Split('_')[1]; string RNumberDate = RNumber.Split('_')[2]; DateTime dateTime = DateTime.ParseExact(RNumberDate, "yyyyMMdd", Thread.CurrentThread.CurrentCulture); string cmmDate = dateTime.ToString("dd-MMM-yyyy");

    Read the article

  • converting mysql database to sql server

    - by every_answer_gets_a_point
    i have a mysql database: /* MySQL Data Transfer Source Host: 10.0.0.5 Source Database: jnetdata Target Host: 10.0.0.5 Target Database: jnetdata Date: 5/26/2009 12:27:33 PM */ SET FOREIGN_KEY_CHECKS=0; -- ---------------------------- -- Table structure for chavrusas -- ---------------------------- CREATE TABLE `chavrusas` ( `id` int(11) NOT NULL auto_increment, `date_created` datetime default NULL, `luser_id` int(11) default NULL, `ruser_id` int(11) default NULL, `luser_type` varchar(50) default NULL, `ruser_type` varchar(50) default NULL, `SessionDay` varchar(250) default NULL, `SessionTime` datetime default NULL, `WeeklyReminder` tinyint(1) NOT NULL default '0', `reminder_phone` tinyint(1) NOT NULL default '0', `calling_card` varchar(50) default NULL, `active` tinyint(1) NOT NULL default '0', `notes` mediumtext, `ended` tinyint(1) NOT NULL default '0', `end_date` datetime default NULL, `initiated_by_student` tinyint(1) NOT NULL default '0', `initiated_by_volunteer` tinyint(1) NOT NULL default '0', `student_general_reason` varchar(50) default NULL, `volunteer_general_reason` varchar(50) default NULL, `student_reason` varchar(250) default NULL, `volunteer_reason` varchar(250) default NULL, `student_nli` tinyint(1) NOT NULL default '0', `volunteer_nli` tinyint(1) NOT NULL default '0', `jnet_initiated` tinyint(1) default '0', `belongs_to` varchar(50) default NULL, PRIMARY KEY (`id`) ) ENGINE=MyISAM AUTO_INCREMENT=5913 DEFAULT CHARSET=latin1; -- ---------------------------- -- Table structure for tbluseravailability -- ---------------------------- CREATE TABLE `tbluseravailability` ( `availability_id` int(11) NOT NULL auto_increment, `user_id` int(11) NOT NULL, `weekday_id` int(11) NOT NULL, `timeslot_id` int(11) NOT NULL, PRIMARY KEY (`availability_id`) ) ENGINE=MyISAM AUTO_INCREMENT=10865 DEFAULT CHARSET=latin1; -- ---------------------------- -- Table structure for tblusers -- ---------------------------- CREATE TABLE `tblusers` ( `id` int(11) NOT NULL auto_increment, `password` varchar(50) default NULL, `title` varchar(255) default NULL, `first` varchar(255) default NULL, `last` varchar(255) default NULL, `gender` varchar(255) default NULL, `address` varchar(255) default NULL, `address_2` varchar(255) default NULL, `city` varchar(255) default NULL, `state` varchar(255) default NULL, `postcode` varchar(255) default NULL, `country` varchar(255) default NULL, `email` varchar(255) default NULL, `emailnotes` varchar(255) default NULL, `Home_Phone` varchar(255) default NULL, `Office_Phone` varchar(255) default NULL, `Cell_Phone` varchar(255) default NULL, `Contact_Preference` varchar(255) default NULL, `Birthdate` datetime default NULL, `Age` varchar(255 and it goes on for about 10mb i need to convert it to ms sql, how do i do it?

    Read the article

  • ScriptSharp ClockLabel example with 0.6.2

    - by Hugh Powell
    Hi folks, I'm developing in Visual Studio 2010 and I've just downloaded and installed Script# 0.6.2 for VS 2010. I'm trying to follow the clock example in the Read Me pdf but can't get it to compile. I've created a new Script# Class Library project inside my solution called Clock, renamed the .cs file to ClockBehaviour and added the following code as per the example: using System; using System.DHTML; using ScriptFX; using ScriptFX.UI; namespace Clock { public class ClockBehavior : Behavior { private int _intervalCookie; public ClockBehavior(DOMElement domElement, string id) : base(domElement, id) { _intervalCookie = Window.SetInterval(OnTimer, 1000); } public override void Dispose() { if (_intervalCookie != 0) { Window.ClearInterval(_intervalCookie); } base.Dispose(); } private void OnTimer() { DateTime dateTime = new DateTime(); DOMElement.InnerHTML = dateTime.Format("T"); } } } When I try and compile the project I get errors saying that the System.DHMTL, ScriptFX and ScriptFX.UI namespaces could not be found (and some others, but I guess by fixing these errors the others will fall out). It feels like I'm not referencing the correct projects/dlls. In the References for the project I have mscorlib and Script.Web. I've tried using the object browser find the classes (such as Behavior) in other namespaces but with no luck. I've added all of the .dlls from the ScriptSharp folder in Program Files but the namespaces still can't be found. Any help would be very much appreciated, Thanks, Hugh

    Read the article

  • Calculate time of method execution and send to WCF service async

    - by Tim
    I need to implement time calculation for repository methods in my asp .net mvc project classes. The problem is that i need to send time calculation data to WCF Service which is time consuming. I think about threads which can help to cal WCF service asynchronously. But I have very little experience with it. Do I need to create new thread each time or I can create a global thread, if so then how? I have something like that: StopWatch class public class StopWatch { private DateTime _startTime; private DateTime _endTime; public void Start() { _startTime = DateTime.Now; } protected void StopTimerAndWriteStatistics() { _endTime = DateTime.Now; TimeSpan timeResult = _endTime - _startTime; //WCF proxy object var reporting = AppServerUtility.GetProxy<IReporting>(); //Send data to server reporting.WriteStatistics(_startTime, _endTime, timeResult, "some information"); } public void Stop() { //Here is the thread I have question with var thread = new Thread(StopTimerAndWriteStatistics); thread.Start(); } } Using of StopWatch class in Repository public class SomeRepository { public List<ObjectInfo> List() { StopWatch sw = new StopWatch(); sw.Start(); //performing long time operation sw.Stop(); } } What am I doing wrong with threads?

    Read the article

  • Annotate over Multi-table Inheritance in Django

    - by user341584
    I have a base LoggedEvent model and a number of subclass models like follows: class LoggedEvent(models.Model): user = models.ForeignKey(User, blank=True, null=True) timestamp = models.DateTimeField(auto_now_add=True) class AuthEvent(LoggedEvent): good = models.BooleanField() username = models.CharField(max_length=12) class LDAPSearchEvent(LoggedEvent): type = models.CharField(max_length=12) query = models.CharField(max_length=24) class PRISearchEvent(LoggedEvent): type = models.CharField(max_length=12) query = models.CharField(max_length=24) Users generate these events as they do the related actions. I am attempting to generate a usage-report of how many of each event-type each user has caused in the last month. I am struggling with Django's ORM and while I am close I am running into a problem. Here is the query code: ef usage(request): # Calculate date range today = datetime.date.today() month_start = datetime.date(year=today.year, month=today.month - 1, day=1) month_end = datetime.date(year=today.year, month=today.month, day=1) - datetime.timedelta(days=1) # Search for how many LDAP events were generated per user, last month baseusage = User.objects.filter(loggedevent__timestamp__gte=month_start, loggedevent__timestamp__lte=month_end) ldapusage = baseusage.exclude(loggedevent__ldapsearchevent__id__lt=1).annotate(count=Count('loggedevent__pk')) authusage = baseusage.exclude(loggedevent__authevent__id__lt=1).annotate(count=Count('loggedevent__pk')) return render_to_response('usage.html', { 'ldapusage' : ldapusage, 'authusage' : authusage, }, context_instance=RequestContext(request)) Both ldapusage and authusage are both a list of users, each user annotated with a .count attribute which is supposed to represent how many particular events that user generated. However in both lists, the .count attributes are the same value. Infact the annotated 'count' is equal to how many events that user generated, regardless of type. So it would seem that my specific authusage = baseusage.exclude(loggedevent__authevent__id__lt=1) isn't excluding by subclass. I have tried id_lt=1, id_isnull=True, and others. Halp.

    Read the article

  • rails inverting to_xml and getting the original model

    - by djacobs7
    I did this: [User.first, User.last].to_xml and got this: <users type="array"> <user> <created-at type="datetime">2010-03-16T06:40:51Z</created-at> <id type="integer">3</id> <password-hash></password-hash> <salt></salt> <updated-at type="datetime">2010-03-16T06:40:51Z</updated-at> <username nil="true"></username> </user> <user> <created-at type="datetime">2010-03-23T03:58:15Z</created-at> <id type="integer">7</id> <password-hash></password-hash> <salt></salt> <tutorial-state nil="true"></tutorial-state> <updated-at type="datetime">2010-03-23T03:58:15Z</updated-at> <username nil="true"></username> </user> </users> How can I take that string of xml and invert it to get the original activerecord objects back?

    Read the article

  • Filtering documents against a dictionary key in MongoDB

    - by Thomas
    I have a collection of articles in MongoDB that has the following structure: { 'category': 'Legislature', 'updated': datetime.datetime(2010, 3, 19, 15, 32, 22, 107000), 'byline': None, 'tags': { 'party': ['Peter Hoekstra', 'Virg Bernero', 'Alma Smith', 'Mike Bouchard', 'Tom George', 'Rick Snyder'], 'geography': ['Michigan', 'United States', 'North America'] }, 'headline': '2 Mich. gubernatorial candidates speak to students', 'text': [ 'BEVERLY HILLS, Mich. (AP) \u2014 Two Democratic and Republican gubernatorial candidates found common ground while speaking to private school students in suburban Detroit', "Democratic House Speaker state Rep. Andy Dillon and Republican U.S. Rep. Pete Hoekstra said Friday a more business-friendly government can help reduce Michigan's nation-leading unemployment rate.", "The candidates were invited to Detroit Country Day Upper School in Beverly Hills to offer ideas for Michigan's future.", 'Besides Dillon, the Democratic field includes Lansing Mayor Virg Bernero and state Rep. Alma Wheeler Smith. Other Republicans running are Oakland County Sheriff Mike Bouchard, Attorney General Mike Cox, state Sen. Tom George and Ann Arbor business leader Rick Snyder.', 'Former Republican U.S. Rep. Joe Schwarz is considering running as an independent.' ], 'dateline': 'BEVERLY HILLS, Mich.', 'published': datetime.datetime(2010, 3, 19, 8, 0, 31), 'keywords': "Governor's Race", '_id': ObjectId('4ba39721e0e16cb25fadbb40'), 'article_id': 'urn:publicid:ap.org:0611e36fb084458aa620c0187999db7e', 'slug': "BC-MI--Governor's Race,2nd Ld-Writethr" } If I wanted to write a query that looked for all articles that had at least 1 geography tag, how would I do that? I have tried writing db.articles.find( {'tags': 'geography'} ), but that doesn't appear to work. I've also thought about changing the search parameter to 'tags.geography', but am having a devil of a time figuring out what the search predicate would be.

    Read the article

  • Parameterized Queries /Without/ using queries.

    - by Aren B
    I've got a bit of a poor situation here. I'm stuck working with commerce server, which doesn't do a whole lot of sanitization/parameterization. I'm trying to build up my queries to prevent SQL Injection, however some things like the searches / where clause on the search object need to be built up, and there's no parameterized interface. Basically, I cannot parameterize, however I was hoping to be able to use the same engine to BUILD my query text if possible. Is there a way to do this, aside from writing my own parameterizing engine which will probably still not be as good as parameterized queries? Update: Example The where clause has to be built up as a sql query where clause essentially: CatalogSearch search = /// Create Search object from commerce server search.WhereClause = string.Format("[cy_list_price] > {0} AND [Hide] is not NULL AND [DateOfIntroduction] BETWEEN '{1}' AND '{2}'", 12.99m, DateTime.Now.AddDays(-2), DateTime.Now); *Above Example is how you refine the search, however we've done some testing, this string is NOT SANITIZED. This is where my problem lies, because any of those inputs in the .Format could be user input, and while i can clean up my input from text-boxes easily, I'm going to miss edge cases, it's just the nature of things. I do not have the option here to use a parameterized query because Commerce Server has some insane backwards logic in how it handles the extensible set of fields (schema) & the free-text search words are pre-compiled somewhere. This means I cannot go directly to the sql tables What i'd /love/ to see is something along the lines of: SqlCommand cmd = new SqlCommand("[cy_list_price] > @MinPrice AND [DateOfIntroduction] BETWEEN @StartDate AND @EndDate"); cmd.Parameters.AddWithValue("@MinPrice", 12.99m); cmd.Parameters.AddWithValue("@StartDate", DateTime.Now.AddDays(-2)); cmd.Parameters.AddWithValue("@EndDate", DateTime.Now); CatalogSearch search = /// constructor search.WhereClause = cmd.ToSqlString();

    Read the article

  • Calling server side method as filling value inside a textbox from calendar extender

    - by Dharmendra Singh
    I have a text box which i m filling of date from the calendar extender and the code is as below:- <label for="input-one" class="float"><strong>Date</strong></label><br /> <asp:TextBox ID="txtDate" runat="server" CssClass="inp-text" Enabled="false" AutoPostBack="true" Width="300px" ontextchanged="txtDate_TextChanged"></asp:TextBox> <asp:ImageButton ID="btnDate2" runat="server" AlternateText="cal2" ImageUrl="~/App_Themes/Images/icon_calendar.jpg" style="margin-top:auto;" CausesValidation="false" onclick="btnDate2_Click" /> <ajaxToolkit:CalendarExtender ID="calExtender2" runat="server" Format="dddd, MMMM dd, yyyy" OnClientDateSelectionChanged="CheckDateEalier" PopupButtonID="btnDate2" TargetControlID="txtDate" /> <asp:RequiredFieldValidator ID="RequiredFieldValidator7" runat="server" ControlToValidate="txtDate" ErrorMessage="Select a Date" Font-Bold="True" Font-Size="X-Small" ForeColor="Red"></asp:RequiredFieldValidator><br /> Javascript code is :- function CheckDateEalier(sender, args) { sender._textbox.set_Value(sender._selectedDate.format(sender._format)) } My requirement is that as the date is entered in to the textbox, I want to call this method: public void TimeSpentDisplay() { string date = txtDate.Text.ToString(); DateTime dateparsed = DateTime.ParseExact(date, "dddd, MMMM dd, yyyy", null); DateTime currentDate = System.DateTime.Now; if (dateparsed.Date > currentDate.Date) { divtimeSpent.Visible = true; } if (dateparsed.Date < currentDate.Date) { divtimeSpent.Visible = true; } if (dateparsed.Date == currentDate.Date) { divtimeSpent.Visible = false; } } Please help me that how i achieve this as i m calling this method inside txtDate_TextChanged method but the event is not firing as the text is changed inside the textbox. Please suggest how I can achieve this or give me an alternate idea to fulfill my requirement.

    Read the article

  • Render label for a field inside ASP.NET MVC 2 editor templates

    - by artvolk
    I'm starting to use DataAnnotations in ASP.NET MVC and strongly typed template helpers. Now I have this in my views (Snippet is my custom type, Created is DateTime): <tr> <td><%= Html.LabelFor(f => Model.Snippet.Created) %>:</td> <td><%= Html.EditorFor(f => Model.Snippet.Created)%></td> </tr> The editor template for DateTime is like this: <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl<System.DateTime>" %> <%=Html.TextBox("", Model.ToString("g"))%> But now I want to put inside editor template the whole <tr>, so I'd like to have just this in my view: <%= Html.EditorFor(f => Model.Snippet.Created)%> And something like this in editor template, but I don't know how to render for for label attribute, it should be Snippet_Created for my example, the same as id\name for textbox, so pseudo code: <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl<System.DateTime>" %> <tr> <td><label for="<What to place here???>"><%=ViewData.ModelMetadata.DisplayName %></label></td> <td><%=Html.TextBox("", Model.ToString("g"))%></td> </tr> The Html.TextBox() have the first parameter empty and id\name for textbox is generated corectly. Thanks in advance!

    Read the article

  • Add fields to Django ModelForm that aren't in the model

    - by Cyclic
    I have a model that looks like: class MySchedule(models.Model): start_datetime=models.DateTimeField() name=models.CharField('Name',max_length=75) With it comes its ModelForm: class MyScheduleForm(forms.ModelForm): startdate=forms.DateField() starthour=forms.ChoiceField(choices=((6,"6am"),(7,"7am"),(8,"8am"),(9,"9am"),(10,"10am"),(11,"11am"), (12,"noon"),(13,"1pm"),(14,"2pm"),(15,"3pm"),(16,"4pm"),(17,"5pm"), (18,"6pm" startminute=forms.ChoiceField(choices=((0,":00"),(15,":15"),(30,":30"),(45,":45")))),(19,"7pm"),(20,"8pm"),(21,"9pm"),(22,"10pm"),(23,"11pm"))) class Meta: model=MySchedule def clean(self): starttime=time(int(self.cleaned_data.get('starthour')),int(self.cleaned_data.get('startminute'))) return self.cleaned_data try: self.instance.start_datetime=datetime.combine(self.cleaned_data.get("startdate"),starttime) except TypeError: raise forms.ValidationError("There's a problem with your start or end date") Basically, I'm trying to break the DateTime field in the model into 3 more easily usable form fields -- a date picker, an hour dropdown, and a minute dropdown. Then, once I've gotten the three inputs, I reassemble them into a DateTime and save it to the model. A few questions: 1) Is this totally the wrong way to go about doing it? I don't want to create fields in the model for hours, minutes, etc, since that's all basically just intermediary data, so I'd like a way to break the DateTime field into sub-fields. 2) The difficulty I'm running into is when the startdate field is blank -- it seems like it never gets checked for non-blankness, and just ends up throwing up a TypeError later when the program expects a date and gets None. Where does Django check for blank inputs, and raise the error that eventually goes back to the form? Is this my responsibility? If so, how do I do it, since it doesn't evaluate clean_startdate() since startdate isn't in the model. 3) Is there some better way to do this with inheritance? Perhaps inherit the MyScheduleForm in BetterScheduleForm and add the fields there? How would I do this? (I've been playing around with it for over an hours and can't seem to get it) Thanks! [Edit:] Left off the return self.cleaned_data -- lost it in the copy/paste originally

    Read the article

  • Rails: unable to set any attribute of child model

    - by Bryan Roth
    I'm having a problem instantiating a ListItem object with specified attributes. For some reason all attributes are set to nil even if I specify values. However, if I specify attributes for a List, they retain their values. Attributes for a List retain their values: >> list = List.new(:id => 20, :name => "Test List") => #<List id: 20, name: "Test List"> Attributes for a ListItem don't retain their values: >> list_item = ListItem.new(:id => 17, :list_id => 20, :name => "Test Item") => #<ListItem id: nil, list_id: nil, name: nil> UPDATE #1: I thought the id was the only attribute not retaining its value but realized that setting any attribute for a ListItem gets set to nil. list.rb: class List < ActiveRecord::Base has_many :list_items, :dependent => :destroy accepts_nested_attributes_for :list_items, :reject_if => lambda { |a| a[:name].blank? }, :allow_destroy => true end list_item.rb: class ListItem < ActiveRecord::Base belongs_to :list validates_presence_of :name end schema.rb ActiveRecord::Schema.define(:version => 20100506144717) do create_table "list_items", :force => true do |t| t.integer "list_id" t.string "name" t.datetime "created_at" t.datetime "updated_at" end create_table "lists", :force => true do |t| t.string "name" t.datetime "created_at" t.datetime "updated_at" end end

    Read the article

< Previous Page | 70 71 72 73 74 75 76 77 78 79 80 81  | Next Page >