Search Results

Search found 47971 results on 1919 pages for 'change control'.

Page 75/1919 | < Previous Page | 71 72 73 74 75 76 77 78 79 80 81 82  | Next Page >

  • How to change HTTP_REFERER using perl?

    - by zuqqhi2
    I tried to change log format and change HTTP_REFERER using perl to change browser's referrer like below. [pattern1] Log Format : %{HTTP_REFERER}o perl : $ENV{'HTTP_REFERER'} = "http://www.google.com"; [pattern2] Log Format : %{X-RT-REF}o perl : addHeader('X-RT-REF' => "http://www.google.com"); [pattern3] Log Format : %{HTTP_REFERER}e perl : $ENV{'HTTP_REFERER'} = "http://www.google.com"; but they didn't work. How can I do it? If you have any idea please teach me. Note that I just want to do this as a countermeasure for illegal access in my intra tool.

    Read the article

  • Can't change user security on folder - Business Objects XI 3.1

    - by Chris W
    I've got a single folder within the list of All Folders that I can't change any user permissions on. I'm logged in as an admin and when I view security for the folder it says I have full rights to the folder yet i can't change anything on it or it's sub folders even though it clearly shows me as having rights to "Modify the rights users have to objects". As a test I added a new sub-folder called Test which created ok but I'm not able to then delete the sub folder or change it's permissions either. Interestingly we changed permissions on one sub-folder last week without issue but when I check that folder today I now can't update it. Any ideas anyone?

    Read the article

  • Change Windows Server 2012 color scheme without Desktop Experience feature

    - by Fez Vrasta
    I have a Windows Server 2012, blue is nice... but I'd prefer a less "eyes puncher" color, maybe gray or black... I'm a GNU/Linux sysadmin and just the fact of have the entire GUI on a server is difficult for me, so I would avoid to install the Desktop Experience feature just to change the color of the GUI. I have read here: How to change color scheme in Windows Server 2012 That once I've changed color I may remove the Desktop Experience feature and the color will not be reverted to the original. So I guess there must be a way to change the color without install this feature pack, because looks like it just adds the control panel to set the color, but not the core feature, that maybe could be accessible within some registry key. Does someone have some idea?

    Read the article

  • Automator won't change finder item names of photoshop automation exports

    - by marty
    I made a folder action that monitors a folder and changes the name of anything put in it. Then I automate a photoshop action that exports images to the folder. for some reason I have to move the images out of the folder and then back in for it to change. is there a way to have it change the images as they're saved there? is this a bug or am i doing something wrong? it works fine if i just move the images in and out of the folder. and sometimes it will change just a couple of them, which makes me think it's just because they're coming in so fast that it glitches.

    Read the article

  • Bad Mumble control channel performance in KVM guest

    - by aef
    I'm running a Mumble server (Murmur) on a Debian Wheezy Beta 4 KVM guest which runs on a Debian Wheezy Beta 4 KVM hypervisor. The guest machines are attached to a bridge device on the hypervisor system through Virtio network interfaces. The Hypervisor is attached to a 100Mbit/s uplink and does IP-routing between the guest machines and the remaining Internet. In this setup we're experiencing a clearly recognizable lag between double-clicking a channel in the client and the channel joining action happening. This happens with a lot of different clients between 1.2.3 and 1.2.4 on Linux and Windows systems. Voice quality and latency seems to be completely unaffected by this. Most of the times the client's information dialog states a 16ms latency for both the voice and control channel. The deviation for the control channels mostly is a lot higher than the one of the voice channels. In some situations the control channel is displayed with a 100ms ping and about 1000 deviation. It seems the TCP performance is a problem here. We had no problems on an earlier setup which was in principle quite like the new one. We used Debian Lenny based Xen hypervisor and a soft-virtualised guest machine instead and an earlier version of the Mumble 1.2.3 series. The current murmurd --version says: 1.2.3-349-g315b5f5-2.1

    Read the article

  • How to change windows bootloader target folder

    - by ST3
    Here is described part of windows boot process. I would like to ask if there is a way to change boot folder, I mean to use something else instead of C:\WINDOWS. And of course that something else is a copy of Windows directory. It looks like bcdedit is good for that purpose but I'm not sure how to use that. That I want is to change path, which currently is \Windows\system32\winload.exe to \Windows Copy\system32\winload.exe Another thing I have found out is registry, HKLM\BCD00000000\Objects\{df90fe29-c40d-11e2-a7bb-92410b6e649d}\Elements\12000002::Element value is \Windows\system32\winload.exe so changing this also may be promising. But I'm not sure if I should change registry value and don't know how to use bcdedit, so any related help will be appreciated.

    Read the article

  • Quick change of SSH tunnel port forwarding options for SOCKS proxy

    - by user1335897
    The goal is to have access to internet thru SSH tunneling to SOCKS proxy. Me - ssh-on-my-vps - SOCKS proxy - internet Thing is I want to be able to quickly change the SOCKS proxy in this chain. If I use port forwarding on ssh, I assume I have to re-establish SSH tunnel with new SOCKS proxy address in parameters whenever I want to change proxy. Is that right? If it is, then I probably should always point SSH tunnel to localhost listening proxy server which will send requests to specified SOCKS proxy. So what local proxy I should choose that allows to easily change the destination SOCKS proxy via maybe reading from local file where I would put the SOCKS proxy address or via specifying new SOCKS address in its web-admin page?

    Read the article

  • Cache Control Headers with IIS 7.5

    - by Brad
    I'm trying to wrap my head around client side (web browser) caching and how it works in relation to IIS 7.5 cache control headers. In particular: If we want to force clients to reload cached resources, how must IIS be configured? Do we need to set expire web content immediately if the resources on the server have a more recent Modified Date (or ETag value)? Right now we're not setting any cache headers. So if I set a cache header of no-cache (which I think is the equivalent of expire web content immediately) will that force the web browser to obtain a new version of a particular file. Or will the browser only request a new version after it deems its current copy to be stale and then from that point forward not cache it? Would a best practice be to set a cache control flag of 1 week, then 8 days before I know I am going to make a change set the cache control down to for instance 30 minutes? But if I do that and then need to immediately expire an item from users caches because there was an issue with it how do I do that?

    Read the article

  • Windows screen resolution change: lengthen timeout

    - by Jonathan J
    Occasionally I need to change the screen resolution of the console of a Windows virtual machine using XenCenter. When you attempt this change, Windows will revert if you don't accept the changed resolution within 15 seconds of clicking 'apply.' (Normally, this is a good thing.) The problem is that if I have a slow connection between XenCenter and the Xen hypervisor, the virtual console display may not refresh quickly enough to allow me to respond within 15 seconds. As a result, I can't change the resolution, even though the new resolution is valid. Is there a way to increase the timeout before reverting to the original display resolution?

    Read the article

  • Can't change read only folder in windows 7

    - by James Drinkard
    I'm trying to run a Spring MVC 2.5 tutorial and when I run the ant script for a deploy, I get this error: deploy: [copy] Copying 2 files to C:\apache-tomcat-7.0.8\webapps\c:\projects\workspace\springapp BUILD FAILED C:\projects\workspace\springapp\build.xml:46: Failed to copy C:\projects\workspace\springapp\war\WEB-INF\web.xml to C:\apache-tomcat-7.0.8\webapps\c:\projects\workspace\springapp\WEB-INF\web.xml due to failed to create the parent directory for C:\apache-tomcat-7.0.8\webapps\c:\projects\workspace\springapp\WEB-INF\web.xml After reviewing the directory: springapp I saw the properties as read-only. No problem I thought as I'm logging in as administrator. However, changing the uac settings, going to a command prompt as admin and then trying to change the properties of the folder with attrib, making me the owner of the folder, changing the security settings etc... did nothing. I can't seem to change this folder to anything. So my question is, how do I change the settings on that folder so ANT can make changes to that folder?

    Read the article

  • Change ip route metric

    - by notphunny
    I'm constantly switching between eth0 and wlan0 interface on my archlinux because I often change OpenWrt fw images on my second router (which isn't connected anywhere). So I have problem with my routes when I'm connected to my wlan and want to connect with Ethernet to my router. Both routers are on 192.168.1.1/24 and after connecting to my Ethernet profile eth0 route becomes default one (which is ok for the time), because of smaller metric I guess. So I'm interested, how can I change routes metric so my applications can be connected to the internet (through out wlan)? Maybe there is solution not to use Default Gateway on Ethernet profile, however I still want to know how to change metric. Or default route if there are more then one.

    Read the article

  • How to change the download save directory in ktorrent from a remote host

    - by Garethj94
    So I have ktorrent running on a server and I don't have the ability to see the X11 display for the client, and I need to change my download directory since I like to keep everything very organized. So I need a way to change the download directory for the program as a whole, not like decide where to put each and every torrent that I download. This can't be done through the webui preferences so I'm guessing that I'll have to do it through ssh somehow but from what I've read there really isn't a command to use. Also the way that I have the application run is on startup my server runs the command ktorrent, so it will already be running when I want to change the download location so I assume that I will have to restart the program as well. If anyone knows how to do this it would be much appreciated, and I can't think that I'm the only person to want this feature.

    Read the article

  • How to convert excel individual cell values to percentage change values over time

    - by cgalloway
    I have two years of excel data showing daily share prices of a particular stock. I want to change those values to show percentage change (on a daily basis) from the zero date (ie the first day of the two year period). I know that the formula for showing daily percentage change would be (second day/first day -1) and that I can click and drag on that formula to extend over the rest of the two-year time period. The formula I want would be, basically, (each day/first day-1). Is there an easy way to automate the script so I dont have to type it out 730 times?

    Read the article

  • Change domain password from non-domain computer (AD)

    - by Josh
    I have a domain controller on Windows Server 2008. When I set up my users, I gave them all a dummy password with the "must change on next login" checked. Everyone's machine is all on the same network as the domain controller, but we are not forcing them to join their computers to the domain. The DC has a website which requires the use of domain accounts to access it. How do I tell my users to change their domain passwords without connecting their PC to the domain or making them log in to a machine on the domain? I do not want anything I will have to install on each client to allow them to change their passwords (I have a password expiration policy). Most of these workstations are XP.

    Read the article

  • How iptables behaves on timezone change?

    - by pradipta
    I have doubt how iptables keep changing the info in iptables when timezone is change. I am using iptables s v 1.4.8 I have blocked one IP with following details # date Thu Jun 6 12:46:42 IST 2013 #iptables -A INPUT -s 10.0.3.128 -m time --datestart 2013-6-6T12:0:00 --datestop 2013-6-6T13:0:00 -j DROP # iptables -L Chain INPUT (policy ACCEPT) target prot opt source destination DROP all -- 10.0.3.128 anywhere TIME starting from 2013-06-06 12:00:00 until date 2013-06-06 13:00:00 Chain FORWARD (policy ACCEPT) target prot opt source destination Chain OUTPUT (policy ACCEPT) target prot opt source destination But after I change the timezone following things happened automatically . AFTER TIME ZONE CHANGE +++++++++++++++++++++++ #date Thu Jun 6 15:17:48 HKT 2013 # iptables -L Chain INPUT (policy ACCEPT) target prot opt source destination DROP all -- 10.0.3.128 anywhere TIME starting from 2013-06-06 14:30:00 until date 2013-06-06 15:30:00 Chain FORWARD (policy ACCEPT) target prot opt source destination Chain OUTPUT (policy ACCEPT) target prot opt source destination # The time value is changed in the rule . It is changing with the timezone how. Where iptables keeps track of timezone. Kindly explain me.

    Read the article

  • Change Exchange Server Name Before Upgrade

    - by ffrugone
    I need to upgrade the Exchange Server from 2003 to 2010. I'm physically changing servers as well as software. I'm worried about redirecting the Outlook clients after the upgrade is going to be troublesome. So, I thought that before doing anything else, that I would change the name of the Exchange server on the client from 'server-name.domain.com' to 'mail.domain.com' and add an entry in dns that points 'mail.domain.com' to the same ip as 'server-name.domain.com'. However, even though I added 'mail.domain.com' to the dns, I cannot get the Exchange server to change to that on the client computers. I found out that the Outlook clients check the Global Catalog for the name of the Exchange server computer. My question is: can I change the Global Catalog address of the Exchange computer from 'server-name.domain.com' to 'mail.domain.com'? If so/not, is there a better way to do this? thanks.

    Read the article

  • How to programmatically change iPhone settings

    - by Felics
    Hello, It is possible to change iPhone settings from an application? I want to change settings like enable/disable WIFI, enable/disable vibrations, change ring tone, enable/disable bluetooth, call forwarding, mail accounts, etc. I want to be able to change all settings programmatically. I would appreciate some sample code. Thanks for any help.

    Read the article

  • Change width of UIImageView

    - by BenMills
    How would you change just the width of a UIImageView in objective-c? Currently I'm doing this: imageview.frame = GCRectMake(x,y,width,height); But when I change the width it seems to just change the position rather then change the size.

    Read the article

  • Change executable properties (product name) with c#

    - by ase69s
    I have a c# proyect that I need to change its product name upon compiling. I used the prebuild event to change it in the AssemblyInfo.cs but a few times visual studio doesnt get this change and compiles it with the previous product name. So i prefer to change it after compiling from another executable (all in c#)

    Read the article

  • Using a service registry that doesn’t suck part II: Dear registry, do you have to be a message broker?

    - by gsusx
    Continuing our series of posts about service registry patterns that suck, we decided to address one of the most common techniques that Service Oriented (SOA) governance tools use to enforce policies. Scenario Service registries and repositories serve typically as a mechanism for storing service policies that model behaviors such as security, trust, reliable messaging, SLAs, etc. This makes perfect sense given that SOA governance registries were conceived as a mechanism to store and manage the policies...(read more)

    Read the article

  • Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design

    - by SeanMcAlinden
    Creating a dynamic proxy generator – Part 1 – Creating the Assembly builder, Module builder and caching mechanism For the latest code go to http://rapidioc.codeplex.com/ Before getting too involved in generating the proxy, I thought it would be worth while going through the intended design, this is important as the next step is to start creating the constructors for the proxy. Each proxy derives from a specified type The proxy has a corresponding constructor for each of the base type constructors The proxy has overrides for all methods and properties marked as Virtual on the base type For each overridden method, there is also a private method whose sole job is to call the base method. For each overridden method, a delegate is created whose sole job is to call the private method that calls the base method. The following class diagram shows the main classes and interfaces involved in the interception process. I’ll go through each of them to explain their place in the overall proxy.   IProxy Interface The proxy implements the IProxy interface for the sole purpose of adding custom interceptors. This allows the created proxy interface to be cast as an IProxy and then simply add Interceptors by calling it’s AddInterceptor method. This is done internally within the proxy building process so the consumer of the API doesn’t need knowledge of this. IInterceptor Interface The IInterceptor interface has one method: Handle. The handle method accepts a IMethodInvocation parameter which contains methods and data for handling method interception. Multiple classes that implement this interface can be added to the proxy. Each method override in the proxy calls the handle method rather than simply calling the base method. How the proxy fully works will be explained in the next section MethodInvocation. IMethodInvocation Interface & MethodInvocation class The MethodInvocation will contain one main method and multiple helper properties. Continue Method The method Continue() has two functions hidden away from the consumer. When Continue is called, if there are multiple Interceptors, the next Interceptors Handle method is called. If all Interceptors Handle methods have been called, the Continue method then calls the base class method. Properties The MethodInvocation will contain multiple helper properties including at least the following: Method Name (Read Only) Method Arguments (Read and Write) Method Argument Types (Read Only) Method Result (Read and Write) – this property remains null if the method return type is void Target Object (Read Only) Return Type (Read Only) DefaultInterceptor class The DefaultInterceptor class is a simple class that implements the IInterceptor interface. Here is the code: DefaultInterceptor namespace Rapid.DynamicProxy.Interception {     /// <summary>     /// Default interceptor for the proxy.     /// </summary>     /// <typeparam name="TBase">The base type.</typeparam>     public class DefaultInterceptor<TBase> : IInterceptor<TBase> where TBase : class     {         /// <summary>         /// Handles the specified method invocation.         /// </summary>         /// <param name="methodInvocation">The method invocation.</param>         public void Handle(IMethodInvocation<TBase> methodInvocation)         {             methodInvocation.Continue();         }     } } This is automatically created in the proxy and is the first interceptor that each method override calls. It’s sole function is to ensure that if no interceptors have been added, the base method is still called. Custom Interceptor Example A consumer of the Rapid.DynamicProxy API could create an interceptor for logging when the FirstName property of the User class is set. Just for illustration, I have also wrapped a transaction around the methodInvocation.Coninue() method. This means that any overriden methods within the user class will run within a transaction scope. MyInterceptor public class MyInterceptor : IInterceptor<User<int, IRepository>> {     public void Handle(IMethodInvocation<User<int, IRepository>> methodInvocation)     {         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name seting to: " + methodInvocation.Arguments[0]);         }         using (TransactionScope scope = new TransactionScope())         {             methodInvocation.Continue();         }         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name has been set to: " + methodInvocation.Arguments[0]);         }     } } Overridden Method Example To show a taster of what the overridden methods on the proxy would look like, the setter method for the property FirstName used in the above example would look something similar to the following (this is not real code but will look similar): set_FirstName public override void set_FirstName(string value) {     set_FirstNameBaseMethodDelegate callBase =         new set_FirstNameBaseMethodDelegate(this.set_FirstNameProxyGetBaseMethod);     object[] arguments = new object[] { value };     IMethodInvocation<User<IRepository>> methodInvocation =         new MethodInvocation<User<IRepository>>(this, callBase, "set_FirstName", arguments, interceptors);          this.Interceptors[0].Handle(methodInvocation); } As you can see, a delegate instance is created which calls to a private method on the class, the private method calls the base method and would look like the following: calls base setter private void set_FirstNameProxyGetBaseMethod(string value) {     base.set_FirstName(value); } The delegate is invoked when methodInvocation.Continue() is called within an interceptor. The set_FirstName parameters are loaded into an object array. The current instance, delegate, method name and method arguments are passed into the methodInvocation constructor (there will be more data not illustrated here passed in when created including method info, return types, argument types etc.) The DefaultInterceptor’s Handle method is called with the methodInvocation instance as it’s parameter. Obviously methods can have return values, ref and out parameters etc. in these cases the generated method override body will be slightly different from above. I’ll go into more detail on these aspects as we build them. Conclusion I hope this has been useful, I can’t guarantee that the proxy will look exactly like the above, but at the moment, this is pretty much what I intend to do. Always worth downloading the code at http://rapidioc.codeplex.com/ to see the latest. There will also be some tests that you can debug through to help see what’s going on. Cheers, Sean.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 4 – Calling the base method

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors   The plan for calling the base methods from the proxy is to create a private method for each overridden proxy method, this will allow the proxy to use a delegate to simply invoke the private method when required. Quite a few helper classes have been created to make this possible so as usual I would suggest download or viewing the code at http://rapidioc.codeplex.com/. In this post I’m just going to cover the main points for when creating methods. Getting the methods to override The first two notable methods are for getting the methods. private static MethodInfo[] GetMethodsToOverride<TBase>() where TBase : class {     return typeof(TBase).GetMethods().Where(x =>         !methodsToIgnore.Contains(x.Name) &&                              (x.Attributes & MethodAttributes.Final) == 0)         .ToArray(); } private static StringCollection GetMethodsToIgnore() {     return new StringCollection()     {         "ToString",         "GetHashCode",         "Equals",         "GetType"     }; } The GetMethodsToIgnore method string collection contains an array of methods that I don’t want to override. In the GetMethodsToOverride method, you’ll notice a binary AND which is basically saying not to include any methods marked final i.e. not virtual. Creating the MethodInfo for calling the base method This method should hopefully be fairly easy to follow, it’s only function is to create a MethodInfo which points to the correct base method, and with the correct parameters. private static MethodInfo CreateCallBaseMethodInfo<TBase>(MethodInfo method) where TBase : class {     Type[] baseMethodParameterTypes = ParameterHelper.GetParameterTypes(method, method.GetParameters());       return typeof(TBase).GetMethod(        method.Name,        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        baseMethodParameterTypes,        null     ); }   /// <summary> /// Get the parameter types. /// </summary> /// <param name="method">The method.</param> /// <param name="parameters">The parameters.</param> public static Type[] GetParameterTypes(MethodInfo method, ParameterInfo[] parameters) {     Type[] parameterTypesList = Type.EmptyTypes;       if (parameters.Length > 0)     {         parameterTypesList = CreateParametersList(parameters);     }     return parameterTypesList; }   Creating the new private methods for calling the base method The following method outline how I’ve created the private methods for calling the base class method. private static MethodBuilder CreateCallBaseMethodBuilder(TypeBuilder typeBuilder, MethodInfo method) {     string callBaseSuffix = "GetBaseMethod";       if (method.IsGenericMethod || method.IsGenericMethodDefinition)     {                         return MethodHelper.SetUpGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     }     else     {         return MethodHelper.SetupNonGenericMethod             (                 typeBuilder,                 method,                 method.Name + callBaseSuffix,                 MethodAttributes.Private | MethodAttributes.HideBySig             );     } } The CreateCallBaseMethodBuilder is the entry point method for creating the call base method. I’ve added a suffix to the base classes method name to keep it unique. Non Generic Methods Creating a non generic method is fairly simple public static MethodBuilder SetupNonGenericMethod(     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       Type returnType = method.ReturnType;       MethodBuilder methodBuilder = CreateMethodBuilder         (             typeBuilder,             method,             methodName,             methodAttributes,             parameterTypes,             returnType         );       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static MethodBuilder CreateMethodBuilder (     TypeBuilder typeBuilder,     MethodInfo method,     string methodName,     MethodAttributes methodAttributes,     Type[] parameterTypes,     Type returnType ) { MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, methodAttributes, returnType, parameterTypes); return methodBuilder; } As you can see, you simply have to declare a method builder, get the parameter types, and set the method attributes you want.   Generic Methods Creating generic methods takes a little bit more work. /// <summary> /// Sets up generic method. /// </summary> /// <param name="typeBuilder">The type builder.</param> /// <param name="method">The method.</param> /// <param name="methodName">Name of the method.</param> /// <param name="methodAttributes">The method attributes.</param> public static MethodBuilder SetUpGenericMethod     (         TypeBuilder typeBuilder,         MethodInfo method,         string methodName,         MethodAttributes methodAttributes     ) {     ParameterInfo[] parameters = method.GetParameters();       Type[] parameterTypes = ParameterHelper.GetParameterTypes(method, parameters);       MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName,         methodAttributes);       Type[] genericArguments = method.GetGenericArguments();       GenericTypeParameterBuilder[] genericTypeParameters =         GetGenericTypeParameters(methodBuilder, genericArguments);       ParameterHelper.SetUpParameterConstraints(parameterTypes, genericTypeParameters);       SetUpReturnType(method, methodBuilder, genericTypeParameters);       if (method.IsGenericMethod)     {         methodBuilder.MakeGenericMethod(genericArguments);     }       ParameterHelper.SetUpParameters(parameterTypes, parameters, methodBuilder);       return methodBuilder; }   private static GenericTypeParameterBuilder[] GetGenericTypeParameters     (         MethodBuilder methodBuilder,         Type[] genericArguments     ) {     return methodBuilder.DefineGenericParameters(GenericsHelper.GetArgumentNames(genericArguments)); }   private static void SetUpReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.IsGenericMethodDefinition)     {         SetUpGenericDefinitionReturnType(method, methodBuilder, genericTypeParameters);     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     } }   private static void SetUpGenericDefinitionReturnType(MethodInfo method, MethodBuilder methodBuilder, GenericTypeParameterBuilder[] genericTypeParameters) {     if (method.ReturnType == null)     {         methodBuilder.SetReturnType(typeof(void));     }     else if (method.ReturnType.IsGenericType)     {         methodBuilder.SetReturnType(genericTypeParameters.Where             (x => x.Name == method.ReturnType.Name).First());     }     else     {         methodBuilder.SetReturnType(method.ReturnType);     }             } Ok, there are a few helper methods missing, basically there is way to much code to put in this post, take a look at the code at http://rapidioc.codeplex.com/ to follow it through completely. Basically though, when dealing with generics there is extra work to do in terms of getting the generic argument types setting up any generic parameter constraints setting up the return type setting up the method as a generic All of the information is easy to get via reflection from the MethodInfo.   Emitting the new private method Emitting the new private method is relatively simple as it’s only function is calling the base method and returning a result if the return type is not void. ILGenerator il = privateMethodBuilder.GetILGenerator();   EmitCallBaseMethod(method, callBaseMethod, il);   private static void EmitCallBaseMethod(MethodInfo method, MethodInfo callBaseMethod, ILGenerator il) {     int privateParameterCount = method.GetParameters().Length;       il.Emit(OpCodes.Ldarg_0);       if (privateParameterCount > 0)     {         for (int arg = 0; arg < privateParameterCount; arg++)         {             il.Emit(OpCodes.Ldarg_S, arg + 1);         }     }       il.Emit(OpCodes.Call, callBaseMethod);       il.Emit(OpCodes.Ret); } So in the main method building method, an ILGenerator is created from the method builder. The ILGenerator performs the following actions: Load the class (this) onto the stack using the hidden argument Ldarg_0. Create an argument on the stack for each of the method parameters (starting at 1 because 0 is the hidden argument) Call the base method using the Opcodes.Call code and the MethodInfo we created earlier. Call return on the method   Conclusion Now we have the private methods prepared for calling the base method, we have reached the last of the relatively easy part of the proxy building. Hopefully, it hasn’t been too hard to follow so far, there is a lot of code so I haven’t been able to post it all so please check it out at http://rapidioc.codeplex.com/. The next section should be up fairly soon, it’s going to cover creating the delegates for calling the private methods created in this post.   Kind Regards, Sean.

    Read the article

  • add_shown & add_hiding ModalPopupExtender Events

    - by Yousef_Jadallah
        In this topic, I’ll discuss the Client events we usually need while using ModalPopupExtender. The add_shown fires when the ModalPopupExtender had shown and add_hiding fires when the user cancels it by CancelControlID,note that it fires before hiding the modal. They are useful in many cases, for example may you need to set focus to specific Textbox when the user display the modal, or if you need to reset the controls values inside the Modal after it has been hidden. To declare Client event either in pageLoad javascript function or you can attach the function by Sys.Application.add_load like this: Sys.Application.add_load(modalInit); function modalInit() { var modalPopup = $find('mpeID'); modalPopup.add_hiding(onHiding); } function onHiding(sender, args) { } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   I’ll use the first way in the current example. So lets start with the illustration:   1- In this example am using simple panel which contain UserName and Password Textboxes besides submit and cancel buttons, this Panel will be used as PopupControlID in the ModalPopupExtender : <asp:Panel ID="panModal" runat="server" Height="180px" Width="300px" style="display:none" CssClass="ModalWindow"> <table width="100%" > <tr> <td> User Name </td> <td> <asp:TextBox ID="txtName" runat="server"></asp:TextBox> </td> </tr> <tr> <td> Password </td> <td> <asp:TextBox ID="txtPassword" runat="server" TextMode="Password"></asp:TextBox> </td> </tr> </table> <br /> <asp:Button ID="btnSubmit" runat="server" Text="Submit" /> <asp:Button ID="btnCancel" runat="server" Text="Cancel" /> </asp:Panel>   You can use this simple style for the Panel : <style type="text/css"> .ModalWindow { border: solid; border-width:3px; background:#f0f0f0; } </style> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   2- Create the view button (TargetControlID) as you know this contain the ID of the element that activates the modal popup: <asp:Button ID="btnView" runat="server" Text="View" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   3-Add the ModalPopupExtender ,moreover don’t forget to add the ScriptManager: <asp:ScriptManager ID="ScriptManager1" runat="server"/> <cc1:ModalPopupExtender ID="ModalPopupExtender1" runat="server" TargetControlID="btnView" PopupControlID="panModal" CancelControlID="btnCancel"/> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }     4-In the pageLoad javascript function inside add_shown event set the focus on the txtName , and inside add_hiding reset the two Textboxes. <script language="javascript" type="text/javascript"> function pageLoad() { $find('ModalPopupExtender1').add_shown(function() { alert('add_shown event fires'); $get('<%=txtName.ClientID%>').focus();   });   $find('ModalPopupExtender1').add_hiding(function() { alert('add_hiding event fires'); $get('<%=txtName.ClientID%>').value = ""; $get('<%=txtPassword.ClientID%>').value = "";   }); }   </script> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   I’ve added the two alerts just to let you show when the event fires.   Hope this simple example show you the benefit and how to use these events.

    Read the article

  • ASP.NET AJAX Microsoft tutorial

    - by Yousef_Jadallah
    Many people asking about the previous link of ASP.NET AJAX 1.0 documentation that started with  http://www.asp.net/ajax/documentation/live which support .NET 2. Actually, this link has been removed but instead you can visit  http://msdn.microsoft.com/en-us/library/bb398874.aspx which illustrate the version that Supported for .NET  4, 3.5 . Hope this help.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

< Previous Page | 71 72 73 74 75 76 77 78 79 80 81 82  | Next Page >