Search Results

Search found 11306 results on 453 pages for 'methods'.

Page 75/453 | < Previous Page | 71 72 73 74 75 76 77 78 79 80 81 82  | Next Page >

  • what is the best practice approach for n-tier application development with entity framework?

    - by samsur
    I am building an application using entity framework. I am using the T4 template to generate self tracking entities. Currently, I am thinking of creating the entity framework code in a separate project. In this same project, I would have partial classes with additional methods for the entities. I am thinking of creating a separate project for a service layer (WCF) with methods for the upper/presentation tier. The WCF layer will reference the entity framework project. The methods in the WCF layer will return the entities or accept the entities as the parameters. I am thinkg of creating a third project for the presentation layer (ASP.net), this will make calls to the WCF service but will also need to reference the entities as the WCF methods take these types as the parameters/return types. In short, i want to use the STE entities generated by the T4 template as a DTO to be used in all layers. I was originally thinking of creating a business logic layer that maps to each entities. Example: If i have a customer class, the Business Layer would have a CustomerBLL class and then methods in the customerBLL will be used by the service layer. I was also trying to create a DTO in this business layer. I however found that this approach is very time consuming and i do not see a major benefit as it would create more maintenance work. What is the best practice for n-tier application development using entity framework 4?

    Read the article

  • JUnit 4 test suite problems

    - by Hypnus
    Hi, i have a problem with some JUnit 4 tests that i run with a test suite. If i run the tests individually they work with no problems but when run in a suite most of them, 90% of the test methods, fail with errors. What i noticed is that always the first tests works fine but the rest are failing. Another thing is that a few of the tests the methods are not executed in the right order (the reflection does not work as aspected - or it does because the retrieval of the methods is not necessarily in the created order). This usually happens if there is more than one test with methods that have the same name. I tried to debug some of the tests and it seems that from a line to the next the value of some attributes gets null. Does anyone know what is the problem, or if the behavior is "normal"? Thanks in advance.

    Read the article

  • REST WCF service locks thread when called using AJAX in an ASP.Net site

    - by Jupaol
    I have a WCF REST service consumed in an ASP.Net site, from a page, using AJAX. I want to be able to call methods from my service async, which means I will have callback handlers in my javascript code and when the methods finish, the output will be updated. The methods should run in different threads, because each method will take different time to complete their task I have the code semi-working, but something strange is happening because the first time I execute the code after compiling, it works, running each call in a different threads but subsequent calls blocs the service, in such a way that each method call has to wait until the last call ends in order to execute the next one. And they are running on the same thread. I have had the same problem before when I was using Page Methods, and I solved it by disabling the session in the page but I have not figured it out how to do the same when consuming WCF REST services Note: Methods complete time (running them async should take only 7 sec and the result should be: Execute1 - Execute3 - Execute2) Execute1 -- 2 sec Execute2 -- 7 sec Execute3 -- 4 sec Output After compiling Output subsequent calls (this is the problem) I will post the code...I'll try to simplify it as much as I can Service Contract [ServiceContract( SessionMode = SessionMode.NotAllowed )] public interface IMyService { // I have other 3 methods like these: Execute2 and Execute3 [OperationContract] [WebInvoke( RequestFormat = WebMessageFormat.Json, ResponseFormat = WebMessageFormat.Json, UriTemplate = "/Execute1", Method = "POST")] string Execute1(string param); } [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] [ServiceBehavior( InstanceContextMode = InstanceContextMode.PerCall )] public class MyService : IMyService { // I have other 3 methods like these: Execute2 (7 sec) and Execute3(4 sec) public string Execute1(string param) { var t = Observable.Start(() => Thread.Sleep(2000), Scheduler.NewThread); t.First(); return string.Format("Execute1 on: {0} count: {1} at: {2} thread: {3}", param, "0", DateTime.Now.ToString(), Thread.CurrentThread.ManagedThreadId.ToString()); } } ASPX page <%@ Page EnableSessionState="False" Title="Home Page" Language="C#" MasterPageFile="~/Site.master" AutoEventWireup="true" CodeBehind="Default.aspx.cs" Inherits="RestService._Default" %> <asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent"> <script type="text/javascript"> function callMethodAsync(url, data) { $("#message").append("<br/>" + new Date()); $.ajax({ cache: false, type: "POST", async: true, url: url, data: '"de"', contentType: "application/json", dataType: "json", success: function (msg) { $("#message").append("<br/>&nbsp;&nbsp;&nbsp;" + msg); }, error: function (xhr) { alert(xhr.responseText); } }); } $(function () { $("#callMany").click(function () { $("#message").html(""); callMethodAsync("/Execute1", "hello"); callMethodAsync("/Execute2", "crazy"); callMethodAsync("/Execute3", "world"); }); }); </script> </asp:Content> <asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent"> <input type="button" id="callMany" value="Post Many" /> <div id="message"> </div> </asp:Content> Web.config (relevant) <system.webServer> <modules runAllManagedModulesForAllRequests="true" /> </system.webServer> <system.serviceModel> <serviceHostingEnvironment aspNetCompatibilityEnabled="true" multipleSiteBindingsEnabled="true" /> <standardEndpoints> <webHttpEndpoint> <standardEndpoint name="" helpEnabled="true" automaticFormatSelectionEnabled="true" /> </webHttpEndpoint> </standardEndpoints> </system.serviceModel> Global.asax void Application_Start(object sender, EventArgs e) { RouteTable.Routes.Ignore("{resource}.axd/{*pathInfo}"); RouteTable.Routes.Add(new ServiceRoute("", new WebServiceHostFactory(), typeof(MyService))); }

    Read the article

  • Problem creating a webpage in OOP pattern?

    - by Starx
    I want to develop a website in OOP pattern, but I am stuck in a point whether I need to inherit from multiple classes. For example I have a main class "index" this class has several methods which need to inherited from other classes and I have created seperate classes for it like class "banner", class "content", class "footer" Not only this but class "content" has several methods to be inherited from other classes like class "gallery", class "news", etc I found out that multiple inheritance is not allowed, and using interface I cannot write codes in its methods, so how can i achieve a solution for this problem.

    Read the article

  • RESTful Http DELETE method in .NET

    - by VIBA
    I am new to web services. I am dealing with testing APIs in my project. In the previous version the company used GET and POST methods but not PUT and DELETE methods. I need help for the HTTP DELETE method. I have browsed various websites where I found the example code snippets for GET and POST methods, but not for DELETE and PUT methods (why?). Can anyone give me an example code snippet (C#) for RESTful HTTP DELETE method and explain how to call the DELETE request?

    Read the article

  • Is this a reasonable way to handle getters/setters in a PHP class?

    - by Mark Biek
    I'm going to try something with the format of this question and I'm very open to suggestions about a better way to handle it. I didn't want to just dump a bunch of code in the question so I've posted the code for the class on refactormycode. base-class-for-easy-class-property-handling My thought was that people can either post code snippets here or make changes on refactormycode and post links back to their refactorings. I'll make upvotes and accept an answer (assuming there's a clear "winner") based on that. At any rate, on to the class itself: I see a lot of debate about getter/setter class methods and is it better to just access simple property variables directly or should every class have explicit get/set methods defined, blah blah blah. I like the idea of having explicit methods in case you have to add more logic later. Then you don't have to modify any code that uses the class. However I hate having a million functions that look like this: public function getFirstName() { return $this->firstName; } public function setFirstName($firstName) { return $this->firstName; } Now I'm sure I'm not the first person to do this (I'm hoping that there's a better way of doing it that someone can suggest to me). Basically, the PropertyHandler class has a __call magic method. Any methods that come through __call that start with "get" or "set" are then routed to functions that set or retrieve values into an associative array. The key into the array is the name of the calling method after get or set. So, if the method coming into __call is "getFirstName", the array key is "FirstName". I liked using __call because it will automatically take care of the case where the subclass already has a "getFirstName" method defined. My impression (and I may be wrong) is that the __get & __set magic methods don't do that. So here's an example of how it would work: class PropTest extends PropertyHandler { public function __construct() { parent::__construct(); } } $props = new PropTest(); $props->setFirstName("Mark"); echo $props->getFirstName(); Notice that PropTest doesn't actually have "setFirstName" or "getFirstName" methods and neither does PropertyHandler. All that's doing is manipulating array values. The other case would be where your subclass is already extending something else. Since you can't have true multiple inheritance in PHP, you can make your subclass have a PropertyHandler instance as a private variable. You have to add one more function but then things behave in exactly the same way. class PropTest2 { private $props; public function __construct() { $this->props = new PropertyHandler(); } public function __call($method, $arguments) { return $this->props->__call($method, $arguments); } } $props2 = new PropTest2(); $props2->setFirstName('Mark'); echo $props2->getFirstName(); Notice how the subclass has a __call method that just passes everything along to the PropertyHandler __call method. Another good argument against handling getters and setters this way is that it makes it really hard to document. In fact, it's basically impossible to use any sort of document generation tool since the explicit methods to be don't documented don't exist. I've pretty much abandoned this approach for now. It was an interesting learning exercise but I think it sacrifices too much clarity.

    Read the article

  • Inheritance question / problem

    - by Itsik
    I'm creating a custom Layout for android. The layout implementation is exactly the same, but once I need to extend from RelativeLayout, and once from LinearLayout. class Layout1 extends LinearLayout { // methods and fields } class Layout2 extends RelativeLayout { // the same EXACT methods and fields } How can I use inheritance to avoid DRY and implement my methods once.

    Read the article

  • Java how does Key Event Handling Mechanism(KeyListeners notified) work ?

    - by Carbonizer
    How does application/JVM know which classes if implemented key handling interfaces ? Does it use java Reflections or does it check all the classes for methods ? How can a application or executing JVM understanding to deliver the user event or call the specific methods on a class that implemented the keylistener interface. Does it look at all the classes if those methods are implemented or how does it know which classes implmented keylistener interface ? If you dont implement the keylistener Interface for a class but still implmentation all its methods. Do the class still process the user event occurred ?

    Read the article

  • Mandatory method documentation

    - by Sjoerd
    On my previous job, providing all methods with javadoc was mandatory, which resulted in things like this: /** * Sets the Frobber. * * @param frobber The frobber */ public setFrobber(Frobber frobber) { ... } As you can see, the documentation adds little to the code, but takes up space and work. Should documenting all methods be mandatory or optional? Is there a rule for which methods to document? What are pros and cons of requiring every method to be documented?

    Read the article

  • Java: Using Dynamically loaded classes

    - by Snigger
    Hi I'm new to java. I'm trying to use some dynamically loaded classes in my application. The application doesn't know classes , Just it try to load a class by name that its name came from input. It doesn't know class (So I can't use casting) but just needs to call some methods of that class (every class should have that methods). I thought about interfaces but I don't know how. How can I call those methods? Thanks

    Read the article

  • Circular reference while setting up bidirectional communication line between two remote objects

    - by mphair
    I'm using .Net remoting to set up a bidirectional communication line between two objects. The basic structure is as follows: Instances of RemoteObjectA call methods on StaticObjectA. Instances of RemoteObjectB call methods on StaticObjectB. StaticObjectA needs to be able to call methods provided by RemoteObjectB. StaticObjectB needs to be able to call methods provided by RemoteObjectA. The problem with this setup is the circular reference in RemoteObjectA gets StaticObjectA gets RemoteObjectB gets StaticObjectB gets RemoteObjectA... I implemented an interface IRemoteObjectA and IRemoteObjectB and had the remote objects inheret from their respective interfaces, but then setting up the remoting fails. If the solution to this problem is: "don't use remoting", I can deal with that. Just wanted to make sure I wasn't missing a simple solution.

    Read the article

  • When not to use a private field

    - by coffeeaddict
    When should it be considered dangerous to use a private field all over the place in the methods of your class? I mostly just create the variable and set it to a default value like null. Then in my methods reference it and set it to an instance of that object type from the methods. I don't know if my question makes sense but let me know if it doesn't and I'll clarify.

    Read the article

  • OOP + MVC advice on Member Controller

    - by dan727
    Hi, I am trying to follow good practices as much as possible while I'm learning using OOP in an MVC structure, so i'm turning to you guys for a bit of advice on something which is bothering me a little here. I am writing a site where I will have a number of different forms for members to fill in (mainly data about themselves), so i've decided to set up a Member controller where all of the forms relating to the member are represented as individual methods. This includes login/logout methods, as well as editing profile data etc. In addition to these methods, i also have a method to generate the member's control panel widget, which is a constant on every page on the site while the member is logged in. The only thing is, all of the other methods in this controller all have the same dependencies and form templates, so it would be great to generate all this in the constructor, but as the control_panel method does not have the same dependencies etc, I cannot use the constructor for this purpose, and instead I have to redeclare the dependencies and same template snippets in each method. This obviously isn't ideal and doesn't follow DRY principle, but I'm wondering what I should do with the control_panel method, as it is related to the member and that's why I put it in that controller in the first place. Am I just over-complicating things here and does it make sense to just move the control_panel method into a simple helper class? Here are the basic methods of the controller: class Member_Controller extends Website_Controller { public function __construct() { parent::__construct(); if (request::is_ajax()) { $this->auto_render = FALSE; // disable auto render } } public static function control_panel() { //load control panel view $panel = new View('user/control_panel'); return $panel; } public function login() { } public function register() { } public function profile() { } public function household() { } public function edit_profile() { } public function logout() { } }

    Read the article

  • I need to model my Javascript application

    - by Totty
    Hy, I was looking for a software to model an application, because is becoming too big. Like this: Class - A Methods - a, b, c, d, e Class - B Methods - a, b, c, d, e This should be in graphical mode, Classes are some boxes, and the methods are in the box. Then I would like to be able to make a arrow from one method to another. Do you know some good software? thanks

    Read the article

  • Why is Private Accessor deprecated?

    - by user3918598
    It used to be the number one reason for us to choose MSTest from others that we could access and test private methods. Now that Private accessors are deprecated in Visual Studio 2012. Does anyone know why Microsoft make such decision? Is it because it's not a good practice to test private methods? Also, if I still need to unit test my private methods, how could I do that in VS 2012 and later versions?

    Read the article

  • Javascript object properties access functions in parent constructor?

    - by Bob Spryn
    So I'm using this pretty standard jquery plugin pattern whereby you can grab an api after applying the jquery function to a specific instance. This API is essentially a javascript object with a bunch of methods and data. So I wanted to essentially create some private internal methods for the object only to manipulate data etc, which just doesn't need to be available as part of the API. So I tried this: // API returned with new $.TranslationUI(options, container) $.TranslationUI = function (options, container) { // private function? function monkey(){ console.log("blah blah blah"); } // extend the default settings with the options object passed this.settings = $.extend({},$.TranslationUI.defaultSettings,options); // set a reference for the container dom element this.container = container; // call the init function this.init(); }; The problem I'm running into is that init can't call that function "monkey". I'm not understanding the explanation behind why it can't. Is it because init is a prototype method?($.TranslationUI's prototype is extended with a bunch of methods including init elsewhere in the code) $.extend($.TranslationUI, { prototype: { init : function(){ // doesn't work monkey(); // editing flag this.editing = false; // init event delegates here for // languagepicker $(this.settings.languageSelector, this.container).bind("click", {self: this}, this.selectLanguage); } } }); Any explanations would be helpful. Would love other thoughts on creating private methods with this model too. These particular functions don't HAVE to be in prototype, and I don't NEED private methods protected from being used externally, but I want to know how should I have that requirement in the future.

    Read the article

  • Speed of Synchronization vs Normal

    - by Swaranga Sarma
    I have a class which is written for a single thread with no methods being synchronized. class MyClass implements MyInterface{ //interface implementation methods, not synchronized } But we also needed a synchronized version of the class. So we made a wrapper class that implements the same interface but has a constructor that takes an instance of MyClass. Any call to the methods of the synchronized class are delegated to the instance of MyClass. Here is my synchronized class.. class SynchronizedMyClass implements MyInterface{ //the constructor public SynchronizedMyClass(MyInterface i/*this is actually an instance of MyClass*/) //interface implementation methods; all synchronized; all delegated to the MyInterface instance } After all this I ran numerous amounts of test runs with both the classes. The tests involve reading log files and counting URLs in each line. The problem is that the synchronized version of the class is consistently taking less time for the parsing. I am using only one thread for the teste, so there is no chance of deadlocks, race around condition etc etc. Each log file contains more than 5 million lines which means calling the methods more than 5 million times. Can anyone explain why synchronized versiuon of the class migt be taking less time than the normal one?

    Read the article

  • sonar code coverage issue

    - by user1490244
    Hi I am running sonar for my impl class, i have written junit for all the methods of impl class but when i ran the sonar the code coverage is just 11% and all the file is in red color. stating that the code is not covered. I really dont understand inspite of writing all the test methods for all the impl methods why is it showing such a less percentage. Any help or tips or guidelines will be greatly appreciated. Thanks

    Read the article

  • ASP.NET MVC 3 - New Features

    - by imran_ku07
    Introduction:          ASP.NET MVC 3 just released by ASP.NET MVC team which includes some new features, some changes, some improvements and bug fixes. In this article, I will show you the new features of ASP.NET MVC 3. This will help you to get started using the new features of ASP.NET MVC 3. Full details of this announcement is available at Announcing release of ASP.NET MVC 3, IIS Express, SQL CE 4, Web Farm Framework, Orchard, WebMatrix.   Description:       New Razor View Engine:              Razor view engine is one of the most coolest new feature in ASP.NET MVC 3. Razor is speeding things up just a little bit more. It is much smaller and lighter in size. Also it is very easy to learn. You can say ' write less, do more '. You can get start and learn more about Razor at Introducing “Razor” – a new view engine for ASP.NET.         Granular Request Validation:             Another biggest new feature in ASP.NET MVC 3 is Granular Request Validation. Default request validator will throw an exception when he see < followed by an exclamation(like <!) or < followed by the letters a through z(like <s) or & followed by a pound sign(like &#123) as a part of querystring, posted form, headers and cookie collection. In previous versions of ASP.NET MVC, you can control request validation using ValidateInputAttriubte. In ASP.NET MVC 3 you can control request validation at Model level by annotating your model properties with a new attribute called AllowHtmlAttribute. For details see Granular Request Validation in ASP.NET MVC 3.       Sessionless Controller Support:             Sessionless Controller is another great new feature in ASP.NET MVC 3. With Sessionless Controller you can easily control your session behavior for controllers. For example, you can make your HomeController's Session as Disabled or ReadOnly, allowing concurrent request execution for single user. For details see Concurrent Requests In ASP.NET MVC and HowTo: Sessionless Controller in MVC3 – what & and why?.       Unobtrusive Ajax and  Unobtrusive Client Side Validation is Supported:             Another cool new feature in ASP.NET MVC 3 is support for Unobtrusive Ajax and Unobtrusive Client Side Validation.  This feature allows separation of responsibilities within your web application by separating your html with your script. For details see Unobtrusive Ajax in ASP.NET MVC 3 and Unobtrusive Client Validation in ASP.NET MVC 3.       Dependency Resolver:             Dependency Resolver is another great feature of ASP.NET MVC 3. It allows you to register a dependency resolver that will be used by the framework. With this approach your application will not become tightly coupled and the dependency will be injected at run time. For details see ASP.NET MVC 3 Service Location.       New Helper Methods:             ASP.NET MVC 3 includes some helper methods of ASP.NET Web Pages technology that are used for common functionality. These helper methods includes: Chart, Crypto, WebGrid, WebImage and WebMail. For details of these helper methods, please see ASP.NET MVC 3 Release Notes. For using other helper methods of ASP.NET Web Pages see Using ASP.NET Web Pages Helpers in ASP.NET MVC.       Child Action Output Caching:             ASP.NET MVC 3 also includes another feature called Child Action Output Caching. This allows you to cache only a portion of the response when you are using Html.RenderAction or Html.Action. This cache can be varied by action name, action method signature and action method parameter values. For details see this.       RemoteAttribute:             ASP.NET MVC 3 allows you to validate a form field by making a remote server call through Ajax. This makes it very easy to perform remote validation at client side and quickly give the feedback to the user. For details see How to: Implement Remote Validation in ASP.NET MVC.       CompareAttribute:             ASP.NET MVC 3 includes a new validation attribute called CompareAttribute. CompareAttribute allows you to compare the values of two different properties of a model. For details see CompareAttribute in ASP.NET MVC 3.       Miscellaneous New Features:                    ASP.NET MVC 2 includes FormValueProvider, QueryStringValueProvider, RouteDataValueProvider and HttpFileCollectionValueProvider. ASP.NET MVC 3 adds two additional value providers, ChildActionValueProvider and JsonValueProvider(JsonValueProvider is not physically exist).  ChildActionValueProvider is used when you issue a child request using Html.Action and/or Html.RenderAction methods, so that your explicit parameter values in Html.Action and/or Html.RenderAction will always take precedence over other value providers. JsonValueProvider is used to model bind JSON data. For details see Sending JSON to an ASP.NET MVC Action Method Argument.           In ASP.NET MVC 3, a new property named FileExtensions added to the VirtualPathProviderViewEngine class. This property is used when looking up a view by path (and not by name), so that only views with a file extension contained in the list specified by this new property is considered. For details see VirtualPathProviderViewEngine.FileExtensions Property .           ASP.NET MVC 3 installation package also includes the NuGet Package Manager which will be automatically installed when you install ASP.NET MVC 3. NuGet makes it easy to install and update open source libraries and tools in Visual Studio. See this for details.           In ASP.NET MVC 2, client side validation will not trigger for overridden model properties. For example, if have you a Model that contains some overridden properties then client side validation will not trigger for overridden properties in ASP.NET MVC 2 but client side validation will work for overridden properties in ASP.NET MVC 3.           Client side validation is not supported for StringLengthAttribute.MinimumLength property in ASP.NET MVC 2. In ASP.NET MVC 3 client side validation will work for StringLengthAttribute.MinimumLength property.           ASP.NET MVC 3 includes new action results like HttpUnauthorizedResult, HttpNotFoundResult and HttpStatusCodeResult.           ASP.NET MVC 3 includes some new overloads of LabelFor and LabelForModel methods. For details see LabelExtensions.LabelForModel and LabelExtensions.LabelFor.           In ASP.NET MVC 3, IControllerFactory includes a new method GetControllerSessionBehavior. This method is used to get controller's session behavior. For details see IControllerFactory.GetControllerSessionBehavior Method.           In ASP.NET MVC 3, Controller class includes a new property ViewBag which is of type dynamic. This property allows you to access ViewData Dictionary using C # 4.0 dynamic features. For details see ControllerBase.ViewBag Property.           ModelMetadata includes a property AdditionalValues which is of type Dictionary. In ASP.NET MVC 3 you can populate this property using AdditionalMetadataAttribute. For details see AdditionalMetadataAttribute Class.           In ASP.NET MVC 3 you can also use MvcScaffolding to scaffold your Views and Controller. For details see Scaffold your ASP.NET MVC 3 project with the MvcScaffolding package.           If you want to convert your application from ASP.NET MVC 2 to ASP.NET MVC 3 then there is an excellent tool that automatically converts ASP.NET MVC 2 application to ASP.NET MVC 3 application. For details see MVC 3 Project Upgrade Tool.           In ASP.NET MVC 2 DisplayAttribute is not supported but in ASP.NET MVC 3 DisplayAttribute will work properly.           ASP.NET MVC 3 also support model level validation via the new IValidatableObject interface.           ASP.NET MVC 3 includes a new helper method Html.Raw. This helper method allows you to display unencoded HTML.     Summary:          In this article I showed you the new features of ASP.NET MVC 3. This will help you a lot when you start using ASP MVC 3. I also provide you the links where you can find further details. Hopefully you will enjoy this article too.  

    Read the article

  • C#/.NET Little Wonders: The Predicate, Comparison, and Converter Generic Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the last three weeks, we examined the Action family of delegates (and delegates in general), the Func family of delegates, and the EventHandler family of delegates and how they can be used to support generic, reusable algorithms and classes. This week I will be completing my series on the generic delegates in the .NET Framework with a discussion of three more, somewhat less used, generic delegates: Predicate<T>, Comparison<T>, and Converter<TInput, TOutput>. These are older generic delegates that were introduced in .NET 2.0, mostly for use in the Array and List<T> classes.  Though older, it’s good to have an understanding of them and their intended purpose.  In addition, you can feel free to use them yourself, though obviously you can also use the equivalents from the Func family of delegates instead. Predicate<T> – delegate for determining matches The Predicate<T> delegate was a very early delegate developed in the .NET 2.0 Framework to determine if an item was a match for some condition in a List<T> or T[].  The methods that tend to use the Predicate<T> include: Find(), FindAll(), FindLast() Uses the Predicate<T> delegate to finds items, in a list/array of type T, that matches the given predicate. FindIndex(), FindLastIndex() Uses the Predicate<T> delegate to find the index of an item, of in a list/array of type T, that matches the given predicate. The signature of the Predicate<T> delegate (ignoring variance for the moment) is: 1: public delegate bool Predicate<T>(T obj); So, this is a delegate type that supports any method taking an item of type T and returning bool.  In addition, there is a semantic understanding that this predicate is supposed to be examining the item supplied to see if it matches a given criteria. 1: // finds first even number (2) 2: var firstEven = Array.Find(numbers, n => (n % 2) == 0); 3:  4: // finds all odd numbers (1, 3, 5, 7, 9) 5: var allEvens = Array.FindAll(numbers, n => (n % 2) == 1); 6:  7: // find index of first multiple of 5 (4) 8: var firstFiveMultiplePos = Array.FindIndex(numbers, n => (n % 5) == 0); This delegate has typically been succeeded in LINQ by the more general Func family, so that Predicate<T> and Func<T, bool> are logically identical.  Strictly speaking, though, they are different types, so a delegate reference of type Predicate<T> cannot be directly assigned to a delegate reference of type Func<T, bool>, though the same method can be assigned to both. 1: // SUCCESS: the same lambda can be assigned to either 2: Predicate<DateTime> isSameDayPred = dt => dt.Date == DateTime.Today; 3: Func<DateTime, bool> isSameDayFunc = dt => dt.Date == DateTime.Today; 4:  5: // ERROR: once they are assigned to a delegate type, they are strongly 6: // typed and cannot be directly assigned to other delegate types. 7: isSameDayPred = isSameDayFunc; When you assign a method to a delegate, all that is required is that the signature matches.  This is why the same method can be assigned to either delegate type since their signatures are the same.  However, once the method has been assigned to a delegate type, it is now a strongly-typed reference to that delegate type, and it cannot be assigned to a different delegate type (beyond the bounds of variance depending on Framework version, of course). Comparison<T> – delegate for determining order Just as the Predicate<T> generic delegate was birthed to give Array and List<T> the ability to perform type-safe matching, the Comparison<T> was birthed to give them the ability to perform type-safe ordering. The Comparison<T> is used in Array and List<T> for: Sort() A form of the Sort() method that takes a comparison delegate; this is an alternate way to custom sort a list/array from having to define custom IComparer<T> classes. The signature for the Comparison<T> delegate looks like (without variance): 1: public delegate int Comparison<T>(T lhs, T rhs); The goal of this delegate is to compare the left-hand-side to the right-hand-side and return a negative number if the lhs < rhs, zero if they are equal, and a positive number if the lhs > rhs.  Generally speaking, null is considered to be the smallest value of any reference type, so null should always be less than non-null, and two null values should be considered equal. In most sort/ordering methods, you must specify an IComparer<T> if you want to do custom sorting/ordering.  The Array and List<T> types, however, also allow for an alternative Comparison<T> delegate to be used instead, essentially, this lets you perform the custom sort without having to have the custom IComparer<T> class defined. It should be noted, however, that the LINQ OrderBy(), and ThenBy() family of methods do not support the Comparison<T> delegate (though one could easily add their own extension methods to create one, or create an IComparer() factory class that generates one from a Comparison<T>). So, given this delegate, we could use it to perform easy sorts on an Array or List<T> based on custom fields.  Say for example we have a data class called Employee with some basic employee information: 1: public sealed class Employee 2: { 3: public string Name { get; set; } 4: public int Id { get; set; } 5: public double Salary { get; set; } 6: } And say we had a List<Employee> that contained data, such as: 1: var employees = new List<Employee> 2: { 3: new Employee { Name = "John Smith", Id = 2, Salary = 37000.0 }, 4: new Employee { Name = "Jane Doe", Id = 1, Salary = 57000.0 }, 5: new Employee { Name = "John Doe", Id = 5, Salary = 60000.0 }, 6: new Employee { Name = "Jane Smith", Id = 3, Salary = 59000.0 } 7: }; Now, using the Comparison<T> delegate form of Sort() on the List<Employee>, we can sort our list many ways: 1: // sort based on employee ID 2: employees.Sort((lhs, rhs) => Comparer<int>.Default.Compare(lhs.Id, rhs.Id)); 3:  4: // sort based on employee name 5: employees.Sort((lhs, rhs) => string.Compare(lhs.Name, rhs.Name)); 6:  7: // sort based on salary, descending (note switched lhs/rhs order for descending) 8: employees.Sort((lhs, rhs) => Comparer<double>.Default.Compare(rhs.Salary, lhs.Salary)); So again, you could use this older delegate, which has a lot of logical meaning to it’s name, or use a generic delegate such as Func<T, T, int> to implement the same sort of behavior.  All this said, one of the reasons, in my opinion, that Comparison<T> isn’t used too often is that it tends to need complex lambdas, and the LINQ ability to order based on projections is much easier to use, though the Array and List<T> sorts tend to be more efficient if you want to perform in-place ordering. Converter<TInput, TOutput> – delegate to convert elements The Converter<TInput, TOutput> delegate is used by the Array and List<T> delegate to specify how to convert elements from an array/list of one type (TInput) to another type (TOutput).  It is used in an array/list for: ConvertAll() Converts all elements from a List<TInput> / TInput[] to a new List<TOutput> / TOutput[]. The delegate signature for Converter<TInput, TOutput> is very straightforward (ignoring variance): 1: public delegate TOutput Converter<TInput, TOutput>(TInput input); So, this delegate’s job is to taken an input item (of type TInput) and convert it to a return result (of type TOutput).  Again, this is logically equivalent to a newer Func delegate with a signature of Func<TInput, TOutput>.  In fact, the latter is how the LINQ conversion methods are defined. So, we could use the ConvertAll() syntax to convert a List<T> or T[] to different types, such as: 1: // get a list of just employee IDs 2: var empIds = employees.ConvertAll(emp => emp.Id); 3:  4: // get a list of all emp salaries, as int instead of double: 5: var empSalaries = employees.ConvertAll(emp => (int)emp.Salary); Note that the expressions above are logically equivalent to using LINQ’s Select() method, which gives you a lot more power: 1: // get a list of just employee IDs 2: var empIds = employees.Select(emp => emp.Id).ToList(); 3:  4: // get a list of all emp salaries, as int instead of double: 5: var empSalaries = employees.Select(emp => (int)emp.Salary).ToList(); The only difference with using LINQ is that many of the methods (including Select()) are deferred execution, which means that often times they will not perform the conversion for an item until it is requested.  This has both pros and cons in that you gain the benefit of not performing work until it is actually needed, but on the flip side if you want the results now, there is overhead in the behind-the-scenes work that support deferred execution (it’s supported by the yield return / yield break keywords in C# which define iterators that maintain current state information). In general, the new LINQ syntax is preferred, but the older Array and List<T> ConvertAll() methods are still around, as is the Converter<TInput, TOutput> delegate. Sidebar: Variance support update in .NET 4.0 Just like our descriptions of Func and Action, these three early generic delegates also support more variance in assignment as of .NET 4.0.  Their new signatures are: 1: // comparison is contravariant on type being compared 2: public delegate int Comparison<in T>(T lhs, T rhs); 3:  4: // converter is contravariant on input and covariant on output 5: public delegate TOutput Contravariant<in TInput, out TOutput>(TInput input); 6:  7: // predicate is contravariant on input 8: public delegate bool Predicate<in T>(T obj); Thus these delegates can now be assigned to delegates allowing for contravariance (going to a more derived type) or covariance (going to a less derived type) based on whether the parameters are input or output, respectively. Summary Today, we wrapped up our generic delegates discussion by looking at three lesser-used delegates: Predicate<T>, Comparison<T>, and Converter<TInput, TOutput>.  All three of these tend to be replaced by their more generic Func equivalents in LINQ, but that doesn’t mean you shouldn’t understand what they do or can’t use them for your own code, as they do contain semantic meanings in their names that sometimes get lost in the more generic Func name.   Tweet Technorati Tags: C#,CSharp,.NET,Little Wonders,delegates,generics,Predicate,Converter,Comparison

    Read the article

  • StreamInsight 2.1, meet LINQ

    - by Roman Schindlauer
    Someone recently called LINQ “magic” in my hearing. I leapt to LINQ’s defense immediately. Turns out some people don’t realize “magic” is can be a pejorative term. I thought LINQ needed demystification. Here’s your best demystification resource: http://blogs.msdn.com/b/mattwar/archive/2008/11/18/linq-links.aspx. I won’t repeat much of what Matt Warren says in his excellent series, but will talk about some core ideas and how they affect the 2.1 release of StreamInsight. Let’s tell the story of a LINQ query. Compile time It begins with some code: IQueryable<Product> products = ...; var query = from p in products             where p.Name == "Widget"             select p.ProductID; foreach (int id in query) {     ... When the code is compiled, the C# compiler (among other things) de-sugars the query expression (see C# spec section 7.16): ... var query = products.Where(p => p.Name == "Widget").Select(p => p.ProductID); ... Overload resolution subsequently binds the Queryable.Where<Product> and Queryable.Select<Product, int> extension methods (see C# spec sections 7.5 and 7.6.5). After overload resolution, the compiler knows something interesting about the anonymous functions (lambda syntax) in the de-sugared code: they must be converted to expression trees, i.e.,“an object structure that represents the structure of the anonymous function itself” (see C# spec section 6.5). The conversion is equivalent to the following rewrite: ... var prm1 = Expression.Parameter(typeof(Product), "p"); var prm2 = Expression.Parameter(typeof(Product), "p"); var query = Queryable.Select<Product, int>(     Queryable.Where<Product>(         products,         Expression.Lambda<Func<Product, bool>>(Expression.Property(prm1, "Name"), prm1)),         Expression.Lambda<Func<Product, int>>(Expression.Property(prm2, "ProductID"), prm2)); ... If the “products” expression had type IEnumerable<Product>, the compiler would have chosen the Enumerable.Where and Enumerable.Select extension methods instead, in which case the anonymous functions would have been converted to delegates. At this point, we’ve reduced the LINQ query to familiar code that will compile in C# 2.0. (Note that I’m using C# snippets to illustrate transformations that occur in the compiler, not to suggest a viable compiler design!) Runtime When the above program is executed, the Queryable.Where method is invoked. It takes two arguments. The first is an IQueryable<> instance that exposes an Expression property and a Provider property. The second is an expression tree. The Queryable.Where method implementation looks something like this: public static IQueryable<T> Where<T>(this IQueryable<T> source, Expression<Func<T, bool>> predicate) {     return source.Provider.CreateQuery<T>(     Expression.Call(this method, source.Expression, Expression.Quote(predicate))); } Notice that the method is really just composing a new expression tree that calls itself with arguments derived from the source and predicate arguments. Also notice that the query object returned from the method is associated with the same provider as the source query. By invoking operator methods, we’re constructing an expression tree that describes a query. Interestingly, the compiler and operator methods are colluding to construct a query expression tree. The important takeaway is that expression trees are built in one of two ways: (1) by the compiler when it sees an anonymous function that needs to be converted to an expression tree, and; (2) by a query operator method that constructs a new queryable object with an expression tree rooted in a call to the operator method (self-referential). Next we hit the foreach block. At this point, the power of LINQ queries becomes apparent. The provider is able to determine how the query expression tree is evaluated! The code that began our story was intentionally vague about the definition of the “products” collection. Maybe it is a queryable in-memory collection of products: var products = new[]     { new Product { Name = "Widget", ProductID = 1 } }.AsQueryable(); The in-memory LINQ provider works by rewriting Queryable method calls to Enumerable method calls in the query expression tree. It then compiles the expression tree and evaluates it. It should be mentioned that the provider does not blindly rewrite all Queryable calls. It only rewrites a call when its arguments have been rewritten in a way that introduces a type mismatch, e.g. the first argument to Queryable.Where<Product> being rewritten as an expression of type IEnumerable<Product> from IQueryable<Product>. The type mismatch is triggered initially by a “leaf” expression like the one associated with the AsQueryable query: when the provider recognizes one of its own leaf expressions, it replaces the expression with the original IEnumerable<> constant expression. I like to think of this rewrite process as “type irritation” because the rewritten leaf expression is like a foreign body that triggers an immune response (further rewrites) in the tree. The technique ensures that only those portions of the expression tree constructed by a particular provider are rewritten by that provider: no type irritation, no rewrite. Let’s consider the behavior of an alternative LINQ provider. If “products” is a collection created by a LINQ to SQL provider: var products = new NorthwindDataContext().Products; the provider rewrites the expression tree as a SQL query that is then evaluated by your favorite RDBMS. The predicate may ultimately be evaluated using an index! In this example, the expression associated with the Products property is the “leaf” expression. StreamInsight 2.1 For the in-memory LINQ to Objects provider, a leaf is an in-memory collection. For LINQ to SQL, a leaf is a table or view. When defining a “process” in StreamInsight 2.1, what is a leaf? To StreamInsight a leaf is logic: an adapter, a sequence, or even a query targeting an entirely different LINQ provider! How do we represent the logic? Remember that a standing query may outlive the client that provisioned it. A reference to a sequence object in the client application is therefore not terribly useful. But if we instead represent the code constructing the sequence as an expression, we can host the sequence in the server: using (var server = Server.Connect(...)) {     var app = server.Applications["my application"];     var source = app.DefineObservable(() => Observable.Range(0, 10, Scheduler.NewThread));     var query = from i in source where i % 2 == 0 select i; } Example 1: defining a source and composing a query Let’s look in more detail at what’s happening in example 1. We first connect to the remote server and retrieve an existing app. Next, we define a simple Reactive sequence using the Observable.Range method. Notice that the call to the Range method is in the body of an anonymous function. This is important because it means the source sequence definition is in the form of an expression, rather than simply an opaque reference to an IObservable<int> object. The variation in Example 2 fails. Although it looks similar, the sequence is now a reference to an in-memory observable collection: var local = Observable.Range(0, 10, Scheduler.NewThread); var source = app.DefineObservable(() => local); // can’t serialize ‘local’! Example 2: error referencing unserializable local object The Define* methods support definitions of operator tree leaves that target the StreamInsight server. These methods all have the same basic structure. The definition argument is a lambda expression taking between 0 and 16 arguments and returning a source or sink. The method returns a proxy for the source or sink that can then be used for the usual style of LINQ query composition. The “define” methods exploit the compile-time C# feature that converts anonymous functions into translatable expression trees! Query composition exploits the runtime pattern that allows expression trees to be constructed by operators taking queryable and expression (Expression<>) arguments. The practical upshot: once you’ve Defined a source, you can compose LINQ queries in the familiar way using query expressions and operator combinators. Notably, queries can be composed using pull-sequences (LINQ to Objects IQueryable<> inputs), push sequences (Reactive IQbservable<> inputs), and temporal sequences (StreamInsight IQStreamable<> inputs). You can even construct processes that span these three domains using “bridge” method overloads (ToEnumerable, ToObservable and To*Streamable). Finally, the targeted rewrite via type irritation pattern is used to ensure that StreamInsight computations can leverage other LINQ providers as well. Consider the following example (this example depends on Interactive Extensions): var source = app.DefineEnumerable((int id) =>     EnumerableEx.Using(() =>         new NorthwindDataContext(), context =>             from p in context.Products             where p.ProductID == id             select p.ProductName)); Within the definition, StreamInsight has no reason to suspect that it ‘owns’ the Queryable.Where and Queryable.Select calls, and it can therefore defer to LINQ to SQL! Let’s use this source in the context of a StreamInsight process: var sink = app.DefineObserver(() => Observer.Create<string>(Console.WriteLine)); var query = from name in source(1).ToObservable()             where name == "Widget"             select name; using (query.Bind(sink).Run("process")) {     ... } When we run the binding, the source portion which filters on product ID and projects the product name is evaluated by SQL Server. Outside of the definition, responsibility for evaluation shifts to the StreamInsight server where we create a bridge to the Reactive Framework (using ToObservable) and evaluate an additional predicate. It’s incredibly easy to define computations that span multiple domains using these new features in StreamInsight 2.1! Regards, The StreamInsight Team

    Read the article

  • Windows 7 .NET 3.5.1 - 2.0 Slightly Corrupted, How to Repair?

    - by Quinxy von Besiex
    My Windows 7 included .NET installation (3.5 to 2.0) appears very slightly and particularly corrupted and I am trying to fix it without reinstalling Windows or trying to revert to backups. Everything was working and then my hard drive started corrupting a few files and checkdisk found bad clusters so I imaged the drive to a new one. As soon as I booted on the new drive everything worked except programs which call the System.Net.NetworkInformation methods within .NET 3.5 to 2.0 (like Ping() and IsNetworkAvailable()), which immediately crash the app in which the calls are (those calls in .NET 4.0 works fine). Those methods are found inside System.dll, and I assume call native methods which I believe are inside winnsi.dll or iphlpapi.dll or something else (I've not found this yet); I assume it calls native methods because the exception which causes the crash is Fatal Execution Engine Error which people mention is usually related to calling native methods and marshaling data between them. A huge clue about the culprit is likely found in the fact that when I launch the exact same crashing application through a code profiler (which executes the exe and captures stats on which methods took the longest) the app works fine, no crash at all! How could running it within the profiler work and running it outside not work? That seems the key to the mystery. I've used procmon to catch all the registry, filesystem, and network events from the crashing execution and the profiler-run successful execution and compared the two outputs but didn't learn much (I see the moment at which the non-profiled app crashes, but up until then they behave the same, loaded the same modules, ). The only big difference seems to be that at the moment before the app crash the profiler-executed code creates 4-6 new threads and the directly executed code only creates 1-2. I have diffed the files/directories which seemed most relevant (the .NET stuff under Windows and Program Files) pre- and post- disk trouble and seen no changes where I didn't expect any (no obvious file corruption). I have diffed the software and system registry hives pre- and post- disk trouble and seen no changes which seemed relevant. I have created a new user account and cleaned up any environment variables in case environment was related. No change. I did "sfc /scannow" and it found no integrity problems. I tried "ngen update" to regenerate pre-compiled code in case I missed something that might be damaged and nothing changed. I assume I need to repair my .NET installation but because Windows 7 included .NET 3.5 - 2.0 you can't just re-run a .NET installer to redo it. I do not have access to the Windows disks to try to re-install Windows over itself (the computer has a recovery partition but it is unusable); also the drive uses a whole-disk encryption solution and re-installing would be difficult. I absolutely do not want to start from scratch here and install a fresh Windows, reinstall dozens of software packages, try and remember dozens of development-related customizations/etc. Given all that... does anyone have any helpful advice? I need .NET 3.5 - 2.0 working as I am a developer and need to build and test against it. Thanks! Quinxy

    Read the article

  • Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design

    - by SeanMcAlinden
    Creating a dynamic proxy generator – Part 1 – Creating the Assembly builder, Module builder and caching mechanism For the latest code go to http://rapidioc.codeplex.com/ Before getting too involved in generating the proxy, I thought it would be worth while going through the intended design, this is important as the next step is to start creating the constructors for the proxy. Each proxy derives from a specified type The proxy has a corresponding constructor for each of the base type constructors The proxy has overrides for all methods and properties marked as Virtual on the base type For each overridden method, there is also a private method whose sole job is to call the base method. For each overridden method, a delegate is created whose sole job is to call the private method that calls the base method. The following class diagram shows the main classes and interfaces involved in the interception process. I’ll go through each of them to explain their place in the overall proxy.   IProxy Interface The proxy implements the IProxy interface for the sole purpose of adding custom interceptors. This allows the created proxy interface to be cast as an IProxy and then simply add Interceptors by calling it’s AddInterceptor method. This is done internally within the proxy building process so the consumer of the API doesn’t need knowledge of this. IInterceptor Interface The IInterceptor interface has one method: Handle. The handle method accepts a IMethodInvocation parameter which contains methods and data for handling method interception. Multiple classes that implement this interface can be added to the proxy. Each method override in the proxy calls the handle method rather than simply calling the base method. How the proxy fully works will be explained in the next section MethodInvocation. IMethodInvocation Interface & MethodInvocation class The MethodInvocation will contain one main method and multiple helper properties. Continue Method The method Continue() has two functions hidden away from the consumer. When Continue is called, if there are multiple Interceptors, the next Interceptors Handle method is called. If all Interceptors Handle methods have been called, the Continue method then calls the base class method. Properties The MethodInvocation will contain multiple helper properties including at least the following: Method Name (Read Only) Method Arguments (Read and Write) Method Argument Types (Read Only) Method Result (Read and Write) – this property remains null if the method return type is void Target Object (Read Only) Return Type (Read Only) DefaultInterceptor class The DefaultInterceptor class is a simple class that implements the IInterceptor interface. Here is the code: DefaultInterceptor namespace Rapid.DynamicProxy.Interception {     /// <summary>     /// Default interceptor for the proxy.     /// </summary>     /// <typeparam name="TBase">The base type.</typeparam>     public class DefaultInterceptor<TBase> : IInterceptor<TBase> where TBase : class     {         /// <summary>         /// Handles the specified method invocation.         /// </summary>         /// <param name="methodInvocation">The method invocation.</param>         public void Handle(IMethodInvocation<TBase> methodInvocation)         {             methodInvocation.Continue();         }     } } This is automatically created in the proxy and is the first interceptor that each method override calls. It’s sole function is to ensure that if no interceptors have been added, the base method is still called. Custom Interceptor Example A consumer of the Rapid.DynamicProxy API could create an interceptor for logging when the FirstName property of the User class is set. Just for illustration, I have also wrapped a transaction around the methodInvocation.Coninue() method. This means that any overriden methods within the user class will run within a transaction scope. MyInterceptor public class MyInterceptor : IInterceptor<User<int, IRepository>> {     public void Handle(IMethodInvocation<User<int, IRepository>> methodInvocation)     {         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name seting to: " + methodInvocation.Arguments[0]);         }         using (TransactionScope scope = new TransactionScope())         {             methodInvocation.Continue();         }         if (methodInvocation.Name == "set_FirstName")         {             Logger.Log("First name has been set to: " + methodInvocation.Arguments[0]);         }     } } Overridden Method Example To show a taster of what the overridden methods on the proxy would look like, the setter method for the property FirstName used in the above example would look something similar to the following (this is not real code but will look similar): set_FirstName public override void set_FirstName(string value) {     set_FirstNameBaseMethodDelegate callBase =         new set_FirstNameBaseMethodDelegate(this.set_FirstNameProxyGetBaseMethod);     object[] arguments = new object[] { value };     IMethodInvocation<User<IRepository>> methodInvocation =         new MethodInvocation<User<IRepository>>(this, callBase, "set_FirstName", arguments, interceptors);          this.Interceptors[0].Handle(methodInvocation); } As you can see, a delegate instance is created which calls to a private method on the class, the private method calls the base method and would look like the following: calls base setter private void set_FirstNameProxyGetBaseMethod(string value) {     base.set_FirstName(value); } The delegate is invoked when methodInvocation.Continue() is called within an interceptor. The set_FirstName parameters are loaded into an object array. The current instance, delegate, method name and method arguments are passed into the methodInvocation constructor (there will be more data not illustrated here passed in when created including method info, return types, argument types etc.) The DefaultInterceptor’s Handle method is called with the methodInvocation instance as it’s parameter. Obviously methods can have return values, ref and out parameters etc. in these cases the generated method override body will be slightly different from above. I’ll go into more detail on these aspects as we build them. Conclusion I hope this has been useful, I can’t guarantee that the proxy will look exactly like the above, but at the moment, this is pretty much what I intend to do. Always worth downloading the code at http://rapidioc.codeplex.com/ to see the latest. There will also be some tests that you can debug through to help see what’s going on. Cheers, Sean.

    Read the article

  • Rendering ASP.NET Script References into the Html Header

    - by Rick Strahl
    One thing that I’ve come to appreciate in control development in ASP.NET that use JavaScript is the ability to have more control over script and script include placement than ASP.NET provides natively. Specifically in ASP.NET you can use either the ClientScriptManager or ScriptManager to embed scripts and script references into pages via code. This works reasonably well, but the script references that get generated are generated into the HTML body and there’s very little operational control for placement of scripts. If you have multiple controls or several of the same control that need to place the same scripts onto the page it’s not difficult to end up with scripts that render in the wrong order and stop working correctly. This is especially critical if you load script libraries with dependencies either via resources or even if you are rendering referenced to CDN resources. Natively ASP.NET provides a host of methods that help embedding scripts into the page via either Page.ClientScript or the ASP.NET ScriptManager control (both with slightly different syntax): RegisterClientScriptBlock Renders a script block at the top of the HTML body and should be used for embedding callable functions/classes. RegisterStartupScript Renders a script block just prior to the </form> tag and should be used to for embedding code that should execute when the page is first loaded. Not recommended – use jQuery.ready() or equivalent load time routines. RegisterClientScriptInclude Embeds a reference to a script from a url into the page. RegisterClientScriptResource Embeds a reference to a Script from a resource file generating a long resource file string All 4 of these methods render their <script> tags into the HTML body. The script blocks give you a little bit of control by having a ‘top’ and ‘bottom’ of the document location which gives you some flexibility over script placement and precedence. Script includes and resource url unfortunately do not even get that much control – references are simply rendered into the page in the order of declaration. The ASP.NET ScriptManager control facilitates this task a little bit with the abililty to specify scripts in code and the ability to programmatically check what scripts have already been registered, but it doesn’t provide any more control over the script rendering process itself. Further the ScriptManager is a bear to deal with generically because generic code has to always check and see if it is actually present. Some time ago I posted a ClientScriptProxy class that helps with managing the latter process of sending script references either to ClientScript or ScriptManager if it’s available. Since I last posted about this there have been a number of improvements in this API, one of which is the ability to control placement of scripts and script includes in the page which I think is rather important and a missing feature in the ASP.NET native functionality. Handling ScriptRenderModes One of the big enhancements that I’ve come to rely on is the ability of the various script rendering functions described above to support rendering in multiple locations: /// <summary> /// Determines how scripts are included into the page /// </summary> public enum ScriptRenderModes { /// <summary> /// Inherits the setting from the control or from the ClientScript.DefaultScriptRenderMode /// </summary> Inherit, /// Renders the script include at the location of the control /// </summary> Inline, /// <summary> /// Renders the script include into the bottom of the header of the page /// </summary> Header, /// <summary> /// Renders the script include into the top of the header of the page /// </summary> HeaderTop, /// <summary> /// Uses ClientScript or ScriptManager to embed the script include to /// provide standard ASP.NET style rendering in the HTML body. /// </summary> Script, /// <summary> /// Renders script at the bottom of the page before the last Page.Controls /// literal control. Note this may result in unexpected behavior /// if /body and /html are not the last thing in the markup page. /// </summary> BottomOfPage } This enum is then applied to the various Register functions to allow more control over where scripts actually show up. Why is this useful? For me I often render scripts out of control resources and these scripts often include things like a JavaScript Library (jquery) and a few plug-ins. The order in which these can be loaded is critical so that jQuery.js always loads before any plug-in for example. Typically I end up with a general script layout like this: Core Libraries- HeaderTop Plug-ins: Header ScriptBlocks: Header or Script depending on other dependencies There’s also an option to render scripts and CSS at the very bottom of the page before the last Page control on the page which can be useful for speeding up page load when lots of scripts are loaded. The API syntax of the ClientScriptProxy methods is closely compatible with ScriptManager’s using static methods and control references to gain access to the page and embedding scripts. For example, to render some script into the current page in the header: // Create script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "function helloWorld() { alert('hello'); }", true, ScriptRenderModes.Header); // Same again - shouldn't be rendered because it's the same id ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "function helloWorld() { alert('hello'); }", true, ScriptRenderModes.Header); // Create a second script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function2", "function helloWorld2() { alert('hello2'); }", true, ScriptRenderModes.Header); // This just calls ClientScript and renders into bottom of document ClientScriptProxy.Current.RegisterStartupScript(this,typeof(ControlResources), "call_hello", "helloWorld();helloWorld2();", true); which generates: <html xmlns="http://www.w3.org/1999/xhtml" > <head><title> </title> <script type="text/javascript"> function helloWorld() { alert('hello'); } </script> <script type="text/javascript"> function helloWorld2() { alert('hello2'); } </script> </head> <body> … <script type="text/javascript"> //<![CDATA[ helloWorld();helloWorld2();//]]> </script> </form> </body> </html> Note that the scripts are generated into the header rather than the body except for the last script block which is the call to RegisterStartupScript. In general I wouldn’t recommend using RegisterStartupScript – ever. It’s a much better practice to use a script base load event to handle ‘startup’ code that should fire when the page first loads. So instead of the code above I’d actually recommend doing: ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "call_hello", "$().ready( function() { alert('hello2'); });", true, ScriptRenderModes.Header); assuming you’re using jQuery on the page. For script includes from a Url the following demonstrates how to embed scripts into the header. This example injects a jQuery and jQuery.UI script reference from the Google CDN then checks each with a script block to ensure that it has loaded and if not loads it from a server local location: // load jquery from CDN ClientScriptProxy.Current.RegisterClientScriptInclude(this, typeof(ControlResources), "http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js", ScriptRenderModes.HeaderTop); // check if jquery loaded - if it didn't we're not online string scriptCheck = @"if (typeof jQuery != 'object') document.write(unescape(""%3Cscript src='{0}' type='text/javascript'%3E%3C/script%3E""));"; string jQueryUrl = ClientScriptProxy.Current.GetWebResourceUrl(this, typeof(ControlResources), ControlResources.JQUERY_SCRIPT_RESOURCE); ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "jquery_register", string.Format(scriptCheck,jQueryUrl),true, ScriptRenderModes.HeaderTop); // Load jquery-ui from cdn ClientScriptProxy.Current.RegisterClientScriptInclude(this, typeof(ControlResources), "http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js", ScriptRenderModes.Header); // check if we need to load from local string jQueryUiUrl = ResolveUrl("~/scripts/jquery-ui-custom.min.js"); ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "jqueryui_register", string.Format(scriptCheck, jQueryUiUrl), true, ScriptRenderModes.Header); // Create script block in header ClientScriptProxy.Current.RegisterClientScriptBlock(this, typeof(ControlResources), "hello_function", "$().ready( function() { alert('hello'); });", true, ScriptRenderModes.Header); which in turn generates this HTML: <html xmlns="http://www.w3.org/1999/xhtml" > <head> <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/jquery.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof jQuery != 'object') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/WebResource.axd?d=DIykvYhJ_oXCr-TA_dr35i4AayJoV1mgnQAQGPaZsoPM2LCdvoD3cIsRRitHKlKJfV5K_jQvylK7tsqO3lQIFw2&t=633979863959332352' type='text/javascript'%3E%3C/script%3E")); </script> <title> </title> <script src="http://ajax.googleapis.com/ajax/libs/jqueryui/1.7.2/jquery-ui.min.js" type="text/javascript"></script> <script type="text/javascript"> if (typeof jQuery != 'object') document.write(unescape("%3Cscript src='/WestWindWebToolkitWeb/scripts/jquery-ui-custom.min.js' type='text/javascript'%3E%3C/script%3E")); </script> <script type="text/javascript"> $().ready(function() { alert('hello'); }); </script> </head> <body> …</body> </html> As you can see there’s a bit more control in this process as you can inject both script includes and script blocks into the document at the top or bottom of the header, plus if necessary at the usual body locations. This is quite useful especially if you create custom server controls that interoperate with script and have certain dependencies. The above is a good example of a useful switchable routine where you can switch where scripts load from by default – the above pulls from Google CDN but a configuration switch may automatically switch to pull from the local development copies if your doing development for example. How does it work? As mentioned the ClientScriptProxy object mimicks many of the ScriptManager script related methods and so provides close API compatibility with it although it contains many additional overloads that enhance functionality. It does however work against ScriptManager if it’s available on the page, or Page.ClientScript if it’s not so it provides a single unified frontend to script access. There are however many overloads of the original SM methods like the above to provide additional functionality. The implementation of script header rendering is pretty straight forward – as long as a server header (ie. it has to have runat=”server” set) is available. Otherwise these routines fall back to using the default document level insertions of ScriptManager/ClientScript. Given that there is a server header it’s relatively easy to generate the script tags and code and append them to the header either at the top or bottom. I suspect Microsoft didn’t provide header rendering functionality precisely because a runat=”server” header is not required by ASP.NET so behavior would be slightly unpredictable. That’s not really a problem for a custom implementation however. Here’s the RegisterClientScriptBlock implementation that takes a ScriptRenderModes parameter to allow header rendering: /// <summary> /// Renders client script block with the option of rendering the script block in /// the Html header /// /// For this to work Header must be defined as runat="server" /// </summary> /// <param name="control">any control that instance typically page</param> /// <param name="type">Type that identifies this rendering</param> /// <param name="key">unique script block id</param> /// <param name="script">The script code to render</param> /// <param name="addScriptTags">Ignored for header rendering used for all other insertions</param> /// <param name="renderMode">Where the block is rendered</param> public void RegisterClientScriptBlock(Control control, Type type, string key, string script, bool addScriptTags, ScriptRenderModes renderMode) { if (renderMode == ScriptRenderModes.Inherit) renderMode = DefaultScriptRenderMode; if (control.Page.Header == null || renderMode != ScriptRenderModes.HeaderTop && renderMode != ScriptRenderModes.Header && renderMode != ScriptRenderModes.BottomOfPage) { RegisterClientScriptBlock(control, type, key, script, addScriptTags); return; } // No dupes - ref script include only once const string identifier = "scriptblock_"; if (HttpContext.Current.Items.Contains(identifier + key)) return; HttpContext.Current.Items.Add(identifier + key, string.Empty); StringBuilder sb = new StringBuilder(); // Embed in header sb.AppendLine("\r\n<script type=\"text/javascript\">"); sb.AppendLine(script); sb.AppendLine("</script>"); int? index = HttpContext.Current.Items["__ScriptResourceIndex"] as int?; if (index == null) index = 0; if (renderMode == ScriptRenderModes.HeaderTop) { control.Page.Header.Controls.AddAt(index.Value, new LiteralControl(sb.ToString())); index++; } else if(renderMode == ScriptRenderModes.Header) control.Page.Header.Controls.Add(new LiteralControl(sb.ToString())); else if (renderMode == ScriptRenderModes.BottomOfPage) control.Page.Controls.AddAt(control.Page.Controls.Count-1,new LiteralControl(sb.ToString())); HttpContext.Current.Items["__ScriptResourceIndex"] = index; } Note that the routine has to keep track of items inserted by id so that if the same item is added again with the same key it won’t generate two script entries. Additionally the code has to keep track of how many insertions have been made at the top of the document so that entries are added in the proper order. The RegisterScriptInclude method is similar but there’s some additional logic in here to deal with script file references and ClientScriptProxy’s (optional) custom resource handler that provides script compression /// <summary> /// Registers a client script reference into the page with the option to specify /// the script location in the page /// </summary> /// <param name="control">Any control instance - typically page</param> /// <param name="type">Type that acts as qualifier (uniqueness)</param> /// <param name="url">the Url to the script resource</param> /// <param name="ScriptRenderModes">Determines where the script is rendered</param> public void RegisterClientScriptInclude(Control control, Type type, string url, ScriptRenderModes renderMode) { const string STR_ScriptResourceIndex = "__ScriptResourceIndex"; if (string.IsNullOrEmpty(url)) return; if (renderMode == ScriptRenderModes.Inherit) renderMode = DefaultScriptRenderMode; // Extract just the script filename string fileId = null; // Check resource IDs and try to match to mapped file resources // Used to allow scripts not to be loaded more than once whether // embedded manually (script tag) or via resources with ClientScriptProxy if (url.Contains(".axd?r=")) { string res = HttpUtility.UrlDecode( StringUtils.ExtractString(url, "?r=", "&", false, true) ); foreach (ScriptResourceAlias item in ScriptResourceAliases) { if (item.Resource == res) { fileId = item.Alias + ".js"; break; } } if (fileId == null) fileId = url.ToLower(); } else fileId = Path.GetFileName(url).ToLower(); // No dupes - ref script include only once const string identifier = "script_"; if (HttpContext.Current.Items.Contains( identifier + fileId ) ) return; HttpContext.Current.Items.Add(identifier + fileId, string.Empty); // just use script manager or ClientScriptManager if (control.Page.Header == null || renderMode == ScriptRenderModes.Script || renderMode == ScriptRenderModes.Inline) { RegisterClientScriptInclude(control, type,url, url); return; } // Retrieve script index in header int? index = HttpContext.Current.Items[STR_ScriptResourceIndex] as int?; if (index == null) index = 0; StringBuilder sb = new StringBuilder(256); url = WebUtils.ResolveUrl(url); // Embed in header sb.AppendLine("\r\n<script src=\"" + url + "\" type=\"text/javascript\"></script>"); if (renderMode == ScriptRenderModes.HeaderTop) { control.Page.Header.Controls.AddAt(index.Value, new LiteralControl(sb.ToString())); index++; } else if (renderMode == ScriptRenderModes.Header) control.Page.Header.Controls.Add(new LiteralControl(sb.ToString())); else if (renderMode == ScriptRenderModes.BottomOfPage) control.Page.Controls.AddAt(control.Page.Controls.Count-1, new LiteralControl(sb.ToString())); HttpContext.Current.Items[STR_ScriptResourceIndex] = index; } There’s a little more code here that deals with cleaning up the passed in Url and also some custom handling of script resources that run through the ScriptCompressionModule – any script resources loaded in this fashion are automatically cached based on the resource id. Raw urls extract just the filename from the URL and cache based on that. All of this to avoid doubling up of scripts if called multiple times by multiple instances of the same control for example or several controls that all load the same resources/includes. Finally RegisterClientScriptResource utilizes the previous method to wrap the WebResourceUrl as well as some custom functionality for the resource compression module: /// <summary> /// Returns a WebResource or ScriptResource URL for script resources that are to be /// embedded as script includes. /// </summary> /// <param name="control">Any control</param> /// <param name="type">A type in assembly where resources are located</param> /// <param name="resourceName">Name of the resource to load</param> /// <param name="renderMode">Determines where in the document the link is rendered</param> public void RegisterClientScriptResource(Control control, Type type, string resourceName, ScriptRenderModes renderMode) { string resourceUrl = GetClientScriptResourceUrl(control, type, resourceName); RegisterClientScriptInclude(control, type, resourceUrl, renderMode); } /// <summary> /// Works like GetWebResourceUrl but can be used with javascript resources /// to allow using of resource compression (if the module is loaded). /// </summary> /// <param name="control"></param> /// <param name="type"></param> /// <param name="resourceName"></param> /// <returns></returns> public string GetClientScriptResourceUrl(Control control, Type type, string resourceName) { #if IncludeScriptCompressionModuleSupport // If wwScriptCompression Module through Web.config is loaded use it to compress // script resources by using wcSC.axd Url the module intercepts if (ScriptCompressionModule.ScriptCompressionModuleActive) { string url = "~/wwSC.axd?r=" + HttpUtility.UrlEncode(resourceName); if (type.Assembly != GetType().Assembly) url += "&t=" + HttpUtility.UrlEncode(type.FullName); return WebUtils.ResolveUrl(url); } #endif return control.Page.ClientScript.GetWebResourceUrl(type, resourceName); } This code merely retrieves the resource URL and then simply calls back to RegisterClientScriptInclude with the URL to be embedded which means there’s nothing specific to deal with other than the custom compression module logic which is nice and easy. What else is there in ClientScriptProxy? ClientscriptProxy also provides a few other useful services beyond what I’ve already covered here: Transparent ScriptManager and ClientScript calls ClientScriptProxy includes a host of routines that help figure out whether a script manager is available or not and all functions in this class call the appropriate object – ScriptManager or ClientScript – that is available in the current page to ensure that scripts get embedded into pages properly. This is especially useful for control development where controls have no control over the scripting environment in place on the page. RegisterCssLink and RegisterCssResource Much like the script embedding functions these two methods allow embedding of CSS links. CSS links are appended to the header or to a form declared with runat=”server”. LoadControlScript Is a high level resource loading routine that can be used to easily switch between different script linking modes. It supports loading from a WebResource, a url or not loading anything at all. This is very useful if you build controls that deal with specification of resource urls/ids in a standard way. Check out the full Code You can check out the full code to the ClientScriptProxyClass here: ClientScriptProxy.cs ClientScriptProxy Documentation (class reference) Note that the ClientScriptProxy has a few dependencies in the West Wind Web Toolkit of which it is part of. ControlResources holds a few standard constants and script resource links and the ScriptCompressionModule which is referenced in a few of the script inclusion methods. There’s also another useful ScriptContainer companion control  to the ClientScriptProxy that allows scripts to be placed onto the page’s markup including the ability to specify the script location and script minification options. You can find all the dependencies in the West Wind Web Toolkit repository: West Wind Web Toolkit Repository West Wind Web Toolkit Home Page© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  JavaScript  

    Read the article

< Previous Page | 71 72 73 74 75 76 77 78 79 80 81 82  | Next Page >