Search Results

Search found 7490 results on 300 pages for 'algorithm analysis'.

Page 76/300 | < Previous Page | 72 73 74 75 76 77 78 79 80 81 82 83  | Next Page >

  • How to get it working in O(n)?

    - by evermean
    I came across an interview task/question that really got me thinking ... so here it goes: You have an array A[N] of N numbers. You have to compose an array Output[N] such that Output[i] will be equal to multiplication of all the elements of A[N] except A[i]. For example Output[0] will be multiplication of A[1] to A[N-1] and Output[1] will be multiplication of A[0] and from A[2] to A[N-1]. Solve it without division operator and in O(n). I really tried to come up with a solution but I always end up with a complexity of O(n^2). Perhaps the is anyone smarter than me who can tell me an algorithm that works in O(n) or at least give me a hint...

    Read the article

  • Agile Development

    - by James Oloo Onyango
    Alot of literature has and is being written about agile developement and its surrounding philosophies. In my quest to find the best way to express the importance of agile methodologies, i have found Robert C. Martin's "A Satire Of Two Companies" to be both the most concise and thorough! Enjoy the read! Rufus Inc Project Kick Off Your name is Bob. The date is January 3, 2001, and your head still aches from the recent millennial revelry. You are sitting in a conference room with several managers and a group of your peers. You are a project team leader. Your boss is there, and he has brought along all of his team leaders. His boss called the meeting. "We have a new project to develop," says your boss's boss. Call him BB. The points in his hair are so long that they scrape the ceiling. Your boss's points are just starting to grow, but he eagerly awaits the day when he can leave Brylcream stains on the acoustic tiles. BB describes the essence of the new market they have identified and the product they want to develop to exploit this market. "We must have this new project up and working by fourth quarter October 1," BB demands. "Nothing is of higher priority, so we are cancelling your current project." The reaction in the room is stunned silence. Months of work are simply going to be thrown away. Slowly, a murmur of objection begins to circulate around the conference table.   His points give off an evil green glow as BB meets the eyes of everyone in the room. One by one, that insidious stare reduces each attendee to quivering lumps of protoplasm. It is clear that he will brook no discussion on this matter. Once silence has been restored, BB says, "We need to begin immediately. How long will it take you to do the analysis?" You raise your hand. Your boss tries to stop you, but his spitwad misses you and you are unaware of his efforts.   "Sir, we can't tell you how long the analysis will take until we have some requirements." "The requirements document won't be ready for 3 or 4 weeks," BB says, his points vibrating with frustration. "So, pretend that you have the requirements in front of you now. How long will you require for analysis?" No one breathes. Everyone looks around to see whether anyone has some idea. "If analysis goes beyond April 1, we have a problem. Can you finish the analysis by then?" Your boss visibly gathers his courage: "We'll find a way, sir!" His points grow 3 mm, and your headache increases by two Tylenol. "Good." BB smiles. "Now, how long will it take to do the design?" "Sir," you say. Your boss visibly pales. He is clearly worried that his 3 mms are at risk. "Without an analysis, it will not be possible to tell you how long design will take." BB's expression shifts beyond austere.   "PRETEND you have the analysis already!" he says, while fixing you with his vacant, beady little eyes. "How long will it take you to do the design?" Two Tylenol are not going to cut it. Your boss, in a desperate attempt to save his new growth, babbles: "Well, sir, with only six months left to complete the project, design had better take no longer than 3 months."   "I'm glad you agree, Smithers!" BB says, beaming. Your boss relaxes. He knows his points are secure. After a while, he starts lightly humming the Brylcream jingle. BB continues, "So, analysis will be complete by April 1, design will be complete by July 1, and that gives you 3 months to implement the project. This meeting is an example of how well our new consensus and empowerment policies are working. Now, get out there and start working. I'll expect to see TQM plans and QIT assignments on my desk by next week. Oh, and don't forget that your crossfunctional team meetings and reports will be needed for next month's quality audit." "Forget the Tylenol," you think to yourself as you return to your cubicle. "I need bourbon."   Visibly excited, your boss comes over to you and says, "Gosh, what a great meeting. I think we're really going to do some world shaking with this project." You nod in agreement, too disgusted to do anything else. "Oh," your boss continues, "I almost forgot." He hands you a 30-page document. "Remember that the SEI is coming to do an evaluation next week. This is the evaluation guide. You need to read through it, memorize it, and then shred it. It tells you how to answer any questions that the SEI auditors ask you. It also tells you what parts of the building you are allowed to take them to and what parts to avoid. We are determined to be a CMM level 3 organization by June!"   You and your peers start working on the analysis of the new project. This is difficult because you have no requirements. But from the 10-minute introduction given by BB on that fateful morning, you have some idea of what the product is supposed to do.   Corporate process demands that you begin by creating a use case document. You and your team begin enumerating use cases and drawing oval and stick diagrams. Philosophical debates break out among the team members. There is disagreement as to whether certain use cases should be connected with <<extends>> or <<includes>> relationships. Competing models are created, but nobody knows how to evaluate them. The debate continues, effectively paralyzing progress.   After a week, somebody finds the iceberg.com Web site, which recommends disposing entirely of <<extends>> and <<includes>> and replacing them with <<precedes>> and <<uses>>. The documents on this Web site, authored by Don Sengroiux, describes a method known as stalwart-analysis, which claims to be a step-by-step method for translating use cases into design diagrams. More competing use case models are created using this new scheme, but again, people can't agree on how to evaluate them. The thrashing continues. More and more, the use case meetings are driven by emotion rather than by reason. If it weren't for the fact that you don't have requirements, you'd be pretty upset by the lack of progress you are making. The requirements document arrives on February 15. And then again on February 20, 25, and every week thereafter. Each new version contradicts the previous one. Clearly, the marketing folks who are writing the requirements, empowered though they might be, are not finding consensus.   At the same time, several new competing use case templates have been proposed by the various team members. Each template presents its own particularly creative way of delaying progress. The debates rage on. On March 1, Prudence Putrigence, the process proctor, succeeds in integrating all the competing use case forms and templates into a single, all-encompassing form. Just the blank form is 15 pages long. She has managed to include every field that appeared on all the competing templates. She also presents a 159- page document describing how to fill out the use case form. All current use cases must be rewritten according to the new standard.   You marvel to yourself that it now requires 15 pages of fill-in-the-blank and essay questions to answer the question: What should the system do when the user presses Return? The corporate process (authored by L. E. Ott, famed author of "Holistic Analysis: A Progressive Dialectic for Software Engineers") insists that you discover all primary use cases, 87 percent of all secondary use cases, and 36.274 percent of all tertiary use cases before you can complete analysis and enter the design phase. You have no idea what a tertiary use case is. So in an attempt to meet this requirement, you try to get your use case document reviewed by the marketing department, which you hope will know what a tertiary use case is.   Unfortunately, the marketing folks are too busy with sales support to talk to you. Indeed, since the project started, you have not been able to get a single meeting with marketing, which has provided a never-ending stream of changing and contradictory requirements documents.   While one team has been spinning endlessly on the use case document, another team has been working out the domain model. Endless variations of UML documents are pouring out of this team. Every week, the model is reworked.   The team members can't decide whether to use <<interfaces>> or <<types>> in the model. A huge disagreement has been raging on the proper syntax and application of OCL. Others on the team just got back from a 5-day class on catabolism, and have been producing incredibly detailed and arcane diagrams that nobody else can fathom.   On March 27, with one week to go before analysis is to be complete, you have produced a sea of documents and diagrams but are no closer to a cogent analysis of the problem than you were on January 3. **** And then, a miracle happens.   **** On Saturday, April 1, you check your e-mail from home. You see a memo from your boss to BB. It states unequivocally that you are done with the analysis! You phone your boss and complain. "How could you have told BB that we were done with the analysis?" "Have you looked at a calendar lately?" he responds. "It's April 1!" The irony of that date does not escape you. "But we have so much more to think about. So much more to analyze! We haven't even decided whether to use <<extends>> or <<precedes>>!" "Where is your evidence that you are not done?" inquires your boss, impatiently. "Whaaa . . . ." But he cuts you off. "Analysis can go on forever; it has to be stopped at some point. And since this is the date it was scheduled to stop, it has been stopped. Now, on Monday, I want you to gather up all existing analysis materials and put them into a public folder. Release that folder to Prudence so that she can log it in the CM system by Monday afternoon. Then get busy and start designing."   As you hang up the phone, you begin to consider the benefits of keeping a bottle of bourbon in your bottom desk drawer. They threw a party to celebrate the on-time completion of the analysis phase. BB gave a colon-stirring speech on empowerment. And your boss, another 3 mm taller, congratulated his team on the incredible show of unity and teamwork. Finally, the CIO takes the stage to tell everyone that the SEI audit went very well and to thank everyone for studying and shredding the evaluation guides that were passed out. Level 3 now seems assured and will be awarded by June. (Scuttlebutt has it that managers at the level of BB and above are to receive significant bonuses once the SEI awards level 3.)   As the weeks flow by, you and your team work on the design of the system. Of course, you find that the analysis that the design is supposedly based on is flawedno, useless; no, worse than useless. But when you tell your boss that you need to go back and work some more on the analysis to shore up its weaker sections, he simply states, "The analysis phase is over. The only allowable activity is design. Now get back to it."   So, you and your team hack the design as best you can, unsure of whether the requirements have been properly analyzed. Of course, it really doesn't matter much, since the requirements document is still thrashing with weekly revisions, and the marketing department still refuses to meet with you.     The design is a nightmare. Your boss recently misread a book named The Finish Line in which the author, Mark DeThomaso, blithely suggested that design documents should be taken down to code-level detail. "If we are going to be working at that level of detail," you ask, "why don't we simply write the code instead?" "Because then you wouldn't be designing, of course. And the only allowable activity in the design phase is design!" "Besides," he continues, "we have just purchased a companywide license for Dandelion! This tool enables 'Round the Horn Engineering!' You are to transfer all design diagrams into this tool. It will automatically generate our code for us! It will also keep the design diagrams in sync with the code!" Your boss hands you a brightly colored shrinkwrapped box containing the Dandelion distribution. You accept it numbly and shuffle off to your cubicle. Twelve hours, eight crashes, one disk reformatting, and eight shots of 151 later, you finally have the tool installed on your server. You consider the week your team will lose while attending Dandelion training. Then you smile and think, "Any week I'm not here is a good week." Design diagram after design diagram is created by your team. Dandelion makes it very difficult to draw these diagrams. There are dozens and dozens of deeply nested dialog boxes with funny text fields and check boxes that must all be filled in correctly. And then there's the problem of moving classes between packages. At first, these diagram are driven from the use cases. But the requirements are changing so often that the use cases rapidly become meaningless. Debates rage about whether VISITOR or DECORATOR design patterns should be used. One developer refuses to use VISITOR in any form, claiming that it's not a properly object-oriented construct. Someone refuses to use multiple inheritance, since it is the spawn of the devil. Review meetings rapidly degenerate into debates about the meaning of object orientation, the definition of analysis versus design, or when to use aggregation versus association. Midway through the design cycle, the marketing folks announce that they have rethought the focus of the system. Their new requirements document is completely restructured. They have eliminated several major feature areas and replaced them with feature areas that they anticipate customer surveys will show to be more appropriate. You tell your boss that these changes mean that you need to reanalyze and redesign much of the system. But he says, "The analysis phase is system. But he says, "The analysis phase is over. The only allowable activity is design. Now get back to it."   You suggest that it might be better to create a simple prototype to show to the marketing folks and even some potential customers. But your boss says, "The analysis phase is over. The only allowable activity is design. Now get back to it." Hack, hack, hack, hack. You try to create some kind of a design document that might reflect the new requirements documents. However, the revolution of the requirements has not caused them to stop thrashing. Indeed, if anything, the wild oscillations of the requirements document have only increased in frequency and amplitude.   You slog your way through them.   On June 15, the Dandelion database gets corrupted. Apparently, the corruption has been progressive. Small errors in the DB accumulated over the months into bigger and bigger errors. Eventually, the CASE tool just stopped working. Of course, the slowly encroaching corruption is present on all the backups. Calls to the Dandelion technical support line go unanswered for several days. Finally, you receive a brief e-mail from Dandelion, informing you that this is a known problem and that the solution is to purchase the new version, which they promise will be ready some time next quarter, and then reenter all the diagrams by hand.   ****   Then, on July 1 another miracle happens! You are done with the design!   Rather than go to your boss and complain, you stock your middle desk drawer with some vodka.   **** They threw a party to celebrate the on-time completion of the design phase and their graduation to CMM level 3. This time, you find BB's speech so stirring that you have to use the restroom before it begins. New banners and plaques are all over your workplace. They show pictures of eagles and mountain climbers, and they talk about teamwork and empowerment. They read better after a few scotches. That reminds you that you need to clear out your file cabinet to make room for the brandy. You and your team begin to code. But you rapidly discover that the design is lacking in some significant areas. Actually, it's lacking any significance at all. You convene a design session in one of the conference rooms to try to work through some of the nastier problems. But your boss catches you at it and disbands the meeting, saying, "The design phase is over. The only allowable activity is coding. Now get back to it."   ****   The code generated by Dandelion is really hideous. It turns out that you and your team were using association and aggregation the wrong way, after all. All the generated code has to be edited to correct these flaws. Editing this code is extremely difficult because it has been instrumented with ugly comment blocks that have special syntax that Dandelion needs in order to keep the diagrams in sync with the code. If you accidentally alter one of these comments, the diagrams will be regenerated incorrectly. It turns out that "Round the Horn Engineering" requires an awful lot of effort. The more you try to keep the code compatible with Dandelion, the more errors Dandelion generates. In the end, you give up and decide to keep the diagrams up to date manually. A second later, you decide that there's no point in keeping the diagrams up to date at all. Besides, who has time?   Your boss hires a consultant to build tools to count the number of lines of code that are being produced. He puts a big thermometer graph on the wall with the number 1,000,000 on the top. Every day, he extends the red line to show how many lines have been added. Three days after the thermometer appears on the wall, your boss stops you in the hall. "That graph isn't growing quickly enough. We need to have a million lines done by October 1." "We aren't even sh-sh-sure that the proshect will require a m-million linezh," you blather. "We have to have a million lines done by October 1," your boss reiterates. His points have grown again, and the Grecian formula he uses on them creates an aura of authority and competence. "Are you sure your comment blocks are big enough?" Then, in a flash of managerial insight, he says, "I have it! I want you to institute a new policy among the engineers. No line of code is to be longer than 20 characters. Any such line must be split into two or more preferably more. All existing code needs to be reworked to this standard. That'll get our line count up!"   You decide not to tell him that this will require two unscheduled work months. You decide not to tell him anything at all. You decide that intravenous injections of pure ethanol are the only solution. You make the appropriate arrangements. Hack, hack, hack, and hack. You and your team madly code away. By August 1, your boss, frowning at the thermometer on the wall, institutes a mandatory 50-hour workweek.   Hack, hack, hack, and hack. By September 1st, the thermometer is at 1.2 million lines and your boss asks you to write a report describing why you exceeded the coding budget by 20 percent. He institutes mandatory Saturdays and demands that the project be brought back down to a million lines. You start a campaign of remerging lines. Hack, hack, hack, and hack. Tempers are flaring; people are quitting; QA is raining trouble reports down on you. Customers are demanding installation and user manuals; salespeople are demanding advance demonstrations for special customers; the requirements document is still thrashing, the marketing folks are complaining that the product isn't anything like they specified, and the liquor store won't accept your credit card anymore. Something has to give.    On September 15, BB calls a meeting. As he enters the room, his points are emitting clouds of steam. When he speaks, the bass overtones of his carefully manicured voice cause the pit of your stomach to roll over. "The QA manager has told me that this project has less than 50 percent of the required features implemented. He has also informed me that the system crashes all the time, yields wrong results, and is hideously slow. He has also complained that he cannot keep up with the continuous train of daily releases, each more buggy than the last!" He stops for a few seconds, visibly trying to compose himself. "The QA manager estimates that, at this rate of development, we won't be able to ship the product until December!" Actually, you think it's more like March, but you don't say anything. "December!" BB roars with such derision that people duck their heads as though he were pointing an assault rifle at them. "December is absolutely out of the question. Team leaders, I want new estimates on my desk in the morning. I am hereby mandating 65-hour work weeks until this project is complete. And it better be complete by November 1."   As he leaves the conference room, he is heard to mutter: "Empowermentbah!" * * * Your boss is bald; his points are mounted on BB's wall. The fluorescent lights reflecting off his pate momentarily dazzle you. "Do you have anything to drink?" he asks. Having just finished your last bottle of Boone's Farm, you pull a bottle of Thunderbird from your bookshelf and pour it into his coffee mug. "What's it going to take to get this project done? " he asks. "We need to freeze the requirements, analyze them, design them, and then implement them," you say callously. "By November 1?" your boss exclaims incredulously. "No way! Just get back to coding the damned thing." He storms out, scratching his vacant head.   A few days later, you find that your boss has been transferred to the corporate research division. Turnover has skyrocketed. Customers, informed at the last minute that their orders cannot be fulfilled on time, have begun to cancel their orders. Marketing is re-evaluating whether this product aligns with the overall goals of the company. Memos fly, heads roll, policies change, and things are, overall, pretty grim. Finally, by March, after far too many sixty-five hour weeks, a very shaky version of the software is ready. In the field, bug-discovery rates are high, and the technical support staff are at their wits' end, trying to cope with the complaints and demands of the irate customers. Nobody is happy.   In April, BB decides to buy his way out of the problem by licensing a product produced by Rupert Industries and redistributing it. The customers are mollified, the marketing folks are smug, and you are laid off.     Rupert Industries: Project Alpha   Your name is Robert. The date is January 3, 2001. The quiet hours spent with your family this holiday have left you refreshed and ready for work. You are sitting in a conference room with your team of professionals. The manager of the division called the meeting. "We have some ideas for a new project," says the division manager. Call him Russ. He is a high-strung British chap with more energy than a fusion reactor. He is ambitious and driven but understands the value of a team. Russ describes the essence of the new market opportunity the company has identified and introduces you to Jane, the marketing manager, who is responsible for defining the products that will address it. Addressing you, Jane says, "We'd like to start defining our first product offering as soon as possible. When can you and your team meet with me?" You reply, "We'll be done with the current iteration of our project this Friday. We can spare a few hours for you between now and then. After that, we'll take a few people from the team and dedicate them to you. We'll begin hiring their replacements and the new people for your team immediately." "Great," says Russ, "but I want you to understand that it is critical that we have something to exhibit at the trade show coming up this July. If we can't be there with something significant, we'll lose the opportunity."   "I understand," you reply. "I don't yet know what it is that you have in mind, but I'm sure we can have something by July. I just can't tell you what that something will be right now. In any case, you and Jane are going to have complete control over what we developers do, so you can rest assured that by July, you'll have the most important things that can be accomplished in that time ready to exhibit."   Russ nods in satisfaction. He knows how this works. Your team has always kept him advised and allowed him to steer their development. He has the utmost confidence that your team will work on the most important things first and will produce a high-quality product.   * * *   "So, Robert," says Jane at their first meeting, "How does your team feel about being split up?" "We'll miss working with each other," you answer, "but some of us were getting pretty tired of that last project and are looking forward to a change. So, what are you people cooking up?" Jane beams. "You know how much trouble our customers currently have . . ." And she spends a half hour or so describing the problem and possible solution. "OK, wait a second" you respond. "I need to be clear about this." And so you and Jane talk about how this system might work. Some of her ideas aren't fully formed. You suggest possible solutions. She likes some of them. You continue discussing.   During the discussion, as each new topic is addressed, Jane writes user story cards. Each card represents something that the new system has to do. The cards accumulate on the table and are spread out in front of you. Both you and Jane point at them, pick them up, and make notes on them as you discuss the stories. The cards are powerful mnemonic devices that you can use to represent complex ideas that are barely formed.   At the end of the meeting, you say, "OK, I've got a general idea of what you want. I'm going to talk to the team about it. I imagine they'll want to run some experiments with various database structures and presentation formats. Next time we meet, it'll be as a group, and we'll start identifying the most important features of the system."   A week later, your nascent team meets with Jane. They spread the existing user story cards out on the table and begin to get into some of the details of the system. The meeting is very dynamic. Jane presents the stories in the order of their importance. There is much discussion about each one. The developers are concerned about keeping the stories small enough to estimate and test. So they continually ask Jane to split one story into several smaller stories. Jane is concerned that each story have a clear business value and priority, so as she splits them, she makes sure that this stays true.   The stories accumulate on the table. Jane writes them, but the developers make notes on them as needed. Nobody tries to capture everything that is said; the cards are not meant to capture everything but are simply reminders of the conversation.   As the developers become more comfortable with the stories, they begin writing estimates on them. These estimates are crude and budgetary, but they give Jane an idea of what the story will cost.   At the end of the meeting, it is clear that many more stories could be discussed. It is also clear that the most important stories have been addressed and that they represent several months worth of work. Jane closes the meeting by taking the cards with her and promising to have a proposal for the first release in the morning.   * * *   The next morning, you reconvene the meeting. Jane chooses five cards and places them on the table. "According to your estimates, these cards represent about one perfect team-week's worth of work. The last iteration of the previous project managed to get one perfect team-week done in 3 real weeks. If we can get these five stories done in 3 weeks, we'll be able to demonstrate them to Russ. That will make him feel very comfortable about our progress." Jane is pushing it. The sheepish look on her face lets you know that she knows it too. You reply, "Jane, this is a new team, working on a new project. It's a bit presumptuous to expect that our velocity will be the same as the previous team's. However, I met with the team yesterday afternoon, and we all agreed that our initial velocity should, in fact, be set to one perfectweek for every 3 real-weeks. So you've lucked out on this one." "Just remember," you continue, "that the story estimates and the story velocity are very tentative at this point. We'll learn more when we plan the iteration and even more when we implement it."   Jane looks over her glasses at you as if to say "Who's the boss around here, anyway?" and then smiles and says, "Yeah, don't worry. I know the drill by now."Jane then puts 15 more cards on the table. She says, "If we can get all these cards done by the end of March, we can turn the system over to our beta test customers. And we'll get good feedback from them."   You reply, "OK, so we've got our first iteration defined, and we have the stories for the next three iterations after that. These four iterations will make our first release."   "So," says Jane, can you really do these five stories in the next 3 weeks?" "I don't know for sure, Jane," you reply. "Let's break them down into tasks and see what we get."   So Jane, you, and your team spend the next several hours taking each of the five stories that Jane chose for the first iteration and breaking them down into small tasks. The developers quickly realize that some of the tasks can be shared between stories and that other tasks have commonalities that can probably be taken advantage of. It is clear that potential designs are popping into the developers' heads. From time to time, they form little discussion knots and scribble UML diagrams on some cards.   Soon, the whiteboard is filled with the tasks that, once completed, will implement the five stories for this iteration. You start the sign-up process by saying, "OK, let's sign up for these tasks." "I'll take the initial database generation." Says Pete. "That's what I did on the last project, and this doesn't look very different. I estimate it at two of my perfect workdays." "OK, well, then, I'll take the login screen," says Joe. "Aw, darn," says Elaine, the junior member of the team, "I've never done a GUI, and kinda wanted to try that one."   "Ah, the impatience of youth," Joe says sagely, with a wink in your direction. "You can assist me with it, young Jedi." To Jane: "I think it'll take me about three of my perfect workdays."   One by one, the developers sign up for tasks and estimate them in terms of their own perfect workdays. Both you and Jane know that it is best to let the developers volunteer for tasks than to assign the tasks to them. You also know full well that you daren't challenge any of the developers' estimates. You know these people, and you trust them. You know that they are going to do the very best they can.   The developers know that they can't sign up for more perfect workdays than they finished in the last iteration they worked on. Once each developer has filled his or her schedule for the iteration, they stop signing up for tasks.   Eventually, all the developers have stopped signing up for tasks. But, of course, tasks are still left on the board.   "I was worried that that might happen," you say, "OK, there's only one thing to do, Jane. We've got too much to do in this iteration. What stories or tasks can we remove?" Jane sighs. She knows that this is the only option. Working overtime at the beginning of a project is insane, and projects where she's tried it have not fared well.   So Jane starts to remove the least-important functionality. "Well, we really don't need the login screen just yet. We can simply start the system in the logged-in state." "Rats!" cries Elaine. "I really wanted to do that." "Patience, grasshopper." says Joe. "Those who wait for the bees to leave the hive will not have lips too swollen to relish the honey." Elaine looks confused. Everyone looks confused. "So . . .," Jane continues, "I think we can also do away with . . ." And so, bit by bit, the list of tasks shrinks. Developers who lose a task sign up for one of the remaining ones.   The negotiation is not painless. Several times, Jane exhibits obvious frustration and impatience. Once, when tensions are especially high, Elaine volunteers, "I'll work extra hard to make up some of the missing time." You are about to correct her when, fortunately, Joe looks her in the eye and says, "When once you proceed down the dark path, forever will it dominate your destiny."   In the end, an iteration acceptable to Jane is reached. It's not what Jane wanted. Indeed, it is significantly less. But it's something the team feels that can be achieved in the next 3 weeks.   And, after all, it still addresses the most important things that Jane wanted in the iteration. "So, Jane," you say when things had quieted down a bit, "when can we expect acceptance tests from you?" Jane sighs. This is the other side of the coin. For every story the development team implements,   Jane must supply a suite of acceptance tests that prove that it works. And the team needs these long before the end of the iteration, since they will certainly point out differences in the way Jane and the developers imagine the system's behaviour.   "I'll get you some example test scripts today," Jane promises. "I'll add to them every day after that. You'll have the entire suite by the middle of the iteration."   * * *   The iteration begins on Monday morning with a flurry of Class, Responsibilities, Collaborators sessions. By midmorning, all the developers have assembled into pairs and are rapidly coding away. "And now, my young apprentice," Joe says to Elaine, "you shall learn the mysteries of test-first design!"   "Wow, that sounds pretty rad," Elaine replies. "How do you do it?" Joe beams. It's clear that he has been anticipating this moment. "OK, what does the code do right now?" "Huh?" replied Elaine, "It doesn't do anything at all; there is no code."   "So, consider our task; can you think of something the code should do?" "Sure," Elaine said with youthful assurance, "First, it should connect to the database." "And thereupon, what must needs be required to connecteth the database?" "You sure talk weird," laughed Elaine. "I think we'd have to get the database object from some registry and call the Connect() method. "Ah, astute young wizard. Thou perceives correctly that we requireth an object within which we can cacheth the database object." "Is 'cacheth' really a word?" "It is when I say it! So, what test can we write that we know the database registry should pass?" Elaine sighs. She knows she'll just have to play along. "We should be able to create a database object and pass it to the registry in a Store() method. And then we should be able to pull it out of the registry with a Get() method and make sure it's the same object." "Oh, well said, my prepubescent sprite!" "Hay!" "So, now, let's write a test function that proves your case." "But shouldn't we write the database object and registry object first?" "Ah, you've much to learn, my young impatient one. Just write the test first." "But it won't even compile!" "Are you sure? What if it did?" "Uh . . ." "Just write the test, Elaine. Trust me." And so Joe, Elaine, and all the other developers began to code their tasks, one test case at a time. The room in which they worked was abuzz with the conversations between the pairs. The murmur was punctuated by an occasional high five when a pair managed to finish a task or a difficult test case.   As development proceeded, the developers changed partners once or twice a day. Each developer got to see what all the others were doing, and so knowledge of the code spread generally throughout the team.   Whenever a pair finished something significant whether a whole task or simply an important part of a task they integrated what they had with the rest of the system. Thus, the code base grew daily, and integration difficulties were minimized.   The developers communicated with Jane on a daily basis. They'd go to her whenever they had a question about the functionality of the system or the interpretation of an acceptance test case.   Jane, good as her word, supplied the team with a steady stream of acceptance test scripts. The team read these carefully and thereby gained a much better understanding of what Jane expected the system to do. By the beginning of the second week, there was enough functionality to demonstrate to Jane. She watched eagerly as the demonstration passed test case after test case. "This is really cool," Jane said as the demonstration finally ended. "But this doesn't seem like one-third of the tasks. Is your velocity slower than anticipated?"   You grimace. You'd been waiting for a good time to mention this to Jane but now she was forcing the issue. "Yes, unfortunately, we are going more slowly than we had expected. The new application server we are using is turning out to be a pain to configure. Also, it takes forever to reboot, and we have to reboot it whenever we make even the slightest change to its configuration."   Jane eyes you with suspicion. The stress of last Monday's negotiations had still not entirely dissipated. She says, "And what does this mean to our schedule? We can't slip it again, we just can't. Russ will have a fit! He'll haul us all into the woodshed and ream us some new ones."   You look Jane right in the eyes. There's no pleasant way to give someone news like this. So you just blurt out, "Look, if things keep going like they're going, we're not going to be done with everything by next Friday. Now it's possible that we'll figure out a way to go faster. But, frankly, I wouldn't depend on that. You should start thinking about one or two tasks that could be removed from the iteration without ruining the demonstration for Russ. Come hell or high water, we are going to give that demonstration on Friday, and I don't think you want us to choose which tasks to omit."   "Aw forchrisakes!" Jane barely manages to stifle yelling that last word as she stalks away, shaking her head. Not for the first time, you say to yourself, "Nobody ever promised me project management would be easy." You are pretty sure it won't be the last time, either.   Actually, things went a bit better than you had hoped. The team did, in fact, have to drop one task from the iteration, but Jane had chosen wisely, and the demonstration for Russ went without a hitch. Russ was not impressed with the progress, but neither was he dismayed. He simply said, "This is pretty good. But remember, we have to be able to demonstrate this system at the trade show in July, and at this rate, it doesn't look like you'll have all that much to show." Jane, whose attitude had improved dramatically with the completion of the iteration, responded to Russ by saying, "Russ, this team is working hard, and well. When July comes around, I am confident that we'll have something significant to demonstrate. It won't be everything, and some of it may be smoke and mirrors, but we'll have something."   Painful though the last iteration was, it had calibrated your velocity numbers. The next iteration went much better. Not because your team got more done than in the last iteration but simply because the team didn't have to remove any tasks or stories in the middle of the iteration.   By the start of the fourth iteration, a natural rhythm has been established. Jane, you, and the team know exactly what to expect from one another. The team is running hard, but the pace is sustainable. You are confident that the team can keep up this pace for a year or more.   The number of surprises in the schedule diminishes to near zero; however, the number of surprises in the requirements does not. Jane and Russ frequently look over the growing system and make recommendations or changes to the existing functionality. But all parties realize that these changes take time and must be scheduled. So the changes do not cause anyone's expectations to be violated. In March, there is a major demonstration of the system to the board of directors. The system is very limited and is not yet in a form good enough to take to the trade show, but progress is steady, and the board is reasonably impressed.   The second release goes even more smoothly than the first. By now, the team has figured out a way to automate Jane's acceptance test scripts. The team has also refactored the design of the system to the point that it is really easy to add new features and change old ones. The second release was done by the end of June and was taken to the trade show. It had less in it than Jane and Russ would have liked, but it did demonstrate the most important features of the system. Although customers at the trade show noticed that certain features were missing, they were very impressed overall. You, Russ, and Jane all returned from the trade show with smiles on your faces. You all felt as though this project was a winner.   Indeed, many months later, you are contacted by Rufus Inc. That company had been working on a system like this for its internal operations. Rufus has canceled the development of that system after a death-march project and is negotiating to license your technology for its environment.   Indeed, things are looking up!

    Read the article

  • Time complexity with bit cost

    - by Keyser
    I think I might have completely misunderstood bit cost analysis. I'm trying to wrap my head around the concept of studying an algorithm's time complexity with respect to bit cost (instead of unit cost) and it seems to be impossible to find anything on the subject. Is this considered to be so trivial that no one ever needs to have it explained to them? Well I do. (Also, there doesn't even seem to be anything on wikipedia which is very unusual). Here's what I have so far: The bit cost of multiplication and division of two numbers with n bits is O(n^2) (in general?) So, for example: int number = 2; for(int i = 0; i < n; i++ ){ number = i*i; } has a time complexity with respect to bit cost of O(n^3), because it does n multiplications (right?) But in a regular scenario we want the time complexity with respect to the input. So, how does that scenario work? The number of bits in i could be considered a constant. Which would make the time complexity the same as with unit cost except with a bigger constant (and both would be linear). Also, I'm guessing addition and subtraction can be done in constant time, O(1). Couldn't find any info on it but it seems reasonable since it's one assembler operation.

    Read the article

  • Why can't RB-Tree be a list?

    - by Alex
    Hey everyone. I have a problem with the rb-trees. according to wikipedia, rb-tree needs to follow the following: A node is either red or black. The root is black. (This rule is used in some definitions and not others. Since the root can always be changed from red to black but not necessarily vice-versa this rule has little effect on analysis.) All leaves are black. Both children of every red node are black. Every simple path from a given node to any of its descendant leaves contains the same number of black nodes. As we know, an rb-tree needs to be balanced and has the height of O(log(n)). But, if we insert an increasing series of numbers (1,2,3,4,5...) and theoretically we will get a tree that will look like a list and will have the height of O(n) with all its nodes black, which doesn't contradict the rb-tree properties mentioned above. So, where am I wrong?? thanks.

    Read the article

  • Non recursive way to position a genogram in 2D points for x axis. Descendant are below

    - by Nassign
    I currently was tasked to make a genogram for a family consisting of siblings, parents with aunts and uncles with grandparents and greatgrandparents for only blood relatives. My current algorithm is using recursion. but I am wondering how to do it in non recursive way to make it more efficient. it is programmed in c# using graphics to draw on a bitmap. Current algorithm for calculating x position, the y position is by getting the generation number. public void StartCalculatePosition() { // Search the start node (The only node with targetFlg set to true) Person start = null; foreach (Person p in PersonDic.Values) { if (start == null) start = p; if (p.Targetflg) { start = p; break; } } CalcPositionRecurse(start); // Normalize the position (shift all values to positive value) // Get the minimum value (must be negative) // Then offset the position of all marriage and person with that to make it start from zero float minPosition = float.MaxValue; foreach (Person p in PersonDic.Values) { if (minPosition > p.Position) { minPosition = p.Position; } } if (minPosition < 0) { foreach (Person p in PersonDic.Values) { p.Position -= minPosition; } foreach (Marriage m in MarriageList) { m.ParentsPosition -= minPosition; m.ChildrenPosition -= minPosition; } } } /// <summary> /// Calculate position of genogram using recursion /// </summary> /// <param name="psn"></param> private void CalcPositionRecurse(Person psn) { // End the recursion if (psn.BirthMarriage == null || psn.BirthMarriage.Parents.Count == 0) { psn.Position = 0.0f; if (psn.BirthMarriage != null) { psn.BirthMarriage.ParentsPosition = 0.0f; psn.BirthMarriage.ChildrenPosition = 0.0f; } CalculateSiblingPosition(psn); return; } // Left recurse if (psn.Father != null) { CalcPositionRecurse(psn.Father); } // Right recurse if (psn.Mother != null) { CalcPositionRecurse(psn.Mother); } // Merge Position if (psn.Father != null && psn.Mother != null) { AdjustConflict(psn.Father, psn.Mother); // Position person in center of parent psn.Position = (psn.Father.Position + psn.Mother.Position) / 2; psn.BirthMarriage.ParentsPosition = psn.Position; psn.BirthMarriage.ChildrenPosition = psn.Position; } else { // Single mom or single dad if (psn.Father != null) { psn.Position = psn.Father.Position; psn.BirthMarriage.ParentsPosition = psn.Position; psn.BirthMarriage.ChildrenPosition = psn.Position; } else if (psn.Mother != null) { psn.Position = psn.Mother.Position; psn.BirthMarriage.ParentsPosition = psn.Position; psn.BirthMarriage.ChildrenPosition = psn.Position; } else { // Should not happen, checking in start of function } } // Arrange the siblings base on my position (left younger, right older) CalculateSiblingPosition(psn); } private float GetRightBoundaryAncestor(Person psn) { float rPos = psn.Position; // Get the rightmost position among siblings foreach (Person sibling in psn.Siblings) { if (sibling.Position > rPos) { rPos = sibling.Position; } } if (psn.Father != null) { float rFatherPos = GetRightBoundaryAncestor(psn.Father); if (rFatherPos > rPos) { rPos = rFatherPos; } } if (psn.Mother != null) { float rMotherPos = GetRightBoundaryAncestor(psn.Mother); if (rMotherPos > rPos) { rPos = rMotherPos; } } return rPos; } private float GetLeftBoundaryAncestor(Person psn) { float rPos = psn.Position; // Get the rightmost position among siblings foreach (Person sibling in psn.Siblings) { if (sibling.Position < rPos) { rPos = sibling.Position; } } if (psn.Father != null) { float rFatherPos = GetLeftBoundaryAncestor(psn.Father); if (rFatherPos < rPos) { rPos = rFatherPos; } } if (psn.Mother != null) { float rMotherPos = GetLeftBoundaryAncestor(psn.Mother); if (rMotherPos < rPos) { rPos = rMotherPos; } } return rPos; } /// <summary> /// Check if two parent group has conflict and compensate on the conflict /// </summary> /// <param name="leftGroup"></param> /// <param name="rightGroup"></param> public void AdjustConflict(Person leftGroup, Person rightGroup) { float leftMax = GetRightBoundaryAncestor(leftGroup); leftMax += 0.5f; float rightMin = GetLeftBoundaryAncestor(rightGroup); rightMin -= 0.5f; float diff = leftMax - rightMin; if (diff > 0.0f) { float moveHalf = Math.Abs(diff) / 2; RecurseMoveAncestor(leftGroup, 0 - moveHalf); RecurseMoveAncestor(rightGroup, moveHalf); } } /// <summary> /// Recursively move a person and all his/her ancestor /// </summary> /// <param name="psn"></param> /// <param name="moveUnit"></param> public void RecurseMoveAncestor(Person psn, float moveUnit) { psn.Position += moveUnit; foreach (Person siblings in psn.Siblings) { if (siblings.Id != psn.Id) { siblings.Position += moveUnit; } } if (psn.BirthMarriage != null) { psn.BirthMarriage.ChildrenPosition += moveUnit; psn.BirthMarriage.ParentsPosition += moveUnit; } if (psn.Father != null) { RecurseMoveAncestor(psn.Father, moveUnit); } if (psn.Mother != null) { RecurseMoveAncestor(psn.Mother, moveUnit); } } /// <summary> /// Calculate the position of the siblings /// </summary> /// <param name="psn"></param> /// <param name="anchor"></param> public void CalculateSiblingPosition(Person psn) { if (psn.Siblings.Count == 0) { return; } List<Person> sibling = psn.Siblings; int argidx; for (argidx = 0; argidx < sibling.Count; argidx++) { if (sibling[argidx].Id == psn.Id) { break; } } // Compute position for each brother that is younger that person int idx; for (idx = argidx - 1; idx >= 0; idx--) { sibling[idx].Position = sibling[idx + 1].Position - 1; } for (idx = argidx + 1; idx < sibling.Count; idx++) { sibling[idx].Position = sibling[idx - 1].Position + 1; } }

    Read the article

  • How do I show a log analysis in Splunk?

    - by Vinod K
    I have made my ubuntu server a centralized log server...I have splunk installed in the /opt directory of the ubuntu server. I have one of the another machines sending logs to this ubuntu server..In the splunk interface i have added in the network ports as UDP port 514...and also have added in the "file and directory" /var/log. The client has also been configured properly...How do I show analysis of the logs??

    Read the article

  • How can I tweak this A* search pathfinding algorithm to handle different terrain movement values?

    - by user422318
    I'm creating a 2D map-based action game with similar interaction design as Diablo II. In other words, the player clicks around a map to move their player. I just finished player movement and am moving on to pathfinding. In the game, enemies should charge the player's character. There are also five different terrain types that give different movement bonuses. I want the AI to take advantage of these terrain bonuses as they try to reach the player. I was told to check out the A* search algorithm (http://en.wikipedia.org/wiki/A*_search_algorithm). I'm doing this game in HTML5 and JavaScript, and found a version in JavaScript: http://www.briangrinstead.com/blog/astar-search-algorithm-in-javascript I'm trying to figure out how to tweak it though. Below are my ideas about what I need to change. What else do I need to worry about? When I create a graph, I will need to initialize the 2D array I pass in passed on with a traversal of a map that corresponds to the different terrain types. in graph.js: "GraphNodeType" definition needs to be modified to handle the 5 terrain types. There will be no walls. in astar.js: The g and h scoring will need to be modified. How should I do this? in astar.js: isWall() should probably be removed. My game doesn't have walls. in astar.js: I'm not sure what this is. I think it indicates a node that isn't valid to be processed. When would this happen, though? At a high level, how do I change this algorithm from "oh, is there a wall there?" to "will this terrain get me to the player faster than the terrain around me?" Because of time, I'm also debating reusing my Bresenham algorithm for the enemies. Unfortunately, the different terrain movement bonuses won't be used by the AI, which will make the game suck. :/ I'd really like to have this in for the prototype, but I'm not a developer by trade nor am I a computer scientist. :D If you know of any code that does what I'm looking for, please share! Sanity check tips for this are also appreciated.

    Read the article

  • Applying the Knuth-Plass algorithm (or something better?) to read two books with different length and amount of chapters in parallel

    - by user147133
    I have a Bible reading plan that covers the whole Bible in 180 days. For the most of the time, I read 5 chapters in the Old Testament and 1 or 2 (1.5) chapters in the New Testament each day. The problem is that some chapters are longer than others (for example Psalm 119 which is 7 times longer than a average chapter in the Bible), and the plan I'm following doesn't take that in count. I end up with some days having a lot more to read than others. I thought I could use programming to make myself a better plan. I have a datastructure with a list of all chapters in the bible and their length in number of lines. (I found that the number of lines is the best criteria, but it could have been number of verses or number of words as well) I then started to think about this problem as a line wrap problem. Think of a chapter like a word, a day like a line and the whole plan as a paragraph. The "length" of a word (a chapter) is the number of lines in that chapter. I could then generate the best possible reading plan by applying a simplified Knuth-Plass algorithm to find the best breakpoints. This works well if I want to read the Bible from beginning to end. But I want to read a little from the new testament each day in parallel with the old testament. Of course I can run the Knuth-Plass algorithm on the Old Testament first, then on the New Testament and get two separate plans. But those plans merged is not a optimal plan. Worst-case days (days with extra much reading) in the New Testament plan will randomly occur on the same days as the worst-case days in the Old Testament. Since the New Testament have about 180*1.5 chapters, the plan is generally to read one chapter the first day, two the second, one the third etc... And I would like the plan for the Old Testament to compensate for this alternating length. So I will need a new and better algorithm, or I will have to use the Knuth-Plass algorithm in a way that I've not figured out. I think this could be a interesting and challenging nut for people interested in algorithms, so therefore I wanted to see if any of you have a good solution in mind.

    Read the article

  • How can I perform sentiment analysis on extracted text from online sources?

    - by aniket69
    I'm working on extracting the sentiment from YouTube comments, blogs, news content, Facebook wall posts, and Twitter feeds. I'm looking for an automated way to do this: the two third-party solutions I've found have been AlchemyAPI and RapidMiner. Are these the best way to approach this project, or should I be using something else? Is there a more efficient way to approach sentiment analysis? What techniques have worked for you in a project like this?

    Read the article

  • Are there software options (preferabbly .NET) for doing distance and speed analysis of footballers moving on video?

    - by Anonymous Type
    Editing Question for Clarity Thanks for feedback so far, very insightful. I'm not sure how far along this part of the software community is, and what if any libraries exist for me to leverage from. Heres what I'm trying to do. Problem: Take an existing video of a game of rugby league. The Rugby League field is 100 metres long, 70 metres wide, and has white line markings every 10 metres running along the width of the field, as well as along the sidelines. Each side has 13 players on the field. Players on each team have identical jerseys that normally constrast strongly against background colours (green/brown field colour) and the referee's colour (usually yellow) and the designated water runner (orange). All players have a unique number in thick white lettering on their backs for identification. Video is taken with a high definition camera. Currently only one camera is used (2D) and existing video does not contain a foreground object of fixed spatial dimensions (as suggested in one answer for comparision measurements, however I could add this to future filming sessions if it is worthwhile). The player's do not run in a straight line 50% of the time but will go sideways on on a diagonal to the play the ball. The distance measured always starts from the spot of the previous "tackle", which ends where the player stops forward movement. It is not always possible to determine the players number from the video (facing other direction, sunlight, others standing in the way of the camera). But this isn't important as the software could allow for manual inputting of unknown "runs" at a later point after analysis. Determine the distance between two points (i.e. where the player started his "run" and where he finished it). I'm guessing that this would be quite doable if I manually marked the start and end point in the video. But how would I use landmarks in the background to determine the distance (assuming the person taking the video has kept it from jerking around). Question: Do software packages or libraries exist that are specialised enough to assist with writing analysis software to determine a sports persons distance travelled based on video taken of the performance?

    Read the article

  • The OLE DB provider "SQLNCLI10.1" has not been registered.; 42000.

    - by lankylad
    I have a SQL Server 2008 Analysis Services Project. In the Data Source View I have a Named Query which references a single Data Source containing three tables. The Project processes successfully and the cube can be browsed. I recently added a second Data Source to the Data Source View and linked a table to the original Named Query. When I try to process the project, I get the message: OLE DB error: OLE DB or ODBC error: The OLE DB provider "SQLNCLI10.1" has not been registered.; 42000. The Connection String for both Data Sources uses SQLNCLI10.1

    Read the article

  • The OLE DB provider "SQLNCLI10.1" has not been registered.; 42000

    - by lankylad
    I have a SQL Server 2008 Analysis Services Project. In the Data Source View I have a Named Query which references a single Data Source containing three tables. The Project processes successfully and the cube can be browsed. I recently added a second Data Source to the Data Source View and linked a table to the original Named Query. When I try to process the project, I get the message: OLE DB error: OLE DB or ODBC error: The OLE DB provider "SQLNCLI10.1" has not been registered.; 42000. The Connection String for both Data Sources uses SQLNCLI10.1

    Read the article

  • How do I resolve the error "The file exists" when restoring a cube backup?

    - by Ant
    I'm trying to restore a cube backup (a .abf file) using SQL Server Management Studio, but I'm getting the error message: The following system error occurred: The file exists. . (Microsoft SQL Server 2005 Analysis Services) (yes, there really are two dots) Does anyone know how to resolve this so I can restore the backup? Here are the steps I'm using: Open Microsoft SQL Server Management Studio Make the connection to the AS server Right-click on the Databases node on the server tree view Choose Restore... Type in a new database name in Restore database Select the backup file in From backup file Enter the correct password Optionally tick Allow database overwrite (it happens both ways) Press OK -- get the above error message

    Read the article

  • How to analyse logs after the site was hacked

    - by Vasiliy Toporov
    One of our web-projects was hacked. Malefactor changed some template files in project and 1 core file of the web-framework (it's one of the famous php-frameworks). We found all corrupted files by git and reverted them. So now I need to find the weak point. With high probability we can say, that it's not the ftp or ssh password abduction. The support specialist of hosting provider (after logs analysis) said that it was the security hole in our code. My questions: 1) What tools should I use, to review access and error logs of Apache? (Our server distro is Debian). 2) Can you write tips of suspicious lines detection in logs? Maybe tutorials or primers of some useful regexps or techniques? 3) How to separate "normal user behavior" from suspicious in logs. 4) Is there any way to preventing attacks in Apache? Thanks for your help.

    Read the article

  • Web log files analyzer

    - by Peter Štibraný
    I already use Google Analytics on my page, but I'd like to get additional info from log files. I've looked at various packages during last days, but nothing impressed me so far. Some requirements: must work on log file level (I use apache combined logs, but can configure apache to produce other types of logs) can generate static reports (windows/linux) or use GUI (windows only) should be easy to add custom user agents, and rerun analysis if it can recognize installation of eclipse plugins from log, that would be big plus understands google serp position referer should not require two days to setup (awstats, I am looking at you) should be still under active developement (i.e. analog isn't good answer) preferrably free, or at not very expensive :-) Any good analyzers programs out there?

    Read the article

  • faster implementation of sum ( for Codility test )

    - by Oscar Reyes
    How can the following simple implementation of sum be faster? private long sum( int [] a, int begin, int end ) { if( a == null ) { return 0; } long r = 0; for( int i = begin ; i < end ; i++ ) { r+= a[i]; } return r; } EDIT Background is in order. Reading latest entry on coding horror, I came to this site: http://codility.com which has this interesting programming test. Anyway, I got 60 out of 100 in my submission, and basically ( I think ) is because this implementation of sum, because those parts where I failed are the performance parts. I'm getting TIME_OUT_ERROR's So, I was wondering if an optimization in the algorithm is possible. So, no built in functions or assembly would be allowed. This my be done in C, C++, C#, Java or pretty much in any other. EDIT As usual, mmyers was right. I did profile the code and I saw most of the time was spent on that function, but I didn't understand why. So what I did was to throw away my implementation and start with a new one. This time I've got an optimal solution [ according to San Jacinto O(n) -see comments to MSN below - ] This time I've got 81% on Codility which I think is good enough. The problem is that I didn't take the 30 mins. but around 2 hrs. but I guess that leaves me still as a good programmer, for I could work on the problem until I found an optimal solution: Here's my result. I never understood what is those "combinations of..." nor how to test "extreme_first"

    Read the article

  • Getting the submatrix with maximum sum?

    - by guirgis
    With the help of the Algorithmist and Larry and a modification of Kadane's Algorithm, here is my solution: int dim = matrix.length; //computing the vertical prefix sum for columns int[][] ps = new int[dim][dim]; for (int i = 0; i < dim; i++) { for (int j = 0; j < dim; j++) { if (j == 0) { ps[j][i] = matrix[j][i]; } else { ps[j][i] = matrix[j][i] + ps[j - 1][i]; } } } int maxSoFar = 0; int min , subMatrix; //iterate over the possible combinations applying Kadane's Alg. //int toplefti =0, topleftj=0, bottomrighti=0, bottomrightj=0; for (int i = 0; i < dim; i++) { for (int j = i; j < dim; j++) { min = 0; subMatrix = 0; for (int k = 0; k < dim; k++) { if (i == 0) { subMatrix += ps[j][k]; } else { subMatrix += ps[j][k] - ps[i-1][k]; } if(subMatrix < min){ min = subMatrix; } if((subMatrix - min) > maxSoFar){ maxSoFar = subMatrix - min; } } } } The only problem left is to determine the submatrix elements, i mean the top left and the bottom right corners. I managed to do this in one dimensional case. Any suggestions?

    Read the article

  • How do you construct an array suitable for numpy sorting?

    - by Alex
    I need to sort two arrays simultaneously, or rather I need to sort one of the arrays and bring the corresponding element of its associated array with it as I sort. That is if the array is [(5, 33), (4, 44), (3, 55)] and I sort by the first axis (labeled below dtype='alpha') then I want: [(3.0, 55.0) (4.0, 44.0) (5.0, 33.0)]. These are really big data sets and I need to sort first ( for nlog(n) speed ) before I do some other operations. I don't know how to merge my two separate arrays though in the proper manner to get the sort algorithm working. I think my problem is rather simple. I tried three different methods: import numpy x=numpy.asarray([5,4,3]) y=numpy.asarray([33,44,55]) dtype=[('alpha',float), ('beta',float)] values=numpy.array([(x),(y)]) values=numpy.rollaxis(values,1) #values = numpy.array(values, dtype=dtype) #a=numpy.array(values,dtype=dtype) #q=numpy.sort(a,order='alpha') print "Try 1:\n", values values=numpy.empty((len(x),2)) for n in range (len(x)): values[n][0]=y[n] values[n][1]=x[n] print "Try 2:\n", values #values = numpy.array(values, dtype=dtype) #a=numpy.array(values,dtype=dtype) #q=numpy.sort(a,order='alpha') ### values = [(x[0], y[0]), (x[1],y[1]) , (x[2],y[2])] print "Try 3:\n", values values = numpy.array(values, dtype=dtype) a=numpy.array(values,dtype=dtype) q=numpy.sort(a,order='alpha') print "Result:\n",q I commented out the first and second trys because they create errors, I knew the third one would work because that was mirroring what I saw when I was RTFM. Given the arrays x and y (which are very large, just examples shown) how do I construct the array (called values) that can be called by numpy.sort properly? *** Zip works great, thanks. Bonus question: How can I later unzip the sorted data into two arrays again?

    Read the article

  • Ray-box Intersection Theory

    - by Myx
    Hello: I wish to determine the intersection point between a ray and a box. The box is defined by its min 3D coordinate and max 3D coordinate and the ray is defined by its origin and the direction to which it points. Currently, I am forming a plane for each face of the box and I'm intersecting the ray with the plane. If the ray intersects the plane, then I check whether or not the intersection point is actually on the surface of the box. If so, I check whether it is the closest intersection for this ray and I return the closest intersection. The way I check whether the plane-intersection point is on the box surface itself is through a function bool PointOnBoxFace(R3Point point, R3Point corner1, R3Point corner2) { double min_x = min(corner1.X(), corner2.X()); double max_x = max(corner1.X(), corner2.X()); double min_y = min(corner1.Y(), corner2.Y()); double max_y = max(corner1.Y(), corner2.Y()); double min_z = min(corner1.Z(), corner2.Z()); double max_z = max(corner1.Z(), corner2.Z()); if(point.X() >= min_x && point.X() <= max_x && point.Y() >= min_y && point.Y() <= max_y && point.Z() >= min_z && point.Z() <= max_z) return true; return false; } where corner1 is one corner of the rectangle for that box face and corner2 is the opposite corner. My implementation works most of the time but sometimes it gives me the wrong intersection. I was wondering if the way I'm checking whether the intersection point is on the box is correct or if I should use some other algorithm. Thanks.

    Read the article

  • How should I Test a Genetic Algorithm

    - by James Brooks
    I have made a quite few genetic algorithms; they work (they find a reasonable solution quickly). But I have now discovered TDD. Is there a way to write a genetic algorithm (which relies heavily on random numbers) in a TDD way? To pose the question more generally, How do you test a non-deterministic method/function. Here is what I have thought of: Use a specific seed. Which wont help if I make a mistake in the code in the first place but will help finding bugs when refactoring. Use a known list of numbers. Similar to the above but I could follow the code through by hand (which would be very tedious). Use a constant number. At least I know what to expect. It would be good to ensure that a dice always reads 6 when RandomFloat(0,1) always returns 1. Try to move as much of the non-deterministic code out of the GA as possible. which seems silly as that is the core of it's purpose. Links to very good books on testing would be appreciated too.

    Read the article

  • How does one convert 16-bit RGB565 to 24-bit RGB888?

    - by jleedev
    I’ve got my hands on a 16-bit rgb565 image (specifically, an Android framebuffer dump), and I would like to convert it to 24-bit rgb888 for viewing on a normal monitor. The question is, how does one convert a 5- or 6-bit channel to 8 bits? The obvious answer is to shift it. I started out by writing this: uint16_t buf; while (read(0, &buf, sizeof buf)) { unsigned char red = (buf & 0xf800) >> 11; unsigned char green = (buf & 0x07c0) >> 5; unsigned char blue = buf & 0x003f; putchar(red << 3); putchar(green << 2); putchar(blue << 3); } However, this doesn’t have one property I would like, which is for 0xffff to map to 0xffffff, instead of 0xf8fcf8. I need to expand the value in some way, but I’m not sure how that should work. The Android SDK comes with a tool called ddms (Dalvik Debug Monitor) that takes screen captures. As far as I can tell from reading the code, it implements the same logic; yet its screenshots are coming out different, and white is mapping to white. Here’s the raw framebuffer, the smart conversion by ddms, and the dumb conversion by the above algorithm. (By the way, this conversion is implemented in ffmpeg, but it’s just performing the dumb conversion listed above, leaving the LSBs at all zero.) I guess I have two questions: What’s the most sensible way to convert rgb565 to rgb888? How is DDMS converting its screenshots?

    Read the article

  • Big problem with Dijkstra algorithm in a linked list graph implementation

    - by Nazgulled
    Hi, I have my graph implemented with linked lists, for both vertices and edges and that is becoming an issue for the Dijkstra algorithm. As I said on a previous question, I'm converting this code that uses an adjacency matrix to work with my graph implementation. The problem is that when I find the minimum value I get an array index. This index would have match the vertex index if the graph vertexes were stored in an array instead. And the access to the vertex would be constant. I don't have time to change my graph implementation, but I do have an hash table, indexed by a unique number (but one that does not start at 0, it's like 100090000) which is the problem I'm having. Whenever I need, I use the modulo operator to get a number between 0 and the total number of vertices. This works fine for when I need an array index from the number, but when I need the number from the array index (to access the calculated minimum distance vertex in constant time), not so much. I tried to search for how to inverse the modulo operation, like, 100090000 mod 18000 = 10000 and, 10000 invmod 18000 = 100090000 but couldn't find a way to do it. My next alternative is to build some sort of reference array where, in the example above, arr[10000] = 100090000. That would fix the problem, but would require to loop the whole graph one more time. Do I have any better/easier solution with my current graph implementation?

    Read the article

  • Raytracing (LoS) on 3D hex-like tile maps

    - by herenvardo
    Greetings, I'm working on a game project that uses a 3D variant of hexagonal tile maps. Tiles are actually cubes, not hexes, but are laid out just like hexes (because a square can be turned to a cube to extrapolate from 2D to 3D, but there is no 3D version of a hex). Rather than a verbose description, here goes an example of a 4x4x4 map: (I have highlighted an arbitrary tile (green) and its adjacent tiles (yellow) to help describe how the whole thing is supposed to work; but the adjacency functions are not the issue, that's already solved.) I have a struct type to represent tiles, and maps are represented as a 3D array of tiles (wrapped in a Map class to add some utility methods, but that's not very relevant). Each tile is supposed to represent a perfectly cubic space, and they are all exactly the same size. Also, the offset between adjacent "rows" is exactly half the size of a tile. That's enough context; my question is: Given the coordinates of two points A and B, how can I generate a list of the tiles (or, rather, their coordinates) that a straight line between A and B would cross? That would later be used for a variety of purposes, such as determining Line-of-sight, charge path legality, and so on. BTW, this may be useful: my maps use the (0,0,0) as a reference position. The 'jagging' of the map can be defined as offsetting each tile ((y+z) mod 2) * tileSize/2.0 to the right from the position it'd have on a "sane" cartesian system. For the non-jagged rows, that yields 0; for rows where (y+z) mod 2 is 1, it yields 0.5 tiles. I'm working on C#4 targeting the .Net Framework 4.0; but I don't really need specific code, just the algorithm to solve the weird geometric/mathematical problem. I have been trying for several days to solve this at no avail; and trying to draw the whole thing on paper to "visualize" it didn't help either :( . Thanks in advance for any answer

    Read the article

  • Python: speed up removal of every n-th element from list.

    - by ChristopheD
    I'm trying to solve this programming riddle and althought the solution (see code below) works correct, it is too slow for succesful submission. Any pointers as how to make this run faster? (removal of every n-th element from a list)? Or suggestions for a better algorithm to calculate the same; seems I can't think of anything else then brute-force for now... Basically the task at hand is: GIVEN: L = [2,3,4,5,6,7,8,9,10,11,........] 1. Take the first remaining item in list L (in the general case 'n'). Move it to the 'lucky number list'. Then drop every 'n-th' item from the list. 2. Repeat 1 TASK: Calculate the n-th number from the 'lucky number list' ( 1 <= n <= 3000) My current code (it calculates the 3000 first lucky numbers in about a second on my machine - but unfortunately too slow): """ SPOJ Problem Set (classical) 1798. Assistance Required URL: http://www.spoj.pl/problems/ASSIST/ """ sieve = range(3, 33900, 2) luckynumbers = [2] while True: wanted_n = input() if wanted_n == 0: break while len(luckynumbers) < wanted_n: item = sieve[0] luckynumbers.append(item) items_to_delete = set(sieve[::item]) sieve = filter(lambda x: x not in items_to_delete, sieve) print luckynumbers[wanted_n-1]

    Read the article

  • Average of two strings in alphabetical/lexicographical order

    - by Bemmu
    Suppose you take the strings 'a' and 'z' and list all the strings that come between them in alphabetical order: ['a','b','c' ... 'x','y','z']. Take the midpoint of this list and you find 'm'. So this is kind of like taking an average of those two strings. You could extend it to strings with more than one character, for example the midpoint between 'aa' and 'zz' would be found in the middle of the list ['aa', 'ab', 'ac' ... 'zx', 'zy', 'zz']. Might there be a Python method somewhere that does this? If not, even knowing the name of the algorithm would help. I began making my own routine that simply goes through both strings and finds midpoint of the first differing letter, which seemed to work great in that 'aa' and 'az' midpoint was 'am', but then it fails on 'cat', 'doggie' midpoint which it thinks is 'c'. I tried Googling for "binary search string midpoint" etc. but without knowing the name of what I am trying to do here I had little luck.

    Read the article

< Previous Page | 72 73 74 75 76 77 78 79 80 81 82 83  | Next Page >