Search Results

Search found 10536 results on 422 pages for 'dan course'.

Page 76/422 | < Previous Page | 72 73 74 75 76 77 78 79 80 81 82 83  | Next Page >

  • Data Binding to Attached Properties

    - by Chris Gardner
    Originally posted on: http://geekswithblogs.net/freestylecoding/archive/2013/06/14/data-binding-to-attached-properties.aspx When I was working on my C#/XAML game framework, I discovered I wanted to try to data bind my sprites to background objects. That way, I could update my objects and the draw functionality would take care of the work for me. After a little experimenting and web searching, it appeared this concept was an impossible dream. Of course, when has that ever stopped me? In my typical way, I started to massively dive down the rabbit hole. I created a sprite on a canvas, and I bound it to a background object. <Canvas Name="GameField" Background="Black"> <Image Name="PlayerStrite" Source="Assets/Ship.png" Width="50" Height="50" Canvas.Left="{Binding X}" Canvas.Top="{Binding Y}"/> </Canvas> Now, we wire the UI item to the background item. public MainPage() { this.InitializeComponent(); this.Loaded += StartGame; }   void StartGame( object sender, RoutedEventArgs e ) { BindingPlayer _Player = new BindingPlayer(); _Player.X = Window.Current.Bounds.Height - PlayerSprite.Height; _Player.X = ( Window.Current.Bounds.Width - PlayerSprite.Width ) / 2.0; } Of course, now we need to actually have our background object. public class BindingPlayer : INotifyPropertyChanged { private double m_X; public double X { get { return m_X; } set { m_X = value; NotifyPropertyChanged(); } }   private double m_Y; public double Y { get { return m_Y; } set { m_Y = value; NotifyPropertyChanged(); } }   public event PropertyChangedEventHandler PropertyChanged; protected void NotifyPropertyChanged( [CallerMemberName] string p_PropertyName = null ) { if( PropertyChanged != null ) PropertyChanged( this, new PropertyChangedEventArgs( p_PropertyName ) ); } } I fired this baby up, and my sprite was correctly positioned on the screen. Maybe the sky wasn't falling after all. Wouldn't it be great if that was the case? I created some code to allow me to move the sprite, but nothing happened. This seems odd. So, I start debugging the application and stepping through code. Everything appears to be working. Time to dig a little deeper. After much profanity was spewed, I stumbled upon a breakthrough. The code only looked like it was working. What was really happening is that there was an exception being thrown in the background thread that I never saw. Apparently, the key call was the one to PropertyChanged. If PropertyChanged is not called on the UI thread, the UI thread ignores the call. Actually, it throws an exception and the background thread silently crashes. Of course, you'll never see this unless you're looking REALLY carefully. This seemed to be a simple problem. I just need to marshal this to the UI thread. Unfortunately, this object has no knowledge of this mythical UI Thread in which we speak. So, I had to pull the UI Thread out of thin air. Let's change our PropertyChanged call to look this. public event PropertyChangedEventHandler PropertyChanged; protected void NotifyPropertyChanged( [CallerMemberName] string p_PropertyName = null ) { if( PropertyChanged != null ) Windows.ApplicationModel.Core.CoreApplication.MainView.CoreWindow.Dispatcher.RunAsync( Windows.UI.Core.CoreDispatcherPriority.Normal, new Windows.UI.Core.DispatchedHandler( () => { PropertyChanged( this, new PropertyChangedEventArgs( p_PropertyName ) ); } ) ); } Now, we raised our notification on the UI thread. Everything is fine, people are happy, and the world moves on. You may have noticed that I didn't await my call to the dispatcher. This was intentional. If I am trying to update a slew of sprites, I don't want thread being hung while I wait my turn. Thus, I send the message and move on. It is worth nothing that this is NOT the most efficient way to do this for game programming. We'll get to that in another blog post. However, it is perfectly acceptable for a business app that is running a background task that would like to notify the UI thread of progress on a periodic basis. It is worth noting that this code was written for a Windows Store App. You can do the same thing with WP8 and WPF. The call to the marshaler changes, but it is the same idea.

    Read the article

  • CS, SE, HCI, Information Science, Please recommendation for further education of the former performing art manager seeking career in IT industries? [on hold]

    - by Baek Seungjoo
    IT specialists there J Thank you very much for your collective efforts here, and I got huge help reading your professional comments and advices on each questions I have searched so far! This time, I would like to ask for your practical advices or recommendation on what I am struggling on at this moment. I am currently seeking higher education for my career transition from performing art manager and director to “IT software and/or service development and management specialist”. However, as this field is quite new to me, and there are lots of different work positions, I have no idea which grad major I better pursue in order to get qualification. Of course I know this question could sounds wired as it is kind of personal choice. But my lack of understanding on how IT software companies work in general, your practical and experience-based advice will be great help to me, who spent more than two months of self-research on net. OK. Before my question, here is my plan and history, which are quite different from those currently in IT industry I think… 1) Target Firstly, get career transition into IT service or products companies and get experiences. Eventually, pursue IT entrepreneurship in combination with my arts and cultural production and business expertise. 2) Background Career: performing arts director and manager in theatre-based scale opera and musical Art education in youth BA in literature and Chinese studies (Art & Humanities) MA in Cultural & Creative Industries (Art & Humanities) – dissertation with focus on digital prosumption and the lived experience of the prosumer. (a qualitative research on the agents in the digital world) 2) Personally Huge interest in IT hardware and software, and their trend. Skills to build up, repair, tune PCs -of course this is no more than personal hobby, but shows my interests in this field. 4) Problem Encounter a question “So, what do you think you can contribute practically in this position”. This question turn me down everytime I go through job interviews, and I decided more education in the relevant area. Here are my questions. 1) In terms of work positions in IT software companies, I wonder if I can put the comparison of what “Artists” is to “Arts Manager or Director” is what “Developer” is to “Product Manager”. (Of course, this stereotypical division of Artist-Art Manager is out of sense because the domain overlaps to some extent, and is blurring at least in my field, and they are in different contexts, but just speaking easily.) Normally, artist comes with special arts educations, and they live in their own world of artistic inspiration and creation, and they feel alive in practice and on stages. Meanwhile, from the point of staging and managing productions, the role of art manager is critical as well. Our role cares how the production appeals to the audience in effective way, how to make profit and future sustainable management through that, how to set up future strategy in consideration of the external conditions such as political and social circumstances, audience trend and level, other production trends from on-going and historical perspectives, how and what the production make voice to the society from political, economic, humanitarian stances. So, we need keen eyes on economic, political, and societal environment, have to understand human-being and their desires, must know how to make presentation and attract investors, must have sense in managing and fighting over the limited financial resource, how to extend networking and so on. It is common that the two agents create productions in collaboration (normally not in that ideal way but in conflict and fight though J ). So, we need to know each other’s expertise to some extent, for better production. What are the work positions in IT software industries equivalent to the role of “art manager” in performing arts? From my view, considering developers come with special education in the world of computer science, software engineering, or others (self-education sometimes), and they express themselves with the arts of coding, computer languages on the black screen, and make sort of their artistic production online to the audience, I guess there might be someone who collaborate with developers in creating, managing, and launching IT services or products. 2) Which education among CS, SE, HCI, Information Science, is needed for those seeking such work position? Especially for person like me. (At this moment, Information Science has the highest possibility to get in, since I lack Calculus and Math in undergrad educaiton. But please let me know irrespective of this concern, I think there are ways to back it up if CS or SE education needed in my case) 3) Which field between Information Science and HCI can be more practical background regarding job hungting? And which of them have more demands in job market? AS I checked, HCI is more close to CS than IS in its focus of study area. Thank you very much for your patience reading such a long inquiry, and I appreciate to your efforts in advance. Have a nice day in this beautiful summer.

    Read the article

  • World Backup Day

    - by red(at)work
    Here at Red Gate Towers, the SQL Backup development team have been hunkered down in their shed for the last few months, with the toolbox, blowtorch and chamois leather out, upgrading SQL Backup. When we started, autumn leaves were falling. Now we're about to finish, spring flowers are budding. If not quite a gleaming new machine, at the very least a familiar, reliable engine with some shiny new bits on it will trundle magnificently out of the workshop. One of the interesting things I've noticed about working on software development teams is that the team is together for so long 'implementing' stuff - designing, coding, testing, fixing bugs and so on - that you occasionally forget why you're doing what you're doing. Doubt creeps in. It feels like a long time since we launched this project in a fanfare of optimism and enthusiasm, and all that clarity of purpose and mission "yee-haw" has dissipated with the daily pressures of development. Every now and again, we look up from our bunker and notice all those thousands of users out there, with their different configurations and working practices and each with their own set of problems and requirements, and we ask ourselves "does anyone care about what we're doing?" Has the world moved on while we've been busy? Could we have been doing something more useful with the time and talent of all these excellent people we've assembled? In truth, you can research and test and validate all you like, but you never really know if you've done the right thing (or at least, something valuable for some users) until you release. All projects suffer this insecurity. If they don't, maybe you're not worrying enough about what you're building. The two enemies of software development are certainty and complacency. Oh, and of course, rival teams with Nerf guns. The goal of SQL Backup 7 is to make it so easy to schedule regular restores of your backups that you have no excuse not to. Why schedule a restore? Because your data is not as good as your last backup. It's only as good as your last successful restore. If you're not checking your backups by restoring them and running an integrity check on the database, you're only doing half the job. It seems that most DBAs know that this is best practice, but it can be tricky and time-consuming to set up, so it's one of those tasks that can get forgotten in the midst all the other demands on their time. Sometimes, they're just too busy firefighting. But if it was simple to do? That was our inspiration for SQL Backup 7. So it was heartening to read Brent Ozar's blog post the other day about World Backup Day. To be honest, I'd never heard of World Backup Day (Talk Like a Pirate Day, yes, but not this one); however, its emphasis on not just backing up your data but checking the validity of those backups was exactly the same message we had in mind when building SQL Backup 7. It's printed on a piece of A3 above our planning board - "Make backup verification so easy to do that no DBA has an excuse for not doing it" It's the missing piece that completes the puzzle. Simple idea, great concept, useful feature, but, as it turned out, far from straightforward to implement. The problem is the future. As Marty McFly discovered over the course of three movies, the future is uncertain and hard to predict - so when you are scheduling a restore to take place an hour, day, week or month after the backup, there are all kinds of questions that you wouldn't normally have to consider. Where will this backup live? Will it even exist at the time? Will it be split into multiple files? What will the file names be? Will it be encrypted? What files should it be restored to? SQL Backup needs to know what to expect at the time the restore job is actually run. Of course, a DBA will know the answer to all these questions, but to deliver the whole point of version 7, we wanted to make it easy for them to input that information into SQL Backup. We think we've done that. When you create your scheduled backup job, there is now an option to create a "reminder" to follow it up with a scheduled restore to verify the resulting backups. Actually, it's much more than a reminder, as it stores all the relevant data so you can click it and pre-populate the wizard with all the right settings to set up your verification restores. Simple. But, what do you think? We'd love you to try it. Post by Brian Harris

    Read the article

  • Windows 8 for productivity?

    - by Charles Young
    At long last I’ve started using Windows 8.  I boot from a VHD on which I have installed Office, Visio, Visual Studio, SQL Server, etc.  For a week, now, I’ve been happily writing code and documents and using Visio and PowerPoint.  I am, very much, a ‘productivity’ user rather than a content consumer.   I spend my days flitting between countless windows and browser tabs displayed across dual monitors.  I need to access a lot of different functionality and information in as fluid a fashion as possible. With that in mind, and like so many others, I was worried about Windows 8.  The Metro interface is primarily about content consumption on touch-enabled screens, and not really geared for people like me sitting in front of an 8-core non-touch laptop and an additional Samsung monitor.  I still use a mouse, not my finger.  And I create more than I consume. Clearly, Windows 8 won’t be viable for people like me unless Metro keeps out of my hair when using productivity and development tools.  With this in mind, I had long expected Microsoft to provide some mechanism for switching Metro off.  There was a registry hack in last year’s Developer Preview, but this capability has been removed.   That’s brave.  So, how have things worked out so far? Well, I am really quite surprised.  When I played with the Developer Preview last year, it was clear that Metro was unfinished and didn’t play well enough with the desktop.  Obviously I expected things to improve, but the context switching from desktop to full-screen seemed a heavy burden to place on users.  That sense of abrupt change hasn’t entirely gone away (how could it), but after a few days, I can’t say that I find it burdensome or irritating.   I’ve got used very quickly to ‘gesturing’ with my mouse at the bottom or top right corners of the screen to move between applications, using the Windows key to toggle the Start screen and generally finding my way around.   I am surprised at how effective the Start screen is, given the rather basic grouping features it provides.  Of course, I had to take control of it and sort things the way I want.  If anything, though, the Start screen provides a better navigation and application launcher tool than the old Start menu. What I didn’t expect was the way that Metro enhances the productivity story.  As I write this, I’ve got my desktop open with a maximised Word window.  However, the desktop extends only across about 85% of the width of my screen.  On the left hand side, I have a column that displays the new Metro email client.  This is currently showing me a list of emails for my main work account.  I can flip easily between different accounts and read my email within that same column.  As I work on documents, I want to be able to monitor my inbox with a quick glance. The desktop, of course, has its own snap feature.  I could run the desktop full screen and bring up Outlook and Word side by side.  However, this doesn’t begin to approach the convenience of snapping the Metro email client.  Consider that when I snap a window on the desktop, it initially takes up 50% of the screen.  Outlook doesn’t really know anything about snap, and doesn’t adjust to make effective use of the limited screen estate.  Even at 50% screen width, it is difficult to use, so forget about trying to use it in a Metro fashion. In any case, I am left with the prospect of having to manually adjust everything to view my email effectively alongside Word.  Worse, there is nothing stopping another window from overlapping and obscuring my email.  It becomes a struggle to keep sight of email as it arrives.  Of course, there is always ‘toast’ to notify me when things arrive, but if Outlook is obscured, this just feels intrusive. The beauty of the Metro snap feature is that my email reader now exists outside of my desktop.   The Metro app has been crafted to work well in the fixed width column as well as in full-screen.  It cannot be obscured by overlapping windows.  I still get notifications if I wish.  More importantly, it is clear that careful attention has been given to how things work when moving between applications when ‘snapped’.  If I decide, say to flick over to the Metro newsreader to catch up with current affairs, my desktop, rather than my email client, obligingly makes way for the reader.  With a simple gesture and click, or alternatively by pressing Windows-Tab, my desktop reappears. Another pleasant surprise is the way Windows 8 handles dual monitors.  It’s not just the fact that both screens now display the desktop task bar.  It’s that I can so easily move between Metro and the desktop on either screen.  I can only have Metro on one screen at a time which makes entire sense given the ‘full-screen’ nature of Metro apps.  Using dual monitors feels smoother and easier than previous versions of Windows. Overall then, I’m enjoying the Windows 8 improvements.  Strangely, for all the hype (“Windows reimagined”, etc.), my perception as a ‘productivity’ user is more one of evolution than revolution.  It all feels very familiar, but just better.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • More Animation - Self Dismissing Dialogs

    - by Duncan Mills
    In my earlier articles on animation, I discussed various slide, grow and  flip transitions for items and containers.  In this article I want to discuss a fade animation and specifically the use of fades and auto-dismissal for informational dialogs.  If you use a Mac, you may be familiar with Growl as a notification system, and the nice way that messages that are informational just fade out after a few seconds. So in this blog entry I wanted to discuss how we could make an ADF popup behave in the same way. This can be an effective way of communicating information to the user without "getting in the way" with modal alerts. This of course, has been done before, but everything I've seen previously requires something like JQuery to be in the mix when we don't really need it to be.  The solution I've put together is nice and generic and will work with either <af:panelWindow> or <af:dialog> as a the child of the popup. In terms of usage it's pretty simple to use we  just need to ensure that the popup itself has clientComponent is set to true and includes the animation JavaScript (animateFadingPopup) on a popupOpened event: <af:popup id="pop1" clientComponent="true">   <af:panelWindow title="A Fading Message...">    ...  </af:panelWindow>   <af:clientListener method="animateFadingPopup" type="popupOpened"/> </af:popup>   The popup can be invoked in the normal way using showPopupBehavior or JavaScript, no special code is required there. As a further twist you can include an additional clientAttribute called preFadeDelay to define a delay before the fade itself starts (the default is 5 seconds) . To set the delay to just 2 seconds for example: <af:popup ...>   ...   <af:clientAttribute name="preFadeDelay" value="2"/>   <af:clientListener method="animateFadingPopup" type="popupOpened"/>  </af:popup> The Animation Styles  As before, we have a couple of CSS Styles which define the animation, I've put these into the skin in my case, and, as in the other articles, I've only defined the transitions for WebKit browsers (Chrome, Safari) at the moment. In this case, the fade is timed at 5 seconds in duration. .popupFadeReset {   opacity: 1; } .popupFadeAnimate {   opacity: 0;   -webkit-transition: opacity 5s ease-in-out; } As you can see here, we are achieving the fade by simply setting the CSS opacity property. The JavaScript The final part of the puzzle is, of course, the JavaScript, there are four functions, these are generic (apart from the Style names which, if you've changed above, you'll need to reflect here): The initial function invoked from the popupOpened event,  animateFadingPopup which starts a timer and provides the initial delay before we start to fade the popup. The function that applies the fade animation to the popup - initiatePopupFade. The callback function - closeFadedPopup used to reset the style class and correctly hide the popup so that it can be invoked again and again.   A utility function - findFadeContainer, which is responsible for locating the correct child component of the popup to actually apply the style to. Function - animateFadingPopup This function, as stated is the one hooked up to the popupOpened event via a clientListener. Because of when the code is called it does not actually matter how you launch the popup, or if the popup is re-used from multiple places. All usages will get the fade behavior. /**  * Client listener which will kick off the animation to fade the dialog and register  * a callback to correctly reset the popup once the animation is complete  * @param event  */ function animateFadingPopup(event) { var fadePopup = event.getSource();   var fadeCandidate = false;   //Ensure that the popup is initially Opaque   //This handles the situation where the user has dismissed   //the popup whilst it was in the process of fading   var fadeContainer = findFadeContainer(fadePopup);   if (fadeContainer != null) {     fadeCandidate = true;     fadeContainer.setStyleClass("popupFadeReset");   }   //Only continue if we can actually fade this popup   if (fadeCandidate) {   //See if a delay has been specified     var waitTimeSeconds = event.getSource().getProperty('preFadeDelay');     //Default to 5 seconds if not supplied     if (waitTimeSeconds == undefined) {     waitTimeSeconds = 5;     }     // Now call the fade after the specified time     var fadeFunction = function () {     initiatePopupFade(fadePopup);     };     var fadeDelayTimer = setTimeout(fadeFunction, (waitTimeSeconds * 1000));   } } The things to note about this function is the initial check that we have to do to ensure that the container is currently visible and reset it's style to ensure that it is.  This is to handle the situation where the popup has begun the fade, and yet the user has still explicitly dismissed the popup before it's complete and in doing so has prevented the callback function (described later) from executing. In this particular situation the initial display of the dialog will be (apparently) missing it's normal animation but at least it becomes visible to the user (and most users will probably not notice this difference in any case). You'll notice that the style that we apply to reset the  opacity - popupFadeReset, is not applied to the popup component itself but rather the dialog or panelWindow within it. More about that in the description of the next function findFadeContainer(). Finally, assuming that we have a suitable candidate for fading, a JavaScript  timer is started using the specified preFadeDelay wait time (or 5 seconds if that was not supplied). When this timer expires then the main animation styleclass will be applied using the initiatePopupFade() function Function - findFadeContainer As a component, the <af:popup> does not support styleClass attribute, so we can't apply the animation style directly.  Instead we have to look for the container within the popup which defines the window object that can have a style attached.  This is achieved by the following code: /**  * The thing we actually fade will be the only child  * of the popup assuming that this is a dialog or window  * @param popup  * @return the component, or null if this is not valid for fading  */ function findFadeContainer(popup) { var children = popup.getDescendantComponents();   var fadeContainer = children[0];   if (fadeContainer != undefined) {   var compType = fadeContainer.getComponentType();     if (compType == "oracle.adf.RichPanelWindow" || compType == "oracle.adf.RichDialog") {     return fadeContainer;     }   }   return null; }  So what we do here is to grab the first child component of the popup and check its type. Here I decided to limit the fade behaviour to only <af:dialog> and <af:panelWindow>. This was deliberate.  If  we apply the fade to say an <af:noteWindow> you would see the text inside the balloon fade, but the balloon itself would hang around until the fade animation was over and then hide.  It would of course be possible to make the code smarter to walk up the DOM tree to find the correct <div> to apply the style to in order to hide the whole balloon, however, that means that this JavaScript would then need to have knowledge of the generated DOM structure, something which may change from release to release, and certainly something to avoid. So, all in all, I think that this is an OK restriction and frankly it's windows and dialogs that I wanted to fade anyway, not balloons and menus. You could of course extend this technique and handle the other types should you really want to. One thing to note here is the selection of the first (children[0]) child of the popup. It does not matter if there are non-visible children such as clientListener before the <af:dialog> or <af:panelWindow> within the popup, they are not included in this array, so picking the first element in this way seems to be fine, no matter what the underlying ordering is within the JSF source.  If you wanted a super-robust version of the code you might want to iterate through the children array of the popup to check for the right type, again it's up to you.  Function -  initiatePopupFade  On to the actual fading. This is actually very simple and at it's heart, just the application of the popupFadeAnimate style to the correct component and then registering a callback to execute once the fade is done. /**  * Function which will kick off the animation to fade the dialog and register  * a callback to correctly reset the popup once the animation is complete  * @param popup the popup we are animating  */ function initiatePopupFade(popup) { //Only continue if the popup has not already been dismissed    if (popup.isPopupVisible()) {   //The skin styles that define the animation      var fadeoutAnimationStyle = "popupFadeAnimate";     var fadeAnimationResetStyle = "popupFadeReset";     var fadeContainer = findFadeContainer(popup);     if (fadeContainer != null) {     var fadeContainerReal = AdfAgent.AGENT.getElementById(fadeContainer.getClientId());       //Define the callback this will correctly reset the popup once it's disappeared       var fadeCallbackFunction = function (event) {       closeFadedPopup(popup, fadeContainer, fadeAnimationResetStyle);         event.target.removeEventListener("webkitTransitionEnd", fadeCallbackFunction);       };       //Initiate the fade       fadeContainer.setStyleClass(fadeoutAnimationStyle);       //Register the callback to execute once fade is done       fadeContainerReal.addEventListener("webkitTransitionEnd", fadeCallbackFunction, false);     }   } } I've added some extra checks here though. First of all we only start the whole process if the popup is still visible. It may be that the user has closed the popup before the delay timer has finished so there is no need to start animating in that case. Again we use the findFadeContainer() function to locate the correct component to apply the style to, and additionally we grab the DOM id that represents that container.  This physical ID is required for the registration of the callback function. The closeFadedPopup() call is then registered on the callback so as to correctly close the now transparent (but still there) popup. Function -  closeFadedPopup The final function just cleans things up: /**  * Callback function to correctly cancel and reset the style in the popup  * @param popup id of the popup so we can close it properly  * @param contatiner the window / dialog within the popup to actually style  * @param resetStyle the syle that sets the opacity back to solid  */ function closeFadedPopup(popup, container, resetStyle) { container.setStyleClass(resetStyle);   popup.cancel(); }  First of all we reset the style to make the popup contents opaque again and then we cancel the popup.  This will ensure that any of your user code that is waiting for a popup cancelled event will actually get the event, additionally if you have done this as a modal window / dialog it will ensure that the glasspane is dismissed and you can interact with the UI again.  What's Next? There are several ways in which this technique could be used, I've been working on a popup here, but you could apply the same approach to in-line messages. As this code (in the popup case) is generic it will make s pretty nice declarative component and maybe, if I get time, I'll look at constructing a formal Growl component using a combination of this technique, and active data push. Also, I'm sure the above code can be improved a little too.  Specifically things like registering a popup cancelled listener to handle the style reset so that we don't loose the subtle animation that takes place when the popup is opened in that situation where the user has closed the in-fade dialog.

    Read the article

  • Prepping a conference

    - by Laurent Bugnion
    I have had the chance to talk at many conferences these past few years, and came up with a way to prepare them which works really well for me. Most importantly, it would make it quite easy to overcome an emergency (for example if my laptop would suddenly lose data). The whole code as well as the slides and other documents are in the cloud. I also use source control for my demos, so that I always have the latest and the greatest, but also a history of changes I made to my demos. Finally I have a system of code snippets which works great, and I often had very positive remarks from the audience regarding that. Putting everything in the cloud The one thing I used to be the most scared of was a sudden crash of my laptop, and being unable to restore in time for a conference. Most conferences ask speakers to send slides a few days (or weeks…) in advance, but let's face it, we all have last minute changes to our talks and I always come in the conference with updated slides that I pass to the management team. The answer to that dilemma used to be working off memory sticks, and that worked not bad. However last year I started putting all the documents relating to a conference in a DropBox folder, and that works great too. Obviously DropBox works only if you have connectivity, so if I for instance update slides while on an international flight, I cannot save to the cloud. The obvious answer to that is to backup everything on a memory stick… but I have to admit, I have been trusting my luck and working off my laptop HD and then synching everything to the cloud after landing. Of course on some US national flights you get WiFi on board, so in that case it is even simpler :) Usually after the conference is done, I remove the files from DropBox and copy them to their "final destination". They are backed up from there to BackBlaze, the great online backup service I am using routinely (I currently have about 90GB of data in BackBlaze). Outlining the presentations I like to have a written outline of my presentations written somewhere. I keep it simple, just write the various sections of the presentation with timing. I guess it is a remnant of the time when I was a private pilot, and using checklists for flight preparation. For example: Demo about designability 15' (0:37) Switch to Blend Open MainPage.xaml Create a DataTemplate ... Here I can immediately see during the presentation if I am taking too much time for my demo (0:37 is where I need to be when I am done with this section of the presentation, and 15' is the time that this particular section takes). I keep these sections reasonable, I don't detail every step of the preparation. Typically I have one such section for every 10-15 minutes of my talks. Yes, I am timing my presentations. I keep adjusting these numbers when I rehearse, and this really helps to feel more confident during the presentations. This is especially important for presentations that are long, like my MIX11 demo which clocked at 57 minutes (I had a lot of stuff to show…). Such presentations are risky, because if anything goes wrong, you will have to cut stuff, so the answer to that is: Rehearse, rehearse and when you're done rehearsing, rehearse a little more. I also have a "Preparation" section where I outline what I need to do before a presentation. For instance: Preparation Reboot in VHD Make sure MSN and Twitter are not running. Open VS10 and load demo Open Blend and load demo Run the WP7 emulator ... I typically start preparing my laptop an hour before the talk, starting everything I need to start and then putting my laptop to sleep. Saving and printing the outline, Timing Printing is a real problem because it is really hard to find a printer at most conference venues, and also quite hard in hotels. To solve that, I simply write everything in OneNote (synched to the cloud, now you start to know what I like ;) and then I print it to a PDF (I use CutePDFWriter) that I save to my Kindle. During the presentation, I read the outline off the Kindle (I mostly just need a quick check to see how I am timing). For timing during the presentation, I use the free tool ChronoGPS on my Windows Phone 7, but of course any phone these days has a clock/chrono application. In some conferences, they even have timers that the presenters can see, but they tend to count down and I prefer to count up… so I just use my own :) Source control for demos For demos, I create a separate folder and use Mercurial as source control. Mercurial has the huge advantage (over SVN or TFS) to work offline too, so I can commit while on a plane, and all the history is saved. Then when I have connectivity I push everything to the cloud (I am using the fantastic Trunksapp.com for my private repositories). Here too the obvious downside is the risk of losing my last changes if my laptop crashes before I can push to the cloud, and here too the obvious answer would be to work from a memory stick… though I have to admit I didn't do that lately (except when I was writing Silverlight 4 Unleashed, where I was really paranoid…) And code snippets? I am one of these presenters who hates to type in front of an audience. I can type really fast (writing two books has this advantage, it really teaches you to touch type and be fast at it) but in the context of an audience, on a stage where it is often damn cold (an issue I had a lot in past conferences, air conditioning can freeze your fingers and make it really hard to type), it doesn't work as well. I don't know for you, but I really dislike seeing a presentation where the speaker uses the backspace key more often than others ;) To solve that, I like to have my code ready in snippets, and drag them to the screen. Then I can spend time explaining each code snippet, while highlighting portions of the code (always highlight what you talk about, the audience often doesn't even see the cursor and doesn't know where you are on the screen!) Over the years I have used various solutions for code snippets, and now I have one which works really well… if you take a few precautions! I use the Visual Studio Toolbox. Preparing the code snippets You can store code snippets in the Toolbox for anything, XAML, C# etc. I arrange the snippets in the order in which I need them, which is a great way to remember what comes next in the presentation. I also separate them by topic, to make it easier to find them, for example when I switch to the slides and then back to the code. Remember that no matter how experienced you are, you will feel more nervous on stage than while you are preparing, so any way to make it easier for you is going to be beneficial to the audience. To store a code snippet, I do the following: Open the final demo that you want to show to the audience in Visual Studio. In your code, select a snippet of code that you want to explain in particular. Make sure that the Visual Studio Toolbox is open (menu View, Toolbox or Ctrl-Alt-X). Drag the selected snippet from the code window to the toolbox. (if needed) drag the snippet to the correct location (for example between two other code snippets so that you can access it as you speak through the demo). Right click on the snippet and select Rename Item from the context menu. Select a meaningful name. For me I use the following conventions: If it is a method, I use the method's name. If it is not a whole method, I use a descriptive name. If it is the content of a method (i.e. the body only, without the method's signature), I use "-> MethodName". This reminds me during the presentation that this is only the body, and that I need to insert that into an existing signature. This is the case, for instance, when I use Visual Studio to automatically generate the members of an interface’s implementation; then I only need to insert my snippet inside the generated method body. Saving the snippets This is the most important!! It happened to me a few times that VS10 lost its settings. When that happens, the snippets are lost too! Yeah that really sucks, especially (as it happened once) when this is the case about an hour before a talk… Stress and sweat follows, not good conditions to start a talk in front of an audience believe me. Thankfully, saving snippets is really easy with the following steps: Select the menu Tools, Import and Export Settings. Select Export selected environment settings and press Next. Uncheck All Settings. Then expand General Settings and select Toolbox (only!). Press Next. Select your source control folder and save under a meaningful name (for instance Snippets.vssettings). Commit to source control and push to the cloud. By the way, this also has the advantage of applying source control to the snippets file (which is an XML file), so you get history for free on that file! Reimporting the snippets If VS loses its settings and you need to reimport the snippets, this can be done super easily and very fast. Make sure that the Toolbox is empty. When you import snippets, they are merged with existing ones, they do not replace the content of the Toolbox. Unless merging is really what you want, make sure that your Toolbox is clean before you import, it is really easier. Select the menu Tools, Import and Export Settings. Select Import selected environment settings and press Next. Select No, just import new settings and press Next. Press Browse and select the Snippets.vssettings file. Press Finish. Et voila, all your snippets appear again in the Toolbox. Whew, the worst was averted and you can start your demo without sweating! (I had to do that once literally 5 minutes before the start of a demo, while my laptop was already hooked to the projector, and it went just fine). What about special tools? When using special tools (for example beta versions of tools you have an early access to), or a special configuration of your laptop, things can get tricky because you cannot really be sure that you will get a laptop with the same tools and the same configuration at the conference. To solve that, I use the following precautions: I make my demos from a Virtual Hard Disk. The great John Papa made a very easy-to-follow web page where he explains how to create a VHD and install Win7 to it. This gives you the full power of your laptop (as fast as booting from the metal). For me, I have a basic configuration that I saved on a USB harddrive (Win7 plus drivers, basic settings for desktop, folder options, taskbar etc) and Visual Studio 2010 SP1 on it. When preparing, I start by copying this "basis VHD" to my laptop. I install additional tools and configurations. I save the VHD back to the USB harddrive in a different folder. This would allow me to reinstall my demo environment quite fast, for example in case of harddrive failure. Replace the harddrive, copy the VHD to it, configure the BCD and you can start. Unfortunately this only works if the laptop itself still works. In the worst case of total failure, my security is to back all the installers up: The installers I use are synched on all my laptops and backed up to BackBlaze. If the worst happens and my laptop is absolutely broken, I can download the installer from BackBlaze and install on another laptop. This of course takes some time, and if that happens 5 minutes before a presentation, well… I don't have an answer to that, except of course crossing my fingers. Still, all that gives me additional security. Conclusion Remember folks, talking to an audience, large or small, will make you nervous. Just ask Scott Hanselman :) The goal here is to create the best possible conditions for you, and to create an environment where everything is saved and easy to restore, where everything is well known and provides you with additional confidence. The cooler you feel before the presentation (and during ;)), the better your presentation will be. Here too, the goal is to provide the best user experience you can have, which in turn will make it more enjoyable for your audience! Happy presenting :) Laurent   Laurent Bugnion (GalaSoft) Subscribe | Twitter | Facebook | Flickr | LinkedIn

    Read the article

  • C++ : C++ Primer (Stanley Lipmann) or The C++ programming language (special edition)

    - by Kim
    I have a Computer Science degree (long2 time ago) .. I do know Java OOP but i am now trying to pick up C++. I do have C and of course data structure using C or pascal. I have started reading Bjarne Stroustrup book (The C++ Programming Language - Special Edition) but find it extremely difficult esp. some section which i don't have exposure such as Recursive Descent Parser (chapter 6). In terms of the language i don't foresee i have problem but i have problem as mentioned cos' those topic are usually covered in a Master Degree program such as construction of compiler. I just bought a book called C++ primer (Stanley Lipmann) which i heard it is a very good book for C++. Only setback is it's of course no match with the amount of information from the original C++ creator. Please advice. Thanks.

    Read the article

  • Deploying MVC2 application to IIS7.5 - Ninject asked to provide controllers for content files

    - by Rune Jacobsen
    I have an application that started life as an MVC (1.0) app in Visual Studio 2008 Sp1 with a bunch of Silverlight 3 projects as part of the site. Nothing fancy at all. Using Ninject for dependency injection (first version 2 beta, now the released version 2 with the MVC extensions). With the release of .Net 4.0, VS2010, MVC2 etc., we decided to move the application to the newest platform. The conversion wizard in VS2010 apparently took care of everything, with one exception - it didn't change references to mvc1 to now point to mvc2, so I had to do that manually. Of course, this makes me think about other MVC2 things that could be missing from my app, that would be there if I did File - New Project... But that is not the focus of this question. When I deploy this application to the IIS 7.5 server (running on Win2008 R2 x64), the application as such works. However, images, scripts and other static content doesn't seem to exist. Of course they are there on disk on the server, but they don't show up in the client web browser. I am fairly new to IIS, so the only trick I knew is to try to open the web page in a browser on the server, as that could give me more information. And here, finally, we meet our enemy. If I try to go directly to the URL of one of the images (http://server/Content/someimage.jpg for instance), I get the following error in the browser: The IControllerFactory 'Ninject.Web.Mvc.NinjectControllerFactory' did not return a controller for a controller named 'Content'. Aha. The web server tries to feed this request to MVC, who with its' default routing setup assumes Content to be a controller, and fails. How can I get it to treat Content/ and Scripts/ (among others) as non-controllers and just pass through the static content? This of course works with Cassini on my developer machine, but as soon as I deploy, this problem hits. I am using the last version of Ninject MVC 2 where the IoC tool should pass missing controllers to the base controller factory, but this has apparently not helped. I have also tried to add ignore routes for Content etc., but this apparently has no effect either. I am not even sure I am addressing the problem on the right level. Does anyone know where to look to get this app going? I have full control of the web server so I can more or less do whatever I want to it, as long as it starts working. Thanks!

    Read the article

  • How to integrate KVC in MVC?

    - by Paperflyer
    So I have an MVC-application in Cocoa. There are some custom views, a controller and a model. Of course, the views need to know some stuff, so they get their data from the controller. However, they do not use accessors in the controller, they use KVC with a keypath that calls right through to the model: // In view.m time = [timeSource valueForKeyPath:@"theModel.currentTime"]; // timeSource is a pseudo-delegate of the view that holds the controller This simplifies things a great deal and technically, the views still don't know the model in person (that is, in pointer). But of course, they access it directly. Is that a usual (or at least sensible) usage of KVC and MVC? Or how would you implement this kind of communication?

    Read the article

  • seam page parameters not working as expected.

    - by rangalo
    Hi, I am learning seam and following a very famous book Seam In Action by Dan Allen. This is an example from this book. Seam 2.2.0.GA JBoss 5.1.0.GA Here the page parameter roundId is always null even after a round is serialized, it is never passed. Neither to Roud.xhtml nor to RoundEdit.xhtml after clicking save on RoundEdit.xhtml. The entity always stays unmanaged. RoundEdit.page.xml <?xml version="1.0" encoding="UTF-8"?> <page xmlns="http://jboss.com/products/seam/pages" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://jboss.com/products/seam/pages http://jboss.com/products/seam/pages-2.2.xsd" login-required="true"> <begin-conversation join="true" /> <param name="roundId" value="#{roundHome.id}" converterId="javax.faces.Long"/> <param name="teeSetId" value="#{teeSetHome.teeSetId}" /> <param name="roundFrom" /> <action execute="#{roundHome.wire}" /> <navigation from-action="#{roundHome.persist}"> <rule if-outcome="persisted"> <end-conversation/> <redirect view-id="#{null != roundFrom ? roundFrom : '/Round.xhtml'}" /> </rule> </navigation> </page> RoundEdit.xhtml <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE composition PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <ui:composition xmlns="http://www.w3.org/1999/xhtml" xmlns:s="http://jboss.com/products/seam/taglib" xmlns:ui="http://java.sun.com/jsf/facelets" xmlns:f="http://java.sun.com/jsf/core" xmlns:h="http://java.sun.com/jsf/html" xmlns:a="http://richfaces.org/a4j" xmlns:rich="http://richfaces.org/rich" template="layout/template.xhtml"> <ui:define name="body"> <h:form id="roundform"> <rich:panel> <f:facet name="header>"> #{roundHome.managed ? 'Edit' : 'Add' } Round </f:facet> <s:decorate id="dateField" template="layout/edit.xhtml"> <ui:define name="label">Date:</ui:define> <rich:calendar id="date" datePattern="dd/MM/yyyy" value="#{round.date}"/> </s:decorate> <s:decorate id="notesField" template="layout/edit.xhtml"> <ui:define name="label">Notes:</ui:define> <h:inputTextarea id="notes" cols="80" rows="3" value="#{round.notes}" /> </s:decorate> <s:decorate id="totalScoreField" template="layout/edit.xhtml"> <ui:define name="label">Total Score:</ui:define> <h:inputText id="totalScore" value="#{round.totalScore}" /> </s:decorate> <s:decorate id="weatherField" template="layout/edit.xhtml"> <ui:define name="label">Weather:</ui:define> <h:selectOneMenu id="weather" value="#{round.weather}"> <s:selectItems var="_weather" value="#{weatherCategories}" label="#{_weather.label}" noSelectionLabel=" Select " /> <s:convertEnum/> </h:selectOneMenu> </s:decorate> <h:messages/> <div style="clear: both;"> <span class="required">*</span> required fields </div> </rich:panel> <div class="actionButtons"> <h:commandButton id="save" value="Save" action="#{roundHome.persist}" rendered="#{!roundHome.managed}" disabled="#{!roundHome.wired}" /> <h:commandButton id="update" value="Update" action="#{roundHome.update}" rendered="#{roundHome.managed}" /> <h:commandButton id="delete" value="Delete" action="#{roundHome.remove}" rendered="#{roundHome.managed}" /> <s:button id="discard" value="Discard changes" propagation="end" view="/Round.xhtml" rendered="#{roundHome.managed}" /> <s:button id="cancel" value="Cancel" propagation="end" view="/#{empty roundFrom ? 'RoundList' : roundFrom}.xhtml" rendered="#{!roundHome.managed}" /> </div> <rich:tabPanel> <rich:tab label="Tee Set"> <div class="association"> <h:outputText value="Tee set not selected" rendered="#{round.teeSet == null}" /> <rich:dataTable var="_teeSet" value="#{round.teeSet}" rendered="#{round.teeSet != null}"> <h:column> <f:facet name="header">Course</f:facet>#{_teeSet.course.name} </h:column> <h:column> <f:facet name="header">Color</f:facet>#{_teeSet.color} </h:column> <h:column> <f:facet name="header">Position</f:facet>#{_teeSet.pos} </h:column> </rich:dataTable> </div> </rich:tab> </rich:tabPanel> </h:form> </ui:define> </ui:composition> Round.page.xml <?xml version="1.0" encoding="UTF-8"?> <page xmlns="http://jboss.com/products/seam/pages" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://jboss.com/products/seam/pages http://jboss.com/products/seam/pages-2.2.xsd"> <param name="roundId" value="#{roundHome.id}" converterId="javax.faces.Long"/> </page> Round.xhtml <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE composition PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <ui:composition xmlns="http://www.w3.org/1999/xhtml" xmlns:s="http://jboss.com/products/seam/taglib" xmlns:ui="http://java.sun.com/jsf/facelets" xmlns:f="http://java.sun.com/jsf/core" xmlns:h="http://java.sun.com/jsf/html" xmlns:a="http://richfaces.org/a4j" xmlns:rich="http://richfaces.org/rich" template="layout/template.xhtml"> <ui:define name="body"> <h:form id="roundform"> <rich:panel> <f:facet name="header>">Round</f:facet> <s:decorate id="id" template="layout/display.xhtml"> <ui:define name="label">Id:</ui:define> <h:outputText value="#{null == roundHome.id ? 'null' : roundHome.id}"> <s:convertDateTime type="date" /> </h:outputText> </s:decorate> <s:decorate id="date" template="layout/display.xhtml"> <ui:define name="label">Date:</ui:define> <h:outputText value="#{roundHome.instance.date}"> <s:convertDateTime type="date" /> </h:outputText> </s:decorate> <s:decorate id="golfer" template="layout/display.xhtml"> <ui:define name="label">Golfer:</ui:define> #{roundHome.instance.golfer.name} </s:decorate> <s:decorate id="totalScore" template="layout/display.xhtml"> <ui:define name="label">Total Score:</ui:define> #{roundHome.instance.totalScore} </s:decorate> <s:decorate id="weather" template="layout/display.xhtml"> <ui:define name="label">Weather:</ui:define> #{roundHome.instance.weather} </s:decorate> <s:decorate id="notes" template="layout/display.xhtml"> <ui:define name="label">Notes:</ui:define> #{roundHome.instance.notes} </s:decorate> <div style="clear:both"/> </rich:panel> <div class="actionButtons"> <s:button id="edit" view="/RoundEdit.xhtml" value="Edit" /> </div> <rich:tabPanel> <rich:tab label="Tee Set"> <div class="association"> <h:outputText value="Tee set not selected" rendered="#{roundHome.instance.teeSet == null}" /> <rich:dataTable var="_teeSet" value="#{roundHome.instance.teeSet}" rendered="#{roundHome.instance.teeSet != null}"> <h:column> <f:facet name="header">Course</f:facet>#{_teeSet.course.name} </h:column> <h:column> <f:facet name="header">Color</f:facet>#{_teeSet.color} </h:column> <h:column> <f:facet name="header">Position</f:facet>#{_teeSet.pos} </h:column> </rich:dataTable> </div> </rich:tab> </rich:tabPanel> </h:form> </ui:define> </ui:composition> The entityHome RoundHome.java @Name("roundHome") public class RoundHome extends EntityHome<Round>{ @In(required = false) private Golfer currentGolfer; @In(create = true) private TeeSetHome teeSetHome; @Logger private Log logger; public void wire() { logger.info("wire called"); TeeSet teeSet = teeSetHome.getDefinedInstance(); if (null != teeSet) { getInstance().setTeeSet(teeSet); logger.info("Successfully wired the teeSet instance with color: " + teeSet.getColor()); } } public boolean isWired() { logger.info("is wired called"); if(null == getInstance().getTeeSet()) { logger.info("wired teeSet instance is null, the button will be disabled !"); return false; } else { logger.info("wired teeSet instance is NOT null, the button will be enabled !"); logger.info("teeSet color: "+getInstance().getTeeSet().getColor()); return true; } } @RequestParameter public void setRoundId(Long id) { logger.info("in Setter RoundId is: " + id); super.setId(id); } public Long getRoundId() { Long id = (Long) getId(); logger.info("Setting RoundId : " + id); return id; } @Override protected Round createInstance() { Round round = super.createInstance(); round.setGolfer(currentGolfer); round.setDate(new java.sql.Date(System.currentTimeMillis())); logger.info("Created a Round with roundId: " + round.getId()); return round; } @Override protected Round loadInstance() { logger.info("loadInstance for id: " + getId()); return (Round) getEntityManager().createQuery( "select r from Round r " + "join fetch r.golfer g " + "join fetch r.teeSet ts " + "join fetch ts.course c " + "where r.id = :id ") .setParameter("id",getId()) .getSingleResult(); } }

    Read the article

  • IM (Instant Messaging) increase or decrease developer's productivity?

    - by GRGodoi
    In my team I have some developers that always have two or three IM windows open. The majority of these windows are not related with the project where they are nor with asking or offering programming help. I also use IM and, off course, some of my "talks" are not related with the job. But I feel that when I am using IM my productivity drops. I mean, there is more "mental" work to change the scope between the task I am doing and the conversation every time a new message arrive. Do you face the same situation? Is there some good practices to avoid this (excluding, off course, stopping using IM)?

    Read the article

  • Gateway Page Between ASP and an ASP.NET Page

    - by ajdams
    I'll admit, I am pretty new with ASP .NET programming and I have been asked to take all our gateway pages (written in classic ASP) and make one universal gateway page to the few C# .NET applications we have (that I wrote). I tried searching here and the web and couldn't find much of anything describing a great way to do this and figured I was either not searching properly or was not properly naming what I am trying to do. I decided to to take one of the main gateway pages we had in classic ASP and use that as a base for my new gateway. Without boring you with a bunch of code I will summarize my gateway in steps and then can take advice/critique from there. EDIT: Basically what I am trying to do is go from a classic ASP page to a ASP .NET page and then back again. EDIT2: If my question is still unclear I am asking if what I have an the right start and if anyone has suggestions as to how this could be better. It can be as generic as need-be, not looking for a specific off-the-shelf code answer. My Gateway page: In the first part of the page I grab session variables and determine if the user is leaving or returning through the gateway: Code (in VB): uid = Request.QueryString("GUID") If uid = "" Then direction = "Leaving" End If ' Gather available user information. userid = Session("lnglrnregid") bankid = Session("strBankid") ' Return location. floor = Request.QueryString("Floor") ' The option chosen will determine if the user continues as SSL or not. ' If they are currently SSL, they should remain if chosen. option1 = Application(bankid & "Option1") If MID(option1, 6, 1) = "1" Then sslHttps = "s" End If Next I enter the uid into a database table (SQL-Server 2005) as a uniqueidentifier field called GUID. I omitted the stored procedure call. Lastly, I use the direction variable to determine if the user is leaving or returning and do redirects from there to the different areas of the site. Code (In VB again): If direction = "Leaving" Then Select Case floor Case "sscat", "ssassign" ' A SkillSoft course Response.Redirect("Some site here") Case "lrcat", "lrassign" ' A LawRoom course Response.Redirect("Some site here") Case Else ' Some other SCORM course like MindLeaders or a custom upload. Response.Redirect("Some site here") End Select Session.Abandon Else ' The only other direction is "Returning" ..... That's about it so far - so like I said, not an expert so any suggestions would be greatly appreciated!

    Read the article

  • Help to translate SQL query to Relational Algebra

    - by Mestika
    Hi everyone, I'm having some difficulties with translating some queries to Relational Algebra. I've a great book about Database Design and here is a chapter about Relational Algebra but I still seem to have some trouble creating the right one: Thoes queries I've most difficuelt with is these: SELECT COUNT( cs.student_id ) AS counter FROM course c, course_student cs WHERE c.id = cs.course_id AND c.course_name = 'Introduction to Database Design' SELECT COUNT( cs.student_id ) FROM Course c INNER JOIN course_student cs ON c.id = cs.course_id WHERE c.course_name = 'Introduction to Database Design' and SELECT COUNT( * ) FROM student JOIN grade ON student.f_name = "Andreas" AND student.l_name = "Pedersen" AND student.id = grade.student_id I know the notation can be a bit hard to paste into HTML forum, but maybe just use some common name or the Greek name. Thanks in advance Mestika

    Read the article

  • Rewriting a Subdomain with mod-rewrite

    - by resonantmedia
    I have a project that uses the moodle library. I had to change the URL from moodle.example.com to learn.example.com, due to a client request. I thought this would be an easy change, but alas moodle inserts all links and images in with the complete url instead of the relative url. Is it possible using mod-rewrite to point all requests to moodle.example.com to learn.example.com and maintain the query string? Example: I want a request to: http://moodle.example.com/course/view.php?id=2&topic=1 to go to http://learn.example.com/course/view.php?id=2&topic=1. Is this possible? Thanks, Josh

    Read the article

  • Convert Normalize table to Unormalize table

    - by M R Jafari
    I have tow tables, Table A has 3 columns as StudentID, Name, Course, ClassID and Table B has many columns as StudentID, Name, Other1, Other2, Other3 ... I want convert Table A to Table B. Please help me! Table A StudentID Name Course ClassID 85001 David Data Base 11 85001 David Data Structure 22 85002 Bob Math 33 85002 Bob Data Base 44 85002 Bob Data Structure 55 85002 Bob C# 66 85003 Sara C# 77 85003 Sara Data Base 88 85004 Mary Math 99 85005 Mary Math 100 … Table B SdentdID Name Other 1 Other 2 Other 3 Other 4 … 85001 David DBase,11 DS,22 85002 Bob Math,33 DB,44 DS,55 C#,66 85003 Sara C#,77 DBase,88 85004 Mary Math,99

    Read the article

  • Testing harness for online teaching?

    - by candeira
    I have been asked to teach an online programming course, and I am looking for a test harness especially geared to education. Some students will have significant coding experience, but others will be total newbies. The course is an introduction to software development, mostly taught in C with some C++ and Java thrown in. In any case, I would like to read their source code only after a test suite has made sure that it compiles and executes properly. The students will also benefit from having a tool they can check their code against before submitting it. However, the Learning Management System my employer is using doesn't have such a system. Do you know of any LMS software that includes this feature? Which testing harness would you recommend in case I have to roll my own?

    Read the article

  • How to write a linter?

    - by jbdavid
    In my day job I, and others on my team write a lot of hardware models in Verilog-AMS, a language supported primarily by commercial vendors and a few opensource simulator projects. One thing that would make supporting each others code more helpful would be a LINTER that would check our code for common problems and assist with enforcing a shared code formatting style. I of course want to be able to add my own rules and, after I prove their utility to myself, promote them to the rest of the team.. I don't mind doing the work that has to be done, but of course also want to leverage the work of other existing projects. Does having the allowed language syntax in a yacc or bison format give me a leg up? or should I just suck each language statement into a perl string, and use pattern matching to find the things I don't like? (most syntax and compilation errors are easily caught by the commercial tools.. but we have some of our own extentions.)

    Read the article

  • A tool or framework extension or code snippet for logging the internal state of objects?

    - by George Mauer
    When spiking on how something works or when my unit test behave in an unpredictable manner I usually have to drop into debug mode. 99% of my time in debug mode is spent checking the values of fields on objects to verify its state. I already have log4net set up, it would seem that if I could easily add a line of code to log out the state of objects I could remove most of my need to start up the bulky debugger. The problem is of course that to expose object state implicitly you need to manually override each object's ToString() method. What I would like to be able to do is the ability to do logger.LogState(someObject) and have logged out the object state including at least a formatted list of all the private variables, references (to some arbitrary depth), and collections. Does anyone know a tool/framework/code snippet that can be used to generate a string of the internal state of any object? I could of course write one myself but its a non-trivial problem and I'd prefer something someone has put some thought into.

    Read the article

  • weird characters displayed during serial communication OSX

    - by nemo
    I have tried communicating via serial (OSX w/ prolific drivers - USB RS232 adapter - Tx,Rx and GND pins on device serial ttl port) to a device and done so successfully using screen /dev/tty.usbserial 115200 8N1 I get to log in and use it as if I was SSH or TelNetted in... However whenever I try to go into system recovery mode (holding CTRL+1) while the device is powering on, it starts displaying weird characters and until I close the screen session it will continue showing weird characters: Of course when we tried doing the same thing on my boss' macbook running windows and PuTTY and everything worked fine, even in system recovery mode; characters were displayed properly. What gives? Id like to learn the intuition to use because up till now I concluded that since I can bot into the system and see characters normally everything about the connection should be fine and its must have been the recovery partition that was broken. This was wrong of course... Niko

    Read the article

  • 'Generic' ViewModel

    - by Ian MacPherson
    Using EF 4, I have several subtypes of a 'Business' entity (customers, suppliers, haulage companies etc). They DO need to be subtypes. I am building a general viewmodel which calls into a service from which a generic repository is accessed. As I have 4 subtypes, it would be good to have a 'generic' viewmodel used for all of these. Problem is of course is that I have to call a specific type into my generic repository, for example: BusinessToRetrieve = _repository .LoadEntity<Customer>(o => o.CustomerID == customerID); It would be good to be able to call <SomethingElse>, somethingElse being one or other of the subtypes), otherwise I shall have to create 4 near identical viemodels, which seems a waste of course! The subtype entity name is available to the viewmodel but I've been unable to figure out how to make the above call convert this into a type. An issue with achieving what I want is that presumably the lambda expression being passed in wouldn't be able to resolve on a 'generic' call ?

    Read the article

  • C++ Primer (Stanley Lipmann) or The C++ programming language (special edition)

    - by Kim
    I have a Computer Science degree (long2 time ago) .. I do know Java OOP but i am now trying to pick up C++. I do have C and of course data structure using C or pascal. I have started reading Bjarne Stroustrup book (The C++ Programming Language - Special Edition) but find it extremely difficult esp. some section which i don't have exposure such as Recursive Descent Parser (chapter 6). In terms of the language i don't foresee i have problem but i have problem as mentioned cos' those topic are usually covered in a Master Degree program such as construction of compiler. I just bought a book called C++ primer (Stanley Lipmann) which i heard it is a very good book for C++. Only setback is it's of course no match with the amount of information from the original C++ creator. Please advice. Thanks.

    Read the article

  • Entity Relationship Model: Ternary Relationships

    - by Ethan
    Hi, I am trying to understand why this statement in the book is wrong: "given a C entity, there is at most one related A entity and at most one related B entity". Is it that it doesn't apply to a specific kind of relationship?? So, if I have an example of a student who is in attendance to a course with a type of subject. The entities are student, attendance, course and subject. Student makes attendance in a room. Also, a student can make attendance for a subject. Does this example apply to the statement? Thanks for your time.

    Read the article

  • Allow member to be const while still supporting operator= on the class

    - by LeopardSkinPillBoxHat
    I have several members in my class which are const and can therefore only be initialised via the initialiser list like so: class MyItemT { public: MyItemT(const MyPacketT& aMyPacket, const MyInfoT& aMyInfo) : mMyPacket(aMyPacket), mMyInfo(aMyInfo) { } private: const MyPacketT mMyPacket; const MyInfoT mMyInfo; }; My class can be used in some of our internally defined container classes (e.g. vectors), and these containers require that operator= is defined in the class. Of course, my operator= needs to do something like this: MyItemT& MyItemT::operator=(const MyItemT& other) { mMyPacket = other.mPacket; mMyInfo = other.mMyInfo; return *this; } which of course doesn't work because mMyPacket and mMyInfo are const members. Other than making these members non-const (which I don't want to do), any ideas about how I could fix this?

    Read the article

  • MySQL vs PHP when retrieving a random item

    - by andufo
    Hi, which is more efficient (when managing over 100K records): A. Mysql SELECT * FROM user ORDER BY RAND(); of course, after that i would already have all the fields from that record. B. PHP use memcached to have $cache_array hold all the data from "SELECT id_user FROM user ORDER BY id_user" for 1 hour or so... and then: $id = array_rand($cache_array); of course, after that i have to make a MYSQL call with: SELECT * FROM user WHERE id_user = $id; so... which is more efficient? A or B?

    Read the article

< Previous Page | 72 73 74 75 76 77 78 79 80 81 82 83  | Next Page >