Search Results

Search found 8266 results on 331 pages for 'distributed systems'.

Page 76/331 | < Previous Page | 72 73 74 75 76 77 78 79 80 81 82 83  | Next Page >

  • curl http_code of 000

    - by Mikkel Paulson
    I have a shell script that I use to monitor loading times and response codes on my live server cluster. It runs a total of 250 iterations every 5 minutes, distributed across 10 servers and 6 sites. It uses curl with the -w flag to return pertinent information which is then parsed by my shell script: curl -svw 'monitor_load_times %{time_total} %{http_code}' -b 'server=$server' -m 15 -o /dev/null $url 2>&1 This information is then parsed by a graphing script that can display a number of different responses. However, curl will occasionally return a response code of "000". When this happens, it seems to happen multiple times at once despite being distributed over many iterations: What I'm trying to work out is if this is a client-side issue that's skewing my results or if it's actually indicative of a server-side problem affecting my entire cluster. Does 000 mean that the connection was dropped? Database entries corresponding to curl iterations with that response code return "0.000" for the time_total value. All of the search results I've found for curl returning a code of 000 are related to HTTPS being unsupported, but all of my test URLs are HTTP. (The spike in 500 errors is a completely unrelated issue that affected my servers last night.)

    Read the article

  • GlusterFS on VMWare ESXi 5

    - by Dharmavir
    I want to build network file system on top of my VMWare ESXi based virtual nodes which are running Ubuntu 12.04 LTS. I am evalaluating options and found that GlusterFS (http://www.gluster.org/) can turn out to be a good choice. Purpose: I have about 2 dozen VM nodes with different configurations, on 2 physical nodes which has following configuration: 16 core Intel Xeon 1 TB 48 GB RAM Now as I said earlier each Physical server has about 1TB hdd and I can increase if I want additional so for now I have 2TB disk space available, these space is distributed in VM nodes I have created on which about 2 dozen VM nodes live. Now some of them being application server and mgmt server, they have plenty of free disk space which I want to utilize for some heavy storage which I can not design if I do that individually on single VM node. This way if my storage is distributed between dozens of VM nodes and about 2 or more physical nodes I have some sort of backup as well. I do not mind if data gets stored redundently but per my knowledge it might hapeen that individual VM nodes will not be able to store all of the data because complete data size for example if we take 100GB will exceed VM disk size of 70GB and then VM will also have system and program files on it. I need some suggestion that will GlusterFS be the solution for which I am looking forward to or I should go with something like hadoop? I am not too sure. But yes, I would like to utilize my free space on each VM node and while doing that if I get store data redundently I am okay because it will give me data security.

    Read the article

  • Request bursting from web application Load Tests

    - by MaseBase
    I'm migrating our web and database hosting to a new environment on all new machines. I've recently performed a Load Test using WAPT to generate load from multiple distributed clients. The server has plenty of room to handle the traffic load, but I'm seeing an odd pattern of incoming traffic during the load tests. Here is the gist of our setup: Firewall server running MS Forefront TMG 2010 on Win 2k8 server Request routing done by IIS Application Request Routing on firewall machine Web server is a Hyper-V VM on the Database server (which is the host OS) These machines are hefty with dual-CPU's with six cores (12 total procs) Web server running IIS 7.5 Web applications built in ASP.NET 2.0, with 1 ISAPI filter (Url Rewrite) in front What I'm seeing during the load tests is that the requests all come through in bursts. Even though I have 7 different distributed clients sending traffic loads, the requests come through about 300-500 requests at a time. The performance monitor shows nearly all of the counters moving through this pattern, where a burst of requests comes in the req/sec jumps to 70, the queued requests jumps to 500, the current requests jumps up, the CPU jumps up, everything. Then once it's handled that group of requests, it has a lull for nearly 10 seconds where nearly nothing is happening. 0-5 req/sec, 0 queued requests, minimal CPU usage. Then after 10 seconds of inactivity, another burst comes through, spiking all of the counters once again. What I can't figure out is why the requests are coming through in bursts when I know that the load being generated is not sent that way, especially considering the various load-generating clients sending traffic all in different intervals with random think time's between each request. Is there something in the layers between Hyper-V or perhaps in the hardware which might cause this coalesce of requests together? Here is what i'm looking at, the highlighted metric is Requests/sec, but the others critical counter go with it: Requests Queued (which I'd obviously like to keep as close to 0 as possible). Any ideas on this?

    Read the article

  • Very uneven CPU utilization with SQL Server 2012 on 2 processor computer with 16 cores / processor

    - by cooplarsh
    After installing SQL Server Enterprise 2012 with the Server + Cal license model, on a computer with 2 processors each with 16 cores (and no hyperthreading involved) and putting the server under extremely heavy load the 16 cores on the first processor were very underutilized, the first 4 cores on the 2nd CPU were heavily utilized, and the last 12 cores were not used at all (because of the 20 core limit for this sql server version). Total CPU utilization was displaying as around 25%. Unfortunately, the server suffered from extremely poor performance even though if the tasks were evenly distributed across the 20 cores it wouldn't have been anywhere near as bad. The Windows Server was running on a VMWare virtual image under ESX Server, but all of the CPU was allocated to the windows server. We tried changing affinity settings (e.g., allocating most cores to CPU and the others to I/O), but that didn't help solve the performance problems. Upgrading the product edition to SQL Server Enterprise Core 2012 not only allowed the SQL Server to utilize the 12 previously unused cores on the 2nd processor, but it also resulted in a much more even distribution of tasks across all of the processors. To get through the backlog of requests cpU utilization jumped to around 90%, and then came down to around 33% once it was caught up, but performance improved dramatically since we failed over to the newly updated version And the performance issues went away. I was wondering if anyone knows what might cause SQL Server to unevenly distribute the load, relying almost exclusively on the first 4 cores of the 2nd processor that had 12 cores idle, and allocate only a few tasks to each of the 16 cores on the first processor. Also, is there any way we could have more evenly distributed the load across the 20 cores that were being used without the product edition upgrade? The flip side of that question is what did the product upgrade do that caused SQL Server to start evenly distributing the load across all of the cores that it recognized? Thanks to any insight to answer these questions and/or links that might help me better understand how to make sense of what was happenings.

    Read the article

  • Requests per second slower when using nginx for load balancing

    - by Ed Eliot
    I've set up nginx as a load balancer that reverse proxies requests to 2 Apache servers. I've benchmarked the setup with ab and am getting approx 35 requests per second with requests distributed between the 2 backend servers (not using ip_hash). What is confusing me is that if I query either of the backend servers directly via ab I get around 50 requests per second. I've experimented with a number of different values in ab the most common being 1000 requests with 100 concurrent connections. Any idea why traffic distributed across 2 servers would result in fewer requests per second than hitting either directly? Additional info: I've experimented with worker_processes values of between 1 and 8, worker_connections between 1024 and 8092 and have also tried keepalive 0 and 65. My main conf currently looks like this: user www-data; worker_processes 1; error_log /var/log/nginx/error.log; pid /var/run/nginx.pid; worker_rlimit_nofile 8192; events { worker_connections 2048; use epoll; } http { include /etc/nginx/mime.types; sendfile on; keepalive_timeout 0; tcp_nodelay on; gzip on; gzip_disable "MSIE [1-6]\.(?!.*SV1)"; include /etc/nginx/conf.d/*.conf; include /etc/nginx/sites-enabled/*; } I've got one virtual host (in sites available) that redirects everything under / to 2 backends across a local network.

    Read the article

  • Linux System Programming

    - by AJ
    I wanted to get into systems programming for linux and wanted to know how to approach that and where to begin. I come from a web development background (Python, PHP) but I also know some C and C++. Essentially, I would like to know: Which language(s) to learn and pursue (I think mainly C and C++)? How/Where to learn those languages specific to Systems Programming? Books, websites, blogs, tutorials etc. Any other good places where I can start this from basics? Any good libraries to begin with? What environment setup (or approx.) do I need? Assuming linux has to be there but I have a linux box which I rarely log into using GUI (always use SSH). Is GUI a lot more helpful or VI editor is enough? (Please let me know if this part of the question should go to serverfault.com) PS: Just to clarify, by systems programming I mean things like writing device drivers, System tools, write native applications which are not present on Linux platform but are on others, play with linux kernel etc.

    Read the article

  • TCL tDom Empty XML Tag

    - by pws5068
    I'm using tDom to loop through some XML and pull out each element's text(). set xml { <systems> <object> <type>Hardware</type> <name>Server Name</name> <attributes> <vendor></vendor> </attributes> </object> <object> <type>Hardware</type> <name>Server Two Name</name> <attributes> <vendor></vendor> </attributes> </object> </systems> }; set doc [dom parse $xml] set root [$doc documentElement] set nodeList [$root selectNodes /systems/object] foreach node $nodeList { set nType [$node selectNodes type/text()] set nName [$node selectNodes name/text()] set nVendor [$node selectNodes attributes/vendor/text()] # Etc... puts "Type: " puts [$nType data] # Etc .. puts [$nVendor data] } But when it tries to print out the Vendor, which is empty, it thows the error invalid command name "". How can I ignore this and just set $nVendor to an empty string?

    Read the article

  • What would it take to get auto-revert-mode to actually work in my dired buffer?

    - by Cheeso
    Apparently auto-revert-mode is supposed to work in dired buffers. I had never heard of this, but the doc says it works. Then I read a little more and found some fine print: Auto-reverting Dired buffers currently works on GNU or Unix style operating systems. It may not work satisfactorily on some other systems. ...and... [dired buffers] do not auto-revert when information about a particular file changes (e.g. when the size changes) or when inserted subdirectories change. To be sure that all listed information is up to date, you have to manually revert using g, even if auto-reverting is enabled in the Dired buffer. source Well, uh, gee.... That doesn't sound like autorevert to me. What would it take to get auto-revert for dired to actually work? Even on (gasp) non-Unix operating systems. Could I just modify auto-revert-handler to call revert-buffer on dired buffers?

    Read the article

  • Upload using python script takes very long on one laptop as compared to another

    - by Engr Am
    I have a python 2.7 code which uses STORBINARY function for uploading files to an ftp server and RETRBINARY for downloading from this server. However, the issue is the upload is taking a very long time on three laptops from different brands as compared to a Dell laptop. The strange part is when I manually upload any file, it takes the same time on all the systems. The manual upload rate and upload rate with the python script is the same on the Dell Laptop. However, on every other brand of laptop (I have tried with IBM, Toshiba, Fujitsu-Siemens) the python script has a very low upload rate than the manual attempt. Also, on all these other laptops, the upload rate using the python script is the same (1Mbit/s) while the manual upload rate is approx. 8 Mbit/s. I have tried to vary the filesize for the upload to no avail. TCP Optimizer improved the download rate on all the systems but had no effect on the upload rate. Download rate using this script on all the systems is fine and same as the manual download rate. I have checked the server and it has more than 90% free space. The network connection is the same for all the laptops, and I try uploading only with one laptop at a time. All the laptops have almost the same system configurations, same operating system and approximately the same free drive space. If anything the Dell laptop is a little less in terms of processing power and RAM than 2 of the others, but I suppose this has no effect as I have checked many times to see how much was the CPU usage and network usage during these uploads and downloads, and I am sure that no other virus or program has been eating up my bandwidth. Here is the code ('ftp' and 'file_path' are inputs to the function): path,filename=os.path.split(file_path) filesize=os.path.getsize(file_path) deffilesize=(filesize/1024)/1024 f = open(file_path, "rb") upstart = time.clock() print ftp.storbinary("STOR "+filename, f) upende = time.clock()-upstart outname="Upload " f.close() return upende, deffilesize, outname

    Read the article

  • What does it mean for an OS to "execute within user processes"? Do any modern OS's use that approach

    - by Chris Cooper
    I have recently become interested in operating system, and a friend of mine lent me a book called Operating Systems: Internals and Design Principles (I have the third edition), published in 1998. It's been a very interesting book so far, but I have come to the part dealing with process control, and it's using UNIX System V as one of its examples of an operating system that executes within user processes. This concept has struck me as a little strange. First of all, does this mean that OS instructions and data are stored in each user of the processes? Probably not, because that would be an absurdly redundant scheme. But if not, then what does it mean to "execute within" a user process? Do any modern operating systems use this approach? It seems much more logical to have the operating system execute as its own process, or even independently of all processes, if you're short on memory. All the inter-accessiblilty of process data required for this layout seems to greatly complicate things. (But maybe that's just because I don't quite get the concept ;D) Here is what the book says: "Execution within User Processes: An alternative that is common with operation systems on smaller machines is to execute virtually all operating system software in the context of a user process. ... "

    Read the article

  • Integration transport choice (Oracle + SQL Server)

    - by lak-b
    We have several systems with Oracle (A) and SQL Server (B) databases on backend. I have to consolidate data from those systems into the new SQL Server database. Something like that: (A) =>|---------------| | some software | => SQL Server (B) =>|---------------| where some software is: transport (A and B systems located in the network) processing business logic (custom .NET code) Due to first point, I need some queue software or something similar (like MSMQ, Service Broker or something). In another hand, I can implement a web-service instead of queue. (A) =>|---------------|-------------| | queue/service | custom code | => SQL Server (B) =>|---------------|-------------| The question is: which queue/transport framework should I use with Oracle and SQL Server databases? It would be nice, if I can post messages to MSMQ in both Oracle and SQL Server stored procedures (can I?) It would be nice, if I can call a web-service in both Oracle and SQL Server stored procedures (can I?) It would be nice, if I can use something similar in both Oracle and SQL Server stored procedures (what exactly?) What software should I prefer to my requirements?

    Read the article

  • Is there a free, smale-scale, not web-based issue/bug tracking system?

    - by Doc Brown
    I know, there were posts before here on SO before concerning issue or bug tracking systems, like this one, but the given answers point either to commercial systems or web-based systems, which both seem to be oversized for our needs. What I am looking for is a non-commercial tool for a team of 3 to 4 developers, which can be used on an existing fileserver, without the need of installing additional server software like a C/S database or a web server. Some things I expect from such a system: allows to remember bugs (with a priority) and issues / ideas for new features (mostly without a priority) description of the issue, perhaps some additional remarks short info who entered the bug/issue entry one or more tags allowing us to group or filter the list Any suggestions? EDIT: I should have said that, but we are using MS Windows clients, Visual Studio development, Tortoise SVN (the latter works fine without a subversion server). And yes, I am strict on "no server software", since all server based solutions I have seen so far seem much to oversized/heavy weighted/too-much-effort-to-be-worth-it. In fact, if no one has a better idea, we are going to use a spreadsheet, but I can't believe there are no ready-made, light weight solutions.

    Read the article

  • Mgmt wants to re-title my position: Any help...? [closed]

    - by JohnFlyTN
    Management here wants to re-title my position, since I'm doing quite a bit of different work than was originally planned. They want my input. After a quick glance over my skill set and job duties, what would we need to describe this position as? I'll just list things I'm at least proficient in, I will not list things I have a passing knowledge of. About me : ~10 years software development. Languages : C, C++, Perl, PHP, C#, TCL, Unix shell scripting, SQL (TSQL, PLSQL) Systems : MS-Dos, Windows 3.1 to 7 for client, NT 4 to 2008 for server, OS/2, IBM MVS & z/OS, Linux ( multiple distros), AIX Current position: I do all sorts of in-house software. The range is single user apps to large systems spanning multiple OS's. One of the larger projects I've designed and coded is about 100k lines of C#, and a database where I have been the sole designer and maintainer. I have near total freedom to design as I see fit, restraints are usually budgetary. Skills required to replace me in my current role: Windows and Unix admin, Database design, .NET up to 3.5 (C#, ASP.NET), C++, Perl, good skills in designing large and efficient data processing systems. Given this small level of information what would you see this as being titled? (is more information required to render a decision?)

    Read the article

  • Storing "binary" data type in C program

    - by puchu
    I need to create a program that converts one number system to other number systems. I used itoa in Windows (Dev C++) and my only problem is that I do not know how to convert binary numbers to other number systems. All the other number systems conversion work accordingly. Does this involve something like storing the input to be converted using %? Here is a snippet of my work: case 2: { printf("\nEnter a binary number: "); scanf("%d", &num); itoa(num,buffer,8); printf("\nOctal %s",buffer); itoa(num,buffer,10); printf("\nDecimal %s",buffer); itoa(num,buffer,16); printf("\nHexadecimal %s \n",buffer); break; } For decimal I used %d, for octal I used %o and for hexadecimal I used %x. What could be the correct one for binary? Thanks for future answers!

    Read the article

  • Install McAfee ePO Agent via Group Policy

    - by neildeadman
    We have recently deployed ePO to our infrastructure, but the Agent will not deploy to all systems. We suspect this is a firewall issue as disabing Windows Firewall generally makes it work. We have decided to install the Agent via Group Policy to make sure all systems get the it and then ePO will deploy VirusScan on reboot. Following the manual I have run: Framepkg.exe /gengpomsi /SiteInfo=<sharedpath>\SiteList.xml /FrmInstLogLoc=<localtempDir> \<filename>.log and then created the GPO, but it never installs. Has anyone managed to get this working? Or maybe they can suggest a resolution for the failed installs of Agent deploy from ePO?

    Read the article

  • Partitioning recommendations for a Proxmox VM Server (OpenVZ)

    - by luison
    We are new to virtualization and we are planning to turn our online server into a virualized one, mainly for maintenance, backup and recovery improvements. Initially we would only have one real virtual system with load plus 1-3 copys for testing and recovering and maybe a small centralized syslog virtual machine. We would like, if possible the host machine to include an iptables plus rsync to back up to other machines and some other global security systems. Due to this and the offerings of our hosting supplier we are mainly considering Proxmox for its simplicity (we like the idea of its web admin panel) and as I also understand that the container approach of OpenVMZ systems may fit well resource wise with our setup. The base system comes with debian so we can personalise it to our requirements. Proxmox installations default installs an LVM partition for the VMs. Our doubts are with the fact of what would be the best partition structure for this considering that: we would like to have a mirror of the root partition we could boot from if required (our provider supports booting the system from another partition via control panel) we ideally would like to have a partition that could be shared among the VM systems. We still don't know if this is possible directly with OpenVMZ containers, otherwise we are considering doing this by sharing it via NFS on the host machine. we want to use the backup system available on the proxmox host administrator to programme VMs backups and then rsync it to another machine. With this based on a Linux Raid of aprox (750Gb) we are considering something like: ext3_1/ - (20Gb) ext3_2/bak_root - (20Gb) mostly unmounted, root partition sync LVM_1 /var/lib/vz - (390Gb) partition for virtual images LVM_2 /shared_data - (30Gb) LVM_3 /backups - (300Gb) where all backups would be allocated Our initial tests with Proxmox seem to have issues with snapshots backups like this, perhaps caused by the fact that they can not be done to another LVM partition (error: command 'lvcreate --size 1024M --snapshot --name vzsnap-ns204084.XXX.net-0 /dev/pve/LV' failed with exit code 5) in which case we might have to use a standart ext3 partition (but unsure if we can do this with the 4 primary partition limitations). Does this makes more or less sense? Would it be mad to for example write VMs /var/logs to a NFS mounted partition (on the host system)? Are their any other easier ways to mount host system partitions (or folders) to the VMs?

    Read the article

  • gparted installed on OpenSuse shows all file system types as greyed out except for hfs

    - by cmdematos.com
    I have had this problem before and fixed it, but I don't recall how I did it and I did not record it (sadness :( ) I have all the requisite commands installed on OpenSuse to support gparted's efforts in creating any of the supported file systems. I recall that the problem was that gparted could not find the commands, in any event all the file systems are greyed out in the context menu except for the legacy hfs partition which only supports < 2gb. Even extfs2-extfs4 are greyed out. How do I fix this?

    Read the article

  • Immutable hard links on ext3/4?

    - by shovas
    In my research on file versioning at the fs level, snapshotting, and related ideas, I took a look at hard-links and exactly what they are and how they behave. Using rsync you can get a pretty slick poor man's snapshotting system up and running on file systems that don't natively support it. But, can you get immutable hard links on ext3/4 or any other file systems for that matter? My definition for immutable hard link is: A hard link which, when changed on one location, becomes a regular copy and no longer a hard link. I would like this because it would enable snapshotting use of the source data to link against instead of a copy of the data (in the case of the rsync snapshotting technique). I have gigabytes of data that can't be duplicated due to space restrictions but I have enough room if I can intelligently snapshot individual changed files with the rest linked to the source not a copy. Given all that, is there some other technique, feature or technology I'm really looking for?

    Read the article

  • gparted installed on OpenSuse shows all file system types as greyed out except for hfs

    - by cmdematos
    I have had this problem before and fixed it, but I don't recall how I did it and I did not record it (sadness :( ) I have all the requisite commands installed on OpenSuse to support gparted's efforts in creating any of the supported file systems. I recall that the problem was that gparted could not find the commands, in any event all the file systems are greyed out in the context menu except for the legacy hfs partition which only supports < 2gb. Even extfs2-extfs4 are greyed out. How do I fix this?

    Read the article

  • what is acceptable datastore latency on VMware ESXi host?

    - by BeowulfNode42
    Looking at our performance figures on our existing VMware ESXi 4.1 host at the Datastore/Real-time performance data Write Latency Avg 14 ms Max 41 ms Read Latency Avg 4.5 ms Max 12 ms People don't seem to be complaining too much about it being slow with those numbers. But how much higher could they get before people found it to be a problem? We are reviewing our head office systems due to running low on storage space, and are tossing up between buying a 2nd VM host with DAS or buying some sort of NAS for SMB file shares in the near term and maybe running VMs from it in the longer term. Currently we have just under 40 staff at head office with 9 smaller branches spread across the country. Head office is runnning in an MS RDS session based environment with linux ERP and mail systems. In total 22 VMs on a single host with DAS made from a RAID 10 made of 6x 15k SAS disks.

    Read the article

  • Cacti dskIndex RHEL

    - by andyh_ky
    I'm attempting to use includeAllDisks in my snmpd.conf for RHEL 4 and RHEL 5 machines, but no data is being returned on the Cacti Data Query. snmpwalk isn't giving me any results. $ snmpwalk -v 2c -c public 172.19.4.140 .1.3.6.1.4.1.2021.9.1.1 UCD-SNMP-MIB::dskIndex = No Such Instance currently exists at this OID If I add disk / to snmpd.conf snmpwalk gives me the right results. $ snmpwalk -v 2c -c public 172.19.4.140 .1.3.6.1.4.1.2021.9.1.1 UCD-SNMP-MIB::dskIndex.1 = INTEGER: 1 I am wanting to deploy this to many systems using the same snmpd.conf (via Satellite). The disk configuration varies among systems and manually configuring snmpd.conf is not an optimal solution. Is there a way to get includeAllDisks to work? My snmpd.conf file: rocommunity public <cacti server IP> dontPrintUnits true includeAllDisks

    Read the article

  • Linux - Only first virtual interface can ping external gateway

    - by husvar
    I created 3 virtual interfaces with different mac addresses all linked to the same physical interface. I see that they successfully arp for the gw and they can ping (the request is coming in the packet capture in wireshark). However the ping utility does not count the responses. Does anyone knows the issue? I am running Ubuntu 14.04 in a VmWare. root@ubuntu:~# ip link sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip addr sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff inet6 fe80::20c:29ff:febc:fc8b/64 scope link valid_lft forever preferred_lft forever root@ubuntu:~# ip route sh root@ubuntu:~# ip link add link eth0 eth0.1 addr 00:00:00:00:00:11 type macvlan root@ubuntu:~# ip link add link eth0 eth0.2 addr 00:00:00:00:00:22 type macvlan root@ubuntu:~# ip link add link eth0 eth0.3 addr 00:00:00:00:00:33 type macvlan root@ubuntu:~# ip -4 link sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff 18: eth0.1@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default link/ether 00:00:00:00:00:11 brd ff:ff:ff:ff:ff:ff 19: eth0.2@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default link/ether 00:00:00:00:00:22 brd ff:ff:ff:ff:ff:ff 20: eth0.3@eth0: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN mode DEFAULT group default link/ether 00:00:00:00:00:33 brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip -4 addr sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever root@ubuntu:~# ip -4 route sh root@ubuntu:~# dhclient -v eth0.1 Internet Systems Consortium DHCP Client 4.2.4 Copyright 2004-2012 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0.1/00:00:00:00:00:11 Sending on LPF/eth0.1/00:00:00:00:00:11 Sending on Socket/fallback DHCPDISCOVER on eth0.1 to 255.255.255.255 port 67 interval 3 (xid=0x568eac05) DHCPREQUEST of 192.168.1.145 on eth0.1 to 255.255.255.255 port 67 (xid=0x568eac05) DHCPOFFER of 192.168.1.145 from 192.168.1.254 DHCPACK of 192.168.1.145 from 192.168.1.254 bound to 192.168.1.145 -- renewal in 1473 seconds. root@ubuntu:~# dhclient -v eth0.2 Internet Systems Consortium DHCP Client 4.2.4 Copyright 2004-2012 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0.2/00:00:00:00:00:22 Sending on LPF/eth0.2/00:00:00:00:00:22 Sending on Socket/fallback DHCPDISCOVER on eth0.2 to 255.255.255.255 port 67 interval 3 (xid=0x21e3114e) DHCPREQUEST of 192.168.1.146 on eth0.2 to 255.255.255.255 port 67 (xid=0x21e3114e) DHCPOFFER of 192.168.1.146 from 192.168.1.254 DHCPACK of 192.168.1.146 from 192.168.1.254 bound to 192.168.1.146 -- renewal in 1366 seconds. root@ubuntu:~# dhclient -v eth0.3 Internet Systems Consortium DHCP Client 4.2.4 Copyright 2004-2012 Internet Systems Consortium. All rights reserved. For info, please visit https://www.isc.org/software/dhcp/ Listening on LPF/eth0.3/00:00:00:00:00:33 Sending on LPF/eth0.3/00:00:00:00:00:33 Sending on Socket/fallback DHCPDISCOVER on eth0.3 to 255.255.255.255 port 67 interval 3 (xid=0x11dc5f03) DHCPREQUEST of 192.168.1.147 on eth0.3 to 255.255.255.255 port 67 (xid=0x11dc5f03) DHCPOFFER of 192.168.1.147 from 192.168.1.254 DHCPACK of 192.168.1.147 from 192.168.1.254 bound to 192.168.1.147 -- renewal in 1657 seconds. root@ubuntu:~# ip -4 link sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000 link/ether 00:0c:29:bc:fc:8b brd ff:ff:ff:ff:ff:ff 18: eth0.1@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 00:00:00:00:00:11 brd ff:ff:ff:ff:ff:ff 19: eth0.2@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 00:00:00:00:00:22 brd ff:ff:ff:ff:ff:ff 20: eth0.3@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN mode DEFAULT group default link/ether 00:00:00:00:00:33 brd ff:ff:ff:ff:ff:ff root@ubuntu:~# ip -4 addr sh 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever 18: eth0.1@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default inet 192.168.1.145/24 brd 192.168.1.255 scope global eth0.1 valid_lft forever preferred_lft forever 19: eth0.2@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default inet 192.168.1.146/24 brd 192.168.1.255 scope global eth0.2 valid_lft forever preferred_lft forever 20: eth0.3@eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOWN group default inet 192.168.1.147/24 brd 192.168.1.255 scope global eth0.3 valid_lft forever preferred_lft forever root@ubuntu:~# ip -4 route sh default via 192.168.1.254 dev eth0.1 192.168.1.0/24 dev eth0.1 proto kernel scope link src 192.168.1.145 192.168.1.0/24 dev eth0.2 proto kernel scope link src 192.168.1.146 192.168.1.0/24 dev eth0.3 proto kernel scope link src 192.168.1.147 root@ubuntu:~# arping -c 5 -I eth0.1 192.168.1.254 ARPING 192.168.1.254 from 192.168.1.145 eth0.1 Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 6.936ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.986ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 0.654ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 5.137ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.426ms Sent 5 probes (1 broadcast(s)) Received 5 response(s) root@ubuntu:~# arping -c 5 -I eth0.2 192.168.1.254 ARPING 192.168.1.254 from 192.168.1.146 eth0.2 Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 5.665ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 3.753ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 16.500ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 3.287ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 32.438ms Sent 5 probes (1 broadcast(s)) Received 5 response(s) root@ubuntu:~# arping -c 5 -I eth0.3 192.168.1.254 ARPING 192.168.1.254 from 192.168.1.147 eth0.3 Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 4.422ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.429ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.321ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 40.423ms Unicast reply from 192.168.1.254 [58:98:35:57:a0:70] 2.268ms Sent 5 probes (1 broadcast(s)) Received 5 response(s) root@ubuntu:~# tcpdump -n -i eth0.1 -v & [1] 5317 root@ubuntu:~# ping -c5 -q -I eth0.1 192.168.1.254 PING 192.168.1.254 (192.168.1.254) from 192.168.1.145 eth0.1: 56(84) bytes of data. tcpdump: listening on eth0.1, link-type EN10MB (Ethernet), capture size 65535 bytes 13:18:37.612558 IP (tos 0x0, ttl 64, id 2595, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.145 > 192.168.1.254: ICMP echo request, id 5318, seq 2, length 64 13:18:37.618864 IP (tos 0x68, ttl 64, id 14493, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.145: ICMP echo reply, id 5318, seq 2, length 64 13:18:37.743650 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:38.134997 IP (tos 0x0, ttl 128, id 23547, offset 0, flags [none], proto UDP (17), length 229) 192.168.1.86.138 > 192.168.1.255.138: NBT UDP PACKET(138) 13:18:38.614580 IP (tos 0x0, ttl 64, id 2596, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.145 > 192.168.1.254: ICMP echo request, id 5318, seq 3, length 64 13:18:38.793479 IP (tos 0x68, ttl 64, id 14495, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.145: ICMP echo reply, id 5318, seq 3, length 64 13:18:39.151282 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:39.615612 IP (tos 0x0, ttl 64, id 2597, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.145 > 192.168.1.254: ICMP echo request, id 5318, seq 4, length 64 13:18:39.746981 IP (tos 0x68, ttl 64, id 14496, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.145: ICMP echo reply, id 5318, seq 4, length 64 --- 192.168.1.254 ping statistics --- 5 packets transmitted, 5 received, 0% packet loss, time 4008ms rtt min/avg/max/mdev = 2.793/67.810/178.934/73.108 ms root@ubuntu:~# killall tcpdump >> /dev/null 2>&1 9 packets captured 12 packets received by filter 0 packets dropped by kernel [1]+ Done tcpdump -n -i eth0.1 -v root@ubuntu:~# tcpdump -n -i eth0.2 -v & [1] 5320 root@ubuntu:~# ping -c5 -q -I eth0.2 192.168.1.254 PING 192.168.1.254 (192.168.1.254) from 192.168.1.146 eth0.2: 56(84) bytes of data. tcpdump: listening on eth0.2, link-type EN10MB (Ethernet), capture size 65535 bytes 13:18:41.536874 ARP, Ethernet (len 6), IPv4 (len 4), Reply 192.168.1.254 is-at 58:98:35:57:a0:70, length 46 13:18:41.536933 IP (tos 0x0, ttl 64, id 2599, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 1, length 64 13:18:41.539255 IP (tos 0x68, ttl 64, id 14507, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 1, length 64 13:18:42.127715 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:42.511725 IP (tos 0x0, ttl 64, id 2600, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 2, length 64 13:18:42.514385 IP (tos 0x68, ttl 64, id 14527, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 2, length 64 13:18:42.743856 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:43.511727 IP (tos 0x0, ttl 64, id 2601, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 3, length 64 13:18:43.513768 IP (tos 0x68, ttl 64, id 14528, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 3, length 64 13:18:43.637598 IP (tos 0x0, ttl 128, id 23551, offset 0, flags [none], proto UDP (17), length 225) 192.168.1.86.17500 > 255.255.255.255.17500: UDP, length 197 13:18:43.641185 IP (tos 0x0, ttl 128, id 23552, offset 0, flags [none], proto UDP (17), length 225) 192.168.1.86.17500 > 192.168.1.255.17500: UDP, length 197 13:18:43.641201 IP (tos 0x0, ttl 128, id 23553, offset 0, flags [none], proto UDP (17), length 225) 192.168.1.86.17500 > 255.255.255.255.17500: UDP, length 197 13:18:43.743890 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 13:18:44.510758 IP (tos 0x0, ttl 64, id 2602, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 4, length 64 13:18:44.512892 IP (tos 0x68, ttl 64, id 14538, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 4, length 64 13:18:45.510794 IP (tos 0x0, ttl 64, id 2603, offset 0, flags [DF], proto ICMP (1), length 84) 192.168.1.146 > 192.168.1.254: ICMP echo request, id 5321, seq 5, length 64 13:18:45.519701 IP (tos 0x68, ttl 64, id 14539, offset 0, flags [none], proto ICMP (1), length 84) 192.168.1.254 > 192.168.1.146: ICMP echo reply, id 5321, seq 5, length 64 13:18:49.287554 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:50.013463 IP (tos 0x0, ttl 255, id 50737, offset 0, flags [DF], proto UDP (17), length 73) 192.168.1.146.5353 > 224.0.0.251.5353: 0 [2q] PTR (QM)? _ipps._tcp.local. PTR (QM)? _ipp._tcp.local. (45) 13:18:50.218874 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:51.129961 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:52.197074 IP6 (hlim 255, next-header UDP (17) payload length: 53) 2001:818:d812:da00:200:ff:fe00:22.5353 > ff02::fb.5353: [udp sum ok] 0 [2q] PTR (QM)? _ipps._tcp.local. PTR (QM)? _ipp._tcp.local. (45) 13:18:54.128240 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 --- 192.168.1.254 ping statistics --- 5 packets transmitted, 0 received, 100% packet loss, time 4000ms root@ubuntu:~# killall tcpdump >> /dev/null 2>&1 13:18:54.657731 IP6 (class 0x68, hlim 255, next-header ICMPv6 (58) payload length: 32) fe80::5a98:35ff:fe57:e070 > ff02::1:ff6b:e9b4: [icmp6 sum ok] ICMP6, neighbor solicitation, length 32, who has 2001:818:d812:da00:8ae3:abff:fe6b:e9b4 source link-address option (1), length 8 (1): 58:98:35:57:a0:70 13:18:54.743174 ARP, Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.87 tell 192.168.1.86, length 46 25 packets captured 26 packets received by filter 0 packets dropped by kernel [1]+ Done tcpdump -n -i eth0.2 -v root@ubuntu:~# tcpdump -n -i eth0.3 icmp & [1] 5324 root@ubuntu:~# ping -c5 -q -I eth0.3 192.168.1.254 PING 192.168.1.254 (192.168.1.254) from 192.168.1.147 eth0.3: 56(84) bytes of data. tcpdump: verbose output suppressed, use -v or -vv for full protocol decode listening on eth0.3, link-type EN10MB (Ethernet), capture size 65535 bytes 13:18:56.373434 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 1, length 64 13:18:57.372116 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 2, length 64 13:18:57.381263 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 2, length 64 13:18:58.371141 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 3, length 64 13:18:58.373275 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 3, length 64 13:18:59.371165 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 4, length 64 13:18:59.373259 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 4, length 64 13:19:00.371211 IP 192.168.1.147 > 192.168.1.254: ICMP echo request, id 5325, seq 5, length 64 13:19:00.373278 IP 192.168.1.254 > 192.168.1.147: ICMP echo reply, id 5325, seq 5, length 64 --- 192.168.1.254 ping statistics --- 5 packets transmitted, 1 received, 80% packet loss, time 4001ms rtt min/avg/max/mdev = 13.666/13.666/13.666/0.000 ms root@ubuntu:~# killall tcpdump >> /dev/null 2>&1 9 packets captured 10 packets received by filter 0 packets dropped by kernel [1]+ Done tcpdump -n -i eth0.3 icmp root@ubuntu:~# arp -n Address HWtype HWaddress Flags Mask Iface 192.168.1.254 ether 58:98:35:57:a0:70 C eth0.1 192.168.1.254 ether 58:98:35:57:a0:70 C eth0.2 192.168.1.254 ether 58:98:35:57:a0:70 C eth0.3

    Read the article

  • Data loss through permissions change?

    - by charliehorse55
    I seem to have deleted some files on my media drive, simply by changing the permissions. The Story I have many operating systems installed on my computer, and constantly switch between them. I bought a 1TB HD and formatted it as HFS+ (not journaled). It worked well between OSX and all of my linux installations while having much better metadata support than NTFS. I never synced the UIDs for my operating systems so the permissions were always doing funny things. Yesterday I tried to fix the permissions by first changing the UIDs of the other operating systems to match OSX, and then changing the file ownership of all files on the drive to match OSX. About 50% of the files on the drive were originally owned by OSX, the other half were owned by the various linux installations. I started to try and change the file permissions for the folders, and that's when it went south. The Commands These commands were run recursively on the one section of the drive. sudo chflags nouchg sudo chflags -N sudo chown myusername sudo chmod 666 sudo chgrp staff The Bad Sometime during the execution of these commands, all of the files belonging to OSX were deleted. If a folder had linux based files it would remain intact but any folder containing exclusively OSX files was erased. If a folder containing linux files also contained a subfolder with only OSX files, the sub folder would remain but is inaccesible and displays a file size of 0 bytes. Luckily these commands were only run on the videos folder, I also have a music folder with the same issue but I did not execute any of these commands on it. Effectively I have examples of the file permissions for all 3 states - the linux files before and after, and the OSX files before. OSX File Before -rw-r--r--@ 1 charliehorse 1000 3634241 15 Nov 2008 /path/to/file com.apple.FinderInfo 32 Linux File before: -rw-r--r--@ 1 charliehorse 1000 5321776 20 Sep 2002 /path/to/file/ com.apple.FinderInfo 32 Linux File After (Read only): (Different file, but I believe the same permissions originally) -rw-rw-rw-@ 1 charliehorse staff 366982610 17 Jun 2008 /path/to/file com.apple.FinderInfo 32 These files still exist so if there are any other commands to run on them to determine what has happened here, I can do that. EDIT Running ls on one of the "empty" deleted OSX folders yields this: ls: .: Permission denied ls: ..: Permission denied ls: subdirA: Permission denied ls: subdirB: Permission denied ls: subdirC: Permission denied ls: subdirD: Permission denied I believe my files might still be there, but the permissions are screwed.

    Read the article

  • How can I expire non-active sessions on my Netscreen SSG140?

    - by David Mackintosh
    I have a Juniper Netscreen SSG-140. While experimenting with a VoIP service, I defined a custom policy that was to be used to permit the possible ports in use to be sent back to the VoIP server from systems connecting across the internet. Because I'd had problems in the past with VoIP systems getting broken when their UDP sessions were expired out faster than their keep-alives were generated, I set the timeout on this custom service to be 'never'. After much experimentation, I happened to notice that my session count on the firewall has grown from a couple thousand to over 36000. After discussion with the VoIP "expert", I set the timeout to be 30 minutes; however, all the sessions set up during the experimentation process are still there, more than 3 days later. Is there a way I can force these old sessions to get expired and removed from the session table, or am I looking at resetting my firewall? (Both firewalls, actually -- they are in a cluster.)

    Read the article

  • IIS7 rejecting POST requests with 400 error.

    - by Eli
    I have a web application that is supposed to handle post requests from SAP. This has been working fine at other customers with win2k3 systems (IIS6) and win2k8 (IIS7) systems. However, on this specific customer's site, IIS responds with a 400 response, without calling my aspx page. In fact, I don't even see it appear in the w3c log for the virtual directory. I do see the request using Network Monitor, so I know no firewalls and the like are eating the request, and as far as I can tell, all of the fields of the request are valid (there is "content-length", it looks correct (this is a sending of a 28K tiff file - which isn't MIME encoded, curiously enough now that I think of it...) Ideas?

    Read the article

< Previous Page | 72 73 74 75 76 77 78 79 80 81 82 83  | Next Page >