Search Results

Search found 24043 results on 962 pages for 'private methods'.

Page 764/962 | < Previous Page | 760 761 762 763 764 765 766 767 768 769 770 771  | Next Page >

  • Configuring Oracle iPlanet WebServer / Oracle Traffic Director to use crypto accelerators on T4-1 servers

    - by mv
    Configuring Oracle iPlanet Web Server / Oracle Traffic Director to use crypto accelerators on T4-1 servers Jyri had written a technical article on Configuring Solaris Cryptographic Framework and Sun Java System Web Server 7 on Systems With UltraSPARC T1 Processors. I tried to find out what has changed since then in T4. I have used a T4-1 SPARC system with Solaris 10. Results slightly vary for Solaris 11.  For Solaris 11, the T4 optimization was implemented in libsoftcrypto.so while it was in pkcs11_softtoken_extra.so for Solaris 10. Overview of T4 processors is here in this blog. Many thanx to Chi-Chang Lin and Julien for their help. 1. Install Oracle iPlanet Web Server / Oracle Traffic Director.  Go to instance/config directory.  # cd /opt/oracle/webserver7/https-hostname.fqdn/config 2. List default PKCS#11 Modules # ../../bin/modutil -dbdir . -listListing of PKCS #11 Modules-----------------------------------------------------------1. NSS Internal PKCS #11 Moduleslots: 2 slots attachedstatus: loadedslot: NSS Internal Cryptographic Servicestoken: NSS Generic Crypto Servicesslot: NSS User Private Key and Certificate Servicestoken: NSS Certificate DB2. Root Certslibrary name: libnssckbi.soslots: 1 slot attachedstatus: loadedslot: NSS Builtin Objectstoken: Builtin Object Token----------------------------------------------------------- 3. Initialize the soft token data store in the $HOME/.sunw/pkcs11_softtoken/ directory # pktool setpin keystore=pkcs11Enter token passphrase: olderpasswordCreate new passphrase: passwordRe-enter new passphrase: passwordPassphrase changed. 4. Offload crypto operations to Solaris Crypto Framework on T4 $ ../../bin/modutil -dbdir . -nocertdb -add SCF -libfile /usr/lib/libpkcs11.so -mechanisms RSA:AES:SHA1:MD5 Module "SCF" added to database. Note that -nocertdb means modutil won't try to open the NSS softoken key database. It doesn't even have to be present. PKCS#11 library used is /usr/lib/libpkcs11.so. If the server is running in 64 bit mode, we have to use /usr/lib/64/libpkcs11.so Unlike T1 and T2, in T4 we do not have to disable mechanisms in softtoken provider using cryptoadm. 5. List again to check that a new module SCF is added # ../../bin/modutil -dbdir . -list Listing of PKCS #11 Modules-----------------------------------------------------------1. NSS Internal PKCS #11 Moduleslots: 2 slots attachedstatus: loadedslot: NSS Internal Cryptographic Servicestoken: NSS Generic Crypto Servicesslot: NSS User Private Key and Certificate Servicestoken: NSS Certificate DB2. SCFlibrary name: /usr/lib/libpkcs11.soslots: 2 slots attachedstatus: loadedslot: Sun Metaslottoken: Sun Metaslotslot: n2rng/0 SUNW_N2_Random_Number_Generator token: n2rng/0 SUNW_N2_RNG 3. Root Certs library name: libnssckbi.so slots: 1 slot attached status: loaded slot: NSS Builtin Objects token: Builtin Object Token----------------------------------------------------------- 6.  Create certificate in “Sun Metaslot” : I have used certutil, but you must use Admin Server CLI / GUI # ../../bin/certutil -S -x -n "Server-Cert" -t "CT,CT,CT" -s "CN=*.fqdn" -d . -h "Sun Metaslot"Enter Password or Pin for "Sun Metaslot": password 7. Verify that the certificate is created properly in “Sun Metslaot” # ../../bin/certutil -L -d . -h "Sun Metaslot"Certificate Nickname Trust AttributesSSL,S/MIME,JAR/XPIEnter Password or Pin for "Sun Metaslot": passwordSun Metaslot:Server-Cert CTu,Cu,Cu# 8. Associate this newly created certificate to http listener using Admin CLI/GUI. After that server.xml should have <http-listener> ...    <ssl>        <server-cert-nickname>Sun Metaslot:Server-Cert</server-cert-nicknamer>    </ssl> Note the prefix "Sun Metaslot" 9. Disable PKCS#11 bypass To use the accelerated AES algorithm, turn off PKCS#11 bypass, and configure modutil to have the AES mechanism go to the Metaslot. After you disable PKCS#11 bypasss using Admin GUI/CLI,  check that server.xml should have <server> ....    <pkcs11>         <enabled>1</enabled>         <allow-bypass>0</allow-bypass>     </pkcs11> With PKCS#11 bypass enabled, Oracle iPlanet Web Server will only use the RSA capability of the T4, provided certificate and key are stored in the T4 slot (Metaslot). Actually, the RSA op is never bypassed in NSS, it's always done with PKCS#11 calls. So the bypass settings won't affect the behavior of the probes for RSA at all. The only thing that matters if where the RSA key and certificate live, ie. which PKCS#11 token, and thus which PKCS#11 module gets called to do the work. If your certificate/key are in the NSS certificate/key db, you will see libsoftokn3/libfreebl libraries doing the RSA work. If they are in the Sun Metaslot, it should be the Solaris code. 10. Start the server instance # ../bin/startserv Oracle iPlanet Web Server 7.0.16 B09/14/2012 03:33Please enter the PIN for the "Sun Metaslot" token: password...info: HTTP3072: http-listener-1: https://hostname.fqdn:80 ready to accept requestsinfo: CORE3274: successful server startup 11. Figure out which process to run this DTrace script on # ps -eaf | grep webservd | grep -v dogwebservd 18224 18223 0 13:17:25 ? 0:07 webservd -d /opt/oracle/webserver7/https-hostname.fqdn/config -r /opt/root 18225 18224 0 13:17:25 ? 0:00 webservd -d /opt/oracle/webserver7/https-hostname.fqdn/config -r /opt/ (For Oracle Traffic Director look for process named "trafficd") We see that the child process id is “18225” 12. Clients for testing : You can use any browser. I used NSS tool tstclnt for testing $cat > req.txtGET /index.html HTTP/1.0 For checking both RSA and AES, I used cipher “:0035” which is TLS_RSA_WITH_AES_256_CBC_SHA $./tstclnt -h hostname -p 80 -d . -T -f -o -v -c “:0035” < req.txt 13. How do I make sure that crypto accelerator is being used 13.1 Create DTrace script The following D script should be able to uncover whether T4-specific crypto routine are being called or not. It also displays stats per second. # cat > t4crypto.d#!/usr/sbin/dtrace -spid$target::*rsa*:entry,pid$target::*yf*:entry{    @ops[probemod, probefunc] = count();}tick-1sec{    printa(@ops);    trunc(@ops);} Invoke with './t4crypto.d -p <pid> ' 13.2 EXPECTED PROBES FOR Solaris 10 : If offloading to T4 HW are correctly set up, the expected DTrace output would have these probes and libraries library Operations PROBES pkcs11_softtoken_extra.so RSA soft_decrypt_rsa_pkcs_decode, soft_encrypt_rsa_pkcs_encode soft_rsa_crypt_init_common soft_rsa_decrypt, soft_rsa_encrypt soft_rsa_decrypt_common, soft_rsa_encrypt_common AES yf_aes_instructions_present yf_aes_expand256, yf_aes256_cbc_decrypt, yf_aes256_cbc_encrypt, yf_aes256_load_keys_for_decrypt, yf_aes256_load_keys_for_encrypt, Note that these are for 256, same for 128, 192... these are for cbc, same for ecb, ctr, cfb128... DES yf_des_expand, yf_des_instructions_present yf_des_encrypt libmd_psr.so MD5 yf_md5_multiblock, yf_md5_instruction_present SHA1 yf_sha1_instruction_present, yf_sha1_multibloc 13.3 SAMPLE OUTPUT FOR CIPHER TLS_RSA_WITH_AES_256_CBC_SHA (0x0035) ON T4 SPARC SOLARIS 10 WITHOUT PKCS#11 BYPASS # ./t4crypto.d -p 18225 pkcs11_softtoken_extra.so.1   soft_decrypt_rsa_pkcs_decode    1 pkcs11_softtoken_extra.so.1   soft_rsa_crypt_init_common      1 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt                1 pkcs11_softtoken_extra.so.1   big_mp_mul_yf                   2 pkcs11_softtoken_extra.so.1   mpm_yf_mpmul                    2 pkcs11_softtoken_extra.so.1   mpmul_arr_yf                    2 pkcs11_softtoken_extra.so.1   rijndael_key_setup_enc_yf       2 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt_common         2 pkcs11_softtoken_extra.so.1   yf_aes_expand256                2 pkcs11_softtoken_extra.so.1   yf_aes256_cbc_decrypt           3 pkcs11_softtoken_extra.so.1   yf_aes256_load_keys_for_decrypt 3 pkcs11_softtoken_extra.so.1   big_mont_mul_yf                 6 pkcs11_softtoken_extra.so.1   mm_yf_montmul                   6 pkcs11_softtoken_extra.so.1   yf_des_instructions_present     6 pkcs11_softtoken_extra.so.1   yf_aes256_cbc_encrypt           8 pkcs11_softtoken_extra.so.1   yf_aes256_load_keys_for_encrypt 8 pkcs11_softtoken_extra.so.1   yf_mpmul_present                8 pkcs11_softtoken_extra.so.1   yf_aes_instructions_present    13 pkcs11_softtoken_extra.so.1   yf_des_encrypt                 18 libmd_psr.so.1                yf_md5_multiblock              41 libmd_psr.so.1                yf_md5_instruction_present     72 libmd_psr.so.1                yf_sha1_instruction_present    82 libmd_psr.so.1                yf_sha1_multiblock             82 This indicates that both RSA and AES ops are done in Solaris Crypto Framework. 13.4 SAMPLE OUTPUT FOR CIPHER TLS_RSA_WITH_AES_256_CBC_SHA (0x0035) ON T4 SPARC SOLARIS 10 WITH PKCS#11 BYPASS # ./t4crypto.d -p 18225 pkcs11_softtoken_extra.so.1   soft_decrypt_rsa_pkcs_decode 1 pkcs11_softtoken_extra.so.1   soft_rsa_crypt_init_common   1 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt             1 pkcs11_softtoken_extra.so.1   soft_rsa_decrypt_common      1 pkcs11_softtoken_extra.so.1   big_mp_mul_yf                2 pkcs11_softtoken_extra.so.1   mpm_yf_mpmul                 2 pkcs11_softtoken_extra.so.1   mpmul_arr_yf                 2 pkcs11_softtoken_extra.so.1   big_mont_mul_yf              6 pkcs11_softtoken_extra.so.1   mm_yf_montmul                6 pkcs11_softtoken_extra.so.1   yf_mpmul_present             8 For this cipher, when I enable PKCS#11 bypass, Only RSA probes are being hit AES probes are not being hit. 13.5 ustack() for RSA operations / probefunc == "soft_rsa_decrypt" / Shows that libnss3.so is calling C_* functions of libpkcs11.so which is calling functions of pkcs11_softtoken_extra.so for both cases with and without bypass. When PKCS#11 bypass is disabled (allow-bypass is 0) pkcs11_softtoken_extra.so.1`soft_rsa_decrypt pkcs11_softtoken_extra.so.1`soft_rsa_decrypt_common+0x94 pkcs11_softtoken_extra.so.1`soft_unwrapkey+0x258 pkcs11_softtoken_extra.so.1`C_UnwrapKey+0x1ec libpkcs11.so.1`meta_unwrap_key+0x17c libpkcs11.so.1`meta_UnwrapKey+0xc4 libpkcs11.so.1`C_UnwrapKey+0xfc libnss3.so`pk11_AnyUnwrapKey+0x6b8 libnss3.so`PK11_PubUnwrapSymKey+0x8c libssl3.so`ssl3_HandleRSAClientKeyExchange+0x1a0 libssl3.so`ssl3_HandleClientKeyExchange+0x154 libssl3.so`ssl3_HandleHandshakeMessage+0x440 libssl3.so`ssl3_HandleHandshake+0x11c libssl3.so`ssl3_HandleRecord+0x5e8 libssl3.so`ssl3_GatherCompleteHandshake+0x5c libssl3.so`ssl_GatherRecord1stHandshake+0x30 libssl3.so`ssl_Do1stHandshake+0xec libssl3.so`ssl_SecureRecv+0x1c8 libssl3.so`ssl_Recv+0x9c libns-httpd40.so`__1cNDaemonSessionDrun6M_v_+0x2dc When PKCS#11 bypass is enabled (allow-bypass is 1) pkcs11_softtoken_extra.so.1`soft_rsa_decrypt pkcs11_softtoken_extra.so.1`soft_rsa_decrypt_common+0x94 pkcs11_softtoken_extra.so.1`C_Decrypt+0x164 libpkcs11.so.1`meta_do_operation+0x27c libpkcs11.so.1`meta_Decrypt+0x4c libpkcs11.so.1`C_Decrypt+0xcc libnss3.so`PK11_PrivDecryptPKCS1+0x1ac libssl3.so`ssl3_HandleRSAClientKeyExchange+0xe4 libssl3.so`ssl3_HandleClientKeyExchange+0x154 libssl3.so`ssl3_HandleHandshakeMessage+0x440 libssl3.so`ssl3_HandleHandshake+0x11c libssl3.so`ssl3_HandleRecord+0x5e8 libssl3.so`ssl3_GatherCompleteHandshake+0x5c libssl3.so`ssl_GatherRecord1stHandshake+0x30 libssl3.so`ssl_Do1stHandshake+0xec libssl3.so`ssl_SecureRecv+0x1c8 libssl3.so`ssl_Recv+0x9c libns-httpd40.so`__1cNDaemonSessionDrun6M_v_+0x2dc libnsprwrap.so`ThreadMain+0x1c libnspr4.so`_pt_root+0xe8 13.6 ustack() FOR AES operations / probefunc == "yf_aes256_cbc_encrypt" / When PKCS#11 bypass is disabled (allow-bypass is 0) pkcs11_softtoken_extra.so.1`yf_aes256_cbc_encrypt pkcs11_softtoken_extra.so.1`aes_block_process_contiguous_whole_blocks+0xb4 pkcs11_softtoken_extra.so.1`aes_crypt_contiguous_blocks+0x1cc pkcs11_softtoken_extra.so.1`soft_aes_encrypt_common+0x22c pkcs11_softtoken_extra.so.1`C_EncryptUpdate+0x10c libpkcs11.so.1`meta_do_operation+0x1fc libpkcs11.so.1`meta_EncryptUpdate+0x4c libpkcs11.so.1`C_EncryptUpdate+0xcc libnss3.so`PK11_CipherOp+0x1a0 libssl3.so`ssl3_CompressMACEncryptRecord+0x264 libssl3.so`ssl3_SendRecord+0x300 libssl3.so`ssl3_FlushHandshake+0x54 libssl3.so`ssl3_SendFinished+0x1fc libssl3.so`ssl3_HandleFinished+0x314 libssl3.so`ssl3_HandleHandshakeMessage+0x4ac libssl3.so`ssl3_HandleHandshake+0x11c libssl3.so`ssl3_HandleRecord+0x5e8 libssl3.so`ssl3_GatherCompleteHandshake+0x5c libssl3.so`ssl_GatherRecord1stHandshake+0x30 libssl3.so`ssl_Do1stHandshake+0xec Shows that libnss3.so is calling C_* functions of libpkcs11.so which is calling functions of pkcs11_softtoken_extra.so However when PKCS#11 bypass is disabled (allow-bypass is 1) this stack isn't getting called. 14. LIST OF ALL THE PROBES MATCHED BY D SCRIPT FOR REFERENCE # ./t4crypto.d -p 18225 -l ID PROVIDER MODULE FUNCTION NAME ... 55720 pid18225 libmd_psr.so.1 yf_md5_instruction_present entry 55721 pid18225 libmd_psr.so.1 yf_sha256_instruction_present entry 55722 pid18225 libmd_psr.so.1 yf_sha512_instruction_present entry 55723 pid18225 libmd_psr.so.1 yf_sha1_instruction_present entry 55724 pid18225 libmd_psr.so.1 yf_sha256 entry 55725 pid18225 libmd_psr.so.1 yf_sha256_multiblock entry 55726 pid18225 libmd_psr.so.1 yf_sha512 entry 55727 pid18225 libmd_psr.so.1 yf_sha512_multiblock entry 55728 pid18225 libmd_psr.so.1 yf_sha1 entry 55729 pid18225 libmd_psr.so.1 yf_sha1_multiblock entry 55730 pid18225 libmd_psr.so.1 yf_md5 entry 55731 pid18225 libmd_psr.so.1 yf_md5_multiblock entry 55732 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_instructions_present entry 55733 pid18225 pkcs11_softtoken_extra.so.1 rijndael_key_setup_enc_yf entry 55734 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_expand128 entry 55735 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_encrypt128 entry 55736 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_decrypt128 entry 55737 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_expand192 entry 55738 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_encrypt192 entry 55739 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_decrypt192 entry 55740 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_expand256 entry 55741 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_encrypt256 entry 55742 pid18225 pkcs11_softtoken_extra.so.1 yf_aes_decrypt256 entry 55743 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_load_keys_for_encrypt entry 55744 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_load_keys_for_encrypt entry 55745 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_load_keys_for_encrypt entry 55746 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_ecb_encrypt entry 55747 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_ecb_encrypt entry 55748 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_ecb_encrypt entry 55749 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cbc_encrypt entry 55750 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cbc_encrypt entry 55751 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cbc_encrypt entry 55752 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_ctr_crypt entry 55753 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_ctr_crypt entry 55754 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_ctr_crypt entry 55755 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cfb128_encrypt entry 55756 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cfb128_encrypt entry 55757 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cfb128_encrypt entry 55758 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_load_keys_for_decrypt entry 55759 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_load_keys_for_decrypt entry 55760 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_load_keys_for_decrypt entry 55761 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_ecb_decrypt entry 55762 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_ecb_decrypt entry 55763 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_ecb_decrypt entry 55764 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cbc_decrypt entry 55765 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cbc_decrypt entry 55766 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cbc_decrypt entry 55767 pid18225 pkcs11_softtoken_extra.so.1 yf_aes128_cfb128_decrypt entry 55768 pid18225 pkcs11_softtoken_extra.so.1 yf_aes192_cfb128_decrypt entry 55769 pid18225 pkcs11_softtoken_extra.so.1 yf_aes256_cfb128_decrypt entry 55771 pid18225 pkcs11_softtoken_extra.so.1 yf_des_instructions_present entry 55772 pid18225 pkcs11_softtoken_extra.so.1 yf_des_expand entry 55773 pid18225 pkcs11_softtoken_extra.so.1 yf_des_encrypt entry 55774 pid18225 pkcs11_softtoken_extra.so.1 yf_mpmul_present entry 55775 pid18225 pkcs11_softtoken_extra.so.1 yf_montmul_present entry 55776 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_montmul entry 55777 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_montsqr entry 55778 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_restore_func entry 55779 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_ret_from_mont_func entry 55780 pid18225 pkcs11_softtoken_extra.so.1 mm_yf_execute_slp entry 55781 pid18225 pkcs11_softtoken_extra.so.1 big_modexp_ncp_yf entry 55782 pid18225 pkcs11_softtoken_extra.so.1 big_mont_mul_yf entry 55783 pid18225 pkcs11_softtoken_extra.so.1 mpmul_arr_yf entry 55784 pid18225 pkcs11_softtoken_extra.so.1 big_mp_mul_yf entry 55785 pid18225 pkcs11_softtoken_extra.so.1 mpm_yf_mpmul entry 55786 pid18225 libns-httpd40.so nsapi_rsa_set_priv_fn entry ... 55795 pid18225 libnss3.so prepare_rsa_priv_key_export_for_asn1 entry 55796 pid18225 libresolv.so.2 sunw_dst_rsaref_init entry 55797 pid18225 libnssutil3.so NSS_Get_SEC_UniversalStringTemplate entry ... 55813 pid18225 libsoftokn3.so prepare_low_rsa_priv_key_for_asn1 entry 55814 pid18225 libsoftokn3.so rsa_FormatOneBlock entry 55815 pid18225 libsoftokn3.so rsa_FormatBlock entry 55816 pid18225 libnssdbm3.so lg_prepare_low_rsa_priv_key_for_asn1 entry 55817 pid18225 libfreebl_32fpu_3.so rsa_build_from_primes entry 55818 pid18225 libfreebl_32fpu_3.so rsa_is_prime entry 55819 pid18225 libfreebl_32fpu_3.so rsa_get_primes_from_exponents entry 55820 pid18225 libfreebl_32fpu_3.so rsa_PrivateKeyOpNoCRT entry 55821 pid18225 libfreebl_32fpu_3.so rsa_PrivateKeyOpCRTNoCheck entry 55822 pid18225 libfreebl_32fpu_3.so rsa_PrivateKeyOpCRTCheckedPubKey entry 55823 pid18225 pkcs11_kernel.so.1 key_gen_rsa_by_value entry 55824 pid18225 pkcs11_kernel.so.1 get_rsa_private_key entry 55825 pid18225 pkcs11_kernel.so.1 get_rsa_public_key entry 55826 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_encrypt entry 55827 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_decrypt entry 55828 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_crypt_init_common entry 55829 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_encrypt_common entry 55830 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_decrypt_common entry 55831 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_sign_verify_init_common entry 55832 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_sign_common entry 55833 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_verify_common entry 55834 pid18225 pkcs11_softtoken_extra.so.1 generate_rsa_key entry 55835 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_genkey_pair entry 55836 pid18225 pkcs11_softtoken_extra.so.1 get_rsa_sha1_prefix entry 55837 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_digest_sign_common entry 55838 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_digest_verify_common entry 55839 pid18225 pkcs11_softtoken_extra.so.1 soft_rsa_verify_recover entry 55840 pid18225 pkcs11_softtoken_extra.so.1 rsa_pri_to_asn1 entry 55841 pid18225 pkcs11_softtoken_extra.so.1 asn1_to_rsa_pri entry 55842 pid18225 pkcs11_softtoken_extra.so.1 soft_encrypt_rsa_pkcs_encode entry 55843 pid18225 pkcs11_softtoken_extra.so.1 soft_decrypt_rsa_pkcs_decode entry 55844 pid18225 pkcs11_softtoken_extra.so.1 soft_sign_rsa_pkcs_encode entry 55845 pid18225 pkcs11_softtoken_extra.so.1 soft_verify_rsa_pkcs_decode entry 55770 profile tick-1sec

    Read the article

  • Instant Rename and Rename Refactoring

    - by Petr
    During the last weeks I have got  a few questions about rename refactoring and some users also complain to me that the refactoring in NetBeans 6.x was much faster. So I would like to explain the situation. For some people, who don't know, Instant Rename action and Rename Refactoring  can look like one action. But it's not true, even if  both actions use the same shortcut (CTRL + R). NetBeans 6.x contained only Instant Rename action (speaking about PHP support), which we can mark as very simple rename refactoring through one file. From NetBeans 7.0 the Instant Rename action works only in "non public" context. It means that this action is used for fast renaming variables that has local context like inside a method, or for renaming private methods and fields that can not be used outside of the scope, where they are declared. From user point of view these two action can be simply recognized. When is after CTRL+R called Instant Rename action, then the identifier is surrounded with rectangle and you can rename it directly in the file. It's fast and simple, also the usages of this identifier are renamed in the same time as you write. The picture below shows Instant Rename action for $message identifier, that is visible only in the print_test method and due this after CTRL+R is called Instant Rename. In NetBeans 7.0, there was added Rename Refactoring that is called for public identifiers. It means for identifiers that could be used in other files. If you press CTRL+R shortcut when the caret is inside $hello identifier from the picture above, NetBeans recognizes that $hello is declared / used in a global context and calls the Rename Refactoring that brings a dialog to change the name of the identifier. From this dialog you have to preview suggested changes, through pressing Preview button and then execute the refactoring through Do Refactoring button. Yes, it's more complicated from user point of view than Instant Rename, but in Rename Refactoring NetBeans can change more files at once. It should be  the developer responsibility to decide whether the suggested changes are right and the refactoring can be executed or in some files original name should be kept. Someone can argue that he doesn't use $hello variable in any other file so Instant Rename could be used in such case. Yes it's true, but in such case NetBeans has to know all usages of all identifiers and keep this informations up to date during editing a file. I'm sure that this is not possible due to the performance problems, mainly for big projects. So the usages are computed after pressing the Preview button. And why is the Refactor button always disabled in the Rename dialog and user has to always go through the preview phase? NetBeans has API and SPI for implementing refactoring actions and this dialog is a part of this infrastructure. If you rename an identifier for example in Java, the Refactor buttons is enabled, but Java is strongly type language and you can be almost in 99% sure that the IDE will suggest the right results. In PHP as a dynamic language, we can not be sure, what NetBeans finds is only a "guess". This is why NetBeans pushes developers to preview the changes for PHP rename. I hope that I have explain it clearly. I'm open to any discussion. What I have described above is situation in NetBeans 7.0, 7.0.1 and probably it will be also in NetBeans 7.1, because there is no plan to change it. Please write your opinion here.

    Read the article

  • From NaN to Infinity...and Beyond!

    - by Tony Davis
    It is hard to believe that it was once possible to corrupt a SQL Server Database by storing perfectly normal data values into a table; but it is true. In SQL Server 2000 and before, one could inadvertently load invalid data values into certain data types via RPC calls or bulk insert methods rather than DML. In the particular case of the FLOAT data type, this meant that common 'special values' for this type, namely NaN (not-a-number) and +/- infinity, could be quite happily plugged into the database from an application and stored as 'out-of-range' values. This was like a time-bomb. When one then tried to query this data; the values were unsupported and so data pages containing them were flagged as being corrupt. Any query that needed to read a column containing the special value could fail or return unpredictable results. Microsoft even had to issue a hotfix to deal with failures in the automatic recovery process, caused by the presence of these NaN values, which rendered the whole database inaccessible! This problem is history for those of us on more current versions of SQL Server, but its ghost still haunts us. Recently, for example, a developer on Red Gate’s SQL Response team reported a strange problem when attempting to load historical monitoring data into a SQL Server 2005 database via the C# ADO.NET provider. The ratios used in some of their reporting calculations occasionally threw out NaN or infinity values, and the subsequent attempts to load these values resulted in a nasty error. It turns out to be a different manifestation of the same problem. SQL Server 2005 still does not fully support the IEEE 754 standard for floating point numbers, in that the FLOAT data type still cannot handle NaN or infinity values. Instead, they just added validation checks that prevent the 'invalid' values from being loaded in the first place. For people migrating from SQL Server 2000 databases that contained out-of-range FLOAT (or DATETIME etc.) data, to SQL Server 2005, Microsoft have added to the latter's version of the DBCC CHECKDB (or CHECKTABLE) command a DATA_PURITY clause. When enabled, this will seek out the corrupt data, but won’t fix it. You have to do this yourself in what can often be a slow, painful manual process. Our development team, after a quizzical shrug of the shoulders, simply decided to represent NaN and infinity values as NULL, and move on, accepting the minor inconvenience of not being able to tell them apart. However, what of scientific, engineering and other applications that really would like the luxury of being able to both store and access these perfectly-reasonable floating point data values? The sticking point seems to be the stipulation in the IEEE 754 standard that, when NaN is compared to any other value including itself, the answer is "unequal" (i.e. FALSE). This is clearly different from normal number comparisons and has repercussions for such things as indexing operations. Even so, this hardly applies to infinity values, which are single definite values. In fact, there is some encouraging talk in the Connect note on this issue that they might be supported 'in the SQL Server 2008 timeframe'. If didn't happen; SQL 2008 doesn't support NaN or infinity values, though one could be forgiven for thinking otherwise, based on the MSDN documentation for the FLOAT type, which states that "The behavior of float and real follows the IEEE 754 specification on approximate numeric data types". However, the truth is revealed in the XPath documentation, which states that "…float (53) is not exactly IEEE 754. For example, neither NaN (Not-a-Number) nor infinity is used…". Is it really so hard to fix this problem the right way, and properly support in SQL Server the IEEE 754 standard for the floating point data type, NaNs, infinities and all? Oracle seems to have managed it quite nicely with its BINARY_FLOAT and BINARY_DOUBLE types, so it is technically possible. We have an enterprise-class database that is marketed as being part of an 'integrated' Windows platform. Absurdly, we have .NET and XPath libraries that fully support the standard for floating point numbers, and we can't even properly store these values, let alone query them, in the SQL Server database! Cheers, Tony.

    Read the article

  • Challenges and Opportunities to Drive Change in the Healthcare System Explored at America’s Health Insurance Plans Exchange Conference and Institute 2013

    - by elaine blog
    The program theme at the June America’s Health Insurance Plans (AHIP) Exchange Conference and AHIP’s Institute 2013 was Transforming Our Health Care System: Navigating and Succeeding in the New Marketplace.  Topics included care delivery transformation, innovation for a new healthcare eco system, Health Insurance Exchanges, the nexus of consumerism, retail and healthcare, driving value through improved operations and leveraging technology, data and innovation to transform care. Oracle participated as a sponsor of both conferences, signaling the significant investment and activity Oracle continues to make in helping health plans, providers and government agencies become more efficient and more relevant in the healthcare market place. AHIP is a national trade association representing the health insurance industry. AHIP’s members provide health and supplemental benefits to more than 200 million Americans through employer-sponsored coverage, the individual insurance market and public programs such as Medicare and Medicaid.   AHIP advocates for public policies that expand access to affordable health care. Health plans are focusing on the Health Insurance Exchanges and the opportunities they offer to provide better access and higher quality healthcare.  With the opportunities come operational challenges to implementation and innovative technology solutions to consider.   At the Exchange Conference, Oracle hosted a breakfast symposium on “Strategies for Success:  Driving Business Transformation in the Growing Health Insurance Exchange Market”. With Health Insurance Exchanges as catalysts for change, attendees learned about how to achieve integration within an Exchange and deploy new business strategies to support health reform initiatives. Discussion covered steps and processes to successfully establish and implement enrollment systems, quote to card activities, program pricing, claims billing, automated claims processing and new customer service tools. Piyush Pushkar, COO of Benefitalign, an Oracle partner that provides solutions to adopt innovative business models for retail, HIX, consumer-centric health plan and benefits administration, spoke on the state of the Exchanges in the U.S. and the activities health plans are engaged in to support individuals entering the healthcare system, including sales automation, member enrollment automation/portals and integration strategies with the Exchanges. The Oracle and Benefitalign partnership allows seamless integration between a health plan enrollment solution with the HIX individual market and allows for the health plan to customize and characterize the offerings available to the HIX that may or may not be available through other channels.  This approach can benefit the health plan through separation of interests, but also because some state-run HIXs require such separation. Janice W. Young, Program Director, Payer IT Strategies, IDC Health Insights, reviewed a survey of health plans on their investment priorities for this last year as well as this year.  She also identified the 2013-2015 strategies of go/get to market with front end and compliance investments; leveraging existing business processes and internal technologies; and establishing best practices.  Of key interest to the audience was a reform era payer solutions platform overview mapping technologies to support the business operations. David Bonham of the Oracle Health Insurance organization moderated the panel and spoke on Oracle’s presence in healthcare and products for payers to help them drive efficiencies and gain a competitive advantage in an ever changing market. Oracle serves healthcare stakeholders with applications such as billing, rating and underwriting, analytics, CRM, enrollment, and products for processing of health insurance claims including pricing and benefits administration, as well as payment of providers through alternative, non-fee for service reimbursement methods. Oracle in Healthcare….Did you know? More than 80 healthcare payers run Oracle applications. More than 300 leading healthcare providers run Oracle applications. 10 out of the top 12 fortune Global 500 healthcare organizations run Oracle applications. For more information on Oracle solutions for healthcare payers, please visit oracle.com/insurance or these individual solution pages: Oracle Health Insurance Components Oracle Insurance Insbridge Rating and Underwriting Oracle Insurance Revenue Management and Billing Oracle Documaker Oracle Healthcare Oracle CRM Related Resources Webcast On Demand: Strategies for Success: Driving Business Transformation in the Growing Health Insurance Exchange Market Strategy Brief: Executing on the Individual Mandate: Opportunities and Challenges for Healthcare Payers White Paper: White paper: Navigating Alternative Provider Reimbursement Models of the Future Strategy Brief: Enterprise Rating Agility Improves Payer Response to Healthcare Reform Podcast: Technology Implications of Healthcare Reform Don’t forget to keep up with us year-round: Facebook: www.facebook.com/oracleinsurance Twitter: www.twitter.com/oracleinsurance YouTube: www.youtube.com/oracleinsurance

    Read the article

  • Finalists for the Microsoft Accelerator for Windows Azure

    - by ScottGu
    Today, I am pleased to announce the ten finalists for the Microsoft Accelerator for Windows Azure powered by TechStars. These startups are about to launch into a three-month program where they will develop new products and businesses using Windows Azure. The response to the program has been fantastic - we received nearly 600 applications from entrepreneurs in 69 countries around the world, spanning a host of industries including retail, travel, entertainment, banking, real estate and more.  There were so many innovative ideas and amazing teams that it really made the selection process hard.  We finally landed on 10 finalists, based on their experience, qualifications, and innovative business ideas built on the cloud. This fall’s Windows Azure class includes: Advertory – Berlin, Germany. Advertory helps local businesses increase revenue and build customer loyalty. Appetas – Seattle, WA. Appetas' mission is to make restaurants look as beautiful online as they do on the plate! BagsUp – Sydney, Australia. Find great places from people you trust. Embarke – San Diego, CA. Embarke allows developers and companies the ability to integrate with any human communication channel (Facebook, Email, Text Message, Twitter) without having to learn the specifics, write code, or spend time on any of them. Fanzo – Seattle, WA. Fanzo puts sports fans in the spotlight. Find other fans, show off your fanswagger and get rewarded for your passion. MetricsHub – Bellevue, WA. A service providing cloud monitoring with incident detection and prebuilt workflows for remedying common problems. Mobilligy – Bellevue, WA. Mobilligy revolutionizes how people pay their bills by bringing convenient, secure, and instant bill payment support to mobile devices. Realty Mogul – Los Angeles, CA. Realty Mogul is a crowdfunding platform for real estate where accredited investors pool capital and invest in properties that are acquired, managed and eventually resold by professional private real estate companies and their management teams. Staq – San Francisco, CA. Back-end as a service for APIs. Socedo – Bellevue, WA. A simple and effective web application for lead generation and relationship management on Twitter. Each startup will be hosted in Seattle and mentored by entrepreneurs and venture capitalists as well as leaders from Windows Azure and other Microsoft organizations. The teams will spend the first month ideating and refining their business concepts with input and advice from their mentors as well as Microsoft customers, followed by two months of design and development. They will present their results to investors and Microsoft partners at an event in mid-January. We are really looking forward to seeing how their businesses evolve.  These teams have demonstrated incredible energy, passion, and innovative capabilities – and they are ready to show the world what’s possible with Windows Azure. Thanks, Scott P.S. And if you are new to Twitter you can also optionally follow me: @scottgu

    Read the article

  • Requesting Delegation (ActAs) Tokens using WSTrustChannel (as opposed to Configuration Madness)

    - by Your DisplayName here!
    Delegation using the ActAs approach has some interesting security features A security token service can make authorization and validation checks before issuing the ActAs token. Combined with proof keys you get non-repudiation features. The ultimate receiver sees the original caller as direct caller and can optionally traverse the delegation chain. Encryption and audience restriction can be tied down Most samples out there (including the SDK sample) use the CreateChannelActingAs extension method from WIF to request ActAs tokens. This method builds on top of the WCF binding configuration which may not always be suitable for your situation. You can also use the WSTrustChannel to request ActAs tokens. This allows direct and programmatic control over bindings and configuration and is my preferred approach. The below method requests an ActAs token based on a bootstrap token. The returned token can then directly be used with the CreateChannelWithIssued token extension method. private SecurityToken GetActAsToken(SecurityToken bootstrapToken) {     var factory = new WSTrustChannelFactory(         new UserNameWSTrustBinding(SecurityMode.TransportWithMessageCredential),         new EndpointAddress(_stsAddress));     factory.TrustVersion = TrustVersion.WSTrust13;     factory.Credentials.UserName.UserName = "middletier";     factory.Credentials.UserName.Password = "abc!123";     var rst = new RequestSecurityToken     {         AppliesTo = new EndpointAddress(_serviceAddress),         RequestType = RequestTypes.Issue,         KeyType = KeyTypes.Symmetric,         ActAs = new SecurityTokenElement(bootstrapToken)     };     var channel = factory.CreateChannel();     var delegationToken = channel.Issue(rst);     return delegationToken; }   HTH

    Read the article

  • Configuring JPA Primary key sequence generators

    - by pachunoori.vinay.kumar(at)oracle.com
    This article describes the JPA feature of generating and assigning the unique sequence numbers to JPA entity .This article provides information on jpa sequence generator annotations and its usage. UseCase Description Adding a new Employee to the organization using Employee form should assign unique employee Id. Following description provides the detailed steps to implement the generation of unique employee numbers using JPA generators feature Steps to configure JPA Generators 1.Generate Employee Entity using "Entities from Table Wizard". View image2.Create a Database Connection and select the table "Employee" for which entity will be generated and Finish the wizards with default selections. View image 3.Select the offline database sources-Schema-create a Sequence object or you can copy to offline db from online database connection. View image 4.Open the persistence.xml in application navigator and select the Entity "Employee" in structure view and select the tab "Generators" in flat editor. 5.In the Sequence Generator section,enter name of sequence "InvSeq" and select the sequence from drop down list created in step3. View image 6.Expand the Employees in structure view and select EmployeeId and select the "Primary Key Generation" tab.7.In the Generated value section,select the "Use Generated value" check box ,select the strategy as "Sequence" and select the Generator as "InvSeq" defined step 4. View image   Following annotations gets added for the JPA generator configured in JDeveloper for an entity To use a specific named sequence object (whether it is generated by schema generation or already exists in the database) you must define a sequence generator using a @SequenceGenerator annotation. Provide a unique label as the name for the sequence generator and refer the name in the @GeneratedValue annotation along with generation strategy  For  example,see the below Employee Entity sample code configured for sequence generation. EMPLOYEE_ID is the primary key and is configured for auto generation of sequence numbers. EMPLOYEE_SEQ is the sequence object exist in database.This sequence is configured for generating the sequence numbers and assign the value as primary key to Employee_id column in Employee table. @SequenceGenerator(name="InvSeq", sequenceName = "EMPLOYEE_SEQ")   @Entity public class Employee implements Serializable {    @Id    @Column(name="EMPLOYEE_ID", nullable = false)    @GeneratedValue(strategy = GenerationType.SEQUENCE, generator="InvSeq")   private Long employeeId; }   @SequenceGenerator @GeneratedValue @SequenceGenerator - will define the sequence generator based on a  database sequence object Usage: @SequenceGenerator(name="SequenceGenerator", sequenceName = "EMPLOYEE_SEQ") @GeneratedValue - Will define the generation strategy and refers the sequence generator  Usage:     @GeneratedValue(strategy = GenerationType.SEQUENCE, generator="name of the Sequence generator defined in @SequenceGenerator")

    Read the article

  • Guest (and occasional co-host) on Jesse Liberty's Yet Another Podcast

    - by Jon Galloway
    I was a recent guest on Jesse Liberty's Yet Another Podcast talking about the latest Visual Studio, ASP.NET and Azure releases. Download / Listen: Yet Another Podcast #75–Jon Galloway on ASP.NET/ MVC/ Azure Co-hosted shows: Jesse's been inviting me to co-host shows and I told him I'd show up when I was available. It's a nice change to be a drive-by co-host on a show (compared with the work that goes into organizing / editing / typing show notes for Herding Code shows). My main focus is on Herding Code, but it's nice to pop in and talk to Jesse's excellent guests when it works out. Some shows I've co-hosted over the past year: Yet Another Podcast #76–Glenn Block on Node.js & Technology in China Yet Another Podcast  #73 - Adam Kinney on developing for Windows 8 with HTML5 Yet Another Podcast #64 - John Papa & Javascript Yet Another Podcast #60 - Steve Sanderson and John Papa on Knockout.js Yet Another Podcast #54–Damian Edwards on ASP.NET Yet Another Podcast #53–Scott Hanselman on Blogging Yet Another Podcast #52–Peter Torr on Windows Phone Multitasking Yet Another Podcast #51–Shawn Wildermuth: //build, Xaml Programming & Beyond And some more on the way that haven't been released yet. Some of these I'm pretty quiet, on others I get wacky and hassle the guests because, hey, not my podcast so not my problem. Show notes from the ASP.NET / MVC / Azure show: What was just released Visual Studio 2012 Web Developer features ASP.NET 4.5 Web Forms Strongly Typed data controls Data access via command methods Similar Binding syntax to ASP.NET MVC Some context: Damian Edwards and WebFormsMVP Two questions from Jesse: Q: Are you making this harder or more complicated for Web Forms developers? Short answer: Nothing's removed, it's just a new option History of SqlDataSource, ObjectDataSource Q: If I'm using some MVC patterns, why not just move to MVC? Short answer: This works really well in hybrid applications, doesn't require a rewrite Allows sharing models, validation, other code between Web Forms and MVC ASP.NET MVC Adaptive Rendering (oh, also, this is in Web Forms 4.5 as well) Display Modes Mobile project template using jQuery Mobile OAuth login to allow Twitter, Google, Facebook, etc. login Jon (and friends') MVC 4 book on the way: Professional ASP.NET MVC 4 Windows 8 development Jesse and Jon announce they're working on a new book: Pro Windows 8 Development with XAML and C# Jon and Jesse agree that it's nice to be able to write Windows 8 applications using the same skills they picked up for Silverlight, WPF, and Windows Phone development. Compare / contrast ASP.NET MVC and Windows 8 development Q: Does ASP.NET and HTML5 development overlap? Jon thinks they overlap in the MVC world because you're writing HTML views without controls Jon describes how his web development career moved from a preoccupation with server code to a focus on user interaction, which occurs in the browser Jon mentions his NDC Oslo presentation on Learning To Love HTML as Beautiful Code Q: How do you apply C# / XAML or HTML5 skills to Windows 8 development? Q: If I'm a XAML programmer, what's the learning curve on getting up to speed on ASP.NET MVC? Jon describes the difference in application lifecycle and state management Jon says it's nice that web development is really interactive compared to application development Q: Can you learn MVC by reading a book? Or is it a lot bigger than that? What is Azure, and why would I use it? Jon describes the traditional Azure platform mode and how Azure Web Sites fits in Q: Why wouldn't Jesse host his blog on Azure Web Sites? Domain names on Azure Web Sites File hosting options Q: Is Azure just another host? How is it different from any of the other shared hosting options? A: Azure gives you the ability to scale up or down whenever you want A: Other services are available if or when you want them

    Read the article

  • Best Practices for Handing over Legacy Code

    - by PersonalNexus
    In a couple of months a colleague will be moving on to a new project and I will be inheriting one of his projects. To prepare, I have already ordered Michael Feathers' Working Effectively with Legacy Code. But this books as well as most questions on legacy code I found so far are concerned with the case of inheriting code as-is. But in this case I actually have access to the original developer and we do have some time for an orderly hand-over. Some background on the piece of code I will be inheriting: It's functioning: There are no known bugs, but as performance requirements keep going up, some optimizations will become necessary in the not too distant future. Undocumented: There is pretty much zero documentation at the method and class level. What the code is supposed to do at a higher level, though, is well-understood, because I have been writing against its API (as a black-box) for years. Only higher-level integration tests: There are only integration tests testing proper interaction with other components via the API (again, black-box). Very low-level, optimized for speed: Because this code is central to an entire system of applications, a lot of it has been optimized several times over the years and is extremely low-level (one part has its own memory manager for certain structs/records). Concurrent and lock-free: While I am very familiar with concurrent and lock-free programming and have actually contributed a few pieces to this code, this adds another layer of complexity. Large codebase: This particular project is more than ten thousand lines of code, so there is no way I will be able to have everything explained to me. Written in Delphi: I'm just going to put this out there, although I don't believe the language to be germane to the question, as I believe this type of problem to be language-agnostic. I was wondering how the time until his departure would best be spent. Here are a couple of ideas: Get everything to build on my machine: Even though everything should be checked into source code control, who hasn't forgotten to check in a file once in a while, so this should probably be the first order of business. More tests: While I would like more class-level unit tests so that when I will be making changes, any bugs I introduce can be caught early on, the code as it is now is not testable (huge classes, long methods, too many mutual dependencies). What to document: I think for starters it would be best to focus documentation on those areas in the code that would otherwise be difficult to understand e.g. because of their low-level/highly optimized nature. I am afraid there are a couple of things in there that might look ugly and in need of refactoring/rewriting, but are actually optimizations that have been out in there for a good reason that I might miss (cf. Joel Spolsky, Things You Should Never Do, Part I) How to document: I think some class diagrams of the architecture and sequence diagrams of critical functions accompanied by some prose would be best. Who to document: I was wondering what would be better, to have him write the documentation or have him explain it to me, so I can write the documentation. I am afraid, that things that are obvious to him but not me would otherwise not be covered properly. Refactoring using pair-programming: This might not be possible to do due to time constraints, but maybe I could refactor some of his code to make it more maintainable while he was still around to provide input on why things are the way they are. Please comment on and add to this. Since there isn't enough time to do all of this, I am particularly interested in how you would prioritize.

    Read the article

  • Is there a low carbon future for the retail industry?

    - by user801960
    Recently Oracle published a report in conjunction with The Future Laboratory and a global panel of experts to highlight the issue of energy use in modern industry and the serious need to reduce carbon emissions radically by 2050.  Emissions must be cut by 80-95% below the levels in 1990 – but what can the retail industry do to keep up with this? There are three key aspects to the retail industry where carbon emissions can be cut:  manufacturing, transport and IT.  Manufacturing Naturally, manufacturing is going to be a big area where businesses across all industries will be forced to make considerable savings in carbon emissions as well as other forms of pollution.  Many retailers of all sizes will use third party factories and will have little control over specific environmental impacts from the factory, but retailers can reduce environmental impact at the factories by managing orders more efficiently – better planning for stock requirements means economies of scale both in terms of finance and the environment. The John Lewis Partnership has made detailed commitments to reducing manufacturing and packaging waste on both its own-brand products and products it sources from third party suppliers. It aims to divert 95 percent of its operational waste from landfill by 2013, which is a huge logistics challenge.  The John Lewis Partnership’s website provides a large amount of information on its responsibilities towards the environment. Transport Similarly to manufacturing, tightening up on logistical planning for stock distribution will make savings on carbon emissions from haulage.  More accurate supply and demand analysis will mean less stock re-allocation after initial distribution, and better warehouse management will mean more efficient stock distribution.  UK grocery retailer Morrisons has introduced double-decked trailers to its haulage fleet and adjusted distribution logistics accordingly to reduce the number of kilometers travelled by the fleet.  Morrisons measures route planning efficiency in terms of cases moved per kilometre and has, over the last two years, increased the number of cases per kilometre by 12.7%.  See Morrisons Corporate Responsibility report for more information. IT IT infrastructure is often initially overlooked by businesses when considering environmental efficiency.  Datacentres and web servers often need to run 24/7 to handle both consumer orders and internal logistics, and this both requires a lot of energy and puts out a lot of heat.  Many businesses are lowering environmental impact by reducing IT system fragmentation in their offices, while an increasing number of businesses are outsourcing their datacenters to cloud-based services.  Using centralised datacenters reduces the power usage at smaller offices, while using cloud based services means the datacenters can be based in a more environmentally friendly location.  For example, Facebook is opening a massive datacentre in Sweden – close to the Arctic Circle – to reduce the need for artificial cooling methods.  In addition, moving to a cloud-based solution makes IT services more easily scaleable, reducing redundant IT systems that would still use energy.  In store, the UK’s Carbon Trust reports that on average, lighting accounts for 25% of a retailer’s electricity costs, and for grocery retailers, up to 50% of their electricity bill comes from refrigeration units.  On a smaller scale, retailers can invest in greener technologies in store and in their offices.  The report concludes that widely shared objectives of energy security, reduced emissions and continued economic growth are dependent on the development of a smart grid capable of delivering energy efficiency and demand response, as well as integrating renewable and variable sources of energy. The report is available to download from http://emeapressoffice.oracle.com/imagelibrary/detail.aspx?MediaDetailsID=1766I’d be interested to hear your thoughts on the report.   

    Read the article

  • Book Review: Programming Windows Identity Foundation

    - by DigiMortal
    Programming Windows Identity Foundation by Vittorio Bertocci is right now the only serious book about Windows Identity Foundation available. I started using Windows Identity Foundation when I made my first experiments on Windows Azure AppFabric Access Control Service. I wanted to generalize the way how people authenticate theirselves to my systems and AppFabric ACS seemed to me like good point where to start. My first steps trying to get things work opened the door to whole new authentication world for me. As I went through different blog postings and articles to get more information I discovered that the thing I am trying to use is the one I am looking for. As best security API for .NET was found I wanted to know more about it and this is how I found Programming Windows Identity Foundation. What’s inside? Programming WIF focuses on architecture, design and implementation of WIF. I think Vittorio is very good at teaching people because you find no too complex topics from the book. You learn more and more as you read and as a good thing you will find that you can also try out your new knowledge on WIF immediately. After giving good overview about WIF author moves on and introduces how to use WIF in ASP.NET applications. You will get complete picture how WIF integrates to ASP.NET request processing pipeline and how you can control the process by yourself. There are two chapters about ASP.NET. First one is more like introduction and the second one goes deeper and deeper until you have very good idea about how to use ASP.NET and WIF together, what issues you may face and how you can configure and extend WIF. Other two chapters cover using WIF with Windows Communication Foundation (WCF) band   Windows Azure. WCF chapter expects that you know WCF very well. This is not introductory chapter for beginners, this is heavy reading if you are not familiar with WCF. The chapter about Windows Azure describes how to use WIF in cloud applications. Last chapter talks about some future developments of WIF and describer some problems and their solutions. Most interesting part of this chapter is section about Silverlight. Who should read this book? Programming WIF is targeted to developers. It does not matter if you are beginner or old bullet-proof professional – every developer should be able to be read this book with no difficulties. I don’t recommend this book to administrators and project managers because they find almost nothing that is related to their work. I strongly recommend this book to all developers who are interested in modern authentication methods on Microsoft platform. The book is written so well that I almost forgot all things around me when I was reading the book. All additional tools you need are free. There is also Azure AppFabric ACS test version available and you can try it out for free. Table of contents Foreword Acknowledgments Introduction Part I Windows Identity Foundation for Everybody 1 Claims-Based Identity 2 Core ASP.NET Programming Part II Windows Identity Foundation for Identity Developers 3 WIF Processing Pipeline in ASP.NET 4 Advanced ASP.NET Programming 5 WIF and WCF 6 WIF and Windows Azure 7 The Road Ahead Index

    Read the article

  • Building vs. Buying a Master Data Management Solution

    - by david.butler(at)oracle.com
    Many organizations prefer to build their own MDM solutions. The argument is that they know their data quality issues and their data better than anyone. Plus a focused solution will cost less in the long run then a vendor supplied general purpose product. This is not unreasonable if you think of MDM as a point solution for a particular data quality problem. But this approach carries significant risk. We now know that organizations achieve significant competitive advantages when they deploy MDM as a strategic enterprise wide solution: with the most common best practice being to deploy a tactical MDM solution and grow it into a full information architecture. A build your own approach most certainly will not scale to a larger architecture unless it is done correctly with the larger solution in mind. It is possible to build a home grown point MDM solution in such a way that it will dovetail into broader MDM architectures. A very good place to start is to use the same basic technologies that Oracle uses to build its own MDM solutions. Start with the Oracle 11g database to create a flexible, extensible and open data model to hold the master data and all needed attributes. The Oracle database is the most flexible, highly available and scalable database system on the market. With its Real Application Clusters (RAC) it can even support the mixed OLTP and BI workloads that represent typical MDM data access profiles. Use Oracle Data Integration (ODI) for batch data movement between applications, MDM data stores, and the BI layer. Use Oracle Golden Gate for more real-time data movement. Use Oracle's SOA Suite for application integration with its: BPEL Process Manager to orchestrate MDM connections to business processes; Identity Management for managing users; WS Manager for managing web services; Business Intelligence Enterprise Edition for analytics; and JDeveloper for creating or extending the MDM management application. Oracle utilizes these technologies to build its MDM Hubs.  Customers who build their own MDM solution using these components will easily migrate to Oracle provided MDM solutions when the home grown solution runs out of gas. But, even with a full stack of open flexible MDM technologies, creating a robust MDM application can be a daunting task. For example, a basic MDM solution will need: a set of data access methods that support master data as a service as well as direct real time access as well as batch loads and extracts; a data migration service for initial loads and periodic updates; a metadata management capability for items such as business entity matrixed relationships and hierarchies; a source system management capability to fully cross-reference business objects and to satisfy seemingly conflicting data ownership requirements; a data quality function that can find and eliminate duplicate data while insuring correct data attribute survivorship; a set of data quality functions that can manage structured and unstructured data; a data quality interface to assist with preventing new errors from entering the system even when data entry is outside the MDM application itself; a continuing data cleansing function to keep the data up to date; an internal triggering mechanism to create and deploy change information to all connected systems; a comprehensive role based data security system to control and monitor data access, update rights, and maintain change history; a flexible business rules engine for managing master data processes such as privacy and data movement; a user interface to support casual users and data stewards; a business intelligence structure to support profiling, compliance, and business performance indicators; and an analytical foundation for directly analyzing master data. Oracle's pre-built MDM Hub solutions are full-featured 3-tier Internet applications designed to participate in the full Oracle technology stack or to run independently in other open IT SOA environments. Building MDM solutions from scratch can take years. Oracle's pre-built MDM solutions can bring quality data to the enterprise in a matter of months. But if you must build, at lease build with the world's best technology stack in a way that simplifies the eventual upgrade to Oracle MDM and to the full enterprise wide information architecture that it enables.

    Read the article

  • Few events I&rsquo;m speaking at in early 2013

    - by Mladen Prajdic
    2013 has started great and the SQL community is already brimming with events. At some of these events you can come say hi. I’ll be glad you do! These are the events with dates and locations that I know I’ll be speaking at so far.   February 16th: SQL Saturday #198 - Vancouver, Canada The session I’ll present in Vancouver is SQL Impossible: Restoring/Undeleting a table Yes, you read the title right. No, it's not about the usual "one table per partition" and "restore full backup then copy the data over" methods. No, there are no 3rd party tools involved. Just you and your SQL Server. Yes, it's crazy. No, it's not for production purposes. And yes, that's why it's so much fun. Prepare to dive into the world of data pages, log records, deletes, truncates and backups and how it all works together to get your table back from the endless void. Want to know more? Come and see! This is an advanced level session where we’ll dive into the internals of data pages, transaction log records and page restores.   March 8th-9th: SQL Saturday #194 - Exeter, UK In Exeter I’ll be presenting twice. On the first day I’ll have a full day precon titled: From SQL Traces to Extended Events - The next big switch This pre-con will give you insight into both of the current tracing technologies in SQL Server. The old SQL Trace which has served us well over the past 10 or so years is on its way out because the overhead and details it produces are no longer enough to deal with today's loads. The new Extended Events are a new lightweight tracing mechanism built directly into the SQLOS thus giving us information SQL Trace just couldn't. They were designed and built with performance in mind and it shows. The new Extended Events are a new lightweight tracing mechanism built directly into the SQLOS thus giving us information SQL Trace just couldn't. They were designed and built with performance in mind and it shows. Mastering Extended Events requires learning at least one new skill: XML querying. The second session I’ll have on Saturday titled: SQL Injection from website to SQL Server SQL Injection is still one of the biggest reasons various websites and applications get hacked. The solution as everyone tells us is simple. Use SQL parameters. But is that enough? In this session we'll look at how would an attacker go about using SQL Injection to gain access to your database, see its schema and data, take over the server, upload files and do various other mischief on your domain. This is a fun session that always brings out a few laughs in the audience because they didn’t realize what can be done.   April 23rd-25th: NTK conference - Bled, Slovenia (Slovenian website only) This is a conference with history. This year marks its 18th year running. It’s a relatively large IT conference that focuses on various Microsoft technologies like .Net, Azure, SQL Server, Exchange, Security, etc… The main session’s language is Slovenian but this is slowly changing so it’s becoming more interesting for foreign attendees. This year it’s happening in the beautiful town of Bled in the Alps. The scenery alone is worth the visit, wouldn’t you agree? And this year there are quite a few well known speakers present! Session title isn’t known yet.       May 2nd-4th: SQL Bits XI – Nottingham, UK SQL Bits is the largest SQL Server conference in Europe. It’s a 3 day conference with top speakers and content all dedicated to SQL Server. The session I’ll present here is an hour long version of the precon I’ll give in Exeter. From SQL Traces to Extended Events - The next big switch The session description is the same as for the Exeter precon but we'll focus more on how the Extended Events work with only a brief overview of old SQL Trace architecture.

    Read the article

  • Understanding Oracle: Demystifying OpenWorld

    - by mseika
    Seminar: Wednesday 24th October 2012: Avnet, Bracknell Oracle OpenWorld is the world's largest event dedicated to helping enterprises harness the power of technology, during a full week in October. Oracle Corporation always uses Oracle OpenWorld to make its most important product announcements, and this year is no exception. We realise that not all our partners can attend this prestigious event in San Francisco, primarily due to time and cost pressures. Oracle OpenWorld is the only conference that goes this deep and wide with Oracle technology, providing thousands of sessions and hundreds of demonstrations geared toward helping partners and customers get better results with the technology it has —and plan strategically for the technology it will need to keep ahead of the competition in the years to come. With the sheer number of announcements planned, it is sometimes difficult to find your way through the fog and identify the opportunities relevant to your business to take advantage of, this coming year. So why not engage with the Oracle's UK team via Avnet and get the announcements shared with you face-to-face, in the UK? As a key Value Added Distributor of Oracle Applications, Technology and Hardware solutions, Avnet has been attending Oracle OpenWorld for a number of years and invites our partners to attend a half day summary event which will share the keynote announcements. We will also help prioritise for you the announcements of greatest interest and business opportunity for the UK channel. Agenda Time Module 12:00-13:15 Registration and lunch 13:15-14:00 Introductions and Key Hardware announcements Discover how Oracle's complete and integrated application-aware virtualization solutions, including virtualization for SPARC and x86 architectures, can help you gain better efficiencies across your business. Get updates on how Oracle storage products and solutions can accelerate database performance, improve application responsiveness, and meet your data protection needs. 14:00-14:15 Q&A and Break 14:15-15:00 Key Technology announcements Technology products, encompassing Oracle's Database 12c and Middleware, are revolutionizing the industry with record-breaking performance, helping customers consolidate onto private clouds and achieve high returns on investment. 15:00-15:15 Q&A and Break 15:15-16:00 Key Applications announcements Presentations focused on Oracle's strategy and vision for its applications business, including Oracle E-Business Suite; Oracle's PeopleSoft, JD Edwards, Siebel, Hyperion, and Agile products; and the newly available Oracle Fusion Applications. 16:00-16:30 Oracle-on-Oracle announcements & business opportunities with Avnet Learn about Oracle's cloud computing and Oracle-on-Oracle strategies and find out more about Oracle's engineered systems for the broad market 16:30 Close * Please note agenda may be subject to change What do you need to do now Register now or for more information email our Oracle events team at [email protected]. N.B. Places are limited, so please register early to avoid disappointment.

    Read the article

  • Craig Mundie's video

    - by GGBlogger
    Timothy recently posted “Microsoft Shows Off Radical New UI, Could Be Used In Windows 8” on Slashdot. I took such grave exception to his post that I found it necessary to my senses to write this blog. We need to go back many years to the days of hand cranked calculators and early main frame computers. These devices had singular purposes – they were “number crunchers” used to make accounting easier. The front facing display in early mainframes was “blinken lights.” The calculators did provide printing – in the form of paper tape and the mainframes used line printers to generate reports as needed. We had other metaphors to work with. The typewriter was/is a mechanical device that substitutes for a type setting machine. The originals go back to 1867 and the keyboard layout has remained much the same to this day. In the earlier years the Morse code telegraphs gave way to Teletype machines. The old ASR33, seen on the left in this photo of one of the first computers I help manufacture, used a keyboard very similar to the keyboards in use today. It also generated punched paper tape that we generated to program this computer in machine language. Everything considered this computer which dates back to the late 1960s has a keyboard for input and a roll of paper as output. So in a very rudimentary fashion little has changed. Oh – we didn’t have a mouse! The entire point of this exercise is to point out that we still use very similar methods to get data into and out of a computer regardless of the operating system involved. The Altair, IMSAI, Apple, Commodore and onward to our modern machines changed the hardware that we interfaced to but changed little in the way we input, view and output the results of our computing effort. The mouse made some changes and the advent of windowed interfaces such as Windows and Apple made things somewhat easier for the user. My 4 year old granddaughter plays here Dora games on our computer. She knows how to start programs, use the mouse, play the game and is quite adept so we have come some distance in making computers useable. One of my chief bitches is the constant harangues leveled at Microsoft. Yup – they are a money making organization. You like Apple? No problem for me. I don’t use Apple mostly because I’m comfortable in the Windows environment but probably more because I don’t like Apple’s “Holier than thou” attitude. Some think they do superior things and that’s also fine with me. Obviously the iPhone has not done badly and other Apple products have fared well. But they are expensive. I just build a new machine with 4 Terabytes of storage, an Intel i7 Core 950 processor and 12 GB of RAMIII. It cost me – with dual monitors – less than 2000 dollars. Now to the chief reason for this blog. I’m going to continue developing software for as long as I’m able. For that reason I don’t see my keyboard, mouse and displays changing much for many years. I also don’t think Microsoft is going to spoil that for me by making radical changes to my developer experience. What Craig Mundie does in his video here:  http://www.ispyce.com/2011/02/microsoft-shows-off-radical-new-ui.html is explore the potential future of computer interfaces for the masses of potential users. Using a computer today requires a person to have rudimentary capabilities with keyboards and the mouse. Wouldn’t it be great if all they needed was hand gestures? Although not mentioned it would also be nice if computers responded intelligently to a user’s voice. There is absolutely no argument with the fact that user interaction with these machines is going to change over time. My personal prediction is that it will take years for much of what Craig discusses to come to a cost effective reality but it is certainly coming. I just don’t believe that what Craig discusses will be the future look of a Window 8.

    Read the article

  • Reconciling the Boy Scout Rule and Opportunistic Refactoring with code reviews

    - by t0x1n
    I am a great believer in the Boy Scout Rule: Always check a module in cleaner than when you checked it out." No matter who the original author was, what if we always made some effort, no matter how small, to improve the module. What would be the result? I think if we all followed that simple rule, we'd see the end of the relentless deterioration of our software systems. Instead, our systems would gradually get better and better as they evolved. We'd also see teams caring for the system as a whole, rather than just individuals caring for their own small little part. I am also a great believer in the related idea of Opportunistic Refactoring: Although there are places for some scheduled refactoring efforts, I prefer to encourage refactoring as an opportunistic activity, done whenever and wherever code needs to cleaned up - by whoever. What this means is that at any time someone sees some code that isn't as clear as it should be, they should take the opportunity to fix it right there and then - or at least within a few minutes Particularly note the following excerpt from the refactoring article: I'm wary of any development practices that cause friction for opportunistic refactoring ... My sense is that most teams don't do enough refactoring, so it's important to pay attention to anything that is discouraging people from doing it. To help flush this out be aware of any time you feel discouraged from doing a small refactoring, one that you're sure will only take a minute or two. Any such barrier is a smell that should prompt a conversation. So make a note of the discouragement and bring it up with the team. At the very least it should be discussed during your next retrospective. Where I work, there is one development practice that causes heavy friction - Code Review (CR). Whenever I change anything that's not in the scope of my "assignment" I'm being rebuked by my reviewers that I'm making the change harder to review. This is especially true when refactoring is involved, since it makes "line by line" diff comparison difficult. This approach is the standard here, which means opportunistic refactoring is seldom done, and only "planned" refactoring (which is usually too little, too late) takes place, if at all. I claim that the benefits are worth it, and that 3 reviewers will work a little harder (to actually understand the code before and after, rather than look at the narrow scope of which lines changed - the review itself would be better due to that alone) so that the next 100 developers reading and maintaining the code will benefit. When I present this argument my reviewers, they say they have no problem with my refactoring, as long as it's not in the same CR. However I claim this is a myth: (1) Most of the times you only realize what and how you want to refactor when you're in the midst of your assignment. As Martin Fowler puts it: As you add the functionality, you realize that some code you're adding contains some duplication with some existing code, so you need to refactor the existing code to clean things up... You may get something working, but realize that it would be better if the interaction with existing classes was changed. Take that opportunity to do that before you consider yourself done. (2) Nobody is going to look favorably at you releasing "refactoring" CRs you were not supposed to do. A CR has a certain overhead and your manager doesn't want you to "waste your time" on refactoring. When it's bundled with the change you're supposed to do, this issue is minimized. The issue is exacerbated by Resharper, as each new file I add to the change (and I can't know in advance exactly which files would end up changed) is usually littered with errors and suggestions - most of which are spot on and totally deserve fixing. The end result is that I see horrible code, and I just leave it there. Ironically, I feel that fixing such code not only will not improve my standings, but actually lower them and paint me as the "unfocused" guy who wastes time fixing things nobody cares about instead of doing his job. I feel bad about it because I truly despise bad code and can't stand watching it, let alone call it from my methods! Any thoughts on how I can remedy this situation ?

    Read the article

  • Oracle Customer Hub - Directions, Roadmap and Customer Success

    - by Mala Narasimharajan
     By Gurinder Bahl With less than a week from OOW 2012, I would like to introduce you all to the core Oracle Customer MDM Strategy sessions. Fragmentation of customer data across disparate systems prohibits companies from achieving a complete and accurate view of their customers. Oracle Customer Hub provide a comprehensive set of services, utilities and applications to create and maintain a trusted master customer system of record across the enterprise. Customer Hub centralizes customer data from disparate systems across your enterprise into a master repository. Existing systems are integrated in real-time or via batch with the Hub, allowing you to leverage legacy platform investments while capitalizing on the benefits of a single customer identity. Don’t miss out on two sessions geared towards Oracle Customer Hub:   1) Attend session CON9747 - Turn Customer Data into an Enterprise Asset with Oracle Fusion Customer Hub Applications at Oracle Open World 2012 on Monday, Oct 1st, 10:45 AM - 11:45 AM @ Moscone West – 2008. Manouj Tahiliani, Sr. Director MDM Product Management will provide insight into the vision of Oracle Fusion Customer Hub solutions, and review the roadmap. You will discover how Fusion Customer MDM can help your enterprise improve data quality, create accurate and complete customer information,  manage governance and help create great customer experiences. You will also understand how to leverage data quality capabilities and create a sophisticated customer foundation within Oracle Fusion Applications. You will also hear Danette Patterson, Group Lead, Church Pension Group talk about how Oracle Fusion Customer Hub applications provide a modern, next-generation, multi-domain foundation for managing customer information in a private cloud. 2)  Don't miss session  CON9692 - Customer MDM is key to Strategic Business Success and Customer Experience Management at Oracle Open World 2012 on Wednesday, October 3rd 2012 from 3:30-4:30pm @ Westin San Francisco Metropolitan 1. JP Hurtado, Director, Customer Systems, will provide insight on how RCCL overcame challenges of data quality, guest recognition & centralized customer view to provide consolidated customer view to multiple reservation, CRM, marketing, service, sales, data warehouse and loyalty systems. You will learn how Royal Caribbean Cruise Lines (RCCL), which has over 30 million customer and maintain multiple brands, leveraged Oracle Customer Hub (Siebel UCM) as backbone to customer data management strategy for past 5 years. Gurinder Bahl from MDM Product Management will provide an update on Oracle Customer Hub strategy, what we have achieved since last Open World and our future plans for the Oracle Customer Hub. You will learn about Customer Hub Data Quality capabilities around data analysis, cleansing, matching, address validation as well as reporting and monitoring capabilities. The MDM track at Oracle Open World covers variety of topics related to MDM. In addition to the product management team presenting product updates and roadmap, we have several Customer Panels, and Conference sessions. You can see an overview of MDM sessions here.  Looking forward to see you at Open World, the perfect opportunity to learn about cutting edge Oracle technologies. 

    Read the article

  • SpaceX’s Falcon 9 Launch Success And Reusable Rockets Test Partially Successful

    - by Gopinath
    Elon Musk’s SpaceX is closing on the dream of developing reusable rockets and likely in an year or two space launch rockets will be reusable just like flights, ships and cars. Today SpaceX launched an upgraded Falcon 9 rocket in to space to deliver satellites as well as to test their reusable rocket launching technology. All on board satellites were released on to the orbit and the first stage of rocket partially succeeded in returning back to Earth. This is a huge leap in space technology.   Couple of years ago reusable rockets were considered as impossible. NASA, Russian Space Agency, China, India or for that matter any other space agency never even attempted to build reusable rockets. But SpaceX’s revolutionary technology partially succeeded in doing the impossible! Elon Musk founded SpaceX with the goal of building reusable rockets and transporting humans to & from other planets like Mars. He says If one can figure out how to effectively reuse rockets just like airplanes, the cost of access to space will be reduced by as much as a factor of a hundred.  A fully reusable vehicle has never been done before. That really is the fundamental breakthrough needed to revolutionize access to space. Normally the first stage of a rocket falls back to Earth after burning out and is destroyed. But today SpaceX reignited first stage rocket after its separation and attempted to descend smoothly on to ocean’s surface. Though it did not fully succeed, the test was partially successful and SpaceX was able to recovers portions of first stage. Rocket booster relit twice (supersonic retro & landing), but spun up due to aero torque, so fuel centrifuged & we flamed out — Elon Musk (@elonmusk) September 29, 2013 With the partial success of recovering first stage, SpaceX gathered huge amount of information and experience it can use to improve Falcon 9 and build a fully reusable rocket. In post launch press conference Musk said if things go "super well", could refly a Falcon 9 1st stage by the end of next year. Falcon 9 Launch Video Next reusable first tests delayed by at least two launches SpaceX has a busy schedule for next several months with more than 50 missions scheduled using the new Falcon 9 rocket. Ten of those missions are to fly cargo to the International Space Shuttle for NASA.  SpaceX announced that they will not attempt to recover the first stage of Falcon 9 in next two missions. The next test will be conducted on  the fourth mission of Falcon 9 which is planned to carry cargo to Internation Space Station sometime next year. This will give time required for SpaceX to analyze the information gathered from today’s mission and improve first stage reentry systems. More reading Here are few interesting sources to read more about today’s SpaceX launch SpaceX post mission press conference details and discussion on Reddit Giant Leaps for Space Firms Orbital, SpaceX Hacker News community discussion on SpaceX launch SpaceX Launches Next-Generation Private Falcon 9 Rocket on Big Test Flight

    Read the article

  • Java Spotlight Episode 103: 2012 Duke Choice Award Winners

    - by Roger Brinkley
    Our annual interview with the 2012 Duke Choice Award Winners recorded live at the JavaOne 2012. Right-click or Control-click to download this MP3 file. You can also subscribe to the Java Spotlight Podcast Feed to get the latest podcast automatically. If you use iTunes you can open iTunes and subscribe with this link:  Java Spotlight Podcast in iTunes. Show Notes Events Oct 13, Devoxx 4 Kids Nederlands Oct 15-17, JAX London Oct 20, Devoxx 4 Kids Français Oct 22-23, Freescale Technology Forum - Japan, Tokyo Oct 30-Nov 1, Arm TechCon, Santa Clara Oct 31, JFall, Netherlands Nov 2-3, JMagreb, Morocco Nov 13-17, Devoxx, Belgium Feature Interview Duke Choice Award Winners 2012 - Show Presentation London Java CommunityThe second user group receiving a Duke’s Choice Award this year, the London Java Community (LJC) and its users have been active in the OpenJDK, the Java Community Process (JCP) and other efforts within the global Java community. Student Nokia Developer GroupThis year’s student winner, Ram Kashyap, is the founder and president of the Nokia Student Network, and was profiled in the “The New Java Developers” feature in the March/April 2012 issue of Java Magazine. Since then, Ram has maintained a hectic pace, graduating from the People’s Education Society Institute of Technology in Bangalore, India, while working on a Java mobile startup and training students on Java ME. Jelastic, Inc.Moving existing Java applications to the cloud can be a daunting task, but startup Jelastic, Inc. offers the first all-Java platform-as-a-service (PaaS) that enables existing Java applications to be deployed in the cloud without code changes or lock-in. NATOThe first-ever Community Choice Award goes to the MASE Integrated Console Environment (MICE) in use at NATO. Built in Java on the NetBeans platform, MICE provides a high-performance visualization environment for conducting air defense and battle-space operations. DuchessRather than focus on a specific geographic area like most Java User Groups (JUGs), Duchess fosters the participation of women in the Java community worldwide. The group has more than 500 members in 60 countries, and provides a platform through which women can connect with each other and get involved in all aspects of the Java community. AgroSense ProjectImproving farming methods to feed a hungry world is the goal of AgroSense, an open source farm information management system built in Java and the NetBeans platform. AgroSense enables farmers, agribusinesses, suppliers and others to develop modular applications that will easily exchange information through a common underlying NetBeans framework. Apache Software Foundation Hadoop ProjectThe Apache Software Foundation’s Hadoop project, written in Java, provides a framework for distributed processing of big data sets across clusters of computers, ranging from a few servers to thousands of machines. This harnessing of large data pools allows organizations to better understand and improve their business. Parleys.comE-learning specialist Parleys.com, based in Brussels, Belgium, uses Java technologies to bring online classes and full IT conferences to desktops, laptops, tablets and mobile devices. Parleys.com has hosted more than 1,700 conferences—including Devoxx and JavaOne—for more than 800,000 unique visitors. Winners not presenting at JavaOne 2012 Duke Choice Awards BOF Liquid RoboticsRobotics – Liquid Robotics is an ocean data services provider whose Wave Glider technology collects information from the world’s oceans for application in government, science and commercial applications. The organization features the “father of Java” James Gosling as its chief software architect.United Nations High Commissioner for RefugeesThe United Nations High Commissioner for Refugees (UNHCR) is on the front lines of crises around the world, from civil wars to natural disasters. To help facilitate its mission of humanitarian relief, the UNHCR has developed a light-client Java application on the NetBeans platform. The Level One registration tool enables the UNHCR to collect information on the number of refugees and their water, food, housing, health, and other needs in the field, and combines that with geocoding information from various sources. This enables the UNHCR to deliver the appropriate kind and amount of assistance where it is needed.

    Read the article

  • Oracle TimesTen In-Memory Database Performance on SPARC T4-2

    - by Brian
    The Oracle TimesTen In-Memory Database is optimized to run on Oracle's SPARC T4 processor platforms running Oracle Solaris 11 providing unsurpassed scalability, performance, upgradability, protection of investment and return on investment. The following demonstrate the value of combining Oracle TimesTen In-Memory Database with SPARC T4 servers and Oracle Solaris 11: On a Mobile Call Processing test, the 2-socket SPARC T4-2 server outperforms: Oracle's SPARC Enterprise M4000 server (4 x 2.66 GHz SPARC64 VII+) by 34%. Oracle's SPARC T3-4 (4 x 1.65 GHz SPARC T3) by 2.7x, or 5.4x per processor. Utilizing the TimesTen Performance Throughput Benchmark (TPTBM), the SPARC T4-2 server protects investments with: 2.1x the overall performance of a 4-socket SPARC Enterprise M4000 server in read-only mode and 1.5x the performance in update-only testing. This is 4.2x more performance per processor than the SPARC64 VII+ 2.66 GHz based system. 10x more performance per processor than the SPARC T2+ 1.4 GHz server. 1.6x better performance per processor than the SPARC T3 1.65 GHz based server. In replication testing, the two socket SPARC T4-2 server is over 3x faster than the performance of a four socket SPARC Enterprise T5440 server in both asynchronous replication environment and the highly available 2-Safe replication. This testing emphasizes parallel replication between systems. Performance Landscape Mobile Call Processing Test Performance System Processor Sockets/Cores/Threads Tps SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 218,400 M4000 SPARC64 VII+, 2.66 GHz 4 16 32 162,900 SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 80,400 TimesTen Performance Throughput Benchmark (TPTBM) Read-Only System Processor Sockets/Cores/Threads Tps SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 7.9M SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 6.5M M4000 SPARC64 VII+, 2.66 GHz 4 16 32 3.1M T5440 SPARC T2+, 1.4 GHz 4 32 256 3.1M TimesTen Performance Throughput Benchmark (TPTBM) Update-Only System Processor Sockets/Cores/Threads Tps SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 547,800 M4000 SPARC64 VII+, 2.66 GHz 4 16 32 363,800 SPARC T3-4 SPARC T3, 1.65 GHz 4 64 512 240,500 TimesTen Replication Tests System Processor Sockets/Cores/Threads Asynchronous 2-Safe SPARC T4-2 SPARC T4, 2.85 GHz 2 16 128 38,024 13,701 SPARC T5440 SPARC T2+, 1.4 GHz 4 32 256 11,621 4,615 Configuration Summary Hardware Configurations: SPARC T4-2 server 2 x SPARC T4 processors, 2.85 GHz 256 GB memory 1 x 8 Gbs FC Qlogic HBA 1 x 6 Gbs SAS HBA 4 x 300 GB internal disks Sun Storage F5100 Flash Array (40 x 24 GB flash modules) 1 x Sun Fire X4275 server configured as COMSTAR head SPARC T3-4 server 4 x SPARC T3 processors, 1.6 GHz 512 GB memory 1 x 8 Gbs FC Qlogic HBA 8 x 146 GB internal disks 1 x Sun Fire X4275 server configured as COMSTAR head SPARC Enterprise M4000 server 4 x SPARC64 VII+ processors, 2.66 GHz 128 GB memory 1 x 8 Gbs FC Qlogic HBA 1 x 6 Gbs SAS HBA 2 x 146 GB internal disks Sun Storage F5100 Flash Array (40 x 24 GB flash modules) 1 x Sun Fire X4275 server configured as COMSTAR head Software Configuration: Oracle Solaris 11 11/11 Oracle TimesTen 11.2.2.4 Benchmark Descriptions TimesTen Performance Throughput BenchMark (TPTBM) is shipped with TimesTen and measures the total throughput of the system. The workload can test read-only, update-only, delete and insert operations as required. Mobile Call Processing is a customer-based workload for processing calls made by mobile phone subscribers. The workload has a mixture of read-only, update, and insert-only transactions. The peak throughput performance is measured from multiple concurrent processes executing the transactions until a peak performance is reached via saturation of the available resources. Parallel Replication tests using both asynchronous and 2-Safe replication methods. For asynchronous replication, transactions are processed in batches to maximize the throughput capabilities of the replication server and network. In 2-Safe replication, also known as no data-loss or high availability, transactions are replicated between servers immediately emphasizing low latency. For both environments, performance is measured in the number of parallel replication servers and the maximum transactions-per-second for all concurrent processes. See Also SPARC T4-2 Server oracle.com OTN Oracle TimesTen In-Memory Database oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 1 October 2012.

    Read the article

  • How to handle "circular dependency" in dependency injection

    - by Roel
    The title says "Circular Dependency", but it is not the correct wording, because to me the design seems solid. However, consider the following scenario, where the blue parts are given from external partner, and orange is my own implementation. Also assume there is more then one ConcreteMain, but I want to use a specific one. (In reality, each class has some more dependencies, but I tried to simplify it here) I would like to instanciate all of this with Depency Injection (Unity), but I obviously get a StackOverflowException on the following code, because Runner tries to instantiate ConcreteMain, and ConcreteMain needs a Runner. IUnityContainer ioc = new UnityContainer(); ioc.RegisterType<IMain, ConcreteMain>() .RegisterType<IMainCallback, Runner>(); var runner = ioc.Resolve<Runner>(); How can I avouid this? Is there any way to structure this so that I can use it with DI? The scenario I'm doing now is setting everything up manually, but that puts a hard dependency on ConcreteMain in the class which instantiates it. This is what i'm trying to avoid (with Unity registrations in configuration). All source code below (very simplified example!); public class Program { public static void Main(string[] args) { IUnityContainer ioc = new UnityContainer(); ioc.RegisterType<IMain, ConcreteMain>() .RegisterType<IMainCallback, Runner>(); var runner = ioc.Resolve<Runner>(); Console.WriteLine("invoking runner..."); runner.DoSomethingAwesome(); Console.ReadLine(); } } public class Runner : IMainCallback { private readonly IMain mainServer; public Runner(IMain mainServer) { this.mainServer = mainServer; } public void DoSomethingAwesome() { Console.WriteLine("trying to do something awesome"); mainServer.DoSomething(); } public void SomethingIsDone(object something) { Console.WriteLine("hey look, something is finally done."); } } public interface IMain { void DoSomething(); } public interface IMainCallback { void SomethingIsDone(object something); } public abstract class AbstractMain : IMain { protected readonly IMainCallback callback; protected AbstractMain(IMainCallback callback) { this.callback = callback; } public abstract void DoSomething(); } public class ConcreteMain : AbstractMain { public ConcreteMain(IMainCallback callback) : base(callback){} public override void DoSomething() { Console.WriteLine("starting to do something..."); var task = Task.Factory.StartNew(() =>{ Thread.Sleep(5000);/*very long running task*/ }); task.ContinueWith(t => callback.SomethingIsDone(true)); } }

    Read the article

  • Big Data – Beginning Big Data – Day 1 of 21

    - by Pinal Dave
    What is Big Data? I want to learn Big Data. I have no clue where and how to start learning about it. Does Big Data really means data is big? What are the tools and software I need to know to learn Big Data? I often receive questions which I mentioned above. They are good questions and honestly when we search online, it is hard to find authoritative and authentic answers. I have been working with Big Data and NoSQL for a while and I have decided that I will attempt to discuss this subject over here in the blog. In the next 21 days we will understand what is so big about Big Data. Big Data – Big Thing! Big Data is becoming one of the most talked about technology trends nowadays. The real challenge with the big organization is to get maximum out of the data already available and predict what kind of data to collect in the future. How to take the existing data and make it meaningful that it provides us accurate insight in the past data is one of the key discussion points in many of the executive meetings in organizations. With the explosion of the data the challenge has gone to the next level and now a Big Data is becoming the reality in many organizations. Big Data – A Rubik’s Cube I like to compare big data with the Rubik’s cube. I believe they have many similarities. Just like a Rubik’s cube it has many different solutions. Let us visualize a Rubik’s cube solving challenge where there are many experts participating. If you take five Rubik’s cube and mix up the same way and give it to five different expert to solve it. It is quite possible that all the five people will solve the Rubik’s cube in fractions of the seconds but if you pay attention to the same closely, you will notice that even though the final outcome is the same, the route taken to solve the Rubik’s cube is not the same. Every expert will start at a different place and will try to resolve it with different methods. Some will solve one color first and others will solve another color first. Even though they follow the same kind of algorithm to solve the puzzle they will start and end at a different place and their moves will be different at many occasions. It is  nearly impossible to have a exact same route taken by two experts. Big Market and Multiple Solutions Big Data is exactly like a Rubik’s cube – even though the goal of every organization and expert is same to get maximum out of the data, the route and the starting point are different for each organization and expert. As organizations are evaluating and architecting big data solutions they are also learning the ways and opportunities which are related to Big Data. There is not a single solution to big data as well there is not a single vendor which can claim to know all about Big Data. Honestly, Big Data is too big a concept and there are many players – different architectures, different vendors and different technology. What is Next? In this 31 days series we will be exploring many essential topics related to big data. I do not claim that you will be master of the subject after 31 days but I claim that I will be covering following topics in easy to understand language. Architecture of Big Data Big Data a Management and Implementation Different Technologies – Hadoop, Mapreduce Real World Conversations Best Practices Tomorrow In tomorrow’s blog post we will try to answer one of the very essential questions – What is Big Data? Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • How do I implement a quaternion based camera?

    - by kudor gyozo
    I looked at several tutorials about this and when I thought I understood I tried to implement a quaternion based camera. The problem is it doesn't work correctly, after rotating for approx. 10 degrees it jumps back to -10 degrees. I have no idea what's wrong. I'm using openTK and it already has a quaternion class. I'm a noob at opengl, I'm doing this just for fun, and don't really understand quaternions, so probably I'm doing something stupid here. Here is some code: (Actually almost all the code except the methods that load and draw a vbo (it is taken from an OpenTK sample that demonstrates vbo-s)) I load a cube into a vbo and initialize the quaternion for the camera protected override void OnLoad(EventArgs e) { base.OnLoad(e); cameraPos = new Vector3(0, 0, 7); cameraRot = Quaternion.FromAxisAngle(new Vector3(0,0,-1), 0); GL.ClearColor(System.Drawing.Color.MidnightBlue); GL.Enable(EnableCap.DepthTest); vbo = LoadVBO(CubeVertices, CubeElements); } I load a perspective projection here. This is loaded at the beginning and every time I resize the window. protected override void OnResize(EventArgs e) { base.OnResize(e); GL.Viewport(0, 0, Width, Height); float aspect_ratio = Width / (float)Height; Matrix4 perpective = Matrix4.CreatePerspectiveFieldOfView(MathHelper.PiOver4, aspect_ratio, 1, 64); GL.MatrixMode(MatrixMode.Projection); GL.LoadMatrix(ref perpective); } Here I get the last rotation value and create a new quaternion that represents only the last rotation and multiply it with the camera quaternion. After this I transform this into axis-angle so that opengl can use it. (This is how I understood it from several online quaternion tutorials) protected override void OnRenderFrame(FrameEventArgs e) { base.OnRenderFrame(e); GL.Clear(ClearBufferMask.ColorBufferBit | ClearBufferMask.DepthBufferBit); double speed = 1; double rx = 0, ry = 0; if (Keyboard[Key.A]) { ry = -speed * e.Time; } if (Keyboard[Key.D]) { ry = +speed * e.Time; } if (Keyboard[Key.W]) { rx = +speed * e.Time; } if (Keyboard[Key.S]) { rx = -speed * e.Time; } Quaternion tmpQuat = Quaternion.FromAxisAngle(new Vector3(0,1,0), (float)ry); cameraRot = tmpQuat * cameraRot; cameraRot.Normalize(); GL.MatrixMode(MatrixMode.Modelview); GL.LoadIdentity(); Vector3 axis; float angle; cameraRot.ToAxisAngle(out axis, out angle); GL.Rotate(angle, axis); GL.Translate(-cameraPos); Draw(vbo); SwapBuffers(); } Here are 2 images to explain better: I rotate a while and from this: it jumps into this Any help is appreciated. Update1: I add these to a streamwriter that writes into a file: sw.WriteLine("camerarot: X:{0} Y:{1} Z:{2} W:{3} L:{4}", cameraRot.X, cameraRot.Y, cameraRot.Z, cameraRot.W, cameraRot.Length); sw.WriteLine("ry: {0}", ry); The log is available here: http://www.pasteall.org/26133/text. At line 770 the cube jumps from right to left, when camerarot.Y changes signs. I don't know if this is normal. Update2 Here is the complete project.

    Read the article

  • Does my use of the strategy pattern violate the fundamental MVC pattern in iOS?

    - by Goodsquirrel
    I'm about to use the 'strategy' pattern in my iOS app, but feel like my approach violates the somehow fundamental MVC pattern. My app is displaying visual "stories", and a Story consists (i.e. has @properties) of one Photo and one or more VisualEvent objects to represent e.g. animated circles or moving arrows on the photo. Each VisualEvent object therefore has a eventType @property, that might be e.g. kEventTypeCircle or kEventTypeArrow. All events have things in common, like a startTime @property, but differ in the way they are being drawn on the StoryPlayerView. Currently I'm trying to follow the MVC pattern and have a StoryPlayer object (my controller) that knows about both the model objects (like Story and all kinds of visual events) and the view object StoryPlayerView. To chose the right drawing code for each of the different visual event types, my StoryPlayer is using a switch statement. @implementation StoryPlayer // (...) - (void)showVisualEvent:(VisualEvent *)event onStoryPlayerView:storyPlayerView { switch (event.eventType) { case kEventTypeCircle: [self showCircleEvent:event onStoryPlayerView:storyPlayerView]; break; case kEventTypeArrow: [self showArrowDrawingEvent:event onStoryPlayerView:storyPlayerView]; break; // (...) } But switch statements for type checking are bad design, aren't they? According to Uncle Bob they lead to tight coupling and can and should almost always be replaced by polymorphism. Having read about the "Strategy"-Pattern in Head First Design Patterns, I felt this was a great way to get rid of my switch statement. So I changed the design like this: All specialized visual event types are now subclasses of an abstract VisualEvent class that has a showOnStoryPlayerView: method. @interface VisualEvent : NSObject - (void)showOnStoryPlayerView:(StoryPlayerView *)storyPlayerView; // abstract Each and every concrete subclass implements a concrete specialized version of this drawing behavior method. @implementation CircleVisualEvent - (void)showOnStoryPlayerView:(StoryPlayerView *)storyPlayerView { [storyPlayerView drawCircleAtPoint:self.position color:self.color lineWidth:self.lineWidth radius:self.radius]; } The StoryPlayer now simply calls the same method on all types of events. @implementation StoryPlayer - (void)showVisualEvent:(VisualEvent *)event onStoryPlayerView:storyPlayerView { [event showOnStoryPlayerView:storyPlayerView]; } The result seems to be great: I got rid of the switch statement, and if I ever have to add new types of VisualEvents in the future, I simply create new subclasses of VisualEvent. And I won't have to change anything in StoryPlayer. But of cause this approach violates the MVC pattern since now my model has to know about and depend on my view! Now my controller talks to my model and my model talks to the view calling methods on StoryPlayerView like drawCircleAtPoint:color:lineWidth:radius:. But this kind of calls should be controller code not model code, right?? Seems to me like I made things worse. I'm confused! Am I completely missing the point of the strategy pattern? Is there a better way to get rid of the switch statement without breaking model-view separation?

    Read the article

< Previous Page | 760 761 762 763 764 765 766 767 768 769 770 771  | Next Page >