Search Results

Search found 21759 results on 871 pages for 'int'.

Page 77/871 | < Previous Page | 73 74 75 76 77 78 79 80 81 82 83 84  | Next Page >

  • LINQ – SequenceEqual() method

    - by nmarun
    I have been looking at LINQ extension methods and have blogged about what I learned from them in my blog space. Next in line is the SequenceEqual() method. Here’s the description about this method: “Determines whether two sequences are equal by comparing the elements by using the default equality comparer for their type.” Let’s play with some code: 1: int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 }; 2: // int[] numbersCopy = numbers; 3: int[] numbersCopy = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 }; 4:  5: Console.WriteLine(numbers.SequenceEqual(numbersCopy)); This gives an output of ‘True’ – basically compares each of the elements in the two arrays and returns true in this case. The result is same even if you uncomment line 2 and comment line 3 (I didn’t need to say that now did I?). So then what happens for custom types? For this, I created a Product class with the following definition: 1: class Product 2: { 3: public int ProductId { get; set; } 4: public string Name { get; set; } 5: public string Category { get; set; } 6: public DateTime MfgDate { get; set; } 7: public Status Status { get; set; } 8: } 9:  10: public enum Status 11: { 12: Active = 1, 13: InActive = 2, 14: OffShelf = 3, 15: } In my calling code, I’m just adding a few product items: 1: private static List<Product> GetProducts() 2: { 3: return new List<Product> 4: { 5: new Product 6: { 7: ProductId = 1, 8: Name = "Laptop", 9: Category = "Computer", 10: MfgDate = new DateTime(2003, 4, 3), 11: Status = Status.Active, 12: }, 13: new Product 14: { 15: ProductId = 2, 16: Name = "Compact Disc", 17: Category = "Water Sport", 18: MfgDate = new DateTime(2009, 12, 3), 19: Status = Status.InActive, 20: }, 21: new Product 22: { 23: ProductId = 3, 24: Name = "Floppy", 25: Category = "Computer", 26: MfgDate = new DateTime(1993, 3, 7), 27: Status = Status.OffShelf, 28: }, 29: }; 30: } Now for the actual check: 1: List<Product> products1 = GetProducts(); 2: List<Product> products2 = GetProducts(); 3:  4: Console.WriteLine(products1.SequenceEqual(products2)); This one returns ‘False’ and the reason is simple – this one checks for reference equality and the products in the both the lists get different ‘memory addresses’ (sounds like I’m talking in ‘C’). In order to modify this behavior and return a ‘True’ result, we need to modify the Product class as follows: 1: class Product : IEquatable<Product> 2: { 3: public int ProductId { get; set; } 4: public string Name { get; set; } 5: public string Category { get; set; } 6: public DateTime MfgDate { get; set; } 7: public Status Status { get; set; } 8:  9: public override bool Equals(object obj) 10: { 11: return Equals(obj as Product); 12: } 13:  14: public bool Equals(Product other) 15: { 16: //Check whether the compared object is null. 17: if (ReferenceEquals(other, null)) return false; 18:  19: //Check whether the compared object references the same data. 20: if (ReferenceEquals(this, other)) return true; 21:  22: //Check whether the products' properties are equal. 23: return ProductId.Equals(other.ProductId) 24: && Name.Equals(other.Name) 25: && Category.Equals(other.Category) 26: && MfgDate.Equals(other.MfgDate) 27: && Status.Equals(other.Status); 28: } 29:  30: // If Equals() returns true for a pair of objects 31: // then GetHashCode() must return the same value for these objects. 32: // read why in the following articles: 33: // http://geekswithblogs.net/akraus1/archive/2010/02/28/138234.aspx 34: // http://stackoverflow.com/questions/371328/why-is-it-important-to-override-gethashcode-when-equals-method-is-overriden-in-c 35: public override int GetHashCode() 36: { 37: //Get hash code for the ProductId field. 38: int hashProductId = ProductId.GetHashCode(); 39:  40: //Get hash code for the Name field if it is not null. 41: int hashName = Name == null ? 0 : Name.GetHashCode(); 42:  43: //Get hash code for the ProductId field. 44: int hashCategory = Category.GetHashCode(); 45:  46: //Get hash code for the ProductId field. 47: int hashMfgDate = MfgDate.GetHashCode(); 48:  49: //Get hash code for the ProductId field. 50: int hashStatus = Status.GetHashCode(); 51: //Calculate the hash code for the product. 52: return hashProductId ^ hashName ^ hashCategory & hashMfgDate & hashStatus; 53: } 54:  55: public static bool operator ==(Product a, Product b) 56: { 57: // Enable a == b for null references to return the right value 58: if (ReferenceEquals(a, b)) 59: { 60: return true; 61: } 62: // If one is null and the other not. Remember a==null will lead to Stackoverflow! 63: if (ReferenceEquals(a, null)) 64: { 65: return false; 66: } 67: return a.Equals((object)b); 68: } 69:  70: public static bool operator !=(Product a, Product b) 71: { 72: return !(a == b); 73: } 74: } Now THAT kinda looks overwhelming. But lets take one simple step at a time. Ok first thing you’ve noticed is that the class implements IEquatable<Product> interface – the key step towards achieving our goal. This interface provides us with an ‘Equals’ method to perform the test for equality with another Product object, in this case. This method is called in the following situations: when you do a ProductInstance.Equals(AnotherProductInstance) and when you perform actions like Contains<T>, IndexOf() or Remove() on your collection Coming to the Equals method defined line 14 onwards. The two ‘if’ blocks check for null and referential equality using the ReferenceEquals() method defined in the Object class. Line 23 is where I’m doing the actual check on the properties of the Product instances. This is what returns the ‘True’ for us when we run the application. I have also overridden the Object.Equals() method which calls the Equals() method of the interface. One thing to remember is that anytime you override the Equals() method, its’ a good practice to override the GetHashCode() method and overload the ‘==’ and the ‘!=’ operators. For detailed information on this, please read this and this. Since we’ve overloaded the operators as well, we get ‘True’ when we do actions like: 1: Console.WriteLine(products1.Contains(products2[0])); 2: Console.WriteLine(products1[0] == products2[0]); This completes the full circle on the SequenceEqual() method. See the code used in the article here.

    Read the article

  • OpenGL 3.x Assimp trouble implementing phong shading (normals?)

    - by Defcronyke
    I'm having trouble getting phong shading to look right. I'm pretty sure there's something wrong with either my OpenGL calls, or the way I'm loading my normals, but I guess it could be something else since 3D graphics and Assimp are both still very new to me. When trying to load .obj/.mtl files, the problems I'm seeing are: The models seem to be lit too intensely (less phong-style and more completely washed out, too bright). Faces that are lit seem to be lit equally all over (with the exception of a specular highlight showing only when the light source position is moved to be practically right on top of the model) Because of problems 1 and 2, spheres look very wrong: picture of sphere And things with larger faces look (less-noticeably) wrong too: picture of cube I could be wrong, but to me this doesn't look like proper phong shading. Here's the code that I think might be relevant (I can post more if necessary): file: assimpRenderer.cpp #include "assimpRenderer.hpp" namespace def { assimpRenderer::assimpRenderer(std::string modelFilename, float modelScale) { initSFML(); initOpenGL(); if (assImport(modelFilename)) // if modelFile loaded successfully { initScene(); mainLoop(modelScale); shutdownScene(); } shutdownOpenGL(); shutdownSFML(); } assimpRenderer::~assimpRenderer() { } void assimpRenderer::initSFML() { windowWidth = 800; windowHeight = 600; settings.majorVersion = 3; settings.minorVersion = 3; app = NULL; shader = NULL; app = new sf::Window(sf::VideoMode(windowWidth,windowHeight,32), "OpenGL 3.x Window", sf::Style::Default, settings); app->setFramerateLimit(240); app->setActive(); return; } void assimpRenderer::shutdownSFML() { delete app; return; } void assimpRenderer::initOpenGL() { GLenum err = glewInit(); if (GLEW_OK != err) { /* Problem: glewInit failed, something is seriously wrong. */ std::cerr << "Error: " << glewGetErrorString(err) << std::endl; } // check the OpenGL context version that's currently in use int glVersion[2] = {-1, -1}; glGetIntegerv(GL_MAJOR_VERSION, &glVersion[0]); // get the OpenGL Major version glGetIntegerv(GL_MINOR_VERSION, &glVersion[1]); // get the OpenGL Minor version std::cout << "Using OpenGL Version: " << glVersion[0] << "." << glVersion[1] << std::endl; return; } void assimpRenderer::shutdownOpenGL() { return; } void assimpRenderer::initScene() { // allocate heap space for VAOs, VBOs, and IBOs vaoID = new GLuint[scene->mNumMeshes]; vboID = new GLuint[scene->mNumMeshes*2]; iboID = new GLuint[scene->mNumMeshes]; glClearColor(0.4f, 0.6f, 0.9f, 0.0f); glEnable(GL_DEPTH_TEST); glDepthFunc(GL_LEQUAL); glEnable(GL_CULL_FACE); shader = new Shader("shader.vert", "shader.frag"); projectionMatrix = glm::perspective(60.0f, (float)windowWidth / (float)windowHeight, 0.1f, 100.0f); rot = 0.0f; rotSpeed = 50.0f; faceIndex = 0; colorArrayA = NULL; colorArrayD = NULL; colorArrayS = NULL; normalArray = NULL; genVAOs(); return; } void assimpRenderer::shutdownScene() { delete [] iboID; delete [] vboID; delete [] vaoID; delete shader; } void assimpRenderer::renderScene(float modelScale) { sf::Time elapsedTime = clock.getElapsedTime(); clock.restart(); if (rot > 360.0f) rot = 0.0f; rot += rotSpeed * elapsedTime.asSeconds(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT); viewMatrix = glm::translate(glm::mat4(1.0f), glm::vec3(0.0f, -3.0f, -10.0f)); // move back a bit modelMatrix = glm::scale(glm::mat4(1.0f), glm::vec3(modelScale)); // scale model modelMatrix = glm::rotate(modelMatrix, rot, glm::vec3(0, 1, 0)); //modelMatrix = glm::rotate(modelMatrix, 25.0f, glm::vec3(0, 1, 0)); glm::vec3 lightPosition( 0.0f, -100.0f, 0.0f ); float lightPositionArray[3]; lightPositionArray[0] = lightPosition[0]; lightPositionArray[1] = lightPosition[1]; lightPositionArray[2] = lightPosition[2]; shader->bind(); int projectionMatrixLocation = glGetUniformLocation(shader->id(), "projectionMatrix"); int viewMatrixLocation = glGetUniformLocation(shader->id(), "viewMatrix"); int modelMatrixLocation = glGetUniformLocation(shader->id(), "modelMatrix"); int ambientLocation = glGetUniformLocation(shader->id(), "ambientColor"); int diffuseLocation = glGetUniformLocation(shader->id(), "diffuseColor"); int specularLocation = glGetUniformLocation(shader->id(), "specularColor"); int lightPositionLocation = glGetUniformLocation(shader->id(), "lightPosition"); int normalMatrixLocation = glGetUniformLocation(shader->id(), "normalMatrix"); glUniformMatrix4fv(projectionMatrixLocation, 1, GL_FALSE, &projectionMatrix[0][0]); glUniformMatrix4fv(viewMatrixLocation, 1, GL_FALSE, &viewMatrix[0][0]); glUniformMatrix4fv(modelMatrixLocation, 1, GL_FALSE, &modelMatrix[0][0]); glUniform3fv(lightPositionLocation, 1, lightPositionArray); for (unsigned int i = 0; i < scene->mNumMeshes; i++) { colorArrayA = new float[3]; colorArrayD = new float[3]; colorArrayS = new float[3]; material = scene->mMaterials[scene->mNumMaterials-1]; normalArray = new float[scene->mMeshes[i]->mNumVertices * 3]; unsigned int normalIndex = 0; for (unsigned int j = 0; j < scene->mMeshes[i]->mNumVertices * 3; j+=3, normalIndex++) { normalArray[j] = scene->mMeshes[i]->mNormals[normalIndex].x; // x normalArray[j+1] = scene->mMeshes[i]->mNormals[normalIndex].y; // y normalArray[j+2] = scene->mMeshes[i]->mNormals[normalIndex].z; // z } normalIndex = 0; glUniformMatrix3fv(normalMatrixLocation, 1, GL_FALSE, normalArray); aiColor3D ambient(0.0f, 0.0f, 0.0f); material->Get(AI_MATKEY_COLOR_AMBIENT, ambient); aiColor3D diffuse(0.0f, 0.0f, 0.0f); material->Get(AI_MATKEY_COLOR_DIFFUSE, diffuse); aiColor3D specular(0.0f, 0.0f, 0.0f); material->Get(AI_MATKEY_COLOR_SPECULAR, specular); colorArrayA[0] = ambient.r; colorArrayA[1] = ambient.g; colorArrayA[2] = ambient.b; colorArrayD[0] = diffuse.r; colorArrayD[1] = diffuse.g; colorArrayD[2] = diffuse.b; colorArrayS[0] = specular.r; colorArrayS[1] = specular.g; colorArrayS[2] = specular.b; // bind color for each mesh glUniform3fv(ambientLocation, 1, colorArrayA); glUniform3fv(diffuseLocation, 1, colorArrayD); glUniform3fv(specularLocation, 1, colorArrayS); // render all meshes glBindVertexArray(vaoID[i]); // bind our VAO glDrawElements(GL_TRIANGLES, scene->mMeshes[i]->mNumFaces*3, GL_UNSIGNED_INT, 0); glBindVertexArray(0); // unbind our VAO delete [] normalArray; delete [] colorArrayA; delete [] colorArrayD; delete [] colorArrayS; } shader->unbind(); app->display(); return; } void assimpRenderer::handleEvents() { sf::Event event; while (app->pollEvent(event)) { if (event.type == sf::Event::Closed) { app->close(); } if ((event.type == sf::Event::KeyPressed) && (event.key.code == sf::Keyboard::Escape)) { app->close(); } if (event.type == sf::Event::Resized) { glViewport(0, 0, event.size.width, event.size.height); } } return; } void assimpRenderer::mainLoop(float modelScale) { while (app->isOpen()) { renderScene(modelScale); handleEvents(); } } bool assimpRenderer::assImport(const std::string& pFile) { // read the file with some example postprocessing scene = importer.ReadFile(pFile, aiProcess_CalcTangentSpace | aiProcess_Triangulate | aiProcess_JoinIdenticalVertices | aiProcess_SortByPType); // if the import failed, report it if (!scene) { std::cerr << "Error: " << importer.GetErrorString() << std::endl; return false; } return true; } void assimpRenderer::genVAOs() { int vboIndex = 0; for (unsigned int i = 0; i < scene->mNumMeshes; i++, vboIndex+=2) { mesh = scene->mMeshes[i]; indexArray = new unsigned int[mesh->mNumFaces * sizeof(unsigned int) * 3]; // convert assimp faces format to array faceIndex = 0; for (unsigned int t = 0; t < mesh->mNumFaces; ++t) { const struct aiFace* face = &mesh->mFaces[t]; std::memcpy(&indexArray[faceIndex], face->mIndices, sizeof(float) * 3); faceIndex += 3; } // generate VAO glGenVertexArrays(1, &vaoID[i]); glBindVertexArray(vaoID[i]); // generate IBO for faces glGenBuffers(1, &iboID[i]); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, iboID[i]); glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(GLuint) * mesh->mNumFaces * 3, indexArray, GL_STATIC_DRAW); // generate VBO for vertices if (mesh->HasPositions()) { glGenBuffers(1, &vboID[vboIndex]); glBindBuffer(GL_ARRAY_BUFFER, vboID[vboIndex]); glBufferData(GL_ARRAY_BUFFER, mesh->mNumVertices * sizeof(GLfloat) * 3, mesh->mVertices, GL_STATIC_DRAW); glEnableVertexAttribArray((GLuint)0); glVertexAttribPointer((GLuint)0, 3, GL_FLOAT, GL_FALSE, 0, 0); } // generate VBO for normals if (mesh->HasNormals()) { normalArray = new float[scene->mMeshes[i]->mNumVertices * 3]; unsigned int normalIndex = 0; for (unsigned int j = 0; j < scene->mMeshes[i]->mNumVertices * 3; j+=3, normalIndex++) { normalArray[j] = scene->mMeshes[i]->mNormals[normalIndex].x; // x normalArray[j+1] = scene->mMeshes[i]->mNormals[normalIndex].y; // y normalArray[j+2] = scene->mMeshes[i]->mNormals[normalIndex].z; // z } normalIndex = 0; glGenBuffers(1, &vboID[vboIndex+1]); glBindBuffer(GL_ARRAY_BUFFER, vboID[vboIndex+1]); glBufferData(GL_ARRAY_BUFFER, mesh->mNumVertices * sizeof(GLfloat) * 3, normalArray, GL_STATIC_DRAW); glEnableVertexAttribArray((GLuint)1); glVertexAttribPointer((GLuint)1, 3, GL_FLOAT, GL_FALSE, 0, 0); delete [] normalArray; } // tex coord stuff goes here // unbind buffers glBindVertexArray(0); glBindBuffer(GL_ARRAY_BUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); delete [] indexArray; } vboIndex = 0; return; } } file: shader.vert #version 150 core in vec3 in_Position; in vec3 in_Normal; uniform mat4 projectionMatrix; uniform mat4 viewMatrix; uniform mat4 modelMatrix; uniform vec3 lightPosition; uniform mat3 normalMatrix; smooth out vec3 vVaryingNormal; smooth out vec3 vVaryingLightDir; void main() { // derive MVP and MV matrices mat4 modelViewProjectionMatrix = projectionMatrix * viewMatrix * modelMatrix; mat4 modelViewMatrix = viewMatrix * modelMatrix; // get surface normal in eye coordinates vVaryingNormal = normalMatrix * in_Normal; // get vertex position in eye coordinates vec4 vPosition4 = modelViewMatrix * vec4(in_Position, 1.0); vec3 vPosition3 = vPosition4.xyz / vPosition4.w; // get vector to light source vVaryingLightDir = normalize(lightPosition - vPosition3); // Set the position of the current vertex gl_Position = modelViewProjectionMatrix * vec4(in_Position, 1.0); } file: shader.frag #version 150 core out vec4 out_Color; uniform vec3 ambientColor; uniform vec3 diffuseColor; uniform vec3 specularColor; smooth in vec3 vVaryingNormal; smooth in vec3 vVaryingLightDir; void main() { // dot product gives us diffuse intensity float diff = max(0.0, dot(normalize(vVaryingNormal), normalize(vVaryingLightDir))); // multiply intensity by diffuse color, force alpha to 1.0 out_Color = vec4(diff * diffuseColor, 1.0); // add in ambient light out_Color += vec4(ambientColor, 1.0); // specular light vec3 vReflection = normalize(reflect(-normalize(vVaryingLightDir), normalize(vVaryingNormal))); float spec = max(0.0, dot(normalize(vVaryingNormal), vReflection)); if (diff != 0) { float fSpec = pow(spec, 128.0); // Set the output color of our current pixel out_Color.rgb += vec3(fSpec, fSpec, fSpec); } } I know it's a lot to look through, but I'm putting most of the code up so as not to assume where the problem is. Thanks in advance to anyone who has some time to help me pinpoint the problem(s)! I've been trying to sort it out for two days now and I'm not getting anywhere on my own.

    Read the article

  • Add collison detection to enemy sprites?

    - by xBroak
    i'd like to add the same collision detection used by the player sprite to the enemy sprites or 'creeps' ive added all the relevant code I can see yet collisons are still not being detected and handled, please find below the class, I have no idea what is wrong currently, the list of walls to collide with is 'wall_list' import pygame import pauseScreen as dm import re from pygame.sprite import Sprite from pygame import Rect, Color from random import randint, choice from vec2d import vec2d from simpleanimation import SimpleAnimation import displattxt black = (0,0,0) white = (255,255,255) blue = (0,0,255) green = (101,194,151) global currentEditTool currentEditTool = "Tree" global editMap editMap = False open('MapMaker.txt', 'w').close() def draw_background(screen, tile_img): screen.fill(black) img_rect = tile_img.get_rect() global rect rect = img_rect nrows = int(screen.get_height() / img_rect.height) + 1 ncols = int(screen.get_width() / img_rect.width) + 1 for y in range(nrows): for x in range(ncols): img_rect.topleft = (x * img_rect.width, y * img_rect.height) screen.blit(tile_img, img_rect) def changeTool(): if currentEditTool == "Tree": None elif currentEditTool == "Rock": None def pauseGame(): red = 255, 0, 0 green = 0,255, 0 blue = 0, 0,255 screen.fill(black) pygame.display.update() if editMap == False: choose = dm.dumbmenu(screen, [ 'Resume', 'Enable Map Editor', 'Quit Game'], 64,64,None,32,1.4,green,red) if choose == 0: print("hi") elif choose ==1: global editMap editMap = True elif choose ==2: print("bob") elif choose ==3: print("bob") elif choose ==4: print("bob") else: None else: choose = dm.dumbmenu(screen, [ 'Resume', 'Disable Map Editor', 'Quit Game'], 64,64,None,32,1.4,green,red) if choose == 0: print("Resume") elif choose ==1: print("Dis ME") global editMap editMap = False elif choose ==2: print("bob") elif choose ==3: print("bob") elif choose ==4: print("bob") else: None class Wall(pygame.sprite.Sprite): # Constructor function def __init__(self,x,y,width,height): pygame.sprite.Sprite.__init__(self) self.image = pygame.Surface([width, height]) self.image.fill(green) self.rect = self.image.get_rect() self.rect.y = y self.rect.x = x class insertTree(pygame.sprite.Sprite): def __init__(self,x,y,width,height, typ): pygame.sprite.Sprite.__init__(self) self.image = pygame.image.load("images/map/tree.png").convert() self.image.set_colorkey(white) self.rect = self.image.get_rect() self.rect.y = y self.rect.x = x class insertRock(pygame.sprite.Sprite): def __init__(self,x,y,width,height, typ): pygame.sprite.Sprite.__init__(self) self.image = pygame.image.load("images/map/rock.png").convert() self.image.set_colorkey(white) self.rect = self.image.get_rect() self.rect.y = y self.rect.x = x class Creep(pygame.sprite.Sprite): """ A creep sprite that bounces off walls and changes its direction from time to time. """ change_x=0 change_y=0 def __init__( self, screen, creep_image, explosion_images, field, init_position, init_direction, speed): """ Create a new Creep. screen: The screen on which the creep lives (must be a pygame Surface object, such as pygame.display) creep_image: Image (surface) object for the creep explosion_images: A list of image objects for the explosion animation. field: A Rect specifying the 'playing field' boundaries. The Creep will bounce off the 'walls' of this field. init_position: A vec2d or a pair specifying the initial position of the creep on the screen. init_direction: A vec2d or a pair specifying the initial direction of the creep. Must have an angle that is a multiple of 45 degres. speed: Creep speed, in pixels/millisecond (px/ms) """ Sprite.__init__(self) self.screen = screen self.speed = speed self.field = field self.rect = creep_image.get_rect() # base_image holds the original image, positioned to # angle 0. # image will be rotated. # self.base_image = creep_image self.image = self.base_image self.explosion_images = explosion_images # A vector specifying the creep's position on the screen # self.pos = vec2d(init_position) # The direction is a normalized vector # self.direction = vec2d(init_direction).normalized() self.state = Creep.ALIVE self.health = 15 def is_alive(self): return self.state in (Creep.ALIVE, Creep.EXPLODING) def changespeed(self,x,y): self.change_x+=x self.change_y+=y def update(self, time_passed, walls): """ Update the creep. time_passed: The time passed (in ms) since the previous update. """ if self.state == Creep.ALIVE: # Maybe it's time to change the direction ? # self._change_direction(time_passed) # Make the creep point in the correct direction. # Since our direction vector is in screen coordinates # (i.e. right bottom is 1, 1), and rotate() rotates # counter-clockwise, the angle must be inverted to # work correctly. # self.image = pygame.transform.rotate( self.base_image, -self.direction.angle) # Compute and apply the displacement to the position # vector. The displacement is a vector, having the angle # of self.direction (which is normalized to not affect # the magnitude of the displacement) # displacement = vec2d( self.direction.x * self.speed * time_passed, self.direction.y * self.speed * time_passed) self.pos += displacement # When the image is rotated, its size is changed. # We must take the size into account for detecting # collisions with the walls. # self.image_w, self.image_h = self.image.get_size() bounds_rect = self.field.inflate( -self.image_w, -self.image_h) if self.pos.x < bounds_rect.left: self.pos.x = bounds_rect.left self.direction.x *= -1 elif self.pos.x > bounds_rect.right: self.pos.x = bounds_rect.right self.direction.x *= -1 elif self.pos.y < bounds_rect.top: self.pos.y = bounds_rect.top self.direction.y *= -1 elif self.pos.y > bounds_rect.bottom: self.pos.y = bounds_rect.bottom self.direction.y *= -1 # collision detection old_x=bounds_rect.left new_x=old_x+self.direction.x bounds_rect.left = new_x # hit a wall? collide = pygame.sprite.spritecollide(self, walls, False) if collide: # yes bounds_rect.left=old_x old_y=self.pos.y new_y=old_y+self.direction.y self.pos.y = new_y collide = pygame.sprite.spritecollide(self, walls, False) if collide: # yes self.pos.y=old_y elif self.state == Creep.EXPLODING: if self.explode_animation.active: self.explode_animation.update(time_passed) else: self.state = Creep.DEAD self.kill() elif self.state == Creep.DEAD: pass #------------------ PRIVATE PARTS ------------------# # States the creep can be in. # # ALIVE: The creep is roaming around the screen # EXPLODING: # The creep is now exploding, just a moment before dying. # DEAD: The creep is dead and inactive # (ALIVE, EXPLODING, DEAD) = range(3) _counter = 0 def _change_direction(self, time_passed): """ Turn by 45 degrees in a random direction once per 0.4 to 0.5 seconds. """ self._counter += time_passed if self._counter > randint(400, 500): self.direction.rotate(45 * randint(-1, 1)) self._counter = 0 def _point_is_inside(self, point): """ Is the point (given as a vec2d) inside our creep's body? """ img_point = point - vec2d( int(self.pos.x - self.image_w / 2), int(self.pos.y - self.image_h / 2)) try: pix = self.image.get_at(img_point) return pix[3] > 0 except IndexError: return False def _decrease_health(self, n): """ Decrease my health by n (or to 0, if it's currently less than n) """ self.health = max(0, self.health - n) if self.health == 0: self._explode() def _explode(self): """ Starts the explosion animation that ends the Creep's life. """ self.state = Creep.EXPLODING pos = ( self.pos.x - self.explosion_images[0].get_width() / 2, self.pos.y - self.explosion_images[0].get_height() / 2) self.explode_animation = SimpleAnimation( self.screen, pos, self.explosion_images, 100, 300) global remainingCreeps remainingCreeps-=1 if remainingCreeps == 0: print("all dead") def draw(self): """ Blit the creep onto the screen that was provided in the constructor. """ if self.state == Creep.ALIVE: # The creep image is placed at self.pos. To allow for # smooth movement even when the creep rotates and the # image size changes, its placement is always # centered. # self.draw_rect = self.image.get_rect().move( self.pos.x - self.image_w / 2, self.pos.y - self.image_h / 2) self.screen.blit(self.image, self.draw_rect) # The health bar is 15x4 px. # health_bar_x = self.pos.x - 7 health_bar_y = self.pos.y - self.image_h / 2 - 6 self.screen.fill( Color('red'), (health_bar_x, health_bar_y, 15, 4)) self.screen.fill( Color('green'), ( health_bar_x, health_bar_y, self.health, 4)) elif self.state == Creep.EXPLODING: self.explode_animation.draw() elif self.state == Creep.DEAD: pass def mouse_click_event(self, pos): """ The mouse was clicked in pos. """ if self._point_is_inside(vec2d(pos)): self._decrease_health(3) #begin new player class Player(pygame.sprite.Sprite): change_x=0 change_y=0 frame = 0 def __init__(self,x,y): pygame.sprite.Sprite.__init__(self) # LOAD PLATER IMAGES # Set height, width self.images = [] for i in range(1,17): img = pygame.image.load("images/player/" + str(i)+".png").convert() #player images img.set_colorkey(white) self.images.append(img) self.image = self.images[0] self.rect = self.image.get_rect() self.rect.y = y self.rect.x = x self.health = 15 self.image_w, self.image_h = self.image.get_size() health_bar_x = self.rect.x - 7 health_bar_y = self.rect.y - self.image_h / 2 - 6 screen.fill( Color('red'), (health_bar_x, health_bar_y, 15, 4)) screen.fill( Color('green'), ( health_bar_x, health_bar_y, self.health, 4)) def changespeed(self,x,y): self.change_x+=x self.change_y+=y def _decrease_health(self, n): """ Decrease my health by n (or to 0, if it's currently less than n) """ self.health = max(0, self.health - n) if self.health == 0: self._explode() def update(self,walls): # collision detection old_x=self.rect.x new_x=old_x+self.change_x self.rect.x = new_x # hit a wall? collide = pygame.sprite.spritecollide(self, walls, False) if collide: # yes self.rect.x=old_x old_y=self.rect.y new_y=old_y+self.change_y self.rect.y = new_y collide = pygame.sprite.spritecollide(self, walls, False) if collide: # yes self.rect.y=old_y # right to left if self.change_x < 0: self.frame += 1 if self.frame > 3*4: self.frame = 0 # Grab the image, divide by 4 # every 4 frames. self.image = self.images[self.frame//4] # Move left to right. # images 4...7 instead of 0...3. if self.change_x > 0: self.frame += 1 if self.frame > 3*4: self.frame = 0 self.image = self.images[self.frame//4+4] if self.change_y > 0: self.frame += 1 if self.frame > 3*4: self.frame = 0 self.image = self.images[self.frame//4+4+4] if self.change_y < 0: self.frame += 1 if self.frame > 3*4: self.frame = 0 self.image = self.images[self.frame//4+4+4+4] score = 0 # initialize pyGame pygame.init() # 800x600 sized screen global screen screen = pygame.display.set_mode([800, 600]) screen.fill(black) #bg_tile_img = pygame.image.load('images/map/grass.png').convert_alpha() #draw_background(screen, bg_tile_img) #pygame.display.flip() # Set title pygame.display.set_caption('Test') #background = pygame.Surface(screen.get_size()) #background = background.convert() #background.fill(black) # Create the player player = Player( 50,50 ) player.rect.x=50 player.rect.y=50 movingsprites = pygame.sprite.RenderPlain() movingsprites.add(player) # Make the walls. (x_pos, y_pos, width, height) global wall_list wall_list=pygame.sprite.RenderPlain() wall=Wall(0,0,10,600) # left wall wall_list.add(wall) wall=Wall(10,0,790,10) # top wall wall_list.add(wall) #wall=Wall(10,200,100,10) # poke wall wall_list.add(wall) wall=Wall(790,0,10,600) #(x,y,thickness, height) wall_list.add(wall) wall=Wall(10,590,790,10) #(x,y,thickness, height) wall_list.add(wall) f = open('MapMaker.txt') num_lines = sum(1 for line in f) print(num_lines) lineCount = 0 with open("MapMaker.txt") as infile: for line in infile: f = open('MapMaker.txt') print(line) coords = line.split(',') #print(coords[0]) #print(coords[1]) #print(coords[2]) #print(coords[3]) #print(coords[4]) if "tree" in line: print("tree in") wall=insertTree(int(coords[0]),int(coords[1]), int(coords[2]),int(coords[3]),coords[4]) wall_list.add(wall) elif "rock" in line: print("rock in") wall=insertRock(int(coords[0]),int(coords[1]), int(coords[2]),int(coords[3]),coords[4] ) wall_list.add(wall) width = 20 height = 540 height = height - 48 for i in range(0,23): width = width + 32 name = insertTree(width,540,790,10,"tree") #wall_list.add(name) name = insertTree(width,height,690,10,"tree") #wall_list.add(name) CREEP_SPAWN_TIME = 200 # frames creep_spawn = CREEP_SPAWN_TIME clock = pygame.time.Clock() bg_tile_img = pygame.image.load('images/map/grass.png').convert() img_rect = bg_tile_img FIELD_RECT = Rect(50, 50, 700, 500) CREEP_FILENAMES = [ 'images/player/1.png', 'images/player/1.png', 'images/player/1.png'] N_CREEPS = 3 creep_images = [ pygame.image.load(filename).convert_alpha() for filename in CREEP_FILENAMES] explosion_img = pygame.image.load('images/map/tree.png').convert_alpha() explosion_images = [ explosion_img, pygame.transform.rotate(explosion_img, 90)] creeps = pygame.sprite.RenderPlain() done = False #bg_tile_img = pygame.image.load('images/map/grass.png').convert() #draw_background(screen, bg_tile_img) totalCreeps = 0 remainingCreeps = 3 while done == False: creep_images = pygame.image.load("images/player/1.png").convert() creep_images.set_colorkey(white) draw_background(screen, bg_tile_img) if len(creeps) != N_CREEPS: if totalCreeps < N_CREEPS: totalCreeps = totalCreeps + 1 print(totalCreeps) creeps.add( Creep( screen=screen, creep_image=creep_images, explosion_images=explosion_images, field=FIELD_RECT, init_position=( randint(FIELD_RECT.left, FIELD_RECT.right), randint(FIELD_RECT.top, FIELD_RECT.bottom)), init_direction=(choice([-1, 1]), choice([-1, 1])), speed=0.01)) for creep in creeps: creep.update(60,wall_list) creep.draw() for event in pygame.event.get(): if event.type == pygame.QUIT: done=True if event.type == pygame.KEYDOWN: if event.key == pygame.K_LEFT: player.changespeed(-2,0) creep.changespeed(-2,0) if event.key == pygame.K_RIGHT: player.changespeed(2,0) creep.changespeed(2,0) if event.key == pygame.K_UP: player.changespeed(0,-2) creep.changespeed(0,-2) if event.key == pygame.K_DOWN: player.changespeed(0,2) creep.changespeed(0,2) if event.key == pygame.K_ESCAPE: pauseGame() if event.key == pygame.K_1: global currentEditTool currentEditTool = "Tree" changeTool() if event.key == pygame.K_2: global currentEditTool currentEditTool = "Rock" changeTool() if event.type == pygame.KEYUP: if event.key == pygame.K_LEFT: player.changespeed(2,0) creep.changespeed(2,0) if event.key == pygame.K_RIGHT: player.changespeed(-2,0) creep.changespeed(-2,0) if event.key == pygame.K_UP: player.changespeed(0,2) creep.changespeed(0,2) if event.key == pygame.K_DOWN: player.changespeed(0,-2) creep.changespeed(0,-2) if event.type == pygame.MOUSEBUTTONDOWN and pygame.mouse.get_pressed()[0]: for creep in creeps: creep.mouse_click_event(pygame.mouse.get_pos()) if editMap == True: x,y = pygame.mouse.get_pos() if currentEditTool == "Tree": name = insertTree(x-10,y-25, 10 , 10, "tree") wall_list.add(name) wall_list.draw(screen) f = open('MapMaker.txt', "a+") image = pygame.image.load("images/map/tree.png").convert() screen.blit(image, (30,10)) pygame.display.flip() f.write(str(x) + "," + str(y) + ",790,10, tree\n") #f.write("wall=insertTree(" + str(x) + "," + str(y) + ",790,10)\nwall_list.add(wall)\n") elif currentEditTool == "Rock": name = insertRock(x-10,y-25, 10 , 10,"rock") wall_list.add(name) wall_list.draw(screen) f = open('MapMaker.txt', "a+") f.write(str(x) + "," + str(y) + ",790,10,rock\n") #f.write("wall=insertRock(" + str(x) + "," + str(y) + ",790,10)\nwall_list.add(wall)\n") else: None #pygame.display.flip() player.update(wall_list) movingsprites.draw(screen) wall_list.draw(screen) pygame.display.flip() clock.tick(60) pygame.quit()

    Read the article

  • Point of contact of 2 OBBs?

    - by Milo
    I'm working on the physics for my GTA2-like game so I can learn more about game physics. The collision detection and resolution are working great. I'm now just unsure how to compute the point of contact when I hit a wall. Here is my OBB class: public class OBB2D { private Vector2D projVec = new Vector2D(); private static Vector2D projAVec = new Vector2D(); private static Vector2D projBVec = new Vector2D(); private static Vector2D tempNormal = new Vector2D(); private Vector2D deltaVec = new Vector2D(); // Corners of the box, where 0 is the lower left. private Vector2D corner[] = new Vector2D[4]; private Vector2D center = new Vector2D(); private Vector2D extents = new Vector2D(); private RectF boundingRect = new RectF(); private float angle; //Two edges of the box extended away from corner[0]. private Vector2D axis[] = new Vector2D[2]; private double origin[] = new double[2]; public OBB2D(float centerx, float centery, float w, float h, float angle) { for(int i = 0; i < corner.length; ++i) { corner[i] = new Vector2D(); } for(int i = 0; i < axis.length; ++i) { axis[i] = new Vector2D(); } set(centerx,centery,w,h,angle); } public OBB2D(float left, float top, float width, float height) { for(int i = 0; i < corner.length; ++i) { corner[i] = new Vector2D(); } for(int i = 0; i < axis.length; ++i) { axis[i] = new Vector2D(); } set(left + (width / 2), top + (height / 2),width,height,0.0f); } public void set(float centerx,float centery,float w, float h,float angle) { float vxx = (float)Math.cos(angle); float vxy = (float)Math.sin(angle); float vyx = (float)-Math.sin(angle); float vyy = (float)Math.cos(angle); vxx *= w / 2; vxy *= (w / 2); vyx *= (h / 2); vyy *= (h / 2); corner[0].x = centerx - vxx - vyx; corner[0].y = centery - vxy - vyy; corner[1].x = centerx + vxx - vyx; corner[1].y = centery + vxy - vyy; corner[2].x = centerx + vxx + vyx; corner[2].y = centery + vxy + vyy; corner[3].x = centerx - vxx + vyx; corner[3].y = centery - vxy + vyy; this.center.x = centerx; this.center.y = centery; this.angle = angle; computeAxes(); extents.x = w / 2; extents.y = h / 2; computeBoundingRect(); } //Updates the axes after the corners move. Assumes the //corners actually form a rectangle. private void computeAxes() { axis[0].x = corner[1].x - corner[0].x; axis[0].y = corner[1].y - corner[0].y; axis[1].x = corner[3].x - corner[0].x; axis[1].y = corner[3].y - corner[0].y; // Make the length of each axis 1/edge length so we know any // dot product must be less than 1 to fall within the edge. for (int a = 0; a < axis.length; ++a) { float l = axis[a].length(); float ll = l * l; axis[a].x = axis[a].x / ll; axis[a].y = axis[a].y / ll; origin[a] = corner[0].dot(axis[a]); } } public void computeBoundingRect() { boundingRect.left = JMath.min(JMath.min(corner[0].x, corner[3].x), JMath.min(corner[1].x, corner[2].x)); boundingRect.top = JMath.min(JMath.min(corner[0].y, corner[1].y),JMath.min(corner[2].y, corner[3].y)); boundingRect.right = JMath.max(JMath.max(corner[1].x, corner[2].x), JMath.max(corner[0].x, corner[3].x)); boundingRect.bottom = JMath.max(JMath.max(corner[2].y, corner[3].y),JMath.max(corner[0].y, corner[1].y)); } public void set(RectF rect) { set(rect.centerX(),rect.centerY(),rect.width(),rect.height(),0.0f); } // Returns true if other overlaps one dimension of this. private boolean overlaps1Way(OBB2D other) { for (int a = 0; a < axis.length; ++a) { double t = other.corner[0].dot(axis[a]); // Find the extent of box 2 on axis a double tMin = t; double tMax = t; for (int c = 1; c < corner.length; ++c) { t = other.corner[c].dot(axis[a]); if (t < tMin) { tMin = t; } else if (t > tMax) { tMax = t; } } // We have to subtract off the origin // See if [tMin, tMax] intersects [0, 1] if ((tMin > 1 + origin[a]) || (tMax < origin[a])) { // There was no intersection along this dimension; // the boxes cannot possibly overlap. return false; } } // There was no dimension along which there is no intersection. // Therefore the boxes overlap. return true; } public void moveTo(float centerx, float centery) { float cx,cy; cx = center.x; cy = center.y; deltaVec.x = centerx - cx; deltaVec.y = centery - cy; for (int c = 0; c < 4; ++c) { corner[c].x += deltaVec.x; corner[c].y += deltaVec.y; } boundingRect.left += deltaVec.x; boundingRect.top += deltaVec.y; boundingRect.right += deltaVec.x; boundingRect.bottom += deltaVec.y; this.center.x = centerx; this.center.y = centery; computeAxes(); } // Returns true if the intersection of the boxes is non-empty. public boolean overlaps(OBB2D other) { if(right() < other.left()) { return false; } if(bottom() < other.top()) { return false; } if(left() > other.right()) { return false; } if(top() > other.bottom()) { return false; } if(other.getAngle() == 0.0f && getAngle() == 0.0f) { return true; } return overlaps1Way(other) && other.overlaps1Way(this); } public Vector2D getCenter() { return center; } public float getWidth() { return extents.x * 2; } public float getHeight() { return extents.y * 2; } public void setAngle(float angle) { set(center.x,center.y,getWidth(),getHeight(),angle); } public float getAngle() { return angle; } public void setSize(float w,float h) { set(center.x,center.y,w,h,angle); } public float left() { return boundingRect.left; } public float right() { return boundingRect.right; } public float bottom() { return boundingRect.bottom; } public float top() { return boundingRect.top; } public RectF getBoundingRect() { return boundingRect; } public boolean overlaps(float left, float top, float right, float bottom) { if(right() < left) { return false; } if(bottom() < top) { return false; } if(left() > right) { return false; } if(top() > bottom) { return false; } return true; } public static float distance(float ax, float ay,float bx, float by) { if (ax < bx) return bx - ay; else return ax - by; } public Vector2D project(float ax, float ay) { projVec.x = Float.MAX_VALUE; projVec.y = Float.MIN_VALUE; for (int i = 0; i < corner.length; ++i) { float dot = Vector2D.dot(corner[i].x,corner[i].y,ax,ay); projVec.x = JMath.min(dot, projVec.x); projVec.y = JMath.max(dot, projVec.y); } return projVec; } public Vector2D getCorner(int c) { return corner[c]; } public int getNumCorners() { return corner.length; } public static float collisionResponse(OBB2D a, OBB2D b, Vector2D outNormal) { float depth = Float.MAX_VALUE; for (int i = 0; i < a.getNumCorners() + b.getNumCorners(); ++i) { Vector2D edgeA; Vector2D edgeB; if(i >= a.getNumCorners()) { edgeA = b.getCorner((i + b.getNumCorners() - 1) % b.getNumCorners()); edgeB = b.getCorner(i % b.getNumCorners()); } else { edgeA = a.getCorner((i + a.getNumCorners() - 1) % a.getNumCorners()); edgeB = a.getCorner(i % a.getNumCorners()); } tempNormal.x = edgeB.x -edgeA.x; tempNormal.y = edgeB.y - edgeA.y; tempNormal.normalize(); projAVec.equals(a.project(tempNormal.x,tempNormal.y)); projBVec.equals(b.project(tempNormal.x,tempNormal.y)); float distance = OBB2D.distance(projAVec.x, projAVec.y,projBVec.x,projBVec.y); if (distance > 0.0f) { return 0.0f; } else { float d = Math.abs(distance); if (d < depth) { depth = d; outNormal.equals(tempNormal); } } } float dx,dy; dx = b.getCenter().x - a.getCenter().x; dy = b.getCenter().y - a.getCenter().y; float dot = Vector2D.dot(dx,dy,outNormal.x,outNormal.y); if(dot > 0) { outNormal.x = -outNormal.x; outNormal.y = -outNormal.y; } return depth; } public Vector2D getMoveDeltaVec() { return deltaVec; } }; Thanks!

    Read the article

  • Nice Generic Example that implements an interface.

    - by mbcrump
    I created this quick generic example after noticing that several people were asking questions about it. If you have any questions then let me know. using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Globalization; namespace ConsoleApplication4 { //New class where Type implements IConvertible interface (interface = contract) class Calculate<T> where T : IConvertible { //Setup fields public T X; NumberFormatInfo fmt = NumberFormatInfo.CurrentInfo; //Constructor 1 public Calculate() { X = default(T); } //Constructor 2 public Calculate (T x) { X = x; } //Method that we know will return a double public double DistanceTo (Calculate<T> cal) { //Remove the.ToDouble if you want to see the methods available for IConvertible return (X.ToDouble(fmt) - cal.X.ToDouble(fmt)); } } class Program { static void Main(string[] args) { //Pass value type and call DistanceTo with an Int. Calculate<int> cal = new Calculate<int>(); Calculate<int> cal2 = new Calculate<int>(10); Console.WriteLine("Int : " + cal.DistanceTo(cal2)); //Pass value type and call DistanceTo with an Double. Calculate<double> cal3 = new Calculate<double>(); Calculate<double> cal4 = new Calculate<double>(10.6); Console.WriteLine("Double : " + cal3.DistanceTo(cal4)); //Pass reference type and call DistanceTo with an String. Calculate<string> cal5 = new Calculate<string>("0"); Calculate<string> cal6 = new Calculate<string>("345"); Console.WriteLine("String : " + cal5.DistanceTo(cal6)); } } }

    Read the article

  • Jumping Vs. Gravity

    - by PhaDaPhunk
    Hi i'm working on my first XNA 2D game and I have a little problem. If I jump, my sprite jumps but does not fall down. And I also have another problem, the user can hold spacebar to jump as high as he wants and I don't know how to keep him from doing that. Here's my code: The Jump : if (FaKeyboard.IsKeyDown(Keys.Space)) { Jumping = true; xPosition -= new Vector2(0, 5); } if (xPosition.Y >= 10) { Jumping = false; Grounded = false; } The really simple basic Gravity: if (!Grounded && !Jumping) { xPosition += new Vector2(1, 3) * speed; } Here's where's the grounded is set to True or False with a Collision Rectangle MegamanRectangle = new Rectangle((int)xPosition.X, (int)xPosition.Y, FrameSizeDraw.X, FrameSizeDraw.Y); Rectangle Block1Rectangle = new Rectangle((int)0, (int)73, Block1.Width, Block1.Height); Rectangle Block2Rectangle = new Rectangle((int)500, (int)73, Block2.Width, Block2.Height); if ((MegamanRectangle.Intersects(Block1Rectangle) || (MegamanRectangle.Intersects(Block2Rectangle)))) { Grounded = true; } else { Grounded = false; } The grounded bool and The gravity have been tested and are working. Any ideas why? Thanks in advance and don't hesitate to ask if you need another Part of the Code.

    Read the article

  • Garbled text in Screen [closed]

    - by Prabin Dahal
    The graphical Interface in my system is garbled with some text. At the beginning I thought it was due to java and tomcat that I installed. But after removing java and tomcat, it is still the same. I am using ubuntu server and i have installed xfce desktop environment with oboard softkey I have added my dmesg output to this message. What is the problem here. I am not able to figure it out. Thank you for your help. Prabin [ 0.390936] usbcore: registered new interface driver usbfs [ 0.391006] usbcore: registered new interface driver hub [ 0.391147] usbcore: registered new device driver usb [ 0.391580] PCI: Using ACPI for IRQ routing [ 0.400509] PCI: pci_cache_line_size set to 64 bytes [ 0.400669] reserve RAM buffer: 000000000009ec00 - 000000000009ffff [ 0.400681] reserve RAM buffer: 000000007f597000 - 000000007fffffff [ 0.400699] reserve RAM buffer: 000000007f6f0000 - 000000007fffffff [ 0.401135] NetLabel: Initializing [ 0.401155] NetLabel: domain hash size = 128 [ 0.401168] NetLabel: protocols = UNLABELED CIPSOv4 [ 0.401212] NetLabel: unlabeled traffic allowed by default [ 0.401466] HPET: 3 timers in total, 0 timers will be used for per-cpu timer [ 0.401494] hpet0: at MMIO 0xfed00000, IRQs 2, 8, 0 [ 0.401520] hpet0: 3 comparators, 64-bit 14.318180 MHz counter [ 0.408228] Switching to clocksource hpet [ 0.434341] AppArmor: AppArmor Filesystem Enabled [ 0.434447] pnp: PnP ACPI init [ 0.434531] ACPI: bus type pnp registered [ 0.434784] pnp 00:00: [bus 00-ff] [ 0.434794] pnp 00:00: [io 0x0cf8-0x0cff] [ 0.434804] pnp 00:00: [io 0x0000-0x0cf7 window] [ 0.434813] pnp 00:00: [io 0x0d00-0xffff window] [ 0.434822] pnp 00:00: [mem 0x000a0000-0x000bffff window] [ 0.434831] pnp 00:00: [mem 0x00000000 window] [ 0.434840] pnp 00:00: [mem 0x80000000-0xffffffff window] [ 0.435018] pnp 00:00: Plug and Play ACPI device, IDs PNP0a08 PNP0a03 (active) [ 0.435526] pnp 00:01: [mem 0xe0000000-0xefffffff] [ 0.435537] pnp 00:01: [mem 0x7f700000-0x7f7fffff] [ 0.435545] pnp 00:01: [mem 0x7f800000-0x7fffffff] [ 0.435554] pnp 00:01: [mem 0xfee00000-0xfeefffff] [ 0.435727] system 00:01: [mem 0xe0000000-0xefffffff] has been reserved [ 0.435754] system 00:01: [mem 0x7f700000-0x7f7fffff] has been reserved [ 0.435775] system 00:01: [mem 0x7f800000-0x7fffffff] has been reserved [ 0.435796] system 00:01: [mem 0xfee00000-0xfeefffff] has been reserved [ 0.435818] system 00:01: Plug and Play ACPI device, IDs PNP0c01 (active) [ 0.436233] pnp 00:02: [io 0x0000-0xffffffffffffffff disabled] [ 0.436245] pnp 00:02: [io 0x0000-0xffffffffffffffff disabled] [ 0.436414] system 00:02: Plug and Play ACPI device, IDs PNP0c02 (active) [ 0.436512] pnp 00:03: [io 0x0060] [ 0.436521] pnp 00:03: [io 0x0064] [ 0.436548] pnp 00:03: [irq 1] [ 0.436682] pnp 00:03: Plug and Play ACPI device, IDs PNP0303 PNP030b (active) [ 0.436825] pnp 00:04: [irq 12] [ 0.436958] pnp 00:04: Plug and Play ACPI device, IDs PNP0f03 PNP0f13 (active) [ 0.437835] pnp 00:05: [io 0x03f8-0x03ff] [ 0.437861] pnp 00:05: [irq 4] [ 0.437870] pnp 00:05: [dma 0 disabled] [ 0.438142] pnp 00:05: Plug and Play ACPI device, IDs PNP0501 (active) [ 0.439014] pnp 00:06: [io 0x02f8-0x02ff] [ 0.439036] pnp 00:06: [irq 3] [ 0.439045] pnp 00:06: [dma 0 disabled] [ 0.439297] pnp 00:06: Plug and Play ACPI device, IDs PNP0501 (active) [ 0.439346] pnp 00:07: [io 0x0000-0x000f] [ 0.439355] pnp 00:07: [io 0x0081-0x0083] [ 0.439363] pnp 00:07: [io 0x0087] [ 0.439371] pnp 00:07: [io 0x0089-0x008b] [ 0.439380] pnp 00:07: [io 0x008f] [ 0.439388] pnp 00:07: [io 0x00c0-0x00df] [ 0.439563] system 00:07: Plug and Play ACPI device, IDs PNP0c01 (active) [ 0.439617] pnp 00:08: [io 0x0070-0x0077] [ 0.439639] pnp 00:08: [irq 8] [ 0.439751] pnp 00:08: Plug and Play ACPI device, IDs PNP0b00 (active) [ 0.439788] pnp 00:09: [io 0x0061] [ 0.439893] pnp 00:09: Plug and Play ACPI device, IDs PNP0800 (active) [ 0.439977] pnp 00:0a: [io 0x0010-0x001f] [ 0.439986] pnp 00:0a: [io 0x0022-0x003f] [ 0.439994] pnp 00:0a: [io 0x0044-0x005f] [ 0.440055] pnp 00:0a: [io 0x0063] [ 0.440063] pnp 00:0a: [io 0x0065] [ 0.440071] pnp 00:0a: [io 0x0067-0x006f] [ 0.440079] pnp 00:0a: [io 0x0072-0x007f] [ 0.440086] pnp 00:0a: [io 0x0080] [ 0.440094] pnp 00:0a: [io 0x0084-0x0086] [ 0.440102] pnp 00:0a: [io 0x0088] [ 0.440109] pnp 00:0a: [io 0x008c-0x008e] [ 0.440117] pnp 00:0a: [io 0x0090-0x009f] [ 0.440125] pnp 00:0a: [io 0x00a2-0x00bf] [ 0.440133] pnp 00:0a: [io 0x00e0-0x00ef] [ 0.440141] pnp 00:0a: [io 0x04d0-0x04d1] [ 0.440150] pnp 00:0a: [io 0x0000-0xffffffffffffffff disabled] [ 0.440160] pnp 00:0a: [io 0x0000-0xffffffffffffffff disabled] [ 0.440168] pnp 00:0a: [io 0x03f4] [ 0.440175] pnp 00:0a: [io 0x03f5] [ 0.440183] pnp 00:0a: [io 0x0374] [ 0.440190] pnp 00:0a: [io 0x0375] [ 0.440405] system 00:0a: [io 0x04d0-0x04d1] has been reserved [ 0.440432] system 00:0a: [io 0x03f4] has been reserved [ 0.440451] system 00:0a: [io 0x03f5] has been reserved [ 0.440469] system 00:0a: [io 0x0374] has been reserved [ 0.440488] system 00:0a: [io 0x0375] has been reserved [ 0.440508] system 00:0a: Plug and Play ACPI device, IDs PNP0c02 (active) [ 0.440550] pnp 00:0b: [io 0x00f0-0x00ff] [ 0.440572] pnp 00:0b: [irq 13] [ 0.440691] pnp 00:0b: Plug and Play ACPI device, IDs PNP0c04 (active) [ 0.440770] pnp 00:0c: [io 0x0810] [ 0.440779] pnp 00:0c: [io 0x0800-0x080f] [ 0.440787] pnp 00:0c: [io 0xffff] [ 0.440947] system 00:0c: [io 0x0810] has been reserved [ 0.440970] system 00:0c: [io 0x0800-0x080f] has been reserved [ 0.440989] system 00:0c: [io 0xffff] has been reserved [ 0.441010] system 00:0c: Plug and Play ACPI device, IDs PNP0c02 (active) [ 0.441620] pnp 00:0d: [io 0x0900-0x097f] [ 0.441630] pnp 00:0d: [io 0x09c0-0x09ff] [ 0.441639] pnp 00:0d: [io 0x0400-0x043f] [ 0.441647] pnp 00:0d: [io 0x0480-0x04bf] [ 0.441656] pnp 00:0d: [mem 0xfec00000-0xfec85fff] [ 0.441664] pnp 00:0d: [mem 0xfed1c000-0xfed1ffff] [ 0.441673] pnp 00:0d: [mem 0x000c0000-0x000dffff] [ 0.441689] pnp 00:0d: [mem 0x000e0000-0x000effff] [ 0.441697] pnp 00:0d: [mem 0x000f0000-0x000fffff] [ 0.441706] pnp 00:0d: [mem 0xff800000-0xffffffff] [ 0.441911] system 00:0d: [io 0x0900-0x097f] has been reserved [ 0.441935] system 00:0d: [io 0x09c0-0x09ff] has been reserved [ 0.441955] system 00:0d: [io 0x0400-0x043f] has been reserved [ 0.441975] system 00:0d: [io 0x0480-0x04bf] has been reserved [ 0.441997] system 00:0d: [mem 0xfec00000-0xfec85fff] could not be reserved [ 0.442019] system 00:0d: [mem 0xfed1c000-0xfed1ffff] has been reserved [ 0.442040] system 00:0d: [mem 0x000c0000-0x000dffff] could not be reserved [ 0.442061] system 00:0d: [mem 0x000e0000-0x000effff] could not be reserved [ 0.442082] system 00:0d: [mem 0x000f0000-0x000fffff] could not be reserved [ 0.442103] system 00:0d: [mem 0xff800000-0xffffffff] has been reserved [ 0.442126] system 00:0d: Plug and Play ACPI device, IDs PNP0c01 (active) [ 0.442308] pnp 00:0e: [mem 0xfed00000-0xfed003ff] [ 0.442454] pnp 00:0e: Plug and Play ACPI device, IDs PNP0103 (active) [ 0.442569] pnp 00:0f: [mem 0x7f6f0000-0x7f6fffff] [ 0.442762] system 00:0f: [mem 0x7f6f0000-0x7f6fffff] has been reserved [ 0.442788] system 00:0f: Plug and Play ACPI device, IDs PNP0c01 (active) [ 0.443360] pnp: PnP ACPI: found 16 devices [ 0.443378] ACPI: ACPI bus type pnp unregistered [ 0.443395] PnPBIOS: Disabled by ACPI PNP [ 0.486106] PCI: max bus depth: 3 pci_try_num: 4 [ 0.486189] pci 0000:00:1c.0: PCI bridge to [bus 01-01] [ 0.486217] pci 0000:00:1c.0: bridge window [io 0xe000-0xefff] [ 0.486241] pci 0000:00:1c.0: bridge window [mem 0xd0100000-0xd01fffff] [ 0.486266] pci 0000:00:1c.0: bridge window [mem 0xff700000-0xff7fffff pref] [ 0.486298] pci 0000:03:01.0: PCI bridge to [bus 04-04] [ 0.486319] pci 0000:03:01.0: bridge window [io 0xd000-0xdfff] [ 0.486348] pci 0000:03:01.0: bridge window [mem 0xd0000000-0xd00fffff] [ 0.486374] pci 0000:03:01.0: bridge window [mem 0xff600000-0xff6fffff 64bit pref] [ 0.486406] pci 0000:03:02.0: PCI bridge to [bus 05-05] [ 0.486444] pci 0000:03:03.0: PCI bridge to [bus 06-06] [ 0.486479] pci 0000:02:00.0: PCI bridge to [bus 03-06] [ 0.486499] pci 0000:02:00.0: bridge window [io 0xd000-0xdfff] [ 0.486522] pci 0000:02:00.0: bridge window [mem 0xd0000000-0xd00fffff] [ 0.486545] pci 0000:02:00.0: bridge window [mem 0xff600000-0xff6fffff 64bit pref] [ 0.486575] pci 0000:00:1c.1: PCI bridge to [bus 02-06] [ 0.486593] pci 0000:00:1c.1: bridge window [io 0xd000-0xdfff] [ 0.486615] pci 0000:00:1c.1: bridge window [mem 0xd0000000-0xd00fffff] [ 0.486637] pci 0000:00:1c.1: bridge window [mem 0xff600000-0xff6fffff pref] [ 0.486710] pci 0000:00:1c.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 0.486735] pci 0000:00:1c.0: setting latency timer to 64 [ 0.486774] pci 0000:00:1c.1: PCI INT B -> GSI 17 (level, low) -> IRQ 17 [ 0.486796] pci 0000:00:1c.1: setting latency timer to 64 [ 0.486817] pci 0000:02:00.0: setting latency timer to 64 [ 0.486836] pci 0000:03:01.0: setting latency timer to 64 [ 0.486858] pci 0000:03:02.0: setting latency timer to 64 [ 0.486880] pci 0000:03:03.0: setting latency timer to 64 [ 0.486893] pci_bus 0000:00: resource 4 [io 0x0000-0x0cf7] [ 0.486902] pci_bus 0000:00: resource 5 [io 0x0d00-0xffff] [ 0.486912] pci_bus 0000:00: resource 6 [mem 0x000a0000-0x000bffff] [ 0.486922] pci_bus 0000:00: resource 7 [mem 0x80000000-0xffffffff] [ 0.486932] pci_bus 0000:01: resource 0 [io 0xe000-0xefff] [ 0.486941] pci_bus 0000:01: resource 1 [mem 0xd0100000-0xd01fffff] [ 0.486951] pci_bus 0000:01: resource 2 [mem 0xff700000-0xff7fffff pref] [ 0.486961] pci_bus 0000:02: resource 0 [io 0xd000-0xdfff] [ 0.486970] pci_bus 0000:02: resource 1 [mem 0xd0000000-0xd00fffff] [ 0.486980] pci_bus 0000:02: resource 2 [mem 0xff600000-0xff6fffff pref] [ 0.486989] pci_bus 0000:03: resource 0 [io 0xd000-0xdfff] [ 0.486998] pci_bus 0000:03: resource 1 [mem 0xd0000000-0xd00fffff] [ 0.487008] pci_bus 0000:03: resource 2 [mem 0xff600000-0xff6fffff 64bit pref] [ 0.487018] pci_bus 0000:04: resource 0 [io 0xd000-0xdfff] [ 0.487028] pci_bus 0000:04: resource 1 [mem 0xd0000000-0xd00fffff] [ 0.487038] pci_bus 0000:04: resource 2 [mem 0xff600000-0xff6fffff 64bit pref] [ 0.487177] NET: Registered protocol family 2 [ 0.487405] IP route cache hash table entries: 32768 (order: 5, 131072 bytes) [ 0.488397] TCP established hash table entries: 131072 (order: 8, 1048576 bytes) [ 0.489792] TCP bind hash table entries: 65536 (order: 7, 524288 bytes) [ 0.490493] TCP: Hash tables configured (established 131072 bind 65536) [ 0.490525] TCP reno registered [ 0.490551] UDP hash table entries: 512 (order: 2, 16384 bytes) [ 0.490590] UDP-Lite hash table entries: 512 (order: 2, 16384 bytes) [ 0.490898] NET: Registered protocol family 1 [ 0.490970] pci 0000:00:02.0: Boot video device [ 0.491052] pci 0000:00:1d.0: PCI INT A -> GSI 20 (level, low) -> IRQ 20 [ 0.491092] pci 0000:00:1d.0: PCI INT A disabled [ 0.491134] pci 0000:00:1d.1: PCI INT B -> GSI 21 (level, low) -> IRQ 21 [ 0.491174] pci 0000:00:1d.1: PCI INT B disabled [ 0.491220] pci 0000:00:1d.2: PCI INT C -> GSI 22 (level, low) -> IRQ 22 [ 0.491259] pci 0000:00:1d.2: PCI INT C disabled [ 0.491307] pci 0000:00:1d.7: PCI INT D -> GSI 23 (level, low) -> IRQ 23 [ 0.864431] Freeing initrd memory: 13820k freed [ 2.088042] pci 0000:00:1d.7: EHCI: BIOS handoff failed (BIOS bug?) 01010001 [ 2.088207] pci 0000:00:1d.7: PCI INT D disabled [ 2.088267] PCI: CLS 64 bytes, default 64 [ 2.089248] audit: initializing netlink socket (disabled) [ 2.089287] type=2000 audit(1349363630.084:1): initialized [ 2.144783] highmem bounce pool size: 64 pages [ 2.144808] HugeTLB registered 2 MB page size, pre-allocated 0 pages [ 2.160057] VFS: Disk quotas dquot_6.5.2 [ 2.160232] Dquot-cache hash table entries: 1024 (order 0, 4096 bytes) [ 2.161716] fuse init (API version 7.17) [ 2.161995] msgmni has been set to 1713 [ 2.162925] Block layer SCSI generic (bsg) driver version 0.4 loaded (major 253) [ 2.163008] io scheduler noop registered [ 2.163023] io scheduler deadline registered [ 2.163048] io scheduler cfq registered (default) [ 2.163339] pcieport 0000:00:1c.0: setting latency timer to 64 [ 2.163530] pcieport 0000:00:1c.1: setting latency timer to 64 [ 2.163706] pcieport 0000:02:00.0: setting latency timer to 64 [ 2.163873] pcieport 0000:03:01.0: setting latency timer to 64 [ 2.163964] pcieport 0000:03:01.0: irq 40 for MSI/MSI-X [ 2.164193] pcieport 0000:03:02.0: setting latency timer to 64 [ 2.164272] pcieport 0000:03:02.0: irq 41 for MSI/MSI-X [ 2.164453] pcieport 0000:03:03.0: setting latency timer to 64 [ 2.164531] pcieport 0000:03:03.0: irq 42 for MSI/MSI-X [ 2.164783] pcieport 0000:00:1c.0: Signaling PME through PCIe PME interrupt [ 2.164801] pci 0000:01:00.0: Signaling PME through PCIe PME interrupt [ 2.164816] pcie_pme 0000:00:1c.0:pcie01: service driver pcie_pme loaded [ 2.164853] pcieport 0000:00:1c.1: Signaling PME through PCIe PME interrupt [ 2.164867] pcieport 0000:02:00.0: Signaling PME through PCIe PME interrupt [ 2.164880] pcieport 0000:03:01.0: Signaling PME through PCIe PME interrupt [ 2.164892] pci 0000:04:00.0: Signaling PME through PCIe PME interrupt [ 2.164904] pcieport 0000:03:02.0: Signaling PME through PCIe PME interrupt [ 2.164917] pcieport 0000:03:03.0: Signaling PME through PCIe PME interrupt [ 2.164932] pcie_pme 0000:00:1c.1:pcie01: service driver pcie_pme loaded [ 2.164988] pci_hotplug: PCI Hot Plug PCI Core version: 0.5 [ 2.165115] pciehp 0000:00:1c.0:pcie04: HPC vendor_id 8086 device_id 8110 ss_vid 8086 ss_did 8119 [ 2.165177] pciehp 0000:00:1c.0:pcie04: service driver pciehp loaded [ 2.165199] pciehp 0000:00:1c.1:pcie04: HPC vendor_id 8086 device_id 8112 ss_vid 8086 ss_did 8119 [ 2.165260] pciehp 0000:00:1c.1:pcie04: service driver pciehp loaded [ 2.165290] pciehp: PCI Express Hot Plug Controller Driver version: 0.4 [ 2.165488] intel_idle: MWAIT substates: 0x3020220 [ 2.165508] intel_idle: v0.4 model 0x1C [ 2.165513] intel_idle: lapic_timer_reliable_states 0x2 [ 2.165519] Marking TSC unstable due to TSC halts in idle states deeper than C2 [ 2.165779] input: Lid Switch as /devices/LNXSYSTM:00/device:00/PNP0C0D:00/input/input0 [ 2.165855] ACPI: Lid Switch [LID] [ 2.165983] input: Power Button as /devices/LNXSYSTM:00/device:00/PNP0C0C:00/input/input1 [ 2.166005] ACPI: Power Button [PWRB] [ 2.173811] thermal LNXTHERM:00: registered as thermal_zone0 [ 2.173829] ACPI: Thermal Zone [TZ00] (48 C) [ 2.174004] thermal LNXTHERM:01: registered as thermal_zone1 [ 2.174018] ACPI: Thermal Zone [TZ01] (34 C) [ 2.174194] thermal LNXTHERM:02: registered as thermal_zone2 [ 2.174207] ACPI: Thermal Zone [TZ02] (34 C) [ 2.174378] thermal LNXTHERM:03: registered as thermal_zone3 [ 2.174392] ACPI: Thermal Zone [TZ03] (34 C) [ 2.174503] ERST: Table is not found! [ 2.174513] GHES: HEST is not enabled! [ 2.174601] isapnp: Scanning for PnP cards... [ 2.176175] Serial: 8250/16550 driver, 32 ports, IRQ sharing enabled [ 2.196702] serial8250: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A [ 2.292409] serial8250: ttyS1 at I/O 0x2f8 (irq = 3) is a 16550A [ 2.528909] isapnp: No Plug & Play device found [ 2.588733] 00:05: ttyS0 at I/O 0x3f8 (irq = 4) is a 16550A [ 2.624523] 00:06: ttyS1 at I/O 0x2f8 (irq = 3) is a 16550A [ 2.640702] Linux agpgart interface v0.103 [ 2.645138] brd: module loaded [ 2.647452] loop: module loaded [ 2.648149] pata_acpi 0000:00:1f.1: setting latency timer to 64 [ 2.649238] Fixed MDIO Bus: probed [ 2.649315] tun: Universal TUN/TAP device driver, 1.6 [ 2.649327] tun: (C) 1999-2004 Max Krasnyansky <[email protected]> [ 2.649524] PPP generic driver version 2.4.2 [ 2.649824] ehci_hcd: USB 2.0 'Enhanced' Host Controller (EHCI) Driver [ 2.649884] ehci_hcd 0000:00:1d.7: PCI INT D -> GSI 23 (level, low) -> IRQ 23 [ 2.649937] ehci_hcd 0000:00:1d.7: setting latency timer to 64 [ 2.649946] ehci_hcd 0000:00:1d.7: EHCI Host Controller [ 2.650082] ehci_hcd 0000:00:1d.7: new USB bus registered, assigned bus number 1 [ 2.650148] ehci_hcd 0000:00:1d.7: debug port 1 [ 2.654045] ehci_hcd 0000:00:1d.7: cache line size of 64 is not supported [ 2.654093] ehci_hcd 0000:00:1d.7: irq 23, io mem 0xd02c4000 [ 2.668035] ehci_hcd 0000:00:1d.7: USB 2.0 started, EHCI 1.00 [ 2.668392] hub 1-0:1.0: USB hub found [ 2.668413] hub 1-0:1.0: 8 ports detected [ 2.668618] ohci_hcd: USB 1.1 'Open' Host Controller (OHCI) Driver [ 2.668666] uhci_hcd: USB Universal Host Controller Interface driver [ 2.668726] uhci_hcd 0000:00:1d.0: PCI INT A -> GSI 20 (level, low) -> IRQ 20 [ 2.668751] uhci_hcd 0000:00:1d.0: setting latency timer to 64 [ 2.668759] uhci_hcd 0000:00:1d.0: UHCI Host Controller [ 2.668910] uhci_hcd 0000:00:1d.0: new USB bus registered, assigned bus number 2 [ 2.668981] uhci_hcd 0000:00:1d.0: irq 20, io base 0x0000f040 [ 2.669335] hub 2-0:1.0: USB hub found [ 2.669355] hub 2-0:1.0: 2 ports detected [ 2.669508] uhci_hcd 0000:00:1d.1: PCI INT B -> GSI 21 (level, low) -> IRQ 21 [ 2.669531] uhci_hcd 0000:00:1d.1: setting latency timer to 64 [ 2.669538] uhci_hcd 0000:00:1d.1: UHCI Host Controller [ 2.669675] uhci_hcd 0000:00:1d.1: new USB bus registered, assigned bus number 3 [ 2.669739] uhci_hcd 0000:00:1d.1: irq 21, io base 0x0000f020 [ 2.670099] hub 3-0:1.0: USB hub found [ 2.670118] hub 3-0:1.0: 2 ports detected [ 2.670271] uhci_hcd 0000:00:1d.2: PCI INT C -> GSI 22 (level, low) -> IRQ 22 [ 2.670295] uhci_hcd 0000:00:1d.2: setting latency timer to 64 [ 2.670302] uhci_hcd 0000:00:1d.2: UHCI Host Controller [ 2.670435] uhci_hcd 0000:00:1d.2: new USB bus registered, assigned bus number 4 [ 2.670502] uhci_hcd 0000:00:1d.2: irq 22, io base 0x0000f000 [ 2.670869] hub 4-0:1.0: USB hub found [ 2.670888] hub 4-0:1.0: 2 ports detected [ 2.671186] usbcore: registered new interface driver libusual [ 2.671332] i8042: PNP: PS/2 Controller [PNP0303:PS2K,PNP0f03:PS2M] at 0x60,0x64 irq 1,12 [ 2.673408] serio: i8042 KBD port at 0x60,0x64 irq 1 [ 2.673437] serio: i8042 AUX port at 0x60,0x64 irq 12 [ 2.673844] mousedev: PS/2 mouse device common for all mice [ 2.674272] rtc_cmos 00:08: RTC can wake from S4 [ 2.674482] rtc_cmos 00:08: rtc core: registered rtc_cmos as rtc0 [ 2.674529] rtc0: alarms up to one year, y3k, 242 bytes nvram, hpet irqs [ 2.674691] device-mapper: uevent: version 1.0.3 [ 2.674903] device-mapper: ioctl: 4.22.0-ioctl (2011-10-19) initialised: [email protected] [ 2.675024] EISA: Probing bus 0 at eisa.0 [ 2.675037] EISA: Cannot allocate resource for mainboard [ 2.675050] Cannot allocate resource for EISA slot 1 [ 2.675061] Cannot allocate resource for EISA slot 2 [ 2.675072] Cannot allocate resource for EISA slot 3 [ 2.675083] Cannot allocate resource for EISA slot 4 [ 2.675094] Cannot allocate resource for EISA slot 5 [ 2.675105] Cannot allocate resource for EISA slot 6 [ 2.675116] Cannot allocate resource for EISA slot 7 [ 2.675127] Cannot allocate resource for EISA slot 8 [ 2.675137] EISA: Detected 0 cards. [ 2.675161] cpufreq-nforce2: No nForce2 chipset. [ 2.675401] cpuidle: using governor ladder [ 2.675786] cpuidle: using governor menu [ 2.675797] EFI Variables Facility v0.08 2004-May-17 [ 2.676429] TCP cubic registered [ 2.676751] NET: Registered protocol family 10 [ 2.678031] NET: Registered protocol family 17 [ 2.678052] Registering the dns_resolver key type [ 2.678107] Using IPI No-Shortcut mode [ 2.678515] PM: Hibernation image not present or could not be loaded. [ 2.678543] registered taskstats version 1 [ 2.701145] Magic number: 0:84:234 [ 2.701312] rtc_cmos 00:08: setting system clock to 2012-10-04 15:13:51 UTC (1349363631) [ 2.702280] BIOS EDD facility v0.16 2004-Jun-25, 0 devices found [ 2.702294] EDD information not available. [ 2.702858] Freeing unused kernel memory: 740k freed [ 2.703630] Write protecting the kernel text: 5816k [ 2.703692] Write protecting the kernel read-only data: 2376k [ 2.703706] NX-protecting the kernel data: 4424k [ 2.751226] udevd[84]: starting version 175 [ 2.980162] usb 1-1: new high-speed USB device number 2 using ehci_hcd [ 3.001394] r8169 Gigabit Ethernet driver 2.3LK-NAPI loaded [ 3.001474] r8169 0000:01:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 3.001554] r8169 0000:01:00.0: setting latency timer to 64 [ 3.001654] r8169 0000:01:00.0: irq 43 for MSI/MSI-X [ 3.004220] r8169 0000:01:00.0: eth0: RTL8168c/8111c at 0xf8416000, 00:18:92:03:10:46, XID 1c4000c0 IRQ 43 [ 3.004254] r8169 0000:01:00.0: eth0: jumbo features [frames: 6128 bytes, tx checksumming: ko] [ 3.004347] r8169 Gigabit Ethernet driver 2.3LK-NAPI loaded [ 3.005085] r8169 0000:04:00.0: PCI INT A -> GSI 18 (level, low) -> IRQ 18 [ 3.005182] r8169 0000:04:00.0: setting latency timer to 64 [ 3.005292] r8169 0000:04:00.0: irq 44 for MSI/MSI-X [ 3.007187] r8169 0000:04:00.0: eth1: RTL8168c/8111c at 0xf8418000, 00:18:92:03:10:47, XID 1c4000c0 IRQ 44 [ 3.007224] r8169 0000:04:00.0: eth1: jumbo features [frames: 6128 bytes, tx checksumming: ko] [ 3.034417] pata_sch 0000:00:1f.1: version 0.2 [ 3.034518] pata_sch 0000:00:1f.1: setting latency timer to 64 [ 3.036698] scsi0 : pata_sch [ 3.039842] scsi1 : pata_sch [ 3.040913] ata1: PATA max UDMA/100 cmd 0x1f0 ctl 0x3f6 bmdma 0xf060 irq 14 [ 3.040940] ata2: PATA max UDMA/100 cmd 0x170 ctl 0x376 bmdma 0xf068 irq 15 [ 3.131850] Initializing USB Mass Storage driver... [ 3.136405] scsi2 : usb-storage 1-1:1.0 [ 3.136642] usbcore: registered new interface driver usb-storage [ 3.136656] USB Mass Storage support registered. [ 3.524465] usb 3-1: new low-speed USB device number 2 using uhci_hcd [ 3.968144] usb 3-2: new full-speed USB device number 3 using uhci_hcd [ 4.137903] scsi 2:0:0:0: Direct-Access TS TS4GUFM-H 1100 PQ: 0 ANSI: 0 CCS [ 4.140067] sd 2:0:0:0: Attached scsi generic sg0 type 0 [ 4.140590] sd 2:0:0:0: [sda] 8028160 512-byte logical blocks: (4.11 GB/3.82 GiB) [ 4.141597] sd 2:0:0:0: [sda] Write Protect is off [ 4.141618] sd 2:0:0:0: [sda] Mode Sense: 43 00 00 00 [ 4.142974] sd 2:0:0:0: [sda] No Caching mode page present [ 4.143000] sd 2:0:0:0: [sda] Assuming drive cache: write through [ 4.145837] sd 2:0:0:0: [sda] No Caching mode page present [ 4.145858] sd 2:0:0:0: [sda] Assuming drive cache: write through [ 4.147931] sda: sda1 sda2 < sda5 > [ 4.150972] sd 2:0:0:0: [sda] No Caching mode page present [ 4.151001] sd 2:0:0:0: [sda] Assuming drive cache: write through [ 4.151023] sd 2:0:0:0: [sda] Attached SCSI disk [ 4.249168] input: HID 046a:004b as /devices/pci0000:00/0000:00:1d.1/usb3/3-1/3-1:1.0/input/input2 [ 4.249579] generic-usb 0003:046A:004B.0001: input,hidraw0: USB HID v1.11 Keyboard [HID 046a:004b] on usb-0000:00:1d.1-1/input0 [ 4.287805] input: HID 046a:004b as /devices/pci0000:00/0000:00:1d.1/usb3/3-1/3-1:1.1/input/input3 [ 4.289235] generic-usb 0003:046A:004B.0002: input,hidraw1: USB HID v1.11 Mouse [HID 046a:004b] on usb-0000:00:1d.1-1/input1 [ 4.297604] input: EloTouchSystems,Inc Elo TouchSystems 2216 AccuTouch\xffffffc2\xffffffae\xffffffae USB Touchmonitor Interface as /devices/pci0000:00/0000:00:1d.1/usb3/3-2/3-2:1.0/input/input4 [ 4.298913] generic-usb 0003:04E7:0050.0003: input,hidraw2: USB HID v1.00 Pointer [EloTouchSystems,Inc Elo TouchSystems 2216 AccuTouch\xffffffc2\xffffffae\xffffffae USB Touchmonitor Interface] on usb-0000:00:1d.1-2/input0 [ 4.299878] usbcore: registered new interface driver usbhid [ 4.299925] usbhid: USB HID core driver [ 4.352639] EXT4-fs (sda1): INFO: recovery required on readonly filesystem [ 4.352661] EXT4-fs (sda1): write access will be enabled during recovery [ 8.519257] EXT4-fs (sda1): recovery complete [ 8.564389] EXT4-fs (sda1): mounted filesystem with ordered data mode. Opts: (null) [ 14.280922] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 14.280944] ADDRCONF(NETDEV_UP): eth1: link is not ready [ 14.310368] udevd[308]: starting version 175 [ 14.353873] Adding 1045500k swap on /dev/sda5. Priority:-1 extents:1 across:1045500k [ 14.428718] lp: driver loaded but no devices found [ 14.521667] EXT4-fs (sda1): re-mounted. Opts: errors=remount-ro [ 15.073459] [drm] Initialized drm 1.1.0 20060810 [ 15.097073] psb_gfx: module is from the staging directory, the quality is unknown, you have been warned. [ 15.180630] gma500 0000:00:02.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 15.180648] gma500 0000:00:02.0: setting latency timer to 64 [ 15.182117] Stolen memory information [ 15.182127] base in RAM: 0x7f800000 [ 15.182134] size: 7932K, calculated by (GTT RAM base) - (Stolen base), seems wrong [ 15.182143] the correct size should be: 8M(dvmt mode=3) [ 15.234889] Set up 1983 stolen pages starting at 0x7f800000, GTT offset 0K [ 15.235126] [drm] SGX core id = 0x01130000 [ 15.235135] [drm] SGX core rev major = 0x01, minor = 0x02 [ 15.235143] [drm] SGX core rev maintenance = 0x01, designer = 0x00 [ 15.268796] [Firmware Bug]: ACPI: No _BQC method, cannot determine initial brightness [ 15.269888] acpi device:04: registered as cooling_device2 [ 15.270568] acpi device:05: registered as cooling_device3 [ 15.270947] input: Video Bus as /devices/LNXSYSTM:00/device:00/PNP0A08:00/LNXVIDEO:00/input/input5 [ 15.271238] ACPI: Video Device [GFX0] (multi-head: yes rom: no post: no) [ 15.271424] [drm] Supports vblank timestamp caching Rev 1 (10.10.2010). [ 15.271434] [drm] No driver support for vblank timestamp query. [ 15.374694] type=1400 audit(1349363644.167:2): apparmor="STATUS" operation="profile_load" name="/sbin/dhclient" pid=435 comm="apparmor_parser" [ 15.385518] type=1400 audit(1349363644.179:3): apparmor="STATUS" operation="profile_load" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=435 comm="apparmor_parser" [ 15.386369] type=1400 audit(1349363644.179:4): apparmor="STATUS" operation="profile_load" name="/usr/lib/connman/scripts/dhclient-script" pid=435 comm="apparmor_parser" [ 15.677514] r8169 0000:01:00.0: eth0: link down [ 15.694828] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 16.537490] gma500 0000:00:02.0: allocated 800x480 fb [ 16.558066] fbcon: psbfb (fb0) is primary device [ 16.747122] gma500 0000:00:02.0: BL bug: Reg 00000000 save 00000000 [ 16.775550] Console: switching to colour frame buffer device 100x30 [ 16.781804] fb0: psbfb frame buffer device [ 16.781812] drm: registered panic notifier [ 16.870168] [drm] Initialized gma500 1.0.0 2011-06-06 for 0000:00:02.0 on minor 0 [ 16.871166] snd_hda_intel 0000:00:1b.0: power state changed by ACPI to D0 [ 16.871186] snd_hda_intel 0000:00:1b.0: power state changed by ACPI to D0 [ 16.871207] snd_hda_intel 0000:00:1b.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [ 16.871284] snd_hda_intel 0000:00:1b.0: setting latency timer to 64 [ 29.338953] r8169 0000:01:00.0: eth0: link up [ 29.339471] ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready [ 31.427223] init: failsafe main process (675) killed by TERM signal [ 31.522411] type=1400 audit(1349363660.316:5): apparmor="STATUS" operation="profile_replace" name="/sbin/dhclient" pid=889 comm="apparmor_parser" [ 31.523956] type=1400 audit(1349363660.316:6): apparmor="STATUS" operation="profile_replace" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=889 comm="apparmor_parser" [ 31.524882] type=1400 audit(1349363660.320:7): apparmor="STATUS" operation="profile_replace" name="/usr/lib/connman/scripts/dhclient-script" pid=889 comm="apparmor_parser" [ 31.525940] type=1400 audit(1349363660.320:8): apparmor="STATUS" operation="profile_load" name="/usr/sbin/tcpdump" pid=891 comm="apparmor_parser" [ 34.526445] postgres (1003): /proc/1003/oom_adj is deprecated, please use /proc/1003/oom_score_adj instead. [ 40.144048] eth0: no IPv6 routers present

    Read the article

  • Collision Detection Code Structure with Sloped Tiles

    - by ProgrammerGuy123
    Im making a 2D tile based game with slopes, and I need help on the collision detection. This question is not about determining the vertical position of the player given the horizontal position when on a slope, but rather the structure of the code. Here is my pseudocode for the collision detection: void Player::handleTileCollisions() { int left = //find tile that's left of player int right = //find tile that's right of player int top = //find tile that's above player int bottom = //find tile that's below player for(int x = left; x <= right; x++) { for(int y = top; y <= bottom; y++) { switch(getTileType(x, y)) { case 1: //solid tile { //resolve collisions break; } case 2: //sloped tile { //resolve collisions break; } default: //air tile or whatever else break; } } } } When the player is on a sloped tile, he is actually inside the tile itself horizontally, that way the player doesn't look like he is floating. This creates a problem because when there is a sloped tile next to a solid square tile, the player can't move passed it because this algorithm resolves any collisions with the solid tile. Here is a gif showing this problem: So what is a good way to structure my code so that when the player is inside a sloped tile, solid tiles get ignored?

    Read the article

  • Per Pixel Collision Detection

    - by CJ Cohorst
    Just a quick question, I have this collision detection code: public bool PerPixelCollision(Player player, Game1 dog) { Matrix atob = player.Transform * Matrix.Invert(dog.Transform); Vector2 stepX = Vector2.TransformNormal(Vector2.UnitX, atob); Vector2 stepY = Vector2.TransformNormal(Vector2.UnitY, atob); Vector2 iBPos = Vector2.Transform(Vector2.Zero, atob); for(int deltax = 0; deltax < player.playerTexture.Width; deltax++) { Vector2 bpos = iBPos; for (int deltay = 0; deltay < player.playerTexture.Height; deltay++) { int bx = (int)bpos.X; int by = (int)bpos.Y; if (bx >= 0 && bx < dog.dogTexture.Width && by >= 0 && by < dog.dogTexture.Height) { if (player.TextureData[deltax + deltay * player.playerTexture.Width].A > 150 && dog.TextureData[bx + by * dog.Texture.Width].A > 150) { return true; } } bpos += stepY; } iBPos += stepX; } return false; } What I want to know is where to put in the code where something happens. For example, I want to put in player.playerPosition.X -= 200 just as a test, but I don't know where to put it. I tried putting it under the return true and above it, but under it, it said unreachable code, and above it nothing happened. I also tried putting it by bpos += stepY; but that didn't work either. Where do I put the code? Any help is appreciated. Thanks in advance!

    Read the article

  • Adding objects to the environment at timed intervals

    - by david
    I am using an ArrayList to handle objects and at each interval of 120 frames, I am adding a new object of the same type at a random location along the z-axis of 60. The problem is, it doesn't add just 1. It depends on how many are in the list. If I kill the Fox before the time interval when one is supposed to spawn comes, then no Fox will be spawned. If I don't kill any foxes, it grows exponentially. I only want one Fox to be added every 120 frames. This problem never happened before when I created new ones and added them to the environment. Any insights? Here is my code: /**** FOX CLASS ****/ import env3d.EnvObject; import java.util.ArrayList; public class Fox extends Creature { private int frame = 0; public Fox(double x, double y, double z) { super(x, y, z); // Must use the mutator as the fields have private access // in the parent class setTexture("models/fox/fox.png"); setModel("models/fox/fox.obj"); setScale(1.4); } public void move(ArrayList<Creature> creatures, ArrayList<Creature> dead_creatures, ArrayList<Creature> new_creatures) { frame++; setX(getX()-0.2); setRotateY(270); if (frame > 120) { Fox f = new Fox(60, 1, (int)(Math.random()*28)+1); new_creatures.add(f); frame = 0; } for (Creature c : creatures) { if (this.distance(c) < this.getScale()+c.getScale() && c instanceof Tux) { dead_creatures.add(c); } } for (Creature c : creatures) { if (c.getX() < 1 && c instanceof Fox) { dead_creatures.add(c); } } } } import env3d.Env; import java.util.ArrayList; import org.lwjgl.input.Keyboard; /** * A predator and prey simulation. Fox is the predator and Tux is the prey. */ public class Game { private Env env; private boolean finished; private ArrayList<Creature> creatures; private KingTux king; private Snowball ball; private int tuxcounter; private int kills; /** * Constructor for the Game class. It sets up the foxes and tuxes. */ public Game() { // we use a separate ArrayList to keep track of each animal. // our room is 50 x 50. creatures = new ArrayList<Creature>(); for (int i = 0; i < 10; i++) { creatures.add(new Tux((int)(Math.random()*10)+1, 1, (int)(Math.random()*28)+1)); } for (int i = 0; i < 1; i++) { creatures.add(new Fox(60, 1, (int)(Math.random()*28)+1)); } king = new KingTux(25, 1, 35); ball = new Snowball(-400, -400, -400); } /** * Play the game */ public void play() { finished = false; // Create the new environment. Must be done in the same // method as the game loop env = new Env(); // Make the room 50 x 50. env.setRoom(new Room()); // Add all the animals into to the environment for display for (Creature c : creatures) { env.addObject(c); } for (Creature c : creatures) { if (c instanceof Tux) { tuxcounter++; } } env.addObject(king); env.addObject(ball); // Sets up the camera env.setCameraXYZ(30, 50, 55); env.setCameraPitch(-63); // Turn off the default controls env.setDefaultControl(false); // A list to keep track of dead tuxes. ArrayList<Creature> dead_creatures = new ArrayList<Creature>(); ArrayList<Creature> new_creatures = new ArrayList<Creature>(); // The main game loop while (!finished) { if (env.getKey() == 1 || tuxcounter == 0) { finished = true; } env.setDisplayStr("Tuxes: " + tuxcounter, 15, 0); env.setDisplayStr("Kills: " + kills, 140, 0); processInput(); ball.move(); king.check(); // Move each fox and tux. for (Creature c : creatures) { c.move(creatures, dead_creatures, new_creatures); } for (Creature c : creatures) { if (c.distance(ball) < c.getScale()+ball.getScale() && c instanceof Fox) { dead_creatures.add(c); ball.setX(-400); ball.setY(-400); ball.setZ(-400); kills++; } } // Clean up of the dead tuxes. for (Creature c : dead_creatures) { if (c instanceof Tux) { tuxcounter--; } env.removeObject(c); creatures.remove(c); } for (Creature c : new_creatures) { creatures.add(c); env.addObject(c); } // we clear the ArrayList for the next loop. We could create a new one // every loop but that would be very inefficient. dead_creatures.clear(); new_creatures.clear(); // Update display env.advanceOneFrame(); } // Just a little clean up env.exit(); } private void processInput() { int keyDown = env.getKeyDown(); int key = env.getKey(); if (keyDown == 203) { king.setX(king.getX()-1); } else if (keyDown == 205) { king.setX(king.getX()+1); } if (ball.getX() <= -400 && key == Keyboard.KEY_S) { ball.setX(king.getX()); ball.setY(king.getY()); ball.setZ(king.getZ()); } } /** * Main method to launch the program. */ public static void main(String args[]) { (new Game()).play(); } } /**** CREATURE CLASS ****/ /* (Parent class to Tux, Fox, and KingTux) */ import env3d.EnvObject; import java.util.ArrayList; abstract public class Creature extends EnvObject { private int frame; private double rand; /** * Constructor for objects of class Creature */ public Creature(double x, double y, double z) { setX(x); setY(y); setZ(z); setScale(1); rand = Math.random(); } private void randomGenerator() { rand = Math.random(); } public void move(ArrayList<Creature> creatures, ArrayList<Creature> dead_creatures, ArrayList<Creature> new_creatures) { frame++; if (frame > 12) { randomGenerator(); frame = 0; } // if (rand < 0.25) { // setX(getX()+0.3); // setRotateY(90); // } else if (rand < 0.5) { // setX(getX()-0.3); // setRotateY(270); // } else if (rand < 0.75) { // setZ(getZ()+0.3); // setRotateY(0); // } else if (rand < 1) { // setZ(getZ()-0.3); // setRotateY(180); // } if (rand < 0.5) { setRotateY(getRotateY()-7); } else if (rand < 1) { setRotateY(getRotateY()+7); } setX(getX()+Math.sin(Math.toRadians(getRotateY()))*0.5); setZ(getZ()+Math.cos(Math.toRadians(getRotateY()))*0.5); if (getX() < getScale()) setX(getScale()); if (getX() > 50-getScale()) setX(50 - getScale()); if (getZ() < getScale()) setZ(getScale()); if (getZ() > 50-getScale()) setZ(50 - getScale()); // The move method now handles collision detection if (this instanceof Fox) { for (Creature c : creatures) { if (c.distance(this) < c.getScale()+this.getScale() && c instanceof Tux) { dead_creatures.add(c); } } } } } The rest of the classes are a bit trivial to this specific problem.

    Read the article

  • Where should I place my reaction code in Per-Pixel Collision Detection?

    - by CJ Cohorst
    I have this collision detection code: public bool PerPixelCollision(Player player, Game1 dog) { Matrix atob = player.Transform * Matrix.Invert(dog.Transform); Vector2 stepX = Vector2.TransformNormal(Vector2.UnitX, atob); Vector2 stepY = Vector2.TransformNormal(Vector2.UnitY, atob); Vector2 iBPos = Vector2.Transform(Vector2.Zero, atob); for(int deltax = 0; deltax < player.playerTexture.Width; deltax++) { Vector2 bpos = iBPos; for (int deltay = 0; deltay < player.playerTexture.Height; deltay++) { int bx = (int)bpos.X; int by = (int)bpos.Y; if (bx >= 0 && bx < dog.dogTexture.Width && by >= 0 && by < dog.dogTexture.Height) { if (player.TextureData[deltax + deltay * player.playerTexture.Width].A > 150 && dog.TextureData[bx + by * dog.Texture.Width].A > 150) { return true; } } bpos += stepY; } iBPos += stepX; } return false; } What I want to know is where to put in the code where something happens. For example, I want to put in player.playerPosition.X -= 200 just as a test, but I don't know where to put it. I tried putting it under the return true and above it, but under it, it said unreachable code, and above it nothing happened. I also tried putting it by bpos += stepY; but that didn't work either. Where do I put the code?

    Read the article

  • Diamond-square terrain generation problem

    - by kafka
    I've implemented a diamond-square algorithm according to this article: http://www.lighthouse3d.com/opengl/terrain/index.php?mpd2 The problem is that I get these steep cliffs all over the map. It happens on the edges, when the terrain is recursively subdivided: Here is the source: void DiamondSquare(unsigned x1,unsigned y1,unsigned x2,unsigned y2,float range) { int c1 = (int)x2 - (int)x1; int c2 = (int)y2 - (int)y1; unsigned hx = (x2 - x1)/2; unsigned hy = (y2 - y1)/2; if((c1 <= 1) || (c2 <= 1)) return; // Diamond stage float a = m_heightmap[x1][y1]; float b = m_heightmap[x2][y1]; float c = m_heightmap[x1][y2]; float d = m_heightmap[x2][y2]; float e = (a+b+c+d) / 4 + GetRnd() * range; m_heightmap[x1 + hx][y1 + hy] = e; // Square stage float f = (a + c + e + e) / 4 + GetRnd() * range; m_heightmap[x1][y1+hy] = f; float g = (a + b + e + e) / 4 + GetRnd() * range; m_heightmap[x1+hx][y1] = g; float h = (b + d + e + e) / 4 + GetRnd() * range; m_heightmap[x2][y1+hy] = h; float i = (c + d + e + e) / 4 + GetRnd() * range; m_heightmap[x1+hx][y2] = i; DiamondSquare(x1, y1, x1+hx, y1+hy, range / 2.0); // Upper left DiamondSquare(x1+hx, y1, x2, y1+hy, range / 2.0); // Upper right DiamondSquare(x1, y1+hy, x1+hx, y2, range / 2.0); // Lower left DiamondSquare(x1+hx, y1+hy, x2, y2, range / 2.0); // Lower right } Parameters: (x1,y1),(x2,y2) - coordinates that define a region on a heightmap (default (0,0)(128,128)). range - basically max. height. (default 32) Help would be greatly appreciated.

    Read the article

  • Keeping Aspect Screen Ration While Stays in Center

    - by David Dimalanta
    I sqw and I tried this suggestion on PISTACHIO BRAINSTORMIN* on how to make a good and adaptive screen ration. For every different screen size, let's say I put the perfect circle as a Texture in LibGDX and played it on screen. Here's the blueberry image example and it's perfectly rounded: When I played it on the Google Nexus 7, the circle turn into a slightly oblonng shape, resembling as it was being flatten a bit. Please observe this snapshot below and you can see the blueberry is almost but slightly not perfectly rounded: Now, when I tried the suggested code for aspect ratio, the perfect circle retained but another problem is occured. The problem is that I expecting for a view on center but instead it's been moved to the right offset leaving with a half black screen. This would be look like this: Here is my code using the suggested screen aspect ratio code: Class' Field // Ingredients Needed for Screen Aspect Ratio private static final int VIRTUAL_WIDTH = 720; private static final int VIRTUAL_HEIGHT = 1280; private static final float ASPECT_RATIO = ((float) VIRTUAL_WIDTH)/((float) VIRTUAL_HEIGHT); private Camera Mother_Camera; private Rectangle Viewport; render() // Camera updating... Mother_Camera.update(); Mother_Camera.apply(Gdx.gl10); // Reseting viewport... Gdx.gl.glViewport((int) Viewport.x, (int) Viewport.y, (int) Viewport.width, (int) Viewport.height); // Clear previous frame. Gdx.gl.glClearColor(0, 0, 0, 1); Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT); show() Mother_Camera = new OrthographicCamera(VIRTUAL_WIDTH, VIRTUAL_HEIGHT); Was this code useful for screen aspect ratio-proportion fixing or it is statically dependent on actual device's width and height? *see http://blog.acamara.es/2012/02/05/keep-screen-aspect-ratio-with-different-resolutions-using-libgdx/#comment-317

    Read the article

  • ASP.NET ViewState Tips and Tricks #1

    - by João Angelo
    In User Controls or Custom Controls DO NOT use ViewState to store non public properties. Persisting non public properties in ViewState results in loss of functionality if the Page hosting the controls has ViewState disabled since it can no longer reset values of non public properties on page load. Example: public class ExampleControl : WebControl { private const string PublicViewStateKey = "Example_Public"; private const string NonPublicViewStateKey = "Example_NonPublic"; // DO public int Public { get { object o = this.ViewState[PublicViewStateKey]; if (o == null) return default(int); return (int)o; } set { this.ViewState[PublicViewStateKey] = value; } } // DO NOT private int NonPublic { get { object o = this.ViewState[NonPublicViewStateKey]; if (o == null) return default(int); return (int)o; } set { this.ViewState[NonPublicViewStateKey] = value; } } } // Page with ViewState disabled public partial class ExamplePage : Page { protected override void OnLoad(EventArgs e) { base.OnLoad(e); this.Example.Public = 10; // Restore Public value this.Example.NonPublic = 20; // Compile Error! } }

    Read the article

  • Keeping Aspect Screen Ratio While Stays in Center

    - by David Dimalanta
    I sqw and I tried this suggestion on PISTACHIO BRAINSTORMIN* on how to make a good and adaptive screen ration. For every different screen size, let's say I put the perfect circle as a Texture in LibGDX and played it on screen. Here's the blueberry image example and it's perfectly rounded: When I played it on the Google Nexus 7, the circle turn into a slightly oblonng shape, resembling as it was being flatten a bit. Please observe this snapshot below and you can see the blueberry is almost but slightly not perfectly rounded: Now, when I tried the suggested code for aspect ratio, the perfect circle retained but another problem is occured. The problem is that I expecting for a view on center but instead it's been moved to the right offset leaving with a half black screen. This would be look like this: Here is my code using the suggested screen aspect ratio code: Class' Field // Ingredients Needed for Screen Aspect Ratio private static final int VIRTUAL_WIDTH = 720; private static final int VIRTUAL_HEIGHT = 1280; private static final float ASPECT_RATIO = ((float) VIRTUAL_WIDTH)/((float) VIRTUAL_HEIGHT); private Camera Mother_Camera; private Rectangle Viewport; render() // Camera updating... Mother_Camera.update(); Mother_Camera.apply(Gdx.gl10); // Reseting viewport... Gdx.gl.glViewport((int) Viewport.x, (int) Viewport.y, (int) Viewport.width, (int) Viewport.height); // Clear previous frame. Gdx.gl.glClearColor(0, 0, 0, 1); Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT); show() Mother_Camera = new OrthographicCamera(VIRTUAL_WIDTH, VIRTUAL_HEIGHT); Was this code useful for screen aspect ratio-proportion fixing or it is statically dependent on actual device's width and height? *see http://blog.acamara.es/2012/02/05/keep-screen-aspect-ratio-with-different-resolutions-using-libgdx/#comment-317

    Read the article

  • C#/.NET Little Wonders: Skip() and Take()

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. I’ve covered many valuable methods from System.Linq class library before, so you already know it’s packed with extension-method goodness.  Today I’d like to cover two small families I’ve neglected to mention before: Skip() and Take().  While these methods seem so simple, they are an easy way to create sub-sequences for IEnumerable<T>, much the way GetRange() creates sub-lists for List<T>. Skip() and SkipWhile() The Skip() family of methods is used to ignore items in a sequence until either a certain number are passed, or until a certain condition becomes false.  This makes the methods great for starting a sequence at a point possibly other than the first item of the original sequence.   The Skip() family of methods contains the following methods (shown below in extension method syntax): Skip(int count) Ignores the specified number of items and returns a sequence starting at the item after the last skipped item (if any).  SkipWhile(Func<T, bool> predicate) Ignores items as long as the predicate returns true and returns a sequence starting with the first item to invalidate the predicate (if any).  SkipWhile(Func<T, int, bool> predicate) Same as above, but passes not only the item itself to the predicate, but also the index of the item.  For example: 1: var list = new[] { 3.14, 2.72, 42.0, 9.9, 13.0, 101.0 }; 2:  3: // sequence contains { 2.72, 42.0, 9.9, 13.0, 101.0 } 4: var afterSecond = list.Skip(1); 5: Console.WriteLine(string.Join(", ", afterSecond)); 6:  7: // sequence contains { 42.0, 9.9, 13.0, 101.0 } 8: var afterFirstDoubleDigit = list.SkipWhile(v => v < 10.0); 9: Console.WriteLine(string.Join(", ", afterFirstDoubleDigit)); Note that the SkipWhile() stops skipping at the first item that returns false and returns from there to the rest of the sequence, even if further items in that sequence also would satisfy the predicate (otherwise, you’d probably be using Where() instead, of course). If you do use the form of SkipWhile() which also passes an index into the predicate, then you should keep in mind that this is the index of the item in the sequence you are calling SkipWhile() from, not the index in the original collection.  That is, consider the following: 1: var list = new[] { 1.0, 1.1, 1.2, 2.2, 2.3, 2.4 }; 2:  3: // Get all items < 10, then 4: var whatAmI = list 5: .Skip(2) 6: .SkipWhile((i, x) => i > x); For this example the result above is 2.4, and not 1.2, 2.2, 2.3, 2.4 as some might expect.  The key is knowing what the index is that’s passed to the predicate in SkipWhile().  In the code above, because Skip(2) skips 1.0 and 1.1, the sequence passed to SkipWhile() begins at 1.2 and thus it considers the “index” of 1.2 to be 0 and not 2.  This same logic applies when using any of the extension methods that have an overload that allows you to pass an index into the delegate, such as SkipWhile(), TakeWhile(), Select(), Where(), etc.  It should also be noted, that it’s fine to Skip() more items than exist in the sequence (an empty sequence is the result), or even to Skip(0) which results in the full sequence.  So why would it ever be useful to return Skip(0) deliberately?  One reason might be to return a List<T> as an immutable sequence.  Consider this class: 1: public class MyClass 2: { 3: private List<int> _myList = new List<int>(); 4:  5: // works on surface, but one can cast back to List<int> and mutate the original... 6: public IEnumerable<int> OneWay 7: { 8: get { return _myList; } 9: } 10:  11: // works, but still has Add() etc which throw at runtime if accidentally called 12: public ReadOnlyCollection<int> AnotherWay 13: { 14: get { return new ReadOnlyCollection<int>(_myList); } 15: } 16:  17: // immutable, can't be cast back to List<int>, doesn't have methods that throw at runtime 18: public IEnumerable<int> YetAnotherWay 19: { 20: get { return _myList.Skip(0); } 21: } 22: } This code snippet shows three (among many) ways to return an internal sequence in varying levels of immutability.  Obviously if you just try to return as IEnumerable<T> without doing anything more, there’s always the danger the caller could cast back to List<T> and mutate your internal structure.  You could also return a ReadOnlyCollection<T>, but this still has the mutating methods, they just throw at runtime when called instead of giving compiler errors.  Finally, you can return the internal list as a sequence using Skip(0) which skips no items and just runs an iterator through the list.  The result is an iterator, which cannot be cast back to List<T>.  Of course, there’s many ways to do this (including just cloning the list, etc.) but the point is it illustrates a potential use of using an explicit Skip(0). Take() and TakeWhile() The Take() and TakeWhile() methods can be though of as somewhat of the inverse of Skip() and SkipWhile().  That is, while Skip() ignores the first X items and returns the rest, Take() returns a sequence of the first X items and ignores the rest.  Since they are somewhat of an inverse of each other, it makes sense that their calling signatures are identical (beyond the method name obviously): Take(int count) Returns a sequence containing up to the specified number of items. Anything after the count is ignored. TakeWhile(Func<T, bool> predicate) Returns a sequence containing items as long as the predicate returns true.  Anything from the point the predicate returns false and beyond is ignored. TakeWhile(Func<T, int, bool> predicate) Same as above, but passes not only the item itself to the predicate, but also the index of the item. So, for example, we could do the following: 1: var list = new[] { 1.0, 1.1, 1.2, 2.2, 2.3, 2.4 }; 2:  3: // sequence contains 1.0 and 1.1 4: var firstTwo = list.Take(2); 5:  6: // sequence contains 1.0, 1.1, 1.2 7: var underTwo = list.TakeWhile(i => i < 2.0); The same considerations for SkipWhile() with index apply to TakeWhile() with index, of course.  Using Skip() and Take() for sub-sequences A few weeks back, I talked about The List<T> Range Methods and showed how they could be used to get a sub-list of a List<T>.  This works well if you’re dealing with List<T>, or don’t mind converting to List<T>.  But if you have a simple IEnumerable<T> sequence and want to get a sub-sequence, you can also use Skip() and Take() to much the same effect: 1: var list = new List<double> { 1.0, 1.1, 1.2, 2.2, 2.3, 2.4 }; 2:  3: // results in List<T> containing { 1.2, 2.2, 2.3 } 4: var subList = list.GetRange(2, 3); 5:  6: // results in sequence containing { 1.2, 2.2, 2.3 } 7: var subSequence = list.Skip(2).Take(3); I say “much the same effect” because there are some differences.  First of all GetRange() will throw if the starting index or the count are greater than the number of items in the list, but Skip() and Take() do not.  Also GetRange() is a method off of List<T>, thus it can use direct indexing to get to the items much more efficiently, whereas Skip() and Take() operate on sequences and may actually have to walk through the items they skip to create the resulting sequence.  So each has their pros and cons.  My general rule of thumb is if I’m already working with a List<T> I’ll use GetRange(), but for any plain IEnumerable<T> sequence I’ll tend to prefer Skip() and Take() instead. Summary The Skip() and Take() families of LINQ extension methods are handy for producing sub-sequences from any IEnumerable<T> sequence.  Skip() will ignore the specified number of items and return the rest of the sequence, whereas Take() will return the specified number of items and ignore the rest of the sequence.  Similarly, the SkipWhile() and TakeWhile() methods can be used to skip or take items, respectively, until a given predicate returns false.    Technorati Tags: C#, CSharp, .NET, LINQ, IEnumerable<T>, Skip, Take, SkipWhile, TakeWhile

    Read the article

  • LWJGL texture bleeding fix won't work

    - by user1990950
    I tried a lot of things to fix texture bleeding, but nothing works. I don't want to add a transparent border around my textures, because I already got too many and it would take too much time and I can't do it with code because I'm loading textures with slick. My textures are seperate textures and they seem to wrap on the other side (texture bleeding). Here are the textures that are "bleeding": The head, body, arm and leg are seperate textures. Here's the code I'm using to draw a texture: public static void drawTextureN(Texture texture, Vector2f position, Vector2f translation, Vector2f origin,Vector2f scale,float rotation, Color color, FlipState flipState) { texture.setTextureFilter(GL11.GL_NEAREST); color.bind(); texture.bind(); GL11.glTexParameteri(GL11.GL_TEXTURE_2D, GL11.GL_TEXTURE_WRAP_S, GL12.GL_CLAMP_TO_EDGE); GL11.glTexParameteri(GL11.GL_TEXTURE_2D, GL11.GL_TEXTURE_WRAP_T, GL12.GL_CLAMP_TO_EDGE); GL11.glTexParameteri(GL11.GL_TEXTURE_2D, GL11.GL_TEXTURE_MAG_FILTER, GL11.GL_NEAREST); GL11.glTexParameteri(GL11.GL_TEXTURE_2D, GL11.GL_TEXTURE_MIN_FILTER, GL11.GL_NEAREST); GL11.glTranslatef((int)position.x, (int)position.y, 0); GL11.glTranslatef(-(int)translation.x, -(int)translation.y, 0); GL11.glRotated(rotation, 0f, 0f, 1f); GL11.glScalef(scale.x, scale.y, 1); GL11.glTranslatef(-(int)origin.x, -(int)origin.y, 0); float pixelCorrection = 0f; GL11.glBegin(GL11.GL_QUADS); GL11.glTexCoord2f(0,0); GL11.glVertex2f(0,0); GL11.glTexCoord2f(1,0); GL11.glVertex2f(texture.getTextureWidth(),0); GL11.glTexCoord2f(1,1); GL11.glVertex2f(texture.getTextureWidth(),texture.getTextureHeight()); GL11.glTexCoord2f(0,1); GL11.glVertex2f(0,texture.getTextureHeight()); GL11.glEnd(); GL11.glLoadIdentity(); } I tried a half pixel correction but it didn't make any sense because GL12.GL_CLAMP_TO_EDGE. I set pixelCorrection to 0, but it still wont work.

    Read the article

  • Finding direction of travel in a world with wrapped edges

    - by crazy
    I need to find the shortest distance direction from one point in my 2D world to another point where the edges are wrapped (like asteroids etc). I know how to find the shortest distance but am struggling to find which direction it's in. The shortest distance is given by: int rows = MapY; int cols = MapX; int d1 = abs(S.Y - T.Y); int d2 = abs(S.X - T.X); int dr = min(d1, rows-d1); int dc = min(d2, cols-d2); double dist = sqrt((double)(dr*dr + dc*dc)); Example of the world : : T : :--------------:--------- : : : S : : : : : : T : : : :--------------: In the diagram the edges are shown with : and -. I've shown a wrapped repeat of the world at the top right too. I want to find the direction in degrees from S to T. So the shortest distance is to the top right repeat of T. but how do I calculate the direction in degreed from S to the repeated T in the top right? I know the positions of both S and T but I suppose I need to find the position of the repeated T however there more than 1. The worlds coordinates system starts at 0,0 at the top left and 0 degrees for the direction could start at West. It seems like this shouldn’t be too hard but I haven’t been able to work out a solution. I hope somone can help? Any websites would be appreciated.

    Read the article

  • Matrix Multiplication with C++ AMP

    - by Daniel Moth
    As part of our API tour of C++ AMP, we looked recently at parallel_for_each. I ended that post by saying we would revisit parallel_for_each after introducing array and array_view. Now is the time, so this is part 2 of parallel_for_each, and also a post that brings together everything we've seen until now. The code for serial and accelerated Consider a naïve (or brute force) serial implementation of matrix multiplication  0: void MatrixMultiplySerial(std::vector<float>& vC, const std::vector<float>& vA, const std::vector<float>& vB, int M, int N, int W) 1: { 2: for (int row = 0; row < M; row++) 3: { 4: for (int col = 0; col < N; col++) 5: { 6: float sum = 0.0f; 7: for(int i = 0; i < W; i++) 8: sum += vA[row * W + i] * vB[i * N + col]; 9: vC[row * N + col] = sum; 10: } 11: } 12: } We notice that each loop iteration is independent from each other and so can be parallelized. If in addition we have really large amounts of data, then this is a good candidate to offload to an accelerator. First, I'll just show you an example of what that code may look like with C++ AMP, and then we'll analyze it. It is assumed that you included at the top of your file #include <amp.h> 13: void MatrixMultiplySimple(std::vector<float>& vC, const std::vector<float>& vA, const std::vector<float>& vB, int M, int N, int W) 14: { 15: concurrency::array_view<const float,2> a(M, W, vA); 16: concurrency::array_view<const float,2> b(W, N, vB); 17: concurrency::array_view<concurrency::writeonly<float>,2> c(M, N, vC); 18: concurrency::parallel_for_each(c.grid, 19: [=](concurrency::index<2> idx) restrict(direct3d) { 20: int row = idx[0]; int col = idx[1]; 21: float sum = 0.0f; 22: for(int i = 0; i < W; i++) 23: sum += a(row, i) * b(i, col); 24: c[idx] = sum; 25: }); 26: } First a visual comparison, just for fun: The beginning and end is the same, i.e. lines 0,1,12 are identical to lines 13,14,26. The double nested loop (lines 2,3,4,5 and 10,11) has been transformed into a parallel_for_each call (18,19,20 and 25). The core algorithm (lines 6,7,8,9) is essentially the same (lines 21,22,23,24). We have extra lines in the C++ AMP version (15,16,17). Now let's dig in deeper. Using array_view and extent When we decided to convert this function to run on an accelerator, we knew we couldn't use the std::vector objects in the restrict(direct3d) function. So we had a choice of copying the data to the the concurrency::array<T,N> object, or wrapping the vector container (and hence its data) with a concurrency::array_view<T,N> object from amp.h – here we used the latter (lines 15,16,17). Now we can access the same data through the array_view objects (a and b) instead of the vector objects (vA and vB), and the added benefit is that we can capture the array_view objects in the lambda (lines 19-25) that we pass to the parallel_for_each call (line 18) and the data will get copied on demand for us to the accelerator. Note that line 15 (and ditto for 16 and 17) could have been written as two lines instead of one: extent<2> e(M, W); array_view<const float, 2> a(e, vA); In other words, we could have explicitly created the extent object instead of letting the array_view create it for us under the covers through the constructor overload we chose. The benefit of the extent object in this instance is that we can express that the data is indeed two dimensional, i.e a matrix. When we were using a vector object we could not do that, and instead we had to track via additional unrelated variables the dimensions of the matrix (i.e. with the integers M and W) – aren't you loving C++ AMP already? Note that the const before the float when creating a and b, will result in the underling data only being copied to the accelerator and not be copied back – a nice optimization. A similar thing is happening on line 17 when creating array_view c, where we have indicated that we do not need to copy the data to the accelerator, only copy it back. The kernel dispatch On line 18 we make the call to the C++ AMP entry point (parallel_for_each) to invoke our parallel loop or, as some may say, dispatch our kernel. The first argument we need to pass describes how many threads we want for this computation. For this algorithm we decided that we want exactly the same number of threads as the number of elements in the output matrix, i.e. in array_view c which will eventually update the vector vC. So each thread will compute exactly one result. Since the elements in c are organized in a 2-dimensional manner we can organize our threads in a two-dimensional manner too. We don't have to think too much about how to create the first argument (a grid) since the array_view object helpfully exposes that as a property. Note that instead of c.grid we could have written grid<2>(c.extent) or grid<2>(extent<2>(M, N)) – the result is the same in that we have specified M*N threads to execute our lambda. The second argument is a restrict(direct3d) lambda that accepts an index object. Since we elected to use a two-dimensional extent as the first argument of parallel_for_each, the index will also be two-dimensional and as covered in the previous posts it represents the thread ID, which in our case maps perfectly to the index of each element in the resulting array_view. The kernel itself The lambda body (lines 20-24), or as some may say, the kernel, is the code that will actually execute on the accelerator. It will be called by M*N threads and we can use those threads to index into the two input array_views (a,b) and write results into the output array_view ( c ). The four lines (21-24) are essentially identical to the four lines of the serial algorithm (6-9). The only difference is how we index into a,b,c versus how we index into vA,vB,vC. The code we wrote with C++ AMP is much nicer in its indexing, because the dimensionality is a first class concept, so you don't have to do funny arithmetic calculating the index of where the next row starts, which you have to do when working with vectors directly (since they store all the data in a flat manner). I skipped over describing line 20. Note that we didn't really need to read the two components of the index into temporary local variables. This mostly reflects my personal choice, in some algorithms to break down the index into local variables with names that make sense for the algorithm, i.e. in this case row and col. In other cases it may i,j,k or x,y,z, or M,N or whatever. Also note that we could have written line 24 as: c(idx[0], idx[1])=sum  or  c(row, col)=sum instead of the simpler c[idx]=sum Targeting a specific accelerator Imagine that we had more than one hardware accelerator on a system and we wanted to pick a specific one to execute this parallel loop on. So there would be some code like this anywhere before line 18: vector<accelerator> accs = MyFunctionThatChoosesSuitableAccelerators(); accelerator acc = accs[0]; …and then we would modify line 18 so we would be calling another overload of parallel_for_each that accepts an accelerator_view as the first argument, so it would become: concurrency::parallel_for_each(acc.default_view, c.grid, ...and the rest of your code remains the same… how simple is that? Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Should I make the Cells in a Tiledmap as null when my player hits it

    - by Vishal Kumar
    I am making a Tile Based game using Libgdx. I took the idea from SuperKoalio platformer demo by Mario Zencher. When I wanted to implement Collectables in my game , I simply draw the coins using Tiled Map Editor. When my player hits that, I use to set that cell as null. Someday on this site suggested me not to do so... never use null. I agreed. What can be any other way. If I am using layer.setCell(x,y) to set the cell to any other cell... even if an transparent one .. my player seems to be stopped by an invisible object/hurdle. This is my code: for (Rectangle tile : tiles) { if (koalaRect.overlaps(tile)) { TiledMapTileLayer layer = (TiledMapTileLayer) map.getLayers().get(1); try{ type = layer.getCell((int) tile.x, (int) tile.y).getTile().getProperties().get("tileType").toString(); } catch(Exception e){ System.out.print("Exception in Tiles Property"+e); type="nonbreakable"; } //Let us destroy this cell if(("award".equals(type))){ layer.setCell((int) tile.x, (int) tile.y, null); listener.coin(); score+=100; test = ""+layer.getCell(0, 0).getTile().getProperties().get("tileType"); } //DOING THIS GIVES A BAD EFFECT if(("killer".equals(type))){ //player.health--; //layer.setCell((int) tile.x, (int) tile.y, layer.getCell(20,0)); } // we actually reset the player y-position here // so it is just below/above the tile we collided with // this removes bouncing :) if (player.velocity.y > 0) { player.position.y = (tile.y - Player.height); } Is this a right approach? OR I should create separate Sprite Class called Coin.

    Read the article

  • Animation API vs frame animation

    - by Max
    I'm pretty far down the road in my game right now, closing in on the end. And I'm adding little tweaks here and there. I used custom frame animation of a single image with many versions of my sprite on it, and controlled which part of the image to show using rectangles. But I'm starting to think that maybe I should've used the Animation API that comes with android instead. Will this effect my performance in a negative way? Can I still use rectangles to draw my bitmap? Could I add effects from the Animation API to my current frame-controlled animation? like the fadeout-effect etc? this would mean I wont have to change my current code. I want some of my animations to fade out, and just noticed that using the Animation API makes things alot easier. But needless to say, I would prefer not having to change all my animation-code. I'm bad at explaining, so Ill show a bit of how I do my animation: private static final int BMP_ROWS = 1; //I use top-view so only need my sprite to have 1 direction private static final int BMP_COLUMNS = 3; public void update(GameControls controls) { if (sprite.isMoving) { currentFrame = ++currentFrame % BMP_COLUMNS; } else { this.setFrame(1); } } public void draw(Canvas canvas, int x, int y, float angle) { this.x=x; this.y=y; canvas.save(); canvas.rotate(angle , x + width / 2, y + height / 2); int srcX = currentFrame * width; int srcY = 0 * height; Rect src = new Rect(srcX, srcY, srcX + width, srcY + height); Rect dst = new Rect(x, y, x + width, y + height); canvas.drawBitmap(bitmap, src, dst, null); canvas.restore(); }

    Read the article

  • Proportional speed movement between mouse and cube

    - by user1350772
    Hi i´m trying to move a cube with the freeglut mouse "glutMotionFunc(processMouseActiveMotion)" callback, my problem is that the movement is not proportional between the mouse speed movement and the cube movement. MouseButton function: #define MOVE_STEP 0.04 float g_x=0.0f; glutMouseFunc(MouseButton); glutMotionFunc(processMouseActiveMotion); void MouseButton(int button, int state, int x, int y){ if(button == GLUT_LEFT_BUTTON && state== GLUT_DOWN){ initial_x=x; } } When the left button gets clicked the x cordinate is stored in initial_x variable. void processMouseActiveMotion(int x,int y){ if(x>initial_x){ g_x-= MOVE_STEP; }else{ g_x+= MOVE_STEP; } initial_x=x; } When I move the mouse I look in which way it moves comparing the mouse new x coordinate with the initial_x variable, if xinitial_x the cube moves to the right, if not it moves to the left. Any idea how can i move the cube according to the mouse movement speed? Thanks EDIT 1 The idea is that when you click on any point of the screen and you drag to the left/right the cube moves proportionally of the mouse mouvement speed.

    Read the article

  • 2D Side scroller collision detection

    - by Shanon Simmonds
    I am trying to do some collision detection between objects and tiles, but the tiles do not have there own x and y position, they are just rendered to the x and y position given, there is an array of integers which has the ids of the tiles to use(which are given from an image and all the different colors are assigned different tiles) int x0 = camera.x / 16; int y0 = camera.y / 16; int x1 = (camera.x + screen.width) / 16; int y1 = (camera.y + screen.height) / 16; for(int y = y0; y < y1; y++) { if(y < 0 || y >= height) continue; // height is the height of the level for(int x = x0; x < x1; x++) { if(x < 0 || x >= width) continue; // width is the width of the level getTile(x, y).render(screen, x * 16, y * 16); } } I tried using the levels getTile method to see if the tile that the object was going to advance to, to see if it was a certain tile, but, it seems to only work in some directions. Any ideas on what I'm doing wrong and fixes would be greatly appreciated. What's wrong is that it doesn't collide properly in every direction and also this is how I tested for a collision in the objects class if(!level.getTile((x + xa) / 16, (y + ya) / 16).isSolid()) { x += xa; y += ya; } EDIT: xa and ya represent the direction as well as the movement, if xa is negative it means the object is moving left, if its positive it is moving right, and same with ya except negative for up, positive for down.

    Read the article

  • Snake Game Help

    - by MuhammadA
    I am making a snake game and learning XNA at the same time. I have 3 classes : Game.cs, Snake.cs and Apple.cs My problem is more of a conceptual problem, I want to know which class is really responsible for ... detecting collision of snake head on apple/itself/wall? which class should increase the snakes speed, size? It seems to me that however much I try and put the snake stuff into snake.cs that game.cs has to know a lot about the snake, like : -- I want to increase the score depending on size of snake, the score variable is inside game.cs, which means now I have to ask the snake its size on every hit of the apple... seems a bit unclean all this highly coupled code. or -- I DO NOT want to place the apple under the snake... now the apple suddenly has to know about all the snake parts, my head hurts when I think of that. Maybe there should be some sort of AppleLayer.cs class that should know about the snake... Whats the best approach in such a simple scenario? Any tips welcome. Game.cs : using System; using System.Collections.Generic; using System.Linq; using Microsoft.Xna.Framework; using Microsoft.Xna.Framework.Audio; using Microsoft.Xna.Framework.Content; using Microsoft.Xna.Framework.GamerServices; using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework.Input; using Microsoft.Xna.Framework.Media; using Microsoft.Xna.Framework.Design; namespace Snakez { public enum CurrentGameState { Playing, Paused, NotPlaying } public class Game1 : Microsoft.Xna.Framework.Game { private GraphicsDeviceManager _graphics; private SpriteBatch _spriteBatch; private readonly Color _niceGreenColour = new Color(167, 255, 124); private KeyboardState _oldKeyboardState; private SpriteFont _scoreFont; private SoundEffect _biteSound, _crashSound; private Vector2 _scoreLocation = new Vector2(10, 10); private Apple _apple; private Snake _snake; private int _score = 0; private int _speed = 1; public Game1() { _graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; } /// <summary> /// Allows the game to perform any initialization it needs to before starting to run. /// This is where it can query for any required services and load any non-graphic /// related content. Calling base.Initialize will enumerate through any components /// and initialize them as well. /// </summary> protected override void Initialize() { base.Initialize(); } /// <summary> /// LoadContent will be called once per game and is the place to load /// all of your content. /// </summary> protected override void LoadContent() { _spriteBatch = new SpriteBatch(GraphicsDevice); _scoreFont = Content.Load<SpriteFont>("Score"); _apple = new Apple(800, 480, Content.Load<Texture2D>("Apple")); _snake = new Snake(Content.Load<Texture2D>("BodyBlock")); _biteSound = Content.Load<SoundEffect>("Bite"); _crashSound = Content.Load<SoundEffect>("Crash"); } /// <summary> /// UnloadContent will be called once per game and is the place to unload /// all content. /// </summary> protected override void UnloadContent() { Content.Unload(); } /// <summary> /// Allows the game to run logic such as updating the world, /// checking for collisions, gathering input, and playing audio. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Update(GameTime gameTime) { KeyboardState newKeyboardState = Keyboard.GetState(); if (newKeyboardState.IsKeyDown(Keys.Escape)) { this.Exit(); // Allows the game to exit } else if (newKeyboardState.IsKeyDown(Keys.Up) && !_oldKeyboardState.IsKeyDown(Keys.Up)) { _snake.SetDirection(Direction.Up); } else if (newKeyboardState.IsKeyDown(Keys.Down) && !_oldKeyboardState.IsKeyDown(Keys.Down)) { _snake.SetDirection(Direction.Down); } else if (newKeyboardState.IsKeyDown(Keys.Left) && !_oldKeyboardState.IsKeyDown(Keys.Left)) { _snake.SetDirection(Direction.Left); } else if (newKeyboardState.IsKeyDown(Keys.Right) && !_oldKeyboardState.IsKeyDown(Keys.Right)) { _snake.SetDirection(Direction.Right); } _oldKeyboardState = newKeyboardState; _snake.Update(); if (_snake.IsEating(_apple)) { _biteSound.Play(); _score += 10; _apple.Place(); } base.Update(gameTime); } /// <summary> /// This is called when the game should draw itself. /// </summary> /// <param name="gameTime">Provides a snapshot of timing values.</param> protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(_niceGreenColour); float frameRate = 1 / (float)gameTime.ElapsedGameTime.TotalSeconds; _spriteBatch.Begin(); _spriteBatch.DrawString(_scoreFont, "Score : " + _score, _scoreLocation, Color.Red); _apple.Draw(_spriteBatch); _snake.Draw(_spriteBatch); _spriteBatch.End(); base.Draw(gameTime); } } } Snake.cs : using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework; namespace Snakez { public enum Direction { Up, Down, Left, Right } public class Snake { private List<Rectangle> _parts; private readonly Texture2D _bodyBlock; private readonly int _startX = 160; private readonly int _startY = 120; private int _moveDelay = 100; private DateTime _lastUpdatedAt; private Direction _direction; private Rectangle _lastTail; public Snake(Texture2D bodyBlock) { _bodyBlock = bodyBlock; _parts = new List<Rectangle>(); _parts.Add(new Rectangle(_startX, _startY, _bodyBlock.Width, _bodyBlock.Height)); _parts.Add(new Rectangle(_startX + bodyBlock.Width, _startY, _bodyBlock.Width, _bodyBlock.Height)); _parts.Add(new Rectangle(_startX + (bodyBlock.Width) * 2, _startY, _bodyBlock.Width, _bodyBlock.Height)); _parts.Add(new Rectangle(_startX + (bodyBlock.Width) * 3, _startY, _bodyBlock.Width, _bodyBlock.Height)); _direction = Direction.Right; _lastUpdatedAt = DateTime.Now; } public void Draw(SpriteBatch spriteBatch) { foreach (var p in _parts) { spriteBatch.Draw(_bodyBlock, new Vector2(p.X, p.Y), Color.White); } } public void Update() { if (DateTime.Now.Subtract(_lastUpdatedAt).TotalMilliseconds > _moveDelay) { //DateTime.Now.Ticks _lastTail = _parts.First(); _parts.Remove(_lastTail); /* add new head in right direction */ var lastHead = _parts.Last(); var newHead = new Rectangle(0, 0, _bodyBlock.Width, _bodyBlock.Height); switch (_direction) { case Direction.Up: newHead.X = lastHead.X; newHead.Y = lastHead.Y - _bodyBlock.Width; break; case Direction.Down: newHead.X = lastHead.X; newHead.Y = lastHead.Y + _bodyBlock.Width; break; case Direction.Left: newHead.X = lastHead.X - _bodyBlock.Width; newHead.Y = lastHead.Y; break; case Direction.Right: newHead.X = lastHead.X + _bodyBlock.Width; newHead.Y = lastHead.Y; break; } _parts.Add(newHead); _lastUpdatedAt = DateTime.Now; } } public void SetDirection(Direction newDirection) { if (_direction == Direction.Up && newDirection == Direction.Down) { return; } else if (_direction == Direction.Down && newDirection == Direction.Up) { return; } else if (_direction == Direction.Left && newDirection == Direction.Right) { return; } else if (_direction == Direction.Right && newDirection == Direction.Left) { return; } _direction = newDirection; } public bool IsEating(Apple apple) { if (_parts.Last().Intersects(apple.Location)) { GrowBiggerAndFaster(); return true; } return false; } private void GrowBiggerAndFaster() { _parts.Insert(0, _lastTail); _moveDelay -= (_moveDelay / 100)*2; } } } Apple.cs : using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.Xna.Framework.Graphics; using Microsoft.Xna.Framework; namespace Snakez { public class Apple { private readonly int _maxWidth, _maxHeight; private readonly Texture2D _texture; private readonly Random random = new Random(); public Rectangle Location { get; private set; } public Apple(int screenWidth, int screenHeight, Texture2D texture) { _maxWidth = (screenWidth + 1) - texture.Width; _maxHeight = (screenHeight + 1) - texture.Height; _texture = texture; Place(); } public void Place() { Location = GetRandomLocation(_maxWidth, _maxHeight); } private Rectangle GetRandomLocation(int maxWidth, int maxHeight) { // x and y -- multiple of 20 int x = random.Next(1, maxWidth); var leftOver = x % 20; x = x - leftOver; int y = random.Next(1, maxHeight); leftOver = y % 20; y = y - leftOver; return new Rectangle(x, y, _texture.Width, _texture.Height); } public void Draw(SpriteBatch spriteBatch) { spriteBatch.Draw(_texture, Location, Color.White); } } }

    Read the article

  • Design for object with optional and modifiable attributtes?

    - by Ikuzen
    I've been using the Builder pattern to create objects with a large number of attributes, where most of them are optional. But up until now, I've defined them as final, as recommended by Joshua Block and other authors, and haven't needed to change their values. I am wondering what should I do though if I need a class with a substantial number of optional but non-final (mutable) attributes? My Builder pattern code looks like this: public class Example { //All possible parameters (optional or not) private final int param1; private final int param2; //Builder class public static class Builder { private final int param1; //Required parameters private int param2 = 0; //Optional parameters - initialized to default //Builder constructor public Builder (int param1) { this.param1 = param1; } //Setter-like methods for optional parameters public Builder param2(int value) { param2 = value; return this; } //build() method public Example build() { return new Example(this); } } //Private constructor private Example(Builder builder) { param1 = builder.param1; param2 = builder.param2; } } Can I just remove the final keyword from the declaration to be able to access the attributes externally (through normal setters, for example)? Or is there a creational pattern that allows optional but non-final attributes that would be better suited in this case?

    Read the article

< Previous Page | 73 74 75 76 77 78 79 80 81 82 83 84  | Next Page >