Search Results

Search found 7891 results on 316 pages for 'multi layer perceptron'.

Page 77/316 | < Previous Page | 73 74 75 76 77 78 79 80 81 82 83 84  | Next Page >

  • Set one background to stretch across multi-monitor display?

    - by John Isaacks
    I have two monitors and my coworker has three. We were wondering if there was a way to set a single background image to stretch across all the monitors. Right now it's the same image but repeated, so it looks like the same image three times in a row. I would like it to be so that the three images/screens combine to show one image if that makes sense. If I can't set one image to stretch across the screens like that, is there a way to set a different background for each screen? Edit: I just wanted to clarify: I am not talking about one image stretching from his monitors to mine, just stretching across our own monitors.

    Read the article

  • How to set up a home SIP Server/Proxy for multi ring?

    - by zio
    I have a sip account which only allows one device to be registered. When i'm at home I want incoming calls to be able to ring on multiple devices. All of these devices are connected to the local network. I'm guessing the way to do this is using a local server/proxy that would allow multiple registrations which then forwards traffic to/from my sip provider. What a simple way to do this on either OS X, Ubuntu or using some low cost SIP router hardware?

    Read the article

  • Is the XP VMM a bottleneck on a multi core machine?

    - by JeffV
    I have a dual Xeon hex core machine running an IO intensive application. (WinXP 32) I am seeing a hardware driver (1/2 user mode, 1/2 kernel, streaming data) that is using 6k delta page faults per second. When other applications load or allocate large amounts of memory the driver's hardware buffer gets an underrun (application not feeding it fast enough). Could this be because the kernel is only using one core to service page fault interrupts?

    Read the article

  • Does multi-platter hard-drive use all of their heads to read simultaneously?

    - by WiSaGaN
    Suppose we have a harddisk with 2 platters with characteristics below: Rotational rate: 10, 000 RPM Avg sectors/track: 1000 Surfaces: 4 Sector size: 512 bytes I was reading "Computer Systems: A Programmer's Perspective 2ed" when I found that it calculates transfer time as if it only uses ONE head to read a sector. If that's the case, why not use 4 heads to write(read) on 4 surfaces? So when I write a 2K bytes file, each head should only need to wait for the platters to rotate just one sector length instead of 4, thus reducing the transfer time by a factor of 4. Or even redesign sector to make each sector on one cylinder but on 4 tracks residing same position respectively on 4 surfaces. Each one of (512/4) bytes. So when the hd needs to read a sector of 512 bytes, we only need the disk to rotate roughly 1/4 compare to original time. The idea looks like RAID 0.

    Read the article

  • Linux 'top' utility widly inaccurate (more so for multi-CPU/core hardware)?

    - by amn
    Hi all. After using 'top' for long time, albeit basically, I have grown to distrust it's '% CPU' column reports. I have a 8-core (quad core Intel i7 920 with hyperthreading) hardware, and see some wild numbers when running a process that should not use more than 5% overall. top happily reports 50%, and I suspect it is not so. My question is, is it a known fact that it's inaccurate when several CPUs/cores are present? I used 'mpstat' from the 'sysstat' package, and it's showings are much more conservative, certainly within my expectations. I did press '1' for 'top' to switch it to show all the core and us/sy/io stats, but the numbers are substantially higher than with 'mpstat'... I know that my expectations can be unfound as well, but my gut feeling tells me 'top' is wrong! :-) The reason I need to know is because the process I am monitoring only guarantees quality of service with CPU usage "less than 80%" (however vague that sounds), and I need to know how much headroom I have left. It's a streaming server.

    Read the article

  • Spawn a multi-threaded Java program from a Windows command line program, spawner won't end until spa

    - by Ross Patterson
    Short version: How can I prevent a spawned Java process in Windows from blocking the spawning process from ending? Long version: I'm trying to spawn a multi-threaded Java program (Selenium RC, not that it should matter) from a program launched from the Windows command line (NAnt's <exec> task, again, not that it should matter). I'm doing it using the Windows "start" command, and the spawned process is started and runs correctly. The spawning process receives control back and finishes (NAnt says "BUILD SUCCEEDED"), but doesn't actually exit to the command line. When the spawned process finally terminates (could be hours later), the command process returns and the command line prompt occurs. For example: <target name="start_rc"> <exec program="cmd" failonerror="false" workingdir="${ross.p5.dir}\Tools\selenium\selenium-server-1.0.1" verbose="true"> <arg value="/C"/> <arg value="start"/> <arg value="java"/> <arg value="-jar"/> <arg path="${ross.p5.dir}\Tools\selenium\selenium-server-1.0.1\selenium-server.jar"/> <arg value="-userExtensions"/> <arg path="${ross.p5.dir}\Tools\selenium\selenium-server-1.0.1\user-extensions.js"/> <arg value="-browserSideLog"/> <arg value="-log"/> <arg value="${ross.p5.dir}\artifacts\selenium.log"/> <arg value="-debug"/> </exec> </target> Produces: C :\Ross>nant start_rc NAnt 0.86 (Build 0.86.2898.0; beta1; 12/8/2007) Copyright (C) 2001-2007 Gerry Shaw http://nant.sourceforge.net Buildfile: file:///C:/Ross/ross.build Target framework: Microsoft .NET Framework 3.5 Target(s) specified: start_rc start_rc: [exec] Starting 'cmd (/C start java -jar C:\p5\Tools\selenium\selenium-server-1.0.1\selenium-server.jar -userExtensions C:\p5\Tools\selenium\selenium-server-1.0.1\user-extensions.js -browserSideLog -log C:\p5\artifacts\selenium.log -debug)' in 'C:\p5\Tools\selenium\selenium-server-1.0.1' BUILD SUCCEEDED Total time: 4.1 seconds. ... and then nothing until I close the window where Java is running, then ... C:\Ross> Obviously something is preventing the nant process from terminating, but shouldn't the Windows START command prevent that?

    Read the article

  • How can I model the data in a multi-language data editor in WPF with MVVM?

    - by Patrick Szalapski
    Are there any good practices to follow when designing a model/ViewModel to represent data in an app that will view/edit that data in multiple languages? Our top-level class--let's call it Course--contains several collection properties, say Books and TopicsCovered, which each might have a collection property among its data. For example, the data needs to represent course1.Books.First().Title in different languages, and course1.TopicsCovered.First().Name in different languages. We want a app that can edit any of the data for one given course in any of the available languages--as well as edit non-language-specific data, perhaps the Author of a Book (i.e. course1.Books.First().Author). We are having trouble figuring out how best to set up the model to enable binding in the XAML view. For example, do we replace (in the single-language model) each String with a collection of LanguageSpecificString instances? So to get the author in the current language: course1.Books.First().Author.Where(Function(a) a.Language = CurrentLanguage).SingleOrDefault If we do that, we cannot easily bind to any value in one given language, only to the collection of language values such as in an ItemsControl. <TextBox Text={Binding Author.???} /> <!-- no way to bind to the current language author --> Do we replace the top-level Course class with a collection of language-specific Courses? So to get the author in the current language: course1.GetLanguage(CurrentLanguage).Books.First.Author If we do that, we can only easily work with one language at a time; we might want a view to show one language and let the user edit the other. <TextBox Text={Binding Author} /> <!-- good --> <TextBlock Text={Binding ??? } /> <!-- no way to bind to the other language author --> Also, that has the disadvantage of not representing language-neutral data as such; every property (such as Author) would seem to be in multiple languages. Even non-string properties would be in multiple languages. Is there an option in between those two? Is there another way that we aren't thinking of? I realize this is somewhat vague, but it would seem to be a somewhat common problem to design for. Note: This is not a question about providing a multilingual UI, but rather about actually editing multi-language data in a flexible way.

    Read the article

  • Multi-threaded random_r is slower than single threaded version.

    - by Nixuz
    The following program is essentially the same the one described here. When I run and compile the program using two threads (NTHREADS == 2), I get the following run times: real 0m14.120s user 0m25.570s sys 0m0.050s When it is run with just one thread (NTHREADS == 1), I get run times significantly better even though it is only using one core. real 0m4.705s user 0m4.660s sys 0m0.010s My system is dual core, and I know random_r is thread safe and I am pretty sure it is non-blocking. When the same program is run without random_r and a calculation of cosines and sines is used as a replacement, the dual-threaded version runs in about 1/2 the time as expected. #include <pthread.h> #include <stdlib.h> #include <stdio.h> #define NTHREADS 2 #define PRNG_BUFSZ 8 #define ITERATIONS 1000000000 void* thread_run(void* arg) { int r1, i, totalIterations = ITERATIONS / NTHREADS; for (i = 0; i < totalIterations; i++){ random_r((struct random_data*)arg, &r1); } printf("%i\n", r1); } int main(int argc, char** argv) { struct random_data* rand_states = (struct random_data*)calloc(NTHREADS, sizeof(struct random_data)); char* rand_statebufs = (char*)calloc(NTHREADS, PRNG_BUFSZ); pthread_t* thread_ids; int t = 0; thread_ids = (pthread_t*)calloc(NTHREADS, sizeof(pthread_t)); /* create threads */ for (t = 0; t < NTHREADS; t++) { initstate_r(random(), &rand_statebufs[t], PRNG_BUFSZ, &rand_states[t]); pthread_create(&thread_ids[t], NULL, &thread_run, &rand_states[t]); } for (t = 0; t < NTHREADS; t++) { pthread_join(thread_ids[t], NULL); } free(thread_ids); free(rand_states); free(rand_statebufs); } I am confused why when generating random numbers the two threaded version performs much worse than the single threaded version, considering random_r is meant to be used in multi-threaded applications.

    Read the article

  • What is the best approach in SQL to store multi-level descriptions?

    - by gime
    I need a new perspective on how to design a reliable and efficient SQL database to store multi-level arrays of data. This problem applies to many situations but I came up with this example: There are hundreds of products. Each product has an undefined number of parts. Each part is built from several elements. All products are described in the same way. All parts would require the same fields to describe them (let's say: price, weight, part name), all elements of all parts also have uniform design (for example: element code, manufacturer). Plain and simple. One element may be related to only part, and each part is related to one product only. I came up with idea of three tables: Products: -------------------------------------------- prod_id prod_name prod_price prod_desc 1 hoover 120 unused next Parts: ---------------------------------------------------- part_id part_name part_price part_weight prod_id 3 engine 10 20 1 and finally Elements: --------------------------------------- el_id el_code el_manufacturer part_id 1 BFG12 GE 3 Now, select a desired product, select all from PARTS where prod_id is the same, and then select all from ELEMENTS where part_id matches - after multiple queries you've got all data. I'm just not sure if this is the right approach. I've got also another idea, without ELEMENTS table. That would decrease queries but I'm a bit afraid it might be lame and bad practice. Instead of ELEMENTS table there are two more fields in the PARTS table, so it looks like this: part_id, part_name, part_price, part_weight, prod_id, part_el_code, part_el_manufacturer they would be text type, and for each part, information about elements would be stored as strings, this way: part_el_code | code_of_element1; code_of_element2; code_of_element3 part_el_manufacturer | manuf_of_element1; manuf_of_element2; manuf_of_element3 Then all we need is to explode() data from those fields, and we get arrays, easy to display. Of course this is not perfect and has some limitations, but is this idea ok? Or should I just go with the first idea? Or maybe there is a better approach to this problem? It's really hard to describe it in few words, and that means it's hard to search for answer. Also, understanding the principles of designing databases is not that easy as it seems.

    Read the article

  • Employee Info Starter Kit - Visual Studio 2010 and .NET 4.0 Version (4.0.0) Available

    - by joycsharp
    Employee Info Starter Kit is a ASP.NET based web application, which includes very simple user requirements, where we can create, read, update and delete (crud) the employee info of a company. Based on just a database table, it explores and solves all major problems in web development architectural space.  This open source starter kit extensively uses major features available in latest Visual Studio, ASP.NET and Sql Server to make robust, scalable, secured and maintanable web applications quickly and easily. Since it's first release, this starter kit achieved a huge popularity in web developer community and includes 1,40,000+ download from project web site. Visual Studio 2010 and .NET 4.0 came up with lots of exciting features to make software developers life easier.  A new version (v4.0.0) of Employee Info Starter Kit is now available in both MSDN Code Gallery and CodePlex. Chckout the latest version of this starter kit to enjoy cool features available in Visual Studio 2010 and .NET 4.0. [ Release Notes ] Architectural Overview Simple 2 layer architecture (user interface and data access layer) with 1 optional cache layer ASP.NET Web Form based user interface Custom Entity Data Container implemented (with primitive C# types for data fields) Active Record Design Pattern based Data Access Layer, implemented in C# and Entity Framework 4.0 Sql Server Stored Procedure to perform actual CRUD operation Standard infrastructure (architecture, helper utility) for automated integration (bottom up manner) and unit testing Technology UtilizedProgramming Languages/Scripts Browser side: JavaScript Web server side: C# 4.0 Database server side: T-SQL .NET Framework Components .NET 4.0 Entity Framework .NET 4.0 Optional/Named Parameters .NET 4.0 Tuple .NET 3.0+ Extension Method .NET 3.0+ Lambda Expressions .NET 3.0+ Aanonymous Type .NET 3.0+ Query Expressions .NET 3.0+ Automatically Implemented Properties .NET 3.0+ LINQ .NET 2.0 + Partial Classes .NET 2.0 + Generic Type .NET 2.0 + Nullable Type   ASP.NET 3.5+ List View (TBD) ASP.NET 3.5+ Data Pager (TBD) ASP.NET 2.0+ Grid View ASP.NET 2.0+ Form View ASP.NET 2.0+ Skin ASP.NET 2.0+ Theme ASP.NET 2.0+ Master Page ASP.NET 2.0+ Object Data Source ASP.NET 1.0+ Role Based Security Visual Studio Features Visual Studio 2010 CodedUI Test Visual Studio 2010 Layer Diagram Visual Studio 2010 Sequence Diagram Visual Studio 2010 Directed Graph Visual Studio 2005+ Database Unit Test Visual Studio 2005+ Unit Test Visual Studio 2005+ Web Test Visual Studio 2005+ Load Test Sql Server Features Sql Server 2005 Stored Procedure Sql Server 2005 Xml type Sql Server 2005 Paging support

    Read the article

  • Employee Info Starter Kit - Visual Studio 2010 and .NET 4.0 Version (4.0.0) Available

    - by Mohammad Ashraful Alam
    Employee Info Starter Kit is a ASP.NET based web application, which includes very simple user requirements, where we can create, read, update and delete (crud) the employee info of a company. Based on just a database table, it explores and solves most of the major problems in web development architectural space.  This open source starter kit extensively uses major features available in latest Visual Studio, ASP.NET and Sql Server to make robust, scalable, secured and maintanable web applications quickly and easily. Since it's first release, this starter kit achieved a huge popularity in web developer community and includes 1,40,000+ download from project web site. Visual Studio 2010 and .NET 4.0 came up with lots of exciting features to make software developers life easier.  A new version (v4.0.0) of Employee Info Starter Kit is now available in both MSDN Code Gallery and CodePlex. Chckout the latest version of this starter kit to enjoy cool features available in Visual Studio 2010 and .NET 4.0. [ Release Notes ] Architectural Overview Simple 2 layer architecture (user interface and data access layer) with 1 optional cache layer ASP.NET Web Form based user interface Custom Entity Data Container implemented (with primitive C# types for data fields) Active Record Design Pattern based Data Access Layer, implemented in C# and Entity Framework 4.0 Sql Server Stored Procedure to perform actual CRUD operation Standard infrastructure (architecture, helper utility) for automated integration (bottom up manner) and unit testing Technology UtilizedProgramming Languages/Scripts Browser side: JavaScript Web server side: C# 4.0 Database server side: T-SQL .NET Framework Components .NET 4.0 Entity Framework .NET 4.0 Optional/Named Parameters .NET 4.0 Tuple .NET 3.0+ Extension Method .NET 3.0+ Lambda Expressions .NET 3.0+ Aanonymous Type .NET 3.0+ Query Expressions .NET 3.0+ Automatically Implemented Properties .NET 3.0+ LINQ .NET 2.0 + Partial Classes .NET 2.0 + Generic Type .NET 2.0 + Nullable Type   ASP.NET 3.5+ List View (TBD) ASP.NET 3.5+ Data Pager (TBD) ASP.NET 2.0+ Grid View ASP.NET 2.0+ Form View ASP.NET 2.0+ Skin ASP.NET 2.0+ Theme ASP.NET 2.0+ Master Page ASP.NET 2.0+ Object Data Source ASP.NET 1.0+ Role Based Security Visual Studio Features Visual Studio 2010 CodedUI Test Visual Studio 2010 Layer Diagram Visual Studio 2010 Sequence Diagram Visual Studio 2010 Directed Graph Visual Studio 2005+ Database Unit Test Visual Studio 2005+ Unit Test Visual Studio 2005+ Web Test Visual Studio 2005+ Load Test Sql Server Features Sql Server 2005 Stored Procedure Sql Server 2005 Xml type Sql Server 2005 Paging support

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • Bluetooth not working on an Alienware m14x r2

    - by S. L.
    on my alienware m14x r2 laptop with ubuntu 12.04.1 x64, the bluetooth interface is not working. WLAN works fine. I have a dualboot install with ubuntu & win 7 on this laptop. In win 7, the bluetooth interface works fine, because its all activated in BIOS. I have the killer wireless-n 1202 a/g/n interface with integrated bluetooth 4.0 in this laptop. Here is some code : sudo rfkill list 0: phy0: Wireless LAN Soft blocked: no Hard blocked: no lsusb Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 004 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub Bus 001 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub Bus 002 Device 002: ID 8087:0024 Intel Corp. Integrated Rate Matching Hub Bus 001 Device 003: ID 064e:8128 Suyin Corp. Bus 002 Device 003: ID 0cf3:3004 Atheros Communications, Inc. Bus 002 Device 004: ID 187c:0521 Alienware Corporation dmesg | grep "Bluetooth" [ 2.590377] Bluetooth: Core ver 2.16 [ 2.590395] Bluetooth: HCI device and connection manager initialized [ 2.590397] Bluetooth: HCI socket layer initialized [ 2.590399] Bluetooth: L2CAP socket layer initialized [ 2.590403] Bluetooth: SCO socket layer initialized [ 2.591518] Bluetooth: BNEP (Ethernet Emulation) ver 1.3 [ 2.591519] Bluetooth: BNEP filters: protocol multicast [ 2.599411] Bluetooth: RFCOMM TTY layer initialized [ 2.599415] Bluetooth: RFCOMM socket layer initialized [ 2.599416] Bluetooth: RFCOMM ver 1.11 [ 2.696552] Bluetooth: Generic Bluetooth USB driver ver 0.6 [ 2.696751] Bluetooth: Atheros AR30xx firmware driver ver 1.0 [ 2.702607] Bluetooth: Configuration file not found ar3k/ramps_0x11020000_40.dfu [ 2.702609] Bluetooth: Loading sysconfig file failed Any ideas to fix that problem ?

    Read the article

  • ArcGIS–Getting the Legend Labels out

    - by Avner Kashtan
    Working with ESRI’s ArcGIS package, especially the WPF API, can be confusing. There’s the REST API, the SOAP APIs, and the WPF classes themselves, which expose some web service calls and information, but not everything. With all that, it can be hard to find specific features between the different options. Some functionality is handed to you on a silver platter, while some is maddeningly hard to implement. Today, for instance, I was working on adding a Legend control to my map-based WPF application, to explain the different symbols that can appear on the map. This is how the legend looks on ESRI’s own map-editing tools:   but this is how it looks when I used the Legend control, supplied out of the box by ESRI:   Very pretty, but unfortunately missing the option to display the name of the fields that make up the symbology. Luckily, the WPF controls have a lot of templating/extensibility points, to allow you to specify the layout of each field: 1: <esri:Legend> 2: <esri:Legend.MapLayerTemplate> 3: <DataTemplate> 4: <TextBlock Text="{Binding Layer.ID}"/> 5: </DataTemplate> 6: </esri:Legend.MapLayerTemplate> 7: </esri:Legend> but that only replicates the same built in behavior. I could now add any additional fields I liked, but unfortunately, I couldn’t find them as part of the Layer, GraphicsLayer or FeatureLayer definitions. This is the part where ESRI’s lack of organization is noticeable, since I can see this data easily when accessing the ArcGis Server’s web-interface, but I had no idea how to find it as part of the built-in class. Is it a part of Layer? Of LayerInfo? Of the LayerDefinition class that exists only in the SOAP service? As it turns out, neither. Since these fields are used by the symbol renderer to determine which symbol to draw, they’re actually a part of the layer’s Renderer. Since I already had a MyFeatureLayer class derived from FeatureLayer that added extra functionality, I could just add this property to it: 1: public string LegendFields 2: { 3: get 4: { 5: if (this.Renderer is UniqueValueRenderer) 6: { 7: return (this.Renderer as UniqueValueRenderer).Field; 8: } 9: else if (this.Renderer is UniqueValueMultipleFieldsRenderer) 10: { 11: var renderer = this.Renderer as UniqueValueMultipleFieldsRenderer; 12: return string.Join(renderer.FieldDelimiter, renderer.Fields); 13: } 14: else return null; 15: } For my scenario, all of my layers used symbology derived from a single field or, as in the examples above, from several of them. The renderer even kindly supplied me with the comma to separate the fields with. Now it was a simple matter to get the Legend control in line – assuming that it was bound to a collection of MyFeatureLayer: 1: <esri:Legend> 2: <esri:Legend.MapLayerTemplate> 3: <DataTemplate> 4: <StackPanel> 5: <TextBlock Text="{Binding Layer.ID}"/> 6: <TextBlock Text="{Binding Layer.LegendFields}" Margin="10,0,0,0" TextStyle="Italic"/> 7: </StackPanel> 8: </DataTemplate> 9: </esri:Legend.MapLayerTemplate> 10: </esri:Legend> and get the look I wanted – the list of fields below the layer name, indented.

    Read the article

  • Configure PERL DBI and DBD in Linux

    - by Balualways
    I am new to Perl and I work in a Linux OEL 5x server. I am trying to configure the Perl DB modules for Oracle connectivity (DBD and DBI modules). Can anyone help me out in the installation procedure? I had tried CPAN didn't really worked out. Any help would be appreciated. I am not quite sure I need to initialize any variables other than $LD_LIBRARY_PATH and $ORACLE_HOME These are my observations: ISSUE:: I am getting the following issue while using the DBI module to connect to Oracle: install_driver(Oracle) failed: Can't locate loadable object for module DBD::Oracle in @INC (@INC contains: /usr/lib64/perl5/site_perl/5.8.8/x86_64-linux-thread-multi /usr/lib/perl5/site_perl/5.8.8 /usr/lib/perl5/site_perl /usr/lib64/perl5/vendor_perl/5.8.8/x86_64-linux-thread-multi /usr/lib/perl5/vendor_perl/5.8.8 /usr/lib/perl5/vendor_perl /usr/lib64/perl5/5.8.8/x86_64-linux-thread-multi /usr/lib/perl5/5.8.8 .) at (eval 3) line 3 Compilation failed in require at (eval 3) line 3. Perhaps a module that DBD::Oracle requires hasn't been fully installed at connectdb.pl line 57 I had installed the DBD for oracle from /usr/lib64/perl5/5.8.8/x86_64-linux-thread-multi/DBD/DBD-Oracle-1.50 Could you please take a look into the steps and correct me if I am wrong: Observations: $ echo $LD_LIBRARY_PATH /opt/CA/UnicenterAutoSysJM/autosys/lib:/opt/CA/SharedComponents/Csam/SockAdapter/lib:/opt/CA/SharedComponents/ETPKI/lib:/opt/CA/CAlib $ echo $ORACLE_HOME /usr/local/oracle/ORA This is how I tried to install the DBD module: Download the file DBD 1.50 for Oracle Copy to /usr/lib64/perl5/5.8.8/x86_64-linux-thread-multi/DBD Untar and Makefile.PL . Message: Using DBI 1.52 (for perl 5.008008 on x86_64-linux-thread-multi) installed in /usr/lib64/perl5/vendor_perl/5.8.8/x86_64-linux-thread-multi/auto/DBI/ Configuring DBD::Oracle for perl 5.008008 on linux (x86_64-linux-thread-multi) Remember to actually *READ* the README file! Especially if you have any problems. Installing on a linux, Ver#2.6 Using Oracle in /opt/oracle/product/10.2 DEFINE _SQLPLUS_RELEASE = "1002000400" (CHAR) Oracle version 10.2.0.4 (10.2) Found /opt/oracle/product/10.2/rdbms/demo/demo_rdbms.mk Found /opt/oracle/product/10.2/rdbms/demo/demo_rdbms64.mk Found /opt/oracle/product/10.2/rdbms/lib/ins_rdbms.mk Using /opt/oracle/product/10.2/rdbms/demo/demo_rdbms.mk Your LD_LIBRARY_PATH env var is set to '/usr/local/oracle/ORA/lib:/usr/dt/lib:/usr/openwin/lib:/usr/local/oracle/ORA/ows/cartx/wodbc/1.0/util/lib:/usr/local/oracle/ORA/lib:/usr/local/sybase/OCS-12_0/lib:/usr/local/sybase/lib:/home/oracle/jdbc/jdbcoci73/lib:./' WARNING: Your LD_LIBRARY_PATH env var doesn't include '/opt/oracle/product/10.2/lib' but probably needs to. Reading /opt/oracle/product/10.2/rdbms/demo/demo_rdbms.mk Reading /usr/local/oracle/ORA/rdbms/lib/env_rdbms.mk Attempting to discover Oracle OCI build rules sh: make: command not found by executing: [make -f /opt/oracle/product/10.2/rdbms/demo/demo_rdbms.mk build ECHODO=echo ECHO=echo GENCLNTSH='echo genclntsh' CC=true OPTIMIZE= CCFLAGS= EXE=DBD_ORA_EXE OBJS=DBD_ORA_OBJ.o] WARNING: Oracle build rule discovery failed (32512) Add path to make command into your PATH environment variable. Oracle oci build prolog: [sh: make: command not found] Oracle oci build command: [] WARNING: Unable to interpret Oracle build commands from /opt/oracle/product/10.2/rdbms/demo/demo_rdbms.mk. (Will continue by using fallback approach.) Please report this to [email protected]. See README for what to include. Found header files in /opt/oracle/product/10.2/rdbms/public. client_version=10.2 DEFINE= -Wall -Wno-comment -DUTF8_SUPPORT -DORA_OCI_VERSION=\"10.2.0.4\" -DORA_OCI_102 Checking for functioning wait.ph System: perl5.008008 linux ca-build9.us.oracle.com 2.6.20-1.3002.fc6xen #1 smp thu apr 30 18:08:39 pdt 2009 x86_64 x86_64 x86_64 gnulinux Compiler: gcc -O2 -g -pipe -Wall -Wp,-D_FORTIFY_SOURCE=2 -fexceptions -fstack-protector --param=ssp-buffer-size=4 -m64 -mtune=generic -D_REENTRANT -D_GNU_SOURCE -fno-strict-aliasing -pipe -Wdeclaration-after-statement -I/usr/local/include -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64 -I/usr/include/gdbm Linker: not found Sysliblist: -ldl -lm -lpthread -lnsl -lirc Oracle makefiles would have used these definitions but we override them: CC: cc CFLAGS: $(GFLAG) $(OPTIMIZE) $(CDEBUG) $(CCFLAGS) $(PFLAGS)\ $(SHARED_CFLAG) $(USRFLAGS) [$(GFLAG) -O3 $(CDEBUG) -m32 $(TRIGRAPHS_CCFLAGS) -fPIC -I/usr/local/oracle/ORA/rdbms/demo -I/usr/local/oracle/ORA/rdbms/public -I/usr/local/oracle/ORA/plsql/public -I/usr/local/oracle/ORA/network/public -DLINUX -D_GNU_SOURCE -D_LARGEFILE64_SOURCE=1 -D_LARGEFILE_SOURCE=1 -DSLTS_ENABLE -DSLMXMX_ENABLE -D_REENTRANT -DNS_THREADS -fno-strict-aliasing $(LPFLAGS) $(USRFLAGS)] build: $(CC) $(ORALIBPATH) -o $(EXE) $(OBJS) $(OCISHAREDLIBS) [ cc -L$(LIBHOME) -L/usr/local/oracle/ORA/rdbms/lib/ -o $(EXE) $(OBJS) -lclntsh $(EXPDLIBS) $(EXOSLIBS) -ldl -lm -lpthread -lnsl -lirc -ldl -lm $(USRLIBS) -lpthread] LDFLAGS: $(LDFLAGS32) [-m32 -o $@ -L/usr/local/oracle/ORA/rdbms//lib32/ -L/usr/local/oracle/ORA/lib32/ -L/usr/local/oracle/ORA/lib32/stubs/] Linking with /usr/local/oracle/ORA/rdbms/lib/defopt.o -lclntsh -ldl -lm -lpthread -lnsl -lirc -ldl -lm -lpthread [from $(DEF_OPT) $(OCISHAREDLIBS)] Checking if your kit is complete... Looks good LD_RUN_PATH=/usr/local/oracle/ORA/lib Using DBD::Oracle 1.50. Using DBD::Oracle 1.50. Using DBI 1.52 (for perl 5.008008 on x86_64-linux-thread-multi) installed in /usr/lib64/perl5/vendor_perl/5.8.8/x86_64-linux-thread-multi/auto/DBI/ Writing Makefile for DBD::Oracle Writing MYMETA.yml and MYMETA.json *** If you have problems... read all the log printed above, and the README and README.help.txt files. (Of course, you have read README by now anyway, haven't you?)

    Read the article

  • Lost transparency in SDL surfaces drawn manually

    - by Christian Ivicevic
    I want to create SDL_Surface objects for each layer of my 2d tile-based map so that I have to render only one surface per layer rather than too many tiles. With normal tiles which do not have transparent areas this works well, however I am not able to create a SDL_Surface with transparent pixels everywhere to be able to draw some tiles on specific parts which should be visible (I do NOT want the whole surface to appear with a specific opacity - I want to create overlaying tiles where one can look through). Currently I am creating my layers like this to draw with SDL_BlitSurface on them: SDL_Surface* layer = SDL_CreateRGBSurface( SDL_HWSURFACE | SDL_SRCALPHA, layerWidth, layerHeight, 32, 0, 0, 0, 0); If you have a look at this screenshot I have provided here you can see that the bottom layer with no transparent parts gets rendered correctly. However the overlay with the tree tile (which is transparent in the top left corner) is drawn own its own surface which is black and not transparent as expected. The expected result (concerning the transparency) can be seen here Can anyone explain me how to handle surfaces which are actually transparent rather than drawing all my overlay tiles separately?

    Read the article

  • Reading email address from contacts fails with weird memory issue - Solved

    - by CapsicumDreams
    Hi all, I'm stumped. I'm trying to get a list of all the email address a person has. I'm using the ABPeoplePickerNavigationController to select the person, which all seems fine. I'm setting my ABRecordRef personDealingWith; from the person argument to - (BOOL)peoplePickerNavigationController:(ABPeoplePickerNavigationController *)peoplePicker shouldContinueAfterSelectingPerson:(ABRecordRef)person property:(ABPropertyID)property identifier:(ABMultiValueIdentifier)identifier { and everything seems fine up till this point. The first time the following code executes, all is well. When subsequently run, I can get issues. First, the code: // following line seems to make the difference (issue 1) // NSLog(@"%d", ABMultiValueGetCount(ABRecordCopyValue(personDealingWith, kABPersonEmailProperty))); // construct array of emails ABMultiValueRef multi = ABRecordCopyValue(personDealingWith, kABPersonEmailProperty); CFIndex emailCount = ABMultiValueGetCount(multi); if (emailCount > 0) { // collect all emails in array for (CFIndex i = 0; i < emailCount; i++) { CFStringRef emailRef = ABMultiValueCopyValueAtIndex(multi, i); [emailArray addObject:(NSString *)emailRef]; CFRelease(emailRef); } } // following line also matters (issue 2) CFRelease(multi); If compiled as written, the are no errors or static analysis problems. This crashes with a *** -[Not A Type retain]: message sent to deallocated instance 0x4e9dc60 error. But wait, there's more! I can fix it in either of two ways. Firstly, I can uncomment the NSLog at the top of the function. I get a leak from the NSLog's ABRecordCopyValue every time through, but the code seems to run fine. Also, I can comment out the CFRelease(multi); at the end, which does exactly the same thing. Static compilation errors, but running code. So without a leak, this function crashes. To prevent a crash, I need to haemorrhage memory. Neither is a great solution. Can anyone point out what's going on? Solution: It turned out that I wasn't storing the ABRecordRef personDealingWith var correctly. I'm still not sure how to do that properly, but instead of having the functionality in another routine (performed later), I'm now doing the grunt-work in the delegate method, and using the derived results at my leisure. The new (working) routine: - (BOOL)peoplePickerNavigationController:(ABPeoplePickerNavigationController *)peoplePicker shouldContinueAfterSelectingPerson:(ABRecordRef)person { // as soon as they select someone, return personDealingWithFullName = (NSString *)ABRecordCopyCompositeName(person); personDealingWithFirstName = (NSString *)ABRecordCopyValue(person, kABPersonFirstNameProperty); // construct array of emails [personDealingWithEmails removeAllObjects]; ABMutableMultiValueRef multi = ABRecordCopyValue(person, kABPersonEmailProperty); if (ABMultiValueGetCount(multi) > 0) { // collect all emails in array for (CFIndex i = 0; i < ABMultiValueGetCount(multi); i++) { CFStringRef emailRef = ABMultiValueCopyValueAtIndex(multi, i); [personDealingWithEmails addObject:(NSString *)emailRef]; CFRelease(emailRef); } } CFRelease(multi); return NO; }

    Read the article

  • XNA Masking Mayhem

    - by TropicalFlesh
    I'd like to start by mentioning that I'm just an amateur programmer of the past 2 years with no formal training and know very little about maximizing the potential of graphics hardware. I can write shaders and manipulate a multi-layered drawing environment, but I've basically stuck to minimalist pixel shaders. I'm working on putting dynamic point light shadows in my 2d sidescroller, and have had it working to a reasonable degree. Just chucking it in without working on serious optimizations outside of basic culling, I can get 50 lights or so onscreen at once and still hover around 100 fps. The only issue is that I'm on a very high end machine and would like to target the game at as many platforms I can, low and high end. The way I'm doing shadows involves a lot of masking before I can finally draw the light to my light layer. Basically, my technique to achieveing such shadows is as follows. See pics in this album http://imgur.com/a/m2fWw#0 The dark gray represents the background tiles, the light gray represents the foreground tiles, and the yellow represents the shadow-emitting foreground tile. I'll draw the light using a radial gradient and a color of choice I'll then exclude light from the mask by drawing some geometry extending through the tile from my point light. I actually don't mask the light yet at this point, but I'm just illustrating the technique in this image Finally, I'll re-include the foreground layer in my mask, as I only want shadows to collect on the background layer and finally multiply the light with it's mask to the light layer My question is simple - How can I go about reducing the amount of render target switches I need to do to achieve the following: a. Draw mask to exclude shadows from the foreground to it's own target once per frame b. For each light that emits shadows, -Begin light mask as full white -Render shadow geometry as transparent with an opaque blendmode to eliminate shadowed areas from the mask -Render foreground mask back over the light mask to reintroduce light to the foreground c. Multiply light texture with it's individual mask to the main light layer.

    Read the article

  • Parallelism implies concurrency but not the other way round right?

    - by Cedric Martin
    I often read that parallelism and concurrency are different things. Very often the answerers/commenters go as far as writing that they're two entirely different things. Yet in my view they're related but I'd like some clarification on that. For example if I'm on a multi-core CPU and manage to divide the computation into x smaller computation (say using fork/join) each running in its own thread, I'll have a program that is both doing parallel computation (because supposedly at any point in time several threads are going to run on several cores) and being concurrent right? While if I'm simply using, say, Java and dealing with UI events and repaints on the Event Dispatch Thread plus running the only thread I created myself, I'll have a program that is concurrent (EDT + GC thread + my main thread etc.) but not parallel. I'd like to know if I'm getting this right and if parallelism (on a "single but multi-cores" system) always implies concurrency or not? Also, are multi-threaded programs running on multi-cores CPU but where the different threads are doing totally different computation considered to be using "parallelism"?

    Read the article

  • Building Single Page Apps on the Microsoft Stack

    - by Stephen.Walther
    Thank you everyone who came to my talk last night on Building Single Page Apps on the Microsoft Stack. I’ve attached the slides and code samples below. Here’s a quick summary of the talk. I argued that Single Page Apps are better than traditional Server Side Apps because: Single Page Apps are Stateful – In a traditional server-side app, whenever you navigate to a new page, all of your previous state is lost. It is like rebooting your computer whenever you perform any action In a Single Page App, Your Presentation Layer is Not Miles Away – In a traditional server-side app, because everything happens on the server, your presentation layer is separated from the user by space and time. In a Single Page App, the presentation layer is in the browser and not the server (which is the right place for a presentation layer). A Single Page App Respects the Web – It is easier to take advantage of HTML5 and related standards when building a Single Page App. Next, I recommended using the following four technologies when building a web application: Knockout – This is how you create your presentation layer. ASP.NET Web API – This is how you expose JSON data from your web server and perform server-side validation. HTML5 – This is how you implement client-side validation. Sammy – This is how you implement client-side routing and create a Single Page App with multiple virtual pages. There are code samples in the download (look in the Samples folder) which demonstrate how all of these technologies work when building Single Page Apps. Powerpoint Sample Code

    Read the article

  • Is there a clean separation of my layers with this attempt at Domain Driven Design in XAML and C#

    - by Buddy James
    I'm working on an application. I'm using a mixture of TDD and DDD. I'm working hard to separate the layers of my application and that is where my question comes in. My solution is laid out as follows Solution MyApp.Domain (WinRT class library) Entity (Folder) Interfaces(Folder) IPost.cs (Interface) BlogPosts.cs(Implementation of IPost) Service (Folder) Interfaces(Folder) IDataService.cs (Interface) BlogDataService.cs (Implementation of IDataService) MyApp.Presentation(Windows 8 XAML + C# application) ViewModels(Folder) BlogViewModel.cs App.xaml MainPage.xaml (Contains a property of BlogViewModel MyApp.Tests (WinRT Unit testing project used for my TDD) So I'm planning to use my ViewModel with the XAML UI I'm writing a test and define my interfaces in my system and I have the following code thus far. [TestMethod] public void Get_Zero_Blog_Posts_From_Presentation_Layer_Returns_Empty_Collection() { IBlogViewModel viewModel = _container.Resolve<IBlogViewModel>(); viewModel.LoadBlogPosts(0); Assert.AreEqual(0, viewModel.BlogPosts.Count, "There should be 0 blog posts."); } viewModel.BlogPosts is an ObservableCollection<IPost> Now.. my first thought is that I'd like the LoadBlogPosts method on the ViewModel to call a static method on the BlogPost entity. My problem is I feel like I need to inject the IDataService into the Entity object so that it promotes loose coupling. Here are the two options that I'm struggling with: Not use a static method and use a member method on the BlogPost entity. Have the BlogPost take an IDataService in the constructor and use dependency injection to resolve the BlogPost instance and the IDataService implementation. Don't use the entity to call the IDataService. Put the IDataService in the constructor of the ViewModel and use my container to resolve the IDataService when the viewmodel is instantiated. So with option one the layers will look like this ViewModel(Presentation layer) - Entity (Domain layer) - IDataService (Service Layer) or ViewModel(Presentation layer) - IDataService (Service Layer)

    Read the article

  • Push or Pull Input Data In the Game Logic?

    - by Qua
    In the process of preparing my game for networking I'm adding a layer of seperation between the physical input (mouse/keyboard) and the actual game "engine"/logic. All input that has any relation to the game logic is wrapped inside action objects such as BuildBuildingAction. I was thinking of having an action processing layer that would determine what to do with the input. This layer could then be set up to either just pass the actions locally to the game engine or send it via sockets to the network server depending on whether the game was single- or multiplayer. In network games it would make sense that the player's actions should be sent to the server, but should the game logic be pulling (polling?) the data through some sort of interface or should the action processing layer be adding the actions to an input queue in the game logic code?

    Read the article

< Previous Page | 73 74 75 76 77 78 79 80 81 82 83 84  | Next Page >