Search Results

Search found 16050 results on 642 pages for 'linq to objects'.

Page 78/642 | < Previous Page | 74 75 76 77 78 79 80 81 82 83 84 85  | Next Page >

  • How can I avoid setting some columns if others haven't changed, when working with Linq To SQL?

    - by Patrick Szalapski
    In LINQ to SQL, I want to avoid setting some columns if others haven't changed? Say I have dim row = (From c in dataContext.Customers Where c.Id = 1234 Select c).Single() row.Name = "Example" ' line 3 dataContext.SubmitChanges() ' line 4 Great, so LINQ to SQL fetches a row, sets the name to "Example" in memory, and generates an update SQL query only when necessary--that is, no SQL will be generated if the customer's name was already "Example". So suppose on line 3, I want to detect if row has changed, and if so, set row.UpdateDate = DateTime.Now. If row has not changed, I don't want to set row.UpdateDate so that no SQL is generated. Is there any good way to do this?

    Read the article

  • c# How to make linq master detail query for 0..n relationship?

    - by JK
    Given a classic DB structure of Orders has zero or more OrderLines and OrderLine has exactly one Product, how do I write a linq query to express this? The output would be OrderNumber - OrderLine - Product Name Order-1 null null // (this order has no lines) Order-2 1 Red widget I tried this query but is not getting the orders with no lines var model = (from po in Orders from line in po.OrderLines select new { OrderNumber = po.Id, OrderLine = line.LineNumber, ProductName = line.Product.ProductDescription, } ) I think that the 2nd from is limiting the query to only those that have OrderLines, but I dont know another way to express it. LINQ is very non-obvious if you ask me!

    Read the article

  • How do I "propagate" my VS2008 Data Sources window with a LINQ query table?

    - by Kent S. Clarkson
    I´m (professionally) creating a SQL Server database client by using Visual Studio 2008, C# - Windows Form(s). And I´m using all the built in stuff, provided by my friend VS Studio, dragging and dropping, creating SQL query tables in DataSet.xsd, and so on... I like that. But! I would like to try out LINQ, as I would like to have something that to me is more intuitive than pure SQL... And (here comes the newbie-problem to be solved)! I don´t know where to put the LINQ code to make a table "pop up" in the Data Sources window - meaning I´m completely stuck! How should I do it?

    Read the article

  • How to choose programaticaly the column to be querried by Linq using PropertyInfo???

    - by Richard77
    Hello, I would like to control how linq querries my database programaticaly. For instance, I'd like to querry the column X, column Y, or column Z, depending on some conditions. First of all, I've created an array of all the properties inside my class called myPropertyInfo. Type MyType = (typeOf(MyClass)); PropertyInfo[] myPropertyInfo = myType.GetProperties( BindingFlags.Public|BindingFlags.Instance); the myPropertyInfo array allows me to access each property details (Name, propertyType, etc) through the index*[i]* Now, how can I use the above information to control how linq querries my DB? Here's a sample of a querry I'd like to exploit. var myVar = from tp in db.MyClass select tp.{expression}; Expression using myPropertyInfo[i] to choose which property(column) to querry. I'm not sure if that's the way of doing it, but if there's another way to do so, I'll be glad to learn. Thanks for helping.

    Read the article

  • How to choose programaticaly the column to be queried by Linq using PropertyInfo???

    - by Richard77
    Hello, I would like to control how linq querries my database programaticaly. For instance, I'd like to query the column X, column Y, or column Z, depending on some conditions. First of all, I've created an array of all the properties inside my class called myPropertyInfo. Type MyType = (typeOf(MyClass)); PropertyInfo[] myPropertyInfo = myType.GetProperties( BindingFlags.Public|BindingFlags.Instance); The myPropertyInfo array allows me to access each property details (Name, propertyType, etc) through the index*[i]* Now, how can I use the above information to control how linq queries my DB? Here's a sample of a querry I'd like to exploit. var myVar = from tp in db.MyClass select tp.{expression}; Expression using myPropertyInfo[i] to choose which property(column) to query. I'm not sure if that's the way of doing it, but if there's another way to do so, I'll be glad to learn. Thanks for helping.

    Read the article

  • Linq to SQL DateTime values are local (Kind=Unspecified) - How do I make it UTC?

    - by ericsson007
    Isn't there a (simple) way to tell Linq To SQL classes that a particular DateTime property should be considered as UTC (i.e. having the Kind property of the DateTime type to be Utc by default), or is there a 'clean' workaround? The time zone on my app-server is not the same as the SQL 2005 Server (cannot change any), and none is UTC. When I persist a property of type DateTime to the dB I use the UTC value (so the value in the db column is UTC), but when I read the values back (using Linq To SQL) I get the .Kind property of the DateTime value to be 'Unspecified'. The problem is that when I 'convert' it to UTC it is 4 hours off. This also means that when it is serialized it it ends up on the client side with a 4 hour wrong offset (since it is serialized using the UTC).

    Read the article

  • How to make a SUM of Dictionary Value nested into a list with LINQ ?

    - by user551108
    Hi All, I have a product object declared as : Product { int ProductID; string ProductName; int ProductTypeID; string ProductTypeName; int UnitsSold Dictionary <string, int> UnitsSoldByYear; } I want to make a sum on UnitsSold and UnitsSoldByYear properties with a Linq query but I didn't know how to make this kind of sum on a dictionary ! Here is my begining linq query code : var ProductTypeSum = from i in ProductsList group i by new { i.ProductTypeID, i.ProductTypeName} into pt select new { ProductTypeID= pt.Key.ProductTypeID, ProductTypeName= pt.Key.ProductTypeName, UnitsSoldSum= pt.Sum(i => i.UnitsSold), // How to make a Dictionary sum here } Thank you for your help !

    Read the article

  • Detect two specific objects collision with bullet physics

    - by sebap123
    I have got some problem with defining collision between objects in my game using bullet physics. I know that objects are colliding with each other simultaneously and I don't have to do anything more. However I need to be noticed when one object collides with one of the rest. It is quite awkward written so I will tell what I want to achive. I have got ball which hits wall from tubes. Everything is on the floor. When ball hits wall some fragments fall down to infinity. So I have got bellow floor btStaticPlaneShape. This is place where most of objects is stoping and then I can start another action. But not all of them. So I've been trying to use function checkCollideWith but it isn't good method as it was said in reference and wiki. So I've checked method described in wiki http://bulletphysics.org/mediawiki-1.5.8/index.php/Collision_Callbacks_and_Triggers called contact information. This isn't good method either because it is extremly hard to identify what is what when colliding. You have to also remember that ball is almost all the time colliding with something - floor, wall or eart level. So is there any other method to check what is colliding with what?

    Read the article

  • ASP.NET: Serializing and deserializing JSON objects

    - by DigiMortal
    ASP.NET offers very easy way to serialize objects to JSON format. Also it is easy to deserialize JSON objects using same library. In this posting I will show you how to serialize and deserialize JSON objects in ASP.NET. All required classes are located in System.Servicemodel.Web assembly. There is namespace called System.Runtime.Serialization.Json for JSON serializer. To serialize object to stream we can use the following code. var serializer = new DataContractJsonSerializer(typeof(MyClass)); serializer.WriteObject(myStream, myObject); To deserialize object from stream we can use the following code. CopyStream() is practically same as my Stream.CopyTo() extension method. var serializer = new DataContractJsonSerializer(typeof(MyClass));   using(var stream = response.GetResponseStream()) using (var ms = new MemoryStream()) {     CopyStream(stream, ms);     results = serializer.ReadObject(ms) as MyClass; } Why I copied data from response stream to memory stream? Point is simple – serializer uses some stream features that are not supported by response stream. Using memory stream we can deserialize object that came from web.

    Read the article

  • Should mock objects for tests be created at a high or low level

    - by Danack
    When creating unit tests for those other objects, what is the best way to create mock objects that provide data to other objects. Should they be created at a 'high level' and intercept the calls as soon as possible, or should they be done at a 'low level' and so make as much as the real code still be called? e.g. I'm writing a test for some code that requires a NoteMapper object that allows Notes to be loaded from the DB. class NoteMapper { function getNote($sqlQueryFactory, $noteID) { // Create an SQL query from $sqlQueryFactory // Run that SQL // if null // return null // else // return new Note($dataFromSQLQuery) } } I could either mock this object at a high level by creating a mock NoteMapper object, so that there are no calls to the SQL at all e.g. class MockNoteMapper { function getNote($sqlQueryFactory, $noteID) { //$mockData = {'Test Note title', "Test note text" } // return new Note($mockData); } } Or I could do it at a very low level, by creating a MockSQLQueryFactory that instead of actually querying the database just provides mock data back, and passing that to the current NoteMapper object. It seems that creating mocks at a high level would be easier in the short term, but that in the long term doing it at a low level would be more powerful and possibly allow more automation of tests e.g. by recording data in an out of a DB and then replaying that data for tests. Is there a recommended way of creating mocks? Are there any hard and fast rules about which are better, or should they both be used where appropriate?

    Read the article

  • Unity gizmos vs. referenced game objects

    - by DuckMaestro
    I'm designing a Unity script that I intend to be highly reusable and as easy as possible to setup within the editor. To this end, a number of properties of this script really need some kind of visual representation on screen. It is an unresolved question to me whether the design of the script should require references to placeholder game objects, OR just Vector3's and float's that have associated gizmos drawn for them. Normally a gizmo would be a natural choice, except that Unity gizmos are not directly manipulable (as far as I can tell). Because of this shortcoming I'm having to consider whether depending on references to placeholder game objects is a more designer-friendly approach ultimately, in spite of the extra setup required, and that it might be counter-intuitive when the placeholder game objects disappear at run-time (which my script would do). Is there a community standard or preference here in this case? Can a Unity-experienced game programmer / designer speak to which approach they feel is more intuitive or more convenient to setup, when using a 3rd party script? Or is this just splitting hairs as long as I ship an example prefab with my script?

    Read the article

  • Determining whether two fast moving objects should be submitted for a collision check

    - by dreta
    I have a basic 2D physics engine running. It's pretty much a particle engine, just uses basic shapes like AABBs and circles, so no rotation is possible. I have CCD implemented that can give accurate TOI for two fast moving objects and everything is working smoothly. My issue now is that i can't figure out how to determine whether two fast moving objects should even be checked against each other in the first place. I'm using a quad tree for spacial partitioning and for each fast moving object, i check it against objects in each cell that it passes. This works fine for determining collision with static geometry, but it means that any other fast moving object that could collide with it, but isn't in any of the cells that are checked, is never considered. The only solution to this i can think of is to either have the cells large enough and cross fingers that this is enough, or to implement some sort of a brute force algorithm. Is there a proper way of dealing with this, maybe somebody solved this issue in an efficient manner. Or maybe there's a better way of partitioning space that accounts for this?

    Read the article

  • Talks Submitted for Ann Arbor Day of .NET 2010

    - by PSteele
    Just submitted my session abstracts for Ann Arbor's Day of .NET 2010.   Getting up to speed with .NET 3.5 -- Just in time for 4.0! Yes, C# 4.0 is just around the corner.  But if you haven't had the chance to use C# 3.5 extensively, this session will start from the ground up with the new features of 3.5.  We'll assume everyone is coming from C# 2.0.  This session will show you the details of extension methods, partial methods and more.  We'll also show you how LINQ -- Language Integrated Query -- can help decrease your development time and increase your code's readability.  If time permits, we'll look at some .NET 4.0 features, but the goal is to get you up to speed on .NET 3.5.   Go Ahead and Mock Me! When testing specific parts of your application, there can be a lot of external dependencies required to make your tests work.  Writing fake or mock objects that act as stand-ins for the real dependencies can waste a lot of time.  This is where mocking frameworks come in.  In this session, Patrick Steele will introduce you to Rhino Mocks, a popular mocking framework for .NET.  You'll see how a mocking framework can make writing unit tests easier and leads to less brittle unit tests.   Inversion of Control: Who's got control and why is it being inverted? No doubt you've heard of "Inversion of Control".  If not, maybe you've heard the term "Dependency Injection"?  The two usually go hand-in-hand.  Inversion of Control (IoC) along with Dependency Injection (DI) helps simplify the connections and lifetime of all of the dependent objects in the software you write.  In this session, Patrick Steele will introduce you to the concepts of IoC and DI and will show you how to use a popular IoC container (Castle Windsor) to help simplify the way you build software and how your objects interact with each other. If you're interested in speaking, hurry up and get your submissions in!  The deadline is Monday, April 5th! Technorati Tags: .NET,Ann Arbor,Day of .NET

    Read the article

  • LINQ to XML

    Gain an understanding of LINQ (Language Integrated Query) to XML and see why you'll never want to use the DOM again.

    Read the article

  • C# Multiple Property Sort

    - by Ben Griswold
    As you can see in the snippet below, sorting is easy with Linq.  Simply provide your OrderBy criteria and you’re done.  If you want a secondary sort field, add a ThenBy expression to the chain.  Want a third level sort?  Just add ThenBy along with another sort expression. var projects = new List<Project>     {         new Project {Description = "A", ProjectStatusTypeId = 1},         new Project {Description = "B", ProjectStatusTypeId = 3},         new Project {Description = "C", ProjectStatusTypeId = 3},         new Project {Description = "C", ProjectStatusTypeId = 2},         new Project {Description = "E", ProjectStatusTypeId = 1},         new Project {Description = "A", ProjectStatusTypeId = 2},         new Project {Description = "C", ProjectStatusTypeId = 4},         new Project {Description = "A", ProjectStatusTypeId = 3}     };   projects = projects     .OrderBy(x => x.Description)     .ThenBy(x => x.ProjectStatusTypeId)     .ToList();   foreach (var project in projects) {     Console.Out.WriteLine("{0} {1}", project.Description,         project.ProjectStatusTypeId); } Linq offers a great sort solution most of the time, but what if you want or need to do it the old fashioned way? projects.Sort ((x, y) =>         Comparer<String>.Default             .Compare(x.Description, y.Description) != 0 ?         Comparer<String>.Default             .Compare(x.Description, y.Description) :         Comparer<Int32>.Default             .Compare(x.ProjectStatusTypeId, y.ProjectStatusTypeId));   foreach (var project in projects) {     Console.Out.WriteLine("{0} {1}", project.Description,         project.ProjectStatusTypeId); } It’s not that bad, right? Just for fun, let add some additional logic to our sort.  Let’s say we wanted our secondary sort to be based on the name associated with the ProjectStatusTypeId.  projects.Sort((x, y) =>        Comparer<String>.Default             .Compare(x.Description, y.Description) != 0 ?        Comparer<String>.Default             .Compare(x.Description, y.Description) :        Comparer<String>.Default             .Compare(GetProjectStatusTypeName(x.ProjectStatusTypeId),                 GetProjectStatusTypeName(y.ProjectStatusTypeId)));   foreach (var project in projects) {     Console.Out.WriteLine("{0} {1}", project.Description,         GetProjectStatusTypeName(project.ProjectStatusTypeId)); } The comparer will now consider the result of the GetProjectStatusTypeName and order the list accordingly.  Of course, you can take this same approach with Linq as well.

    Read the article

  • Modifying Service URLs with LINQ to Twitter

    - by Joe Mayo
    It’s funny that two posts so close together speak about flexibility with the LINQ to Twitter provider.  There are certain things you know from experience on when to make software more flexible and when to save time.  This is another one of those times when I got lucky and made the right choice up front. I’m talking about the ability to switch URLs. It only makes sense that Twitter should begin versioning their API as it matures.  In fact, most of the entire API has moved to the v1 URL at “https://api.twitter.com/1/”, except for search and trends.  Recently, Twitter introduced the available and local trends, but hung them off the new v1, and left the rest of the trends API on the old URL. To implement this, I muscled my way into the expression tree during CreateRequestProcessor to figure out which trend I was dealing with; perhaps not elegant, but the code is in the right place and that’s what factories are for.  Anyway, the point is that I wouldn’t have to do this kind of stuff (as much fun as it is), if Twitter would have more consistency. Having went to Chirp last week and seeing the evolution of the API, it looks like my wish is coming true.  …now if they would just get their stuff together on the mess they made with geo-location and places… but again, that’s all transparent if your using LINQ to Twitter because I pulled all of that together in a consistent way so that you don’t have to. Normally, when Twitter makes a change, code breaks and I have to scramble to get the fixes in-place.  This time, in the case of a URL change, the adjustment is easy and no-one has to wait for me.  Essentially, all you need to do is change the URL passed to the TwitterContext constructor.  Here’s an example of instantiating a TwitterContext now: using (var twitterCtx = new TwitterContext(auth, "https://api.twitter.com/1/", "https://search.twitter.com/")) The third parameter constructor is the SearchUrl, which is used for Search and Trend APIs. You probably know what’s coming next; another constructor, but with the SearchUrl parameter set to the new URL as follows: using (var twitterCtx = new TwitterContext(auth, "https://api.twitter.com/1/", "https://api.twitter.com/1/")) One consequence of setting the URL this way is that you set the URL for both Trends and Search.  Since Search is still using the old URL, this is going to break for Search queries. You could always instantiate a special TwitterContext instance for Search queries, with the old URL set. Alternatively, you can use the TwitterContext’s SearchUrl property. Here’s an example: twitterCtx.SearchUrl = "https://api.twitter.com/1/"; var trends = (from trend in twitterCtx.Trends where trend.Type == TrendType.Daily && trend.Date == DateTime.Now.AddDays(-2).Date select trend) .ToList(); Notice how I set the SearchUrl property just-in-time for the query. This allows you to target the URL for each specific query. Whichever way you prefer to configure the URL, it’s your choice. So, now you know how to set the URL to be used for Trend queries and how to prevent whacking your Search queries. I’ll be updating the Trend API to use same URL as all other APIs soon, so the only API left to use the SearchUrl will be Search, but for the short term, it’s Trends and Search. Until I make this change, you’ll have a viable work-around by setting the URL yourself, as explained above. These were the Search and Trend URLs, but you might be curious about the second parameter of the TwitterContext constructor; that’s the URL for all other APIs (the BaseUrl), except for Trend and Search. Similarly, you can use the TwitterContext’s BaseUrl property to set the BaseUrl. Setting the BaseUrl can be useful when communicating with other services. In addition to Twitter changing URLs, the Twitter API has been adopted by other companies, such as Identi.ca, Tumblr, and  WordPress.  This capability lets you use LINQ to Twitter with any of these services.  This is a testament to the success of the Twitter API and it’s popularity. No doubt we’ll have hills and valleys to traverse as the Twitter API matures, but hopefully there will be enough flexibility in LINQ to Twitter to make these changes as transparent as possible for you. @JoeMayo

    Read the article

  • cocos2d-x - object creation and management in game design

    - by Jason
    How do others keep track of everything going on in their games? I am working on a new game and I am quickly realizing everything that I need to keep track of. Example: Maybe a layerManager that keeps track of all the layers and what is happening for a particular scene. Maybe a sceneManager for sharing objects among scenes But then getting to game play itself, what if you have 100 objects on the screen each with its own state and happenings, there needs tobe a way to keep track of all of that. Drawing everything out is really helping me. Can anyone share with me how they go about object tracking/management? I am seeing a few different managers and then maybe even a parent object that manages the managers..is my thinking way off? Any design patterns that may be useful for me to read about? Update: doing some reading and maybe a Factory pattern might apply.

    Read the article

  • Hex Dump using LINQ (in 7 lines of code)

    Eric White has posted an interesting LINQ query on his blog that shows how to create a Hex Dump in something like 7 lines of code.Of course, this is not production grade code, but it's another good example that demonstrates the expressiveness of LINQ.Here is the code:byte[] ba = File.ReadAllBytes("test.xml");int bytesPerLine = 16;string hexDump = ba.Select((c, i) => new { Char = c, Chunk = i / bytesPerLine })    .GroupBy(c => c.Chunk)    .Select(g => g.Select(c...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • LINQ and ArcObjects

    - by Marko Apfel
    Motivation LINQ (language integrated query) is a component of the Microsoft. NET Framework since version 3.5. It allows a SQL-like query to various data sources such as SQL, XML etc. Like SQL also LINQ to SQL provides a declarative notation of problem solving – i.e. you don’t need describe in detail how a task could be solved, you describe what to be solved at all. This frees the developer from error-prone iterator constructs. Ideally, of course, would be to access features with this way. Then this construct is conceivable: var largeFeatures = from feature in features where (feature.GetValue("SHAPE_Area").ToDouble() > 3000) select feature; or its equivalent as a lambda expression: var largeFeatures = features.Where(feature => (feature.GetValue("SHAPE_Area").ToDouble() > 3000)); This requires an appropriate provider, which manages the corresponding iterator logic. This is easier than you might think at first sight - you have to deliver only the desired entities as IEnumerable<IFeature>. LINQ automatically establishes a state machine in the background, whose execution is delayed (deferred execution) - when you are really request entities (foreach, Count (), ToList (), ..) an instantiation processing takes place, although it was already created at a completely different place. Especially in multiple iteration through entities in the first debuggings you are rubbing your eyes when the execution pointer jumps magically back in the iterator logic. Realization A very concise logic for constructing IEnumerable<IFeature> can be achieved by running through a IFeatureCursor. You return each feature via yield. For an easier usage I have put the logic in an extension method Getfeatures() for IFeatureClass: public static IEnumerable<IFeature> GetFeatures(this IFeatureClass featureClass, IQueryFilter queryFilter, RecyclingPolicy policy) { IFeatureCursor featureCursor = featureClass.Search(queryFilter, RecyclingPolicy.Recycle == policy); IFeature feature; while (null != (feature = featureCursor.NextFeature())) { yield return feature; } //this is skipped in unit tests with cursor-mock if (Marshal.IsComObject(featureCursor)) { Marshal.ReleaseComObject(featureCursor); } } So you can now easily generate the IEnumerable<IFeature>: IEnumerable<IFeature> features = _featureClass.GetFeatures(RecyclingPolicy.DoNotRecycle); You have to be careful with the recycling cursor. After a delayed execution in the same context it is not a good idea to re-iterated on the features. In this case only the content of the last (recycled) features is provided and all the features are the same in the second set. Therefore, this expression would be critical: largeFeatures.ToList(). ForEach(feature => Debug.WriteLine(feature.OID)); because ToList() iterates once through the list and so the the cursor was once moved through the features. So the extension method ForEach() always delivers the same feature. In such situations, you must not use a recycling cursor. Repeated executions of ForEach() is not a problem, because for every time the state machine is re-instantiated and thus the cursor runs again - that's the magic already mentioned above. Perspective Now you can also go one step further and realize your own implementation for the interface IEnumerable<IFeature>. This requires that only the method and property to access the enumerator have to be programmed. In the enumerator himself in the Reset() method you organize the re-executing of the search. This could be archived with an appropriate delegate in the constructor: new FeatureEnumerator<IFeatureclass>(_featureClass, featureClass => featureClass.Search(_filter, isRecyclingCursor)); which is called in Reset(): public void Reset() { _featureCursor = _resetCursor(_t); } In this manner, enumerators for completely different scenarios could be implemented, which are used on the client side completely identical like described above. Thus cursors, selection sets, etc. merge into a single matter and the reusability of code is increasing immensely. On top of that in automated unit tests an IEnumerable could be mocked very easily - a major step towards better software quality. Conclusion Nevertheless, caution should be exercised with these constructs in performance-relevant queries. Because of managing a state machine in the background, a lot of overhead is created. The processing costs additional time - about 20 to 100 percent. In addition, working without a recycling cursor is fast a performance gap. However declarative LINQ code is much more elegant, flawless and easy to maintain than manually iterating, compare and establish a list of results. The code size is reduced according to experience an average of 75 to 90 percent! So I like to wait a few milliseconds longer. As so often it has to be balanced between maintainability and performance - which for me is gaining in priority maintainability. In times of multi-core processors, the processing time of most business processes is anyway not dominated by code execution but by waiting for user input. Demo source code The source code for this prototype with several unit tests, you can download here: https://github.com/esride-apf/Linq2ArcObjects. .

    Read the article

  • Another Linq to SQL product, Enzo Multitenant Framework

    - by Ed Gnatiuk
    An open source library and full product have been developed for transparently splitting large tables across several databases for performance, similar to database table partitioning.  It is all handled along with the Linq to SQL framework, and looks pretty slick, I will be reviewing the product shortly.  It looks mostly transparent to the developer!  There are other capabilites worth a look.  This looks like it works for azure as well. Here are some links:  http://enzosqlshard.codeplex.com/   http://enzosqlbaseline.com    https://scale.bluesyntax.net   I will be reviewing this and other Linq to SQL libraries soon.

    Read the article

< Previous Page | 74 75 76 77 78 79 80 81 82 83 84 85  | Next Page >