Search Results

Search found 18244 results on 730 pages for 'null uniqueidentifier'.

Page 78/730 | < Previous Page | 74 75 76 77 78 79 80 81 82 83 84 85  | Next Page >

  • Database Tutorial: The method open() is undefined for the type MainActivity.DBAdapter

    - by user2203633
    I am trying to do this database tutorial on SQLite Eclipse: https://www.youtube.com/watch?v=j-IV87qQ00M But I get a few errors at the end.. at db.ppen(); i get error: The method open() is undefined for the type MainActivity.DBAdapter and similar for insert record and close. MainActivity: package com.example.studentdatabase; import java.io.File; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import android.app.Activity; import android.app.ListActivity; import android.content.Intent; import android.database.Cursor; import android.os.Bundle; import android.util.Log; import android.view.LayoutInflater; import android.view.View; import android.view.ViewGroup; import android.widget.BaseAdapter; import android.widget.Button; import android.widget.Toast; public class MainActivity extends Activity { /** Called when the activity is first created. */ //DBAdapter db = new DBAdapter(this); @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); Button addBtn = (Button)findViewById(R.id.add); addBtn.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View v) { Intent i = new Intent(MainActivity.this, addassignment.class); startActivity(i); } }); try { String destPath = "/data/data/" + getPackageName() + "/databases/AssignmentDB"; File f = new File(destPath); if (!f.exists()) { CopyDB( getBaseContext().getAssets().open("mydb"), new FileOutputStream(destPath)); } } catch (FileNotFoundException e) { e.printStackTrace(); } catch (IOException e) { e.printStackTrace(); } DBAdapter db = new DBAdapter(); //---add an assignment--- db.open(); long id = db.insertRecord("Hello World", "2/18/2012", "DPR 224", "First Android Project"); id = db.insertRecord("Workbook Exercises", "3/1/2012", "MAT 100", "Do odd numbers"); db.close(); //---get all Records--- /* db.open(); Cursor c = db.getAllRecords(); if (c.moveToFirst()) { do { DisplayRecord(c); } while (c.moveToNext()); } db.close(); */ /* //---get a Record--- db.open(); Cursor c = db.getRecord(2); if (c.moveToFirst()) DisplayRecord(c); else Toast.makeText(this, "No Assignments found", Toast.LENGTH_LONG).show(); db.close(); */ //---update Record--- /* db.open(); if (db.updateRecord(1, "Hello Android", "2/19/2012", "DPR 224", "First Android Project")) Toast.makeText(this, "Update successful.", Toast.LENGTH_LONG).show(); else Toast.makeText(this, "Update failed.", Toast.LENGTH_LONG).show(); db.close(); */ /* //---delete a Record--- db.open(); if (db.deleteRecord(1)) Toast.makeText(this, "Delete successful.", Toast.LENGTH_LONG).show(); else Toast.makeText(this, "Delete failed.", Toast.LENGTH_LONG).show(); db.close(); */ } private class DBAdapter extends BaseAdapter { private LayoutInflater mInflater; //private ArrayList<> @Override public int getCount() { return 0; } @Override public Object getItem(int arg0) { return null; } @Override public long getItemId(int arg0) { return 0; } @Override public View getView(int arg0, View arg1, ViewGroup arg2) { return null; } } public void CopyDB(InputStream inputStream, OutputStream outputStream) throws IOException { //---copy 1K bytes at a time--- byte[] buffer = new byte[1024]; int length; while ((length = inputStream.read(buffer)) > 0) { outputStream.write(buffer, 0, length); } inputStream.close(); outputStream.close(); } public void DisplayRecord(Cursor c) { Toast.makeText(this, "id: " + c.getString(0) + "\n" + "Title: " + c.getString(1) + "\n" + "Due Date: " + c.getString(2), Toast.LENGTH_SHORT).show(); } public void addAssignment(View view) { Intent i = new Intent("com.pinchtapzoom.addassignment"); startActivity(i); Log.d("TAG", "Clicked"); } } DBAdapter code: package com.example.studentdatabase; public class DBAdapter { public static final String KEY_ROWID = "id"; public static final String KEY_TITLE = "title"; public static final String KEY_DUEDATE = "duedate"; public static final String KEY_COURSE = "course"; public static final String KEY_NOTES = "notes"; private static final String TAG = "DBAdapter"; private static final String DATABASE_NAME = "AssignmentsDB"; private static final String DATABASE_TABLE = "assignments"; private static final int DATABASE_VERSION = 2; private static final String DATABASE_CREATE = "create table if not exists assignments (id integer primary key autoincrement, " + "title VARCHAR not null, duedate date, course VARCHAR, notes VARCHAR );"; private final Context context; private DatabaseHelper DBHelper; private SQLiteDatabase db; public DBAdapter(Context ctx) { this.context = ctx; DBHelper = new DatabaseHelper(context); } private static class DatabaseHelper extends SQLiteOpenHelper { DatabaseHelper(Context context) { super(context, DATABASE_NAME, null, DATABASE_VERSION); } @Override public void onCreate(SQLiteDatabase db) { try { db.execSQL(DATABASE_CREATE); } catch (SQLException e) { e.printStackTrace(); } } @Override public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) { Log.w(TAG, "Upgrading database from version " + oldVersion + " to " + newVersion + ", which will destroy all old data"); db.execSQL("DROP TABLE IF EXISTS contacts"); onCreate(db); } } //---opens the database--- public DBAdapter open() throws SQLException { db = DBHelper.getWritableDatabase(); return this; } //---closes the database--- public void close() { DBHelper.close(); } //---insert a record into the database--- public long insertRecord(String title, String duedate, String course, String notes) { ContentValues initialValues = new ContentValues(); initialValues.put(KEY_TITLE, title); initialValues.put(KEY_DUEDATE, duedate); initialValues.put(KEY_COURSE, course); initialValues.put(KEY_NOTES, notes); return db.insert(DATABASE_TABLE, null, initialValues); } //---deletes a particular record--- public boolean deleteContact(long rowId) { return db.delete(DATABASE_TABLE, KEY_ROWID + "=" + rowId, null) > 0; } //---retrieves all the records--- public Cursor getAllRecords() { return db.query(DATABASE_TABLE, new String[] {KEY_ROWID, KEY_TITLE, KEY_DUEDATE, KEY_COURSE, KEY_NOTES}, null, null, null, null, null); } //---retrieves a particular record--- public Cursor getRecord(long rowId) throws SQLException { Cursor mCursor = db.query(true, DATABASE_TABLE, new String[] {KEY_ROWID, KEY_TITLE, KEY_DUEDATE, KEY_COURSE, KEY_NOTES}, KEY_ROWID + "=" + rowId, null, null, null, null, null); if (mCursor != null) { mCursor.moveToFirst(); } return mCursor; } //---updates a record--- public boolean updateRecord(long rowId, String title, String duedate, String course, String notes) { ContentValues args = new ContentValues(); args.put(KEY_TITLE, title); args.put(KEY_DUEDATE, duedate); args.put(KEY_COURSE, course); args.put(KEY_NOTES, notes); return db.update(DATABASE_TABLE, args, KEY_ROWID + "=" + rowId, null) > 0; } } addassignment code: package com.example.studentdatabase; public class addassignment extends Activity { DBAdapter db = new DBAdapter(this); @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.add); } public void addAssignment(View v) { Log.d("test", "adding"); //get data from form EditText nameTxt = (EditText)findViewById(R.id.editTitle); EditText dateTxt = (EditText)findViewById(R.id.editDuedate); EditText courseTxt = (EditText)findViewById(R.id.editCourse); EditText notesTxt = (EditText)findViewById(R.id.editNotes); db.open(); long id = db.insertRecord(nameTxt.getText().toString(), dateTxt.getText().toString(), courseTxt.getText().toString(), notesTxt.getText().toString()); db.close(); nameTxt.setText(""); dateTxt.setText(""); courseTxt.setText(""); notesTxt.setText(""); Toast.makeText(addassignment.this,"Assignment Added", Toast.LENGTH_LONG).show(); } public void viewAssignments(View v) { Intent i = new Intent(this, MainActivity.class); startActivity(i); } } What is wrong here? Thanks in advance.

    Read the article

  • Hibernate OneToMany and ManyToOne confusion! Null List!

    - by squizz
    I have two tables... For example - Company and Employee (let's keep this real simple) Company( id, name ); Employee( id, company_id ); Employee.company_id is a foreign key. My entity model looks like this... Employee @ManyToOne(cascade = CascadeType.PERSIST) @JoinColumn(name = "company_id") Company company; Company @OneToMany(cascade = CascadeType.ALL, fetch = FetchType.EAGER) @JoinColumn(name = "company_id") List<Employee> employeeList = new ArrayList<Employee>(); So, yeah I want a list of employees for a company. When I do the following... Employee e = new Employee(); e.setCompany(c); //c is an Company that is already in the database. DAO.insertEmployee(e); //this works fine! If I then get my Company object it's list is empty! Ive tried endless different ways from the Hibernate documentation! Obviously not tried the correct one yet! I just want the list to be populated for me or find out a sensible alternative. Help would be greatly appreciated, thanks!

    Read the article

  • Any idea why this query always returns duplicate items?

    - by Kardo
    I want to get all Images not used by current ItemID. The this subquery but it also always returns duplicate Images: EDITED select Images.ImageID, Images.ItemStatus, Images.UserName, Images.Url, Image_Item.ItemID, Image_Item.ItemID from Images left join (select ImageID, ItemID, MAX(DateCreated) x from Image_Item where ItemID != '5a0077fe-cf86-434d-9f3b-7ff3030a1b6e' group by ImageID, ItemID having count(*) = 1) image_item on Images.imageid = image_item.imageid where ItemID is not null I guess the problem is with the subquery which I can't avoid duplicate rows: select ImageID, ItemID, MAX(DateCreated) x from Image_Item where ItemID != '5a0077fe-cf86-434d-9f3b-7ff3030a1b6e' group by ImageID, ItemID having count(*) = 1 Result: F2EECBDC-963D-42A7-90B1-4F82F89A64C7 0578AC61-3C32-4A1D-812C-60A09A661E71 F2EECBDC-963D-42A7-90B1-4F82F89A64C7 9A4EC913-5AD6-4F9E-AF6D-CF4455D81C10 42BC8B1A-7430-4915-9CDA-C907CBC76D6A CB298EB9-A105-4797-985E-A370013B684F 16371C34-B861-477C-9A7C-DEB27C8F333D 44E6349B-7EBF-4C7E-B3B0-1C6E2F19992C Table: Images ImageID uniqueidentifier UserName nvarchar(100) DateCreated smalldatetime Url nvarchar(250) ItemStatus char(1) Table: Image_Item ImageID uniqueidentifier ItemID uniqueidentifier UserName nvarchar(100) ItemStatus char(1) DateCreated smalldatetime Any kind help is highly appreciated.

    Read the article

  • The SVG text node disappear after change its text content

    - by sureone
    svg: <text xml:space="preserve" y="228" x="349.98" text-anchor="middle" stroke-width="0" stroke-linejoin="null" stroke-linecap="null" stroke-dasharray="null" stroke="#000000" fill="#000000" style="cursor: move; pointer-events: inherit;" font-size="24" font-family="serif" id="cur_b">cur_b</text> <text xml:space="preserve" y="222" x="103.98" text-anchor="middle" stroke-width="0" stroke-linejoin="null" stroke-linecap="null" stroke-dasharray="null" stroke="#000000" fill="#000000" style="cursor: move; pointer-events: inherit;" font-size="24" font-family="serif" id="cur_a">cur_a</text> <text xml:space="preserve" y="229" x="590.0211" text-anchor="middle" stroke-width="0" stroke-linejoin="null" stroke-linecap="null" stroke-dasharray="null" stroke="#000000" fill="#000000" style="cursor: move; pointer-events: inherit;" font-size="24" font-family="serif" id="cur_c">cur_c</text> NSString* theJS = @ "var theNode0 = document.getElementById('cur_a'); theNode0.textContent='200A'; theNode0.setAttribute('fill','#FF0000'); var theNode1 = document.getElementById('cur_c'); theNode1.textContent='200A'; theNode1.setAttribute('fill','#00FF00');" [self.webView stringByEvaluatingJavaScriptFromString:theJS]; The SVG text node value is changed but disappeared after about one second.

    Read the article

  • Rendering ASP.NET MVC Views to String

    - by Rick Strahl
    It's not uncommon in my applications that I require longish text output that does not have to be rendered into the HTTP output stream. The most common scenario I have for 'template driven' non-Web text is for emails of all sorts. Logon confirmations and verifications, email confirmations for things like orders, status updates or scheduler notifications - all of which require merged text output both within and sometimes outside of Web applications. On other occasions I also need to capture the output from certain views for logging purposes. Rather than creating text output in code, it's much nicer to use the rendering mechanism that ASP.NET MVC already provides by way of it's ViewEngines - using Razor or WebForms views - to render output to a string. This is nice because it uses the same familiar rendering mechanism that I already use for my HTTP output and it also solves the problem of where to store the templates for rendering this content in nothing more than perhaps a separate view folder. The good news is that ASP.NET MVC's rendering engine is much more modular than the full ASP.NET runtime engine which was a real pain in the butt to coerce into rendering output to string. With MVC the rendering engine has been separated out from core ASP.NET runtime, so it's actually a lot easier to get View output into a string. Getting View Output from within an MVC Application If you need to generate string output from an MVC and pass some model data to it, the process to capture this output is fairly straight forward and involves only a handful of lines of code. The catch is that this particular approach requires that you have an active ControllerContext that can be passed to the view. This means that the following approach is limited to access from within Controller methods. Here's a class that wraps the process and provides both instance and static methods to handle the rendering:/// <summary> /// Class that renders MVC views to a string using the /// standard MVC View Engine to render the view. /// /// Note: This class can only be used within MVC /// applications that have an active ControllerContext. /// </summary> public class ViewRenderer { /// <summary> /// Required Controller Context /// </summary> protected ControllerContext Context { get; set; } public ViewRenderer(ControllerContext controllerContext) { Context = controllerContext; } /// <summary> /// Renders a full MVC view to a string. Will render with the full MVC /// View engine including running _ViewStart and merging into _Layout /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to render the view with</param> /// <returns>String of the rendered view or null on error</returns> public string RenderView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, false); } /// <summary> /// Renders a partial MVC view to string. Use this method to render /// a partial view that doesn't merge with _Layout and doesn't fire /// _ViewStart. /// </summary> /// <param name="viewPath"> /// The path to the view to render. Either in same controller, shared by /// name or as fully qualified ~/ path including extension /// </param> /// <param name="model">The model to pass to the viewRenderer</param> /// <returns>String of the rendered view or null on error</returns> public string RenderPartialView(string viewPath, object model) { return RenderViewToStringInternal(viewPath, model, true); } public static string RenderView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderView(viewPath, model); } public static string RenderPartialView(string viewPath, object model, ControllerContext controllerContext) { ViewRenderer renderer = new ViewRenderer(controllerContext); return renderer.RenderPartialView(viewPath, model); } protected string RenderViewToStringInternal(string viewPath, object model, bool partial = false) { // first find the ViewEngine for this view ViewEngineResult viewEngineResult = null; if (partial) viewEngineResult = ViewEngines.Engines.FindPartialView(Context, viewPath); else viewEngineResult = ViewEngines.Engines.FindView(Context, viewPath, null); if (viewEngineResult == null) throw new FileNotFoundException(Properties.Resources.ViewCouldNotBeFound); // get the view and attach the model to view data var view = viewEngineResult.View; Context.Controller.ViewData.Model = model; string result = null; using (var sw = new StringWriter()) { var ctx = new ViewContext(Context, view, Context.Controller.ViewData, Context.Controller.TempData, sw); view.Render(ctx, sw); result = sw.ToString(); } return result; } } The key is the RenderViewToStringInternal method. The method first tries to find the view to render based on its path which can either be in the current controller's view path or the shared view path using its simple name (PasswordRecovery) or alternately by its full virtual path (~/Views/Templates/PasswordRecovery.cshtml). This code should work both for Razor and WebForms views although I've only tried it with Razor Views. Note that WebForms Views might actually be better for plain text as Razor adds all sorts of white space into its output when there are code blocks in the template. The Web Forms engine provides more accurate rendering for raw text scenarios. Once a view engine is found the view to render can be retrieved. Views in MVC render based on data that comes off the controller like the ViewData which contains the model along with the actual ViewData and ViewBag. From the View and some of the Context data a ViewContext is created which is then used to render the view with. The View picks up the Model and other data from the ViewContext internally and processes the View the same it would be processed if it were to send its output into the HTTP output stream. The difference is that we can override the ViewContext's output stream which we provide and capture into a StringWriter(). After rendering completes the result holds the output string. If an error occurs the error behavior is similar what you see with regular MVC errors - you get a full yellow screen of death including the view error information with the line of error highlighted. It's your responsibility to handle the error - or let it bubble up to your regular Controller Error filter if you have one. To use the simple class you only need a single line of code if you call the static methods. Here's an example of some Controller code that is used to send a user notification to a customer via email in one of my applications:[HttpPost] public ActionResult ContactSeller(ContactSellerViewModel model) { InitializeViewModel(model); var entryBus = new busEntry(); var entry = entryBus.LoadByDisplayId(model.EntryId); if ( string.IsNullOrEmpty(model.Email) ) entryBus.ValidationErrors.Add("Email address can't be empty.","Email"); if ( string.IsNullOrEmpty(model.Message)) entryBus.ValidationErrors.Add("Message can't be empty.","Message"); model.EntryId = entry.DisplayId; model.EntryTitle = entry.Title; if (entryBus.ValidationErrors.Count > 0) { ErrorDisplay.AddMessages(entryBus.ValidationErrors); ErrorDisplay.ShowError("Please correct the following:"); } else { string message = ViewRenderer.RenderView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); string title = entry.Title + " (" + entry.DisplayId + ") - " + App.Configuration.ApplicationName; AppUtils.SendEmail(title, message, model.Email, entry.User.Email, false, false)) } return View(model); } Simple! The view in this case is just a plain MVC view and in this case it's a very simple plain text email message (edited for brevity here) that is created and sent off:@model ContactSellerViewModel @{ Layout = null; }re: @Model.EntryTitle @Model.ListingUrl @Model.Message ** SECURITY ADVISORY - AVOID SCAMS ** Avoid: wiring money, cross-border deals, work-at-home ** Beware: cashier checks, money orders, escrow, shipping ** More Info: @(App.Configuration.ApplicationBaseUrl)scams.html Obviously this is a very simple view (I edited out more from this page to keep it brief) -  but other template views are much more complex HTML documents or long messages that are occasionally updated and they are a perfect fit for Razor rendering. It even works with nested partial views and _layout pages. Partial Rendering Notice that I'm rendering a full View here. In the view I explicitly set the Layout=null to avoid pulling in _layout.cshtml for this view. This can also be controlled externally by calling the RenderPartial method instead: string message = ViewRenderer.RenderPartialView("~/views/template/ContactSellerEmail.cshtml",model, ControllerContext); with this line of code no layout page (or _viewstart) will be loaded, so the output generated is just what's in the view. I find myself using Partials most of the time when rendering templates, since the target of templates usually tend to be emails or other HTML fragment like output, so the RenderPartialView() method is definitely useful to me. Rendering without a ControllerContext The preceding class is great when you're need template rendering from within MVC controller actions or anywhere where you have access to the request Controller. But if you don't have a controller context handy - maybe inside a utility function that is static, a non-Web application, or an operation that runs asynchronously in ASP.NET - which makes using the above code impossible. I haven't found a way to manually create a Controller context to provide the ViewContext() what it needs from outside of the MVC infrastructure. However, there are ways to accomplish this,  but they are a bit more complex. It's possible to host the RazorEngine on your own, which side steps all of the MVC framework and HTTP and just deals with the raw rendering engine. I wrote about this process in Hosting the Razor Engine in Non-Web Applications a long while back. It's quite a process to create a custom Razor engine and runtime, but it allows for all sorts of flexibility. There's also a RazorEngine CodePlex project that does something similar. I've been meaning to check out the latter but haven't gotten around to it since I have my own code to do this. The trick to hosting the RazorEngine to have it behave properly inside of an ASP.NET application and properly cache content so templates aren't constantly rebuild and reparsed. Anyway, in the same app as above I have one scenario where no ControllerContext is available: I have a background scheduler running inside of the app that fires on timed intervals. This process could be external but because it's lightweight we decided to fire it right inside of the ASP.NET app on a separate thread. In my app the code that renders these templates does something like this:var model = new SearchNotificationViewModel() { Entries = entries, Notification = notification, User = user }; // TODO: Need logging for errors sending string razorError = null; var result = AppUtils.RenderRazorTemplate("~/views/template/SearchNotificationTemplate.cshtml", model, razorError); which references a couple of helper functions that set up my RazorFolderHostContainer class:public static string RenderRazorTemplate(string virtualPath, object model,string errorMessage = null) { var razor = AppUtils.CreateRazorHost(); var path = virtualPath.Replace("~/", "").Replace("~", "").Replace("/", "\\"); var merged = razor.RenderTemplateToString(path, model); if (merged == null) errorMessage = razor.ErrorMessage; return merged; } /// <summary> /// Creates a RazorStringHostContainer and starts it /// Call .Stop() when you're done with it. /// /// This is a static instance /// </summary> /// <param name="virtualPath"></param> /// <param name="binBasePath"></param> /// <param name="forceLoad"></param> /// <returns></returns> public static RazorFolderHostContainer CreateRazorHost(string binBasePath = null, bool forceLoad = false) { if (binBasePath == null) { if (HttpContext.Current != null) binBasePath = HttpContext.Current.Server.MapPath("~/"); else binBasePath = AppDomain.CurrentDomain.BaseDirectory; } if (_RazorHost == null || forceLoad) { if (!binBasePath.EndsWith("\\")) binBasePath += "\\"; //var razor = new RazorStringHostContainer(); var razor = new RazorFolderHostContainer(); razor.TemplatePath = binBasePath; binBasePath += "bin\\"; razor.BaseBinaryFolder = binBasePath; razor.UseAppDomain = false; razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsBusiness.dll"); razor.ReferencedAssemblies.Add(binBasePath + "ClassifiedsWeb.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Utilities.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.dll"); razor.ReferencedAssemblies.Add(binBasePath + "Westwind.Web.Mvc.dll"); razor.ReferencedAssemblies.Add("System.Web.dll"); razor.ReferencedNamespaces.Add("System.Web"); razor.ReferencedNamespaces.Add("ClassifiedsBusiness"); razor.ReferencedNamespaces.Add("ClassifiedsWeb"); razor.ReferencedNamespaces.Add("Westwind.Web"); razor.ReferencedNamespaces.Add("Westwind.Utilities"); _RazorHost = razor; _RazorHost.Start(); //_RazorHost.Engine.Configuration.CompileToMemory = false; } return _RazorHost; } The RazorFolderHostContainer essentially is a full runtime that mimics a folder structure like a typical Web app does including caching semantics and compiling code only if code changes on disk. It maps a folder hierarchy to views using the ~/ path syntax. The host is then configured to add assemblies and namespaces. Unfortunately the engine is not exactly like MVC's Razor - the expression expansion and code execution are the same, but some of the support methods like sections, helpers etc. are not all there so templates have to be a bit simpler. There are other folder hosts provided as well to directly execute templates from strings (using RazorStringHostContainer). The following is an example of an HTML email template @inherits RazorHosting.RazorTemplateFolderHost <ClassifiedsWeb.SearchNotificationViewModel> <html> <head> <title>Search Notifications</title> <style> body { margin: 5px;font-family: Verdana, Arial; font-size: 10pt;} h3 { color: SteelBlue; } .entry-item { border-bottom: 1px solid grey; padding: 8px; margin-bottom: 5px; } </style> </head> <body> Hello @Model.User.Name,<br /> <p>Below are your Search Results for the search phrase:</p> <h3>@Model.Notification.SearchPhrase</h3> <small>since @TimeUtils.ShortDateString(Model.Notification.LastSearch)</small> <hr /> You can see that the syntax is a little different. Instead of the familiar @model header the raw Razor  @inherits tag is used to specify the template base class (which you can extend). I took a quick look through the feature set of RazorEngine on CodePlex (now Github I guess) and the template implementation they use is closer to MVC's razor but there are other differences. In the end don't expect exact behavior like MVC templates if you use an external Razor rendering engine. This is not what I would consider an ideal solution, but it works well enough for this project. My biggest concern is the overhead of hosting a second razor engine in a Web app and the fact that here the differences in template rendering between 'real' MVC Razor views and another RazorEngine really are noticeable. You win some, you lose some It's extremely nice to see that if you have a ControllerContext handy (which probably addresses 99% of Web app scenarios) rendering a view to string using the native MVC Razor engine is pretty simple. Kudos on making that happen - as it solves a problem I see in just about every Web application I work on. But it is a bummer that a ControllerContext is required to make this simple code work. It'd be really sweet if there was a way to render views without being so closely coupled to the ASP.NET or MVC infrastructure that requires a ControllerContext. Alternately it'd be nice to have a way for an MVC based application to create a minimal ControllerContext from scratch - maybe somebody's been down that path. I tried for a few hours to come up with a way to make that work but gave up in the soup of nested contexts (MVC/Controller/View/Http). I suspect going down this path would be similar to hosting the ASP.NET runtime requiring a WorkerRequest. Brrr…. The sad part is that it seems to me that a View should really not require much 'context' of any kind to render output to string. Yes there are a few things that clearly are required like paths to the virtual and possibly the disk paths to the root of the app, but beyond that view rendering should not require much. But, no such luck. For now custom RazorHosting seems to be the only way to make Razor rendering go outside of the MVC context… Resources Full ViewRenderer.cs source code from Westwind.Web.Mvc library Hosting the Razor Engine for Non-Web Applications RazorEngine on GitHub© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET   ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • PTLQueue : a scalable bounded-capacity MPMC queue

    - by Dave
    Title: Fast concurrent MPMC queue -- I've used the following concurrent queue algorithm enough that it warrants a blog entry. I'll sketch out the design of a fast and scalable multiple-producer multiple-consumer (MPSC) concurrent queue called PTLQueue. The queue has bounded capacity and is implemented via a circular array. Bounded capacity can be a useful property if there's a mismatch between producer rates and consumer rates where an unbounded queue might otherwise result in excessive memory consumption by virtue of the container nodes that -- in some queue implementations -- are used to hold values. A bounded-capacity queue can provide flow control between components. Beware, however, that bounded collections can also result in resource deadlock if abused. The put() and take() operators are partial and wait for the collection to become non-full or non-empty, respectively. Put() and take() do not allocate memory, and are not vulnerable to the ABA pathologies. The PTLQueue algorithm can be implemented equally well in C/C++ and Java. Partial operators are often more convenient than total methods. In many use cases if the preconditions aren't met, there's nothing else useful the thread can do, so it may as well wait via a partial method. An exception is in the case of work-stealing queues where a thief might scan a set of queues from which it could potentially steal. Total methods return ASAP with a success-failure indication. (It's tempting to describe a queue or API as blocking or non-blocking instead of partial or total, but non-blocking is already an overloaded concurrency term. Perhaps waiting/non-waiting or patient/impatient might be better terms). It's also trivial to construct partial operators by busy-waiting via total operators, but such constructs may be less efficient than an operator explicitly and intentionally designed to wait. A PTLQueue instance contains an array of slots, where each slot has volatile Turn and MailBox fields. The array has power-of-two length allowing mod/div operations to be replaced by masking. We assume sensible padding and alignment to reduce the impact of false sharing. (On x86 I recommend 128-byte alignment and padding because of the adjacent-sector prefetch facility). Each queue also has PutCursor and TakeCursor cursor variables, each of which should be sequestered as the sole occupant of a cache line or sector. You can opt to use 64-bit integers if concerned about wrap-around aliasing in the cursor variables. Put(null) is considered illegal, but the caller or implementation can easily check for and convert null to a distinguished non-null proxy value if null happens to be a value you'd like to pass. Take() will accordingly convert the proxy value back to null. An advantage of PTLQueue is that you can use atomic fetch-and-increment for the partial methods. We initialize each slot at index I with (Turn=I, MailBox=null). Both cursors are initially 0. All shared variables are considered "volatile" and atomics such as CAS and AtomicFetchAndIncrement are presumed to have bidirectional fence semantics. Finally T is the templated type. I've sketched out a total tryTake() method below that allows the caller to poll the queue. tryPut() has an analogous construction. Zebra stripping : alternating row colors for nice-looking code listings. See also google code "prettify" : https://code.google.com/p/google-code-prettify/ Prettify is a javascript module that yields the HTML/CSS/JS equivalent of pretty-print. -- pre:nth-child(odd) { background-color:#ff0000; } pre:nth-child(even) { background-color:#0000ff; } border-left: 11px solid #ccc; margin: 1.7em 0 1.7em 0.3em; background-color:#BFB; font-size:12px; line-height:65%; " // PTLQueue : Put(v) : // producer : partial method - waits as necessary assert v != null assert Mask = 1 && (Mask & (Mask+1)) == 0 // Document invariants // doorway step // Obtain a sequence number -- ticket // As a practical concern the ticket value is temporally unique // The ticket also identifies and selects a slot auto tkt = AtomicFetchIncrement (&PutCursor, 1) slot * s = &Slots[tkt & Mask] // waiting phase : // wait for slot's generation to match the tkt value assigned to this put() invocation. // The "generation" is implicitly encoded as the upper bits in the cursor // above those used to specify the index : tkt div (Mask+1) // The generation serves as an epoch number to identify a cohort of threads // accessing disjoint slots while s-Turn != tkt : Pause assert s-MailBox == null s-MailBox = v // deposit and pass message Take() : // consumer : partial method - waits as necessary auto tkt = AtomicFetchIncrement (&TakeCursor,1) slot * s = &Slots[tkt & Mask] // 2-stage waiting : // First wait for turn for our generation // Acquire exclusive "take" access to slot's MailBox field // Then wait for the slot to become occupied while s-Turn != tkt : Pause // Concurrency in this section of code is now reduced to just 1 producer thread // vs 1 consumer thread. // For a given queue and slot, there will be most one Take() operation running // in this section. // Consumer waits for producer to arrive and make slot non-empty // Extract message; clear mailbox; advance Turn indicator // We have an obvious happens-before relation : // Put(m) happens-before corresponding Take() that returns that same "m" for T v = s-MailBox if v != null : s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 // unlock slot to admit next producer and consumer return v Pause tryTake() : // total method - returns ASAP with failure indication for auto tkt = TakeCursor slot * s = &Slots[tkt & Mask] if s-Turn != tkt : return null T v = s-MailBox // presumptive return value if v == null : return null // ratify tkt and v values and commit by advancing cursor if CAS (&TakeCursor, tkt, tkt+1) != tkt : continue s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 return v The basic idea derives from the Partitioned Ticket Lock "PTL" (US20120240126-A1) and the MultiLane Concurrent Bag (US8689237). The latter is essentially a circular ring-buffer where the elements themselves are queues or concurrent collections. You can think of the PTLQueue as a partitioned ticket lock "PTL" augmented to pass values from lock to unlock via the slots. Alternatively, you could conceptualize of PTLQueue as a degenerate MultiLane bag where each slot or "lane" consists of a simple single-word MailBox instead of a general queue. Each lane in PTLQueue also has a private Turn field which acts like the Turn (Grant) variables found in PTL. Turn enforces strict FIFO ordering and restricts concurrency on the slot mailbox field to at most one simultaneous put() and take() operation. PTL uses a single "ticket" variable and per-slot Turn (grant) fields while MultiLane has distinct PutCursor and TakeCursor cursors and abstract per-slot sub-queues. Both PTL and MultiLane advance their cursor and ticket variables with atomic fetch-and-increment. PTLQueue borrows from both PTL and MultiLane and has distinct put and take cursors and per-slot Turn fields. Instead of a per-slot queues, PTLQueue uses a simple single-word MailBox field. PutCursor and TakeCursor act like a pair of ticket locks, conferring "put" and "take" access to a given slot. PutCursor, for instance, assigns an incoming put() request to a slot and serves as a PTL "Ticket" to acquire "put" permission to that slot's MailBox field. To better explain the operation of PTLQueue we deconstruct the operation of put() and take() as follows. Put() first increments PutCursor obtaining a new unique ticket. That ticket value also identifies a slot. Put() next waits for that slot's Turn field to match that ticket value. This is tantamount to using a PTL to acquire "put" permission on the slot's MailBox field. Finally, having obtained exclusive "put" permission on the slot, put() stores the message value into the slot's MailBox. Take() similarly advances TakeCursor, identifying a slot, and then acquires and secures "take" permission on a slot by waiting for Turn. Take() then waits for the slot's MailBox to become non-empty, extracts the message, and clears MailBox. Finally, take() advances the slot's Turn field, which releases both "put" and "take" access to the slot's MailBox. Note the asymmetry : put() acquires "put" access to the slot, but take() releases that lock. At any given time, for a given slot in a PTLQueue, at most one thread has "put" access and at most one thread has "take" access. This restricts concurrency from general MPMC to 1-vs-1. We have 2 ticket locks -- one for put() and one for take() -- each with its own "ticket" variable in the form of the corresponding cursor, but they share a single "Grant" egress variable in the form of the slot's Turn variable. Advancing the PutCursor, for instance, serves two purposes. First, we obtain a unique ticket which identifies a slot. Second, incrementing the cursor is the doorway protocol step to acquire the per-slot mutual exclusion "put" lock. The cursors and operations to increment those cursors serve double-duty : slot-selection and ticket assignment for locking the slot's MailBox field. At any given time a slot MailBox field can be in one of the following states: empty with no pending operations -- neutral state; empty with one or more waiting take() operations pending -- deficit; occupied with no pending operations; occupied with one or more waiting put() operations -- surplus; empty with a pending put() or pending put() and take() operations -- transitional; or occupied with a pending take() or pending put() and take() operations -- transitional. The partial put() and take() operators can be implemented with an atomic fetch-and-increment operation, which may confer a performance advantage over a CAS-based loop. In addition we have independent PutCursor and TakeCursor cursors. Critically, a put() operation modifies PutCursor but does not access the TakeCursor and a take() operation modifies the TakeCursor cursor but does not access the PutCursor. This acts to reduce coherence traffic relative to some other queue designs. It's worth noting that slow threads or obstruction in one slot (or "lane") does not impede or obstruct operations in other slots -- this gives us some degree of obstruction isolation. PTLQueue is not lock-free, however. The implementation above is expressed with polite busy-waiting (Pause) but it's trivial to implement per-slot parking and unparking to deschedule waiting threads. It's also easy to convert the queue to a more general deque by replacing the PutCursor and TakeCursor cursors with Left/Front and Right/Back cursors that can move either direction. Specifically, to push and pop from the "left" side of the deque we would decrement and increment the Left cursor, respectively, and to push and pop from the "right" side of the deque we would increment and decrement the Right cursor, respectively. We used a variation of PTLQueue for message passing in our recent OPODIS 2013 paper. ul { list-style:none; padding-left:0; padding:0; margin:0; margin-left:0; } ul#myTagID { padding: 0px; margin: 0px; list-style:none; margin-left:0;} -- -- There's quite a bit of related literature in this area. I'll call out a few relevant references: Wilson's NYU Courant Institute UltraComputer dissertation from 1988 is classic and the canonical starting point : Operating System Data Structures for Shared-Memory MIMD Machines with Fetch-and-Add. Regarding provenance and priority, I think PTLQueue or queues effectively equivalent to PTLQueue have been independently rediscovered a number of times. See CB-Queue and BNPBV, below, for instance. But Wilson's dissertation anticipates the basic idea and seems to predate all the others. Gottlieb et al : Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors Orozco et al : CB-Queue in Toward high-throughput algorithms on many-core architectures which appeared in TACO 2012. Meneghin et al : BNPVB family in Performance evaluation of inter-thread communication mechanisms on multicore/multithreaded architecture Dmitry Vyukov : bounded MPMC queue (highly recommended) Alex Otenko : US8607249 (highly related). John Mellor-Crummey : Concurrent queues: Practical fetch-and-phi algorithms. Technical Report 229, Department of Computer Science, University of Rochester Thomasson : FIFO Distributed Bakery Algorithm (very similar to PTLQueue). Scott and Scherer : Dual Data Structures I'll propose an optimization left as an exercise for the reader. Say we wanted to reduce memory usage by eliminating inter-slot padding. Such padding is usually "dark" memory and otherwise unused and wasted. But eliminating the padding leaves us at risk of increased false sharing. Furthermore lets say it was usually the case that the PutCursor and TakeCursor were numerically close to each other. (That's true in some use cases). We might still reduce false sharing by incrementing the cursors by some value other than 1 that is not trivially small and is coprime with the number of slots. Alternatively, we might increment the cursor by one and mask as usual, resulting in a logical index. We then use that logical index value to index into a permutation table, yielding an effective index for use in the slot array. The permutation table would be constructed so that nearby logical indices would map to more distant effective indices. (Open question: what should that permutation look like? Possibly some perversion of a Gray code or De Bruijn sequence might be suitable). As an aside, say we need to busy-wait for some condition as follows : "while C == 0 : Pause". Lets say that C is usually non-zero, so we typically don't wait. But when C happens to be 0 we'll have to spin for some period, possibly brief. We can arrange for the code to be more machine-friendly with respect to the branch predictors by transforming the loop into : "if C == 0 : for { Pause; if C != 0 : break; }". Critically, we want to restructure the loop so there's one branch that controls entry and another that controls loop exit. A concern is that your compiler or JIT might be clever enough to transform this back to "while C == 0 : Pause". You can sometimes avoid this by inserting a call to a some type of very cheap "opaque" method that the compiler can't elide or reorder. On Solaris, for instance, you could use :"if C == 0 : { gethrtime(); for { Pause; if C != 0 : break; }}". It's worth noting the obvious duality between locks and queues. If you have strict FIFO lock implementation with local spinning and succession by direct handoff such as MCS or CLH,then you can usually transform that lock into a queue. Hidden commentary and annotations - invisible : * And of course there's a well-known duality between queues and locks, but I'll leave that topic for another blog post. * Compare and contrast : PTLQ vs PTL and MultiLane * Equivalent : Turn; seq; sequence; pos; position; ticket * Put = Lock; Deposit Take = identify and reserve slot; wait; extract & clear; unlock * conceptualize : Distinct PutLock and TakeLock implemented as ticket lock or PTL Distinct arrival cursors but share per-slot "Turn" variable provides exclusive role-based access to slot's mailbox field put() acquires exclusive access to a slot for purposes of "deposit" assigns slot round-robin and then acquires deposit access rights/perms to that slot take() acquires exclusive access to slot for purposes of "withdrawal" assigns slot round-robin and then acquires withdrawal access rights/perms to that slot At any given time, only one thread can have withdrawal access to a slot at any given time, only one thread can have deposit access to a slot Permissible for T1 to have deposit access and T2 to simultaneously have withdrawal access * round-robin for the purposes of; role-based; access mode; access role mailslot; mailbox; allocate/assign/identify slot rights; permission; license; access permission; * PTL/Ticket hybrid Asymmetric usage ; owner oblivious lock-unlock pairing K-exclusion add Grant cursor pass message m from lock to unlock via Slots[] array Cursor performs 2 functions : + PTL ticket + Assigns request to slot in round-robin fashion Deconstruct protocol : explication put() : allocate slot in round-robin fashion acquire PTL for "put" access store message into slot associated with PTL index take() : Acquire PTL for "take" access // doorway step seq = fetchAdd (&Grant, 1) s = &Slots[seq & Mask] // waiting phase while s-Turn != seq : pause Extract : wait for s-mailbox to be full v = s-mailbox s-mailbox = null Release PTL for both "put" and "take" access s-Turn = seq + Mask + 1 * Slot round-robin assignment and lock "doorway" protocol leverage the same cursor and FetchAdd operation on that cursor FetchAdd (&Cursor,1) + round-robin slot assignment and dispersal + PTL/ticket lock "doorway" step waiting phase is via "Turn" field in slot * PTLQueue uses 2 cursors -- put and take. Acquire "put" access to slot via PTL-like lock Acquire "take" access to slot via PTL-like lock 2 locks : put and take -- at most one thread can access slot's mailbox Both locks use same "turn" field Like multilane : 2 cursors : put and take slot is simple 1-capacity mailbox instead of queue Borrow per-slot turn/grant from PTL Provides strict FIFO Lock slot : put-vs-put take-vs-take at most one put accesses slot at any one time at most one put accesses take at any one time reduction to 1-vs-1 instead of N-vs-M concurrency Per slot locks for put/take Release put/take by advancing turn * is instrumental in ... * P-V Semaphore vs lock vs K-exclusion * See also : FastQueues-excerpt.java dice-etc/queue-mpmc-bounded-blocking-circular-xadd/ * PTLQueue is the same as PTLQB - identical * Expedient return; ASAP; prompt; immediately * Lamport's Bakery algorithm : doorway step then waiting phase Threads arriving at doorway obtain a unique ticket number Threads enter in ticket order * In the terminology of Reed and Kanodia a ticket lock corresponds to the busy-wait implementation of a semaphore using an eventcount and a sequencer It can also be thought of as an optimization of Lamport's bakery lock was designed for fault-tolerance rather than performance Instead of spinning on the release counter, processors using a bakery lock repeatedly examine the tickets of their peers --

    Read the article

  • 2D Selective Gaussian Blur

    - by Joshua Thomas
    I am attempting to use Gaussian blur on a 2D platform game, selectively blurring specific types of platforms with different amounts. I am currently just messing around with simple test code, trying to get it to work correctly. What I need to eventually do is create three separate render targets, leave one normal, blur one slightly, and blur the last heavily, then recombine on the screen. Where I am now is I have successfully drawn into a new render target and performed the gaussian blur on it, but when I draw it back to the screen everything is purple aside from the platforms I drew to the target. This is my .fx file: #define RADIUS 7 #define KERNEL_SIZE (RADIUS * 2 + 1) //----------------------------------------------------------------------------- // Globals. //----------------------------------------------------------------------------- float weights[KERNEL_SIZE]; float2 offsets[KERNEL_SIZE]; //----------------------------------------------------------------------------- // Textures. //----------------------------------------------------------------------------- texture colorMapTexture; sampler2D colorMap = sampler_state { Texture = <colorMapTexture>; MipFilter = Linear; MinFilter = Linear; MagFilter = Linear; }; //----------------------------------------------------------------------------- // Pixel Shaders. //----------------------------------------------------------------------------- float4 PS_GaussianBlur(float2 texCoord : TEXCOORD) : COLOR0 { float4 color = float4(0.0f, 0.0f, 0.0f, 0.0f); for (int i = 0; i < KERNEL_SIZE; ++i) color += tex2D(colorMap, texCoord + offsets[i]) * weights[i]; return color; } //----------------------------------------------------------------------------- // Techniques. //----------------------------------------------------------------------------- technique GaussianBlur { pass { PixelShader = compile ps_2_0 PS_GaussianBlur(); } } This is the code I'm using for the gaussian blur: public Texture2D PerformGaussianBlur(Texture2D srcTexture, RenderTarget2D renderTarget1, RenderTarget2D renderTarget2, SpriteBatch spriteBatch) { if (effect == null) throw new InvalidOperationException("GaussianBlur.fx effect not loaded."); Texture2D outputTexture = null; Rectangle srcRect = new Rectangle(0, 0, srcTexture.Width, srcTexture.Height); Rectangle destRect1 = new Rectangle(0, 0, renderTarget1.Width, renderTarget1.Height); Rectangle destRect2 = new Rectangle(0, 0, renderTarget2.Width, renderTarget2.Height); // Perform horizontal Gaussian blur. game.GraphicsDevice.SetRenderTarget(renderTarget1); effect.CurrentTechnique = effect.Techniques["GaussianBlur"]; effect.Parameters["weights"].SetValue(kernel); effect.Parameters["colorMapTexture"].SetValue(srcTexture); effect.Parameters["offsets"].SetValue(offsetsHoriz); spriteBatch.Begin(0, BlendState.Opaque, null, null, null, effect); spriteBatch.Draw(srcTexture, destRect1, Color.White); spriteBatch.End(); // Perform vertical Gaussian blur. game.GraphicsDevice.SetRenderTarget(renderTarget2); outputTexture = (Texture2D)renderTarget1; effect.Parameters["colorMapTexture"].SetValue(outputTexture); effect.Parameters["offsets"].SetValue(offsetsVert); spriteBatch.Begin(0, BlendState.Opaque, null, null, null, effect); spriteBatch.Draw(outputTexture, destRect2, Color.White); spriteBatch.End(); // Return the Gaussian blurred texture. game.GraphicsDevice.SetRenderTarget(null); outputTexture = (Texture2D)renderTarget2; return outputTexture; } And this is the draw method affected: public void Draw(SpriteBatch spriteBatch) { device.SetRenderTarget(maxBlur); spriteBatch.Begin(); foreach (Brick brick in blueBricks) brick.Draw(spriteBatch); spriteBatch.End(); blue = gBlur.PerformGaussianBlur((Texture2D) maxBlur, helperTarget, maxBlur, spriteBatch); spriteBatch.Begin(); device.SetRenderTarget(null); foreach (Brick brick in redBricks) brick.Draw(spriteBatch); foreach (Brick brick in greenBricks) brick.Draw(spriteBatch); spriteBatch.Draw(blue, new Rectangle(0, 0, blue.Width, blue.Height), Color.White); foreach (Brick brick in purpleBricks) brick.Draw(spriteBatch); spriteBatch.End(); } I'm sorry about the massive brick of text and images(or not....new user, I tried, it said no), but I wanted to get my problem across clearly as I have been searching for an answer to this for quite a while now. As a side note, I have seen the bloom sample. Very well commented, but overly complicated since it deals in 3D; I was unable to take what I needed to learn form it. Thanks for any and all help.

    Read the article

  • How to copy depth buffer to CPU memory in DirectX?

    - by Ashwin
    I have code in OpenGL that uses glReadPixels to copy the depth buffer to a CPU memory buffer: glReadPixels(0, 0, w, h, GL_DEPTH_COMPONENT, GL_FLOAT, dbuf); How do I achieve the same in DirectX? I have looked at a similar question which gives the solution to copy the RGB buffer. I've tried to write similar code to copy the depth buffer: IDirect3DSurface9* d3dSurface; d3dDevice->GetDepthStencilSurface(&d3dSurface); D3DSURFACE_DESC d3dSurfaceDesc; d3dSurface->GetDesc(&d3dSurfaceDesc); IDirect3DSurface9* d3dOffSurface; d3dDevice->CreateOffscreenPlainSurface( d3dSurfaceDesc.Width, d3dSurfaceDesc.Height, D3DFMT_D32F_LOCKABLE, D3DPOOL_SCRATCH, &d3dOffSurface, NULL); // FAILS: D3DERR_INVALIDCALL D3DXLoadSurfaceFromSurface( d3dOffSurface, NULL, NULL, d3dSurface, NULL, NULL, D3DX_FILTER_NONE, 0); // Copy from offscreen surface to CPU memory ... The code fails on the call to D3DXLoadSurfaceFromSurface. It returns the error value D3DERR_INVALIDCALL. What is wrong with my code?

    Read the article

  • Win32 and Win64 programming in C sources?

    - by Nick Rosencrantz
    I'm learning OpenGL with C and that makes me include the windows.h file in my project. I'd like to look at some more specific windows functions and I wonder if you can cite some good sources for learning the basics of Win32 and Win64 programming in C (or C++). I use MS Visual C++ and I prefer to stick with C even though much of the Windows API seems to be C++. I'd like my program to be portable and using some platform-indepedent graphics library like OpenGL I could make my program portable with some slight changes for window management. Could you direct me with some pointers to books or www links where I can find more info? I've already studied the OpenGL red book and the C programming language, what I'm looking for is the platform-dependent stuff and how to handle that since I run both Linux and Windows where I find the development environment Visual Studio is pretty good but the debugger gdb is not available on windows so it's a trade off which environment i'll choose in the end - Linux with gcc or Windows with MSVC. Here is the program that draws a graphics primitive with some use of windows.h This program is also runnable on Linux without changing the code that actually draws the graphics primitive: #include <windows.h> #include <gl/gl.h> LRESULT CALLBACK WindowProc(HWND, UINT, WPARAM, LPARAM); void EnableOpenGL(HWND hwnd, HDC*, HGLRC*); void DisableOpenGL(HWND, HDC, HGLRC); int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine, int nCmdShow) { WNDCLASSEX wcex; HWND hwnd; HDC hDC; HGLRC hRC; MSG msg; BOOL bQuit = FALSE; float theta = 0.0f; /* register window class */ wcex.cbSize = sizeof(WNDCLASSEX); wcex.style = CS_OWNDC; wcex.lpfnWndProc = WindowProc; wcex.cbClsExtra = 0; wcex.cbWndExtra = 0; wcex.hInstance = hInstance; wcex.hIcon = LoadIcon(NULL, IDI_APPLICATION); wcex.hCursor = LoadCursor(NULL, IDC_ARROW); wcex.hbrBackground = (HBRUSH)GetStockObject(BLACK_BRUSH); wcex.lpszMenuName = NULL; wcex.lpszClassName = "GLSample"; wcex.hIconSm = LoadIcon(NULL, IDI_APPLICATION);; if (!RegisterClassEx(&wcex)) return 0; /* create main window */ hwnd = CreateWindowEx(0, "GLSample", "OpenGL Sample", WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT, 256, 256, NULL, NULL, hInstance, NULL); ShowWindow(hwnd, nCmdShow); /* enable OpenGL for the window */ EnableOpenGL(hwnd, &hDC, &hRC); /* program main loop */ while (!bQuit) { /* check for messages */ if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) { /* handle or dispatch messages */ if (msg.message == WM_QUIT) { bQuit = TRUE; } else { TranslateMessage(&msg); DispatchMessage(&msg); } } else { /* OpenGL animation code goes here */ glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClear(GL_COLOR_BUFFER_BIT); glPushMatrix(); glRotatef(theta, 0.0f, 0.0f, 1.0f); glBegin(GL_TRIANGLES); glColor3f(1.0f, 0.0f, 0.0f); glVertex2f(0.0f, 1.0f); glColor3f(0.0f, 1.0f, 0.0f); glVertex2f(0.87f, -0.5f); glColor3f(0.0f, 0.0f, 1.0f); glVertex2f(-0.87f, -0.5f); glEnd(); glPopMatrix(); SwapBuffers(hDC); theta += 1.0f; Sleep (1); } } /* shutdown OpenGL */ DisableOpenGL(hwnd, hDC, hRC); /* destroy the window explicitly */ DestroyWindow(hwnd); return msg.wParam; } LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam) { switch (uMsg) { case WM_CLOSE: PostQuitMessage(0); break; case WM_DESTROY: return 0; case WM_KEYDOWN: { switch (wParam) { case VK_ESCAPE: PostQuitMessage(0); break; } } break; default: return DefWindowProc(hwnd, uMsg, wParam, lParam); } return 0; } void EnableOpenGL(HWND hwnd, HDC* hDC, HGLRC* hRC) { PIXELFORMATDESCRIPTOR pfd; int iFormat; /* get the device context (DC) */ *hDC = GetDC(hwnd); /* set the pixel format for the DC */ ZeroMemory(&pfd, sizeof(pfd)); pfd.nSize = sizeof(pfd); pfd.nVersion = 1; pfd.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL | PFD_DOUBLEBUFFER; pfd.iPixelType = PFD_TYPE_RGBA; pfd.cColorBits = 24; pfd.cDepthBits = 16; pfd.iLayerType = PFD_MAIN_PLANE; iFormat = ChoosePixelFormat(*hDC, &pfd); SetPixelFormat(*hDC, iFormat, &pfd); /* create and enable the render context (RC) */ *hRC = wglCreateContext(*hDC); wglMakeCurrent(*hDC, *hRC); } void DisableOpenGL (HWND hwnd, HDC hDC, HGLRC hRC) { wglMakeCurrent(NULL, NULL); wglDeleteContext(hRC); ReleaseDC(hwnd, hDC); }

    Read the article

  • Breaking 1NF to model subset constraints. Does this sound sane?

    - by Chris Travers
    My first question here. Appologize if it is in the wrong forum but this seems pretty conceptual. I am looking at doing something that goes against conventional wisdom and want to get some feedback as to whether this is totally insane or will result in problems, so critique away! I am on PostgreSQL 9.1 but may be moving to 9.2 for this part of this project. To re-iterate: Does it seem sane to break 1NF in this way? I am not looking for debugging code so much as where people see problems that this might lead. The Problem In double entry accounting, financial transactions are journal entries with an arbitrary number of lines. Each line has either a left value (debit) or a right value (credit) which can be modelled as a single value with negatives as debits and positives as credits or vice versa. The sum of all debits and credits must equal zero (so if we go with a single amount field, sum(amount) must equal zero for each financial journal entry). SQL-based databases, pretty much required for this sort of work, have no way to express this sort of constraint natively and so any approach to enforcing it in the database seems rather complex. The Write Model The journal entries are append only. There is a possibility we will add a delete model but it will be subject to a different set of restrictions and so is not applicable here. If and when we allow deletes, we will probably do them using a simple ON DELETE CASCADE designation on the foreign key, and require that deletes go through a dedicated stored procedure which can enforce the other constraints. So inserts and selects have to be accommodated but updates and deletes do not for this task. My Proposed Solution My proposed solution is to break first normal form and model constraints on arrays of tuples, with a trigger that breaks the rows out into another table. CREATE TABLE journal_line ( entry_id bigserial primary key, account_id int not null references account(id), journal_entry_id bigint not null, -- adding references later amount numeric not null ); I would then add "table methods" to extract debits and credits for reporting purposes: CREATE OR REPLACE FUNCTION debits(journal_line) RETURNS numeric LANGUAGE sql IMMUTABLE AS $$ SELECT CASE WHEN $1.amount < 0 THEN $1.amount * -1 ELSE NULL END; $$; CREATE OR REPLACE FUNCTION credits(journal_line) RETURNS numeric LANGUAGE sql IMMUTABLE AS $$ SELECT CASE WHEN $1.amount > 0 THEN $1.amount ELSE NULL END; $$; Then the journal entry table (simplified for this example): CREATE TABLE journal_entry ( entry_id bigserial primary key, -- no natural keys :-( journal_id int not null references journal(id), date_posted date not null, reference text not null, description text not null, journal_lines journal_line[] not null ); Then a table method and and check constraints: CREATE OR REPLACE FUNCTION running_total(journal_entry) returns numeric language sql immutable as $$ SELECT sum(amount) FROM unnest($1.journal_lines); $$; ALTER TABLE journal_entry ADD CONSTRAINT CHECK (((journal_entry.running_total) = 0)); ALTER TABLE journal_line ADD FOREIGN KEY journal_entry_id REFERENCES journal_entry(entry_id); And finally we'd have a breakout trigger: CREATE OR REPLACE FUNCTION je_breakout() RETURNS TRIGGER LANGUAGE PLPGSQL AS $$ BEGIN IF TG_OP = 'INSERT' THEN INSERT INTO journal_line (journal_entry_id, account_id, amount) SELECT NEW.id, account_id, amount FROM unnest(NEW.journal_lines); RETURN NEW; ELSE RAISE EXCEPTION 'Operation Not Allowed'; END IF; END; $$; And finally CREATE TRIGGER AFTER INSERT OR UPDATE OR DELETE ON journal_entry FOR EACH ROW EXECUTE_PROCEDURE je_breaout(); Of course the example above is simplified. There will be a status table that will track approval status allowing for separation of duties, etc. However the goal here is to prevent unbalanced transactions. Any feedback? Does this sound entirely insane? Standard Solutions? In getting to this point I have to say I have looked at four different current ERP solutions to this problems: Represent every line item as a debit and a credit against different accounts. Use of foreign keys against the line item table to enforce an eventual running total of 0 Use of constraint triggers in PostgreSQL Forcing all validation here solely through the app logic. My concerns are that #1 is pretty limiting and very hard to audit internally. It's not programmer transparent and so it strikes me as being difficult to work with in the future. The second strikes me as being very complex and required a series of contraints and foreign keys against self to make work, and therefore it strikes me as complex, hard to sort out at least in my mind, and thus hard to work with. The fourth could be done as we force all access through stored procedures anyway and this is the most common solution (have the app total things up and throw an error otherwise). However, I think proof that a constraint is followed is superior to test cases, and so the question becomes whether this in fact generates insert anomilies rather than solving them. If this is a solved problem it isn't the case that everyone agrees on the solution....

    Read the article

  • Data Source Security Part 5

    - by Steve Felts
    If you read through the first four parts of this series on data source security, you should be an expert on this focus area.  There is one more small topic to cover related to WebLogic Resource permissions.  After that comes the test, I mean example, to see with a real set of configuration parameters what the results are with some concrete values. WebLogic Resource Permissions All of the discussion so far has been about database credentials that are (eventually) used on the database side.  WLS has resource credentials to control what WLS users are allowed to access JDBC resources.  These can be defined on the Policies tab on the Security tab associated with the data source.  There are four permissions: “reserve” (get a new connection), “admin”, “shrink”, and reset (plus the all-inclusive “ALL”); we will focus on “reserve” here because we are talking about getting connections.  By default, JDBC resource permissions are completely open – anyone can do anything.  As soon as you add one policy for a permission, then all other users are restricted.  For example, if I add a policy so that “weblogic” can reserve a connection, then all other users will fail to reserve connections unless they are also explicitly added.  The validation is done for WLS user credentials only, not database user credentials.  Configuration of resources in general is described at “Create policies for resource instances” http://docs.oracle.com/cd/E24329_01/apirefs.1211/e24401/taskhelp/security/CreatePoliciesForResourceInstances.html.  This feature can be very useful to restrict what code and users can get to your database. There are the three use cases: API Use database credentials User for permission checking getConnection() True or false Current WLS user getConnection(user,password) False User/password from API getConnection(user,password) True Current WLS user If a simple getConnection() is used or database credentials are enabled, the current user that is authenticated to the WLS system is checked. If database credentials are not enabled, then the user and password on the API are used. Example The following is an actual example of the interactions between identity-based-connection-pooling-enabled, oracle-proxy-session, and use-database-credentials. On the database side, the following objects are configured.- Database users scott; jdbcqa; jdbcqa3- Permission for proxy: alter user jdbcqa3 grant connect through jdbcqa;- Permission for proxy: alter user jdbcqa grant connect through jdbcqa; The following WebLogic Data Source objects are configured.- Users weblogic, wluser- Credential mapping “weblogic” to “scott”- Credential mapping "wluser" to "jdbcqa3"- Data source descriptor configured with user “jdbcqa”- All tests are run with Set Client ID set to true (more about that below).- All tests are run with oracle-proxy-session set to false (more about that below). The test program:- Runs in servlet- Authenticates to WLS as user “weblogic” Use DB Credentials Identity based getConnection(scott,***) getConnection(weblogic,***) getConnection(jdbcqa3,***) getConnection()  true  true Identity scottClient weblogicProxy null weblogic fails - not a db user User jdbcqa3Client weblogicProxy null Default user jdbcqaClient weblogicProxy null  false  true scott fails - not a WLS user User scottClient scottProxy null jdbcqa3 fails - not a WLS user User scottClient scottProxy null  true  false Proxy for scott fails weblogic fails - not a db user User jdbcqa3Client weblogicProxy jdbcqa Default user jdbcqaClient weblogicProxy null  false  false scott fails - not a WLS user Default user jdbcqaClient scottProxy null jdbcqa3 fails - not a WLS user Default user jdbcqaClient scottProxy null If Set Client ID is set to false, all cases would have Client set to null. If this was not an Oracle thin driver, the one case with the non-null Proxy in the above table would throw an exception because proxy session is only supported, implicitly or explicitly, with the Oracle thin driver. When oracle-proxy-session is set to true, the only cases that will pass (with a proxy of "jdbcqa") are the following.1. Setting use-database-credentials to true and doing getConnection(jdbcqa3,…) or getConnection().2. Setting use-database-credentials to false and doing getConnection(wluser, …) or getConnection(). Summary There are many options to choose from for data source security.  Considerations include the number and volatility of WLS and Database users, the granularity of data access, the depth of the security identity (property on the connection or a real user), performance, coordination of various components in the software stack, and driver capabilities.  Now that you have the big picture (remember that table in part 1), you can make a more informed choice.

    Read the article

  • Checking for DBNull

    - by Jim Lahman
    Using a table adapter to a SQL Server database table that returns a NULL record.  We determine the fields are NULL by comparing against System.DBNull Looking the NULL records in SQL Management studio   Using a table adapter to retrieve a record   1: try 2: { 3: this.vTrackingTableAdapter.FillByTrkZone(this.dsL1Write.vTracking, iTrkZone); 4: } 5: catch (Exception ex) 6: { 7: sLogMessage = String 8: .Format("Error getting coil number from tracking table at {0} - {1}", 9: sTrkName, 10: ex.Message); 11: throw new CannotReadTrackingTableException(sLogMessage); 12: }   Looking at the record as it returned from the table adapter:   ItemArrayObject Column [0] ChargeCoilNumber [1] HeadWeldZone [2] TailWeldZone [3] ZoneLen [4] ZoneCoilLen [5] Confirmed [6] Validated [7] EntryWidth [8] EntryThickness   Since each item in the ItemArray is an object, we can test for null   1: if (dsL1Write.vTracking.Rows[0].ItemArray[0] == System.DBNull.Value) 2: { 3: throw new NoCoilAtPORException("NULL coil found at tracking zone " + sTrkName); 4: }   If no records were returned by the table adapter 1: if (dsL1Write.vTracking.Rows.Count == 0) 2: { 3: throw new NoCoilAtPORException("No coils found at tracking zone " + sTrkName); 4: }

    Read the article

  • javaf, problem...plz help someone...urgent [closed]

    - by innovative_aj
    i have made a word guessing game, when i click myButton to check if the guessed word is right or wrong, ball1 is moved into the "container" if its right, i want that when i click the button again and if the typed word is right, the 2nd ball should move into the container too... means one ball per correct answer...plz help me someone and provide me with the code that i can implement, its quite urgent... controller class coding /* * To change this template, choose Tools | Templates * and open the template in the editor. */ package project3; import java.net.URL; import java.util.ResourceBundle; import javafx.event.ActionEvent; import javafx.event.EventHandler; import javafx.fxml.FXML; import javafx.fxml.Initializable; import javafx.scene.control.Button; import javafx.scene.control.Label; import javafx.scene.control.TextField; import javafx.scene.layout.StackPane; import javafx.scene.shape.Circle; /** * FXML Controller class * * @xxx */ public class MyFxmlController implements Initializable { @FXML // fx:id="ball1" private Circle ball1; // Value injected by FXMLLoader @FXML // fx:id="ball2" private Circle ball2; // Value injected by FXMLLoader @FXML // fx:id="ball3" private Circle ball3; // Value injected by FXMLLoader @FXML // fx:id="ball4" private Circle ball4; // Value injected by FXMLLoader @FXML // fx:id="container" private Circle container; // Value injected by FXMLLoader @FXML // fx:id="myButton" private Button myButton; // Value injected by FXMLLoader @FXML // fx:id="myLabel1" private Label myLabel1; // Value injected by FXMLLoader @FXML // fx:id="myLabel2" private Label myLabel2; // Value injected by FXMLLoader @FXML // fx:id="pane" private StackPane pane; // Value injected by FXMLLoader @FXML // fx:id="txt" private TextField txt; // Value injected by FXMLLoader @Override // This method is called by the FXMLLoader when initialization is complete public void initialize(URL fxmlFileLocation, ResourceBundle resources) { assert ball1 != null : "fx:id=\"ball1\" was not injected: check your FXML file 'MyFxml.fxml'."; assert ball2 != null : "fx:id=\"ball2\" was not injected: check your FXML file 'MyFxml.fxml'."; assert ball3 != null : "fx:id=\"ball3\" was not injected: check your FXML file 'MyFxml.fxml'."; assert ball4 != null : "fx:id=\"ball4\" was not injected: check your FXML file 'MyFxml.fxml'."; assert container != null : "fx:id=\"container\" was not injected: check your FXML file 'MyFxml.fxml'."; assert myButton != null : "fx:id=\"myButton\" was not injected: check your FXML file 'MyFxml.fxml'."; assert myLabel1 != null : "fx:id=\"myLabel1\" was not injected: check your FXML file 'MyFxml.fxml'."; assert myLabel2 != null : "fx:id=\"myLabel2\" was not injected: check your FXML file 'MyFxml.fxml'."; assert pane != null : "fx:id=\"pane\" was not injected: check your FXML file 'MyFxml.fxml'."; assert txt != null : "fx:id=\"txt\" was not injected: check your FXML file 'MyFxml.fxml'."; // initialize your logic here: all @FXML variables will have been injected myButton.setOnAction(new EventHandler<ActionEvent>(){ @Override public void handle(ActionEvent event) { int count = 0; String guessed=txt.getText(); boolean result; result=MyCode.check(guessed); if(result) { ball1.setTranslateX(600); ball1.setTranslateY(250-container.getRadius()); //ball2.setTranslateX(600); // ball2.setTranslateY(250-container.getRadius()); } else System.out.println("wrong"); } }); } } word guessing logic public class MyCode { static String x="Netbeans"; static String y[]={"net","beans","neat","beat","bet"}; //static int counter; // public MyCode() { // counter++; //} static boolean check(String guessed) { int count=0; boolean result=false; //counter++; //System.out.println("turns"+counter); for(count=0;count<5;count++) { if(guessed.equals(y[count])) { result=true; break; } } if(result) System.out.println("Right"); else System.out.println("Wrong"); return result; } }

    Read the article

  • Compare a variable that can have numeric or string as value

    - by Tarun
    I have a variable named Seconds_Behind_Master from one of my scripts. The problem is that this variable can either have a numeric value or can also take a string NULL as its value. Now, when I try to execute this script in shell it gets executed but gives a warning like this: [: Illegal number: NULL I believe it is due to the fact that in this case the value is NULL but when it compares it with numeral value 60 it gives this warning. How can I rectify it? Here is the piece of code: Seconds_Behind_Master=$Show_Slave_Status | grep "Seconds_Behind_Master" | awk -F": " {' print $2 '} if [ "$Seconds_Behind_Master" -ge "60" ]; then echo "replication delayed greater than or equal to 60." else if [ "$Seconds_Behind_Master" = "NULL" ]; then echo "Delay is Null." fi fi

    Read the article

  • how to version minder for web application data

    - by dankyy1
    hi all;I'm devoloping a web application which renders data from DB and also updates datas with editor UI Pages.So i want to implement a versioning mechanism for render pages got data over db again if only data on db updated by editor pages.. I decided to use Session objects for the version information that client had taken latestly.And the Application object that the latest DB version of objects ,i used the data objects guid as key for each data item client version holder class like below ItemRunnigVersionInformation class holds currentitem guid and last loadtime from DB public class ClientVersionManager { public static List<ItemRunnigVersionInformation> SessionItemRunnigVersionInformation { get { if (HttpContext.Current.Session["SessionItemRunnigVersionInformation"] == null) HttpContext.Current.Session["SessionItemRunnigVersionInformation"] = new List<ItemRunnigVersionInformation>(); return (List<ItemRunnigVersionInformation>)HttpContext.Current.Session["SessionItemRunnigVersionInformation"]; } set { HttpContext.Current.Session["SessionItemRunnigVersionInformation"] = value; } } /// <summary> /// this will be updated when editor pages /// </summary> /// <param name="itemRunnigVersionInformation"></param> public static void UpdateItemRunnigSessionVersion(string itemGuid) { ItemRunnigVersionInformation itemRunnigVersionAtAppDomain = PlayListVersionManager.GetItemRunnigVersionInformationByID(itemGuid); ItemRunnigVersionInformation itemRunnigVersionInformationAtSession = SessionItemRunnigVersionInformation.FirstOrDefault(t => t.ItemGuid == itemGuid); if ((itemRunnigVersionInformationAtSession == null) && (itemRunnigVersionAtAppDomain != null)) { ExtensionMethodsForClientVersionManager.ExtensionMethodsForClientVersionManager.Add(SessionItemRunnigVersionInformation, itemRunnigVersionAtAppDomain); } else if (itemRunnigVersionAtAppDomain != null) { ExtensionMethodsForClientVersionManager.ExtensionMethodsForClientVersionManager.Remove(SessionItemRunnigVersionInformation, itemRunnigVersionInformationAtSession); ExtensionMethodsForClientVersionManager.ExtensionMethodsForClientVersionManager.Add(SessionItemRunnigVersionInformation, itemRunnigVersionAtAppDomain); } } /// <summary> /// by given parameters check versions over PlayListVersionManager versions and /// adds versions to clientversion manager if any item version on /// playlist not found it will also added to PlaylistManager list /// </summary> /// <param name="playList"></param> /// <param name="userGuid"></param> /// <param name="ownerGuid"></param> public static void UpdateCurrentSessionVersion(PlayList playList, string userGuid, string ownerGuid) { ItemRunnigVersionInformation tmpItemRunnigVersionInformation; List<ItemRunnigVersionInformation> currentItemRunnigVersionInformationList = new List<ItemRunnigVersionInformation>(); if (!string.IsNullOrEmpty(userGuid)) { tmpItemRunnigVersionInformation = PlayListVersionManager.GetItemRunnigVersionInformationByID(userGuid); if (tmpItemRunnigVersionInformation == null) { tmpItemRunnigVersionInformation = new ItemRunnigVersionInformation(userGuid, DateTime.Now.ToUniversalTime()); PlayListVersionManager.UpdateItemRunnigAppDomainVersion(tmpItemRunnigVersionInformation); } ExtensionMethodsForClientVersionManager.ExtensionMethodsForClientVersionManager.Add(currentItemRunnigVersionInformationList, tmpItemRunnigVersionInformation); } if (!string.IsNullOrEmpty(ownerGuid)) { tmpItemRunnigVersionInformation = PlayListVersionManager.GetItemRunnigVersionInformationByID(ownerGuid); if (tmpItemRunnigVersionInformation == null) { tmpItemRunnigVersionInformation = new ItemRunnigVersionInformation(ownerGuid, DateTime.Now.ToUniversalTime()); PlayListVersionManager.UpdateItemRunnigAppDomainVersion(tmpItemRunnigVersionInformation); } ExtensionMethodsForClientVersionManager.ExtensionMethodsForClientVersionManager.Add(currentItemRunnigVersionInformationList, tmpItemRunnigVersionInformation); } if ((playList != null) && (playList.PlayListItemCollection != null)) { tmpItemRunnigVersionInformation = PlayListVersionManager.GetItemRunnigVersionInformationByID(playList.GUID); if (tmpItemRunnigVersionInformation == null) { tmpItemRunnigVersionInformation = new ItemRunnigVersionInformation(playList.GUID, DateTime.Now.ToUniversalTime()); PlayListVersionManager.UpdateItemRunnigAppDomainVersion(tmpItemRunnigVersionInformation); } currentItemRunnigVersionInformationList.Add(tmpItemRunnigVersionInformation); foreach (PlayListItem playListItem in playList.PlayListItemCollection) { tmpItemRunnigVersionInformation = PlayListVersionManager.GetItemRunnigVersionInformationByID(playListItem.GUID); if (tmpItemRunnigVersionInformation == null) { tmpItemRunnigVersionInformation = new ItemRunnigVersionInformation(playListItem.GUID, DateTime.Now.ToUniversalTime()); PlayListVersionManager.UpdateItemRunnigAppDomainVersion(tmpItemRunnigVersionInformation); } currentItemRunnigVersionInformationList.Add(tmpItemRunnigVersionInformation); foreach (SoftKey softKey in playListItem.PlayListSoftKeys) { tmpItemRunnigVersionInformation = PlayListVersionManager.GetItemRunnigVersionInformationByID(softKey.GUID); if (tmpItemRunnigVersionInformation == null) { tmpItemRunnigVersionInformation = new ItemRunnigVersionInformation(softKey.GUID, DateTime.Now.ToUniversalTime()); PlayListVersionManager.UpdateItemRunnigAppDomainVersion(tmpItemRunnigVersionInformation); } ExtensionMethodsForClientVersionManager.ExtensionMethodsForClientVersionManager.Add(currentItemRunnigVersionInformationList, tmpItemRunnigVersionInformation); } foreach (MenuItem menuItem in playListItem.MenuItems) { tmpItemRunnigVersionInformation = PlayListVersionManager.GetItemRunnigVersionInformationByID(menuItem.Guid); if (tmpItemRunnigVersionInformation == null) { tmpItemRunnigVersionInformation = new ItemRunnigVersionInformation(menuItem.Guid, DateTime.Now.ToUniversalTime()); PlayListVersionManager.UpdateItemRunnigAppDomainVersion(tmpItemRunnigVersionInformation); } ExtensionMethodsForClientVersionManager.ExtensionMethodsForClientVersionManager.Add(currentItemRunnigVersionInformationList, tmpItemRunnigVersionInformation); } } } SessionItemRunnigVersionInformation = currentItemRunnigVersionInformationList; } public static ItemRunnigVersionInformation GetItemRunnigVersionInformationById(string itemGuid) { return SessionItemRunnigVersionInformation.FirstOrDefault(t => t.ItemGuid == itemGuid); } public static void DeleteItemRunnigAppDomain(string itemGuid) { ExtensionMethodsForClientVersionManager.ExtensionMethodsForClientVersionManager.Remove(SessionItemRunnigVersionInformation, NG.IPTOffice.Paloma.Helper.ExtensionMethodsFoPlayListVersionManager.ExtensionMethodsFoPlayListVersionManager.GetMatchingItemRunnigVersionInformation(SessionItemRunnigVersionInformation, itemGuid)); } } and that was for server one public class PlayListVersionManager { public static List<ItemRunnigVersionInformation> AppDomainItemRunnigVersionInformation { get { if (HttpContext.Current.Application["AppDomainItemRunnigVersionInformation"] == null) HttpContext.Current.Application["AppDomainItemRunnigVersionInformation"] = new List<ItemRunnigVersionInformation>(); return (List<ItemRunnigVersionInformation>)HttpContext.Current.Application["AppDomainItemRunnigVersionInformation"]; } set { HttpContext.Current.Application["AppDomainItemRunnigVersionInformation"] = value; } } public static ItemRunnigVersionInformation GetItemRunnigVersionInformationByID(string itemGuid) { return ExtensionMethodsFoPlayListVersionManager.ExtensionMethodsFoPlayListVersionManager.GetMatchingItemRunnigVersionInformation(AppDomainItemRunnigVersionInformation, itemGuid); } /// <summary> /// this will be updated when editor pages /// if any record at playlistversion is found it will be addedd /// </summary> /// <param name="itemRunnigVersionInformation"></param> public static void UpdateItemRunnigAppDomainVersion(ItemRunnigVersionInformation itemRunnigVersionInformation) { ItemRunnigVersionInformation itemRunnigVersionInformationAtAppDomain = NG.IPTOffice.Paloma.Helper.ExtensionMethodsFoPlayListVersionManager.ExtensionMethodsFoPlayListVersionManager.GetMatchingItemRunnigVersionInformation(AppDomainItemRunnigVersionInformation, itemRunnigVersionInformation.ItemGuid); if (itemRunnigVersionInformationAtAppDomain == null) { ExtensionMethodsFoPlayListVersionManager.ExtensionMethodsFoPlayListVersionManager.Add(AppDomainItemRunnigVersionInformation, itemRunnigVersionInformation); } else { ExtensionMethodsFoPlayListVersionManager.ExtensionMethodsFoPlayListVersionManager.Remove(AppDomainItemRunnigVersionInformation, itemRunnigVersionInformationAtAppDomain); ExtensionMethodsFoPlayListVersionManager.ExtensionMethodsFoPlayListVersionManager.Add(AppDomainItemRunnigVersionInformation, itemRunnigVersionInformation); } } //this will be checked each time if needed to update item over DB public static bool IsRunnigItemLastVersion(ItemRunnigVersionInformation itemRunnigVersionInformation, bool ignoreNullEntry, out bool itemNotExistsAtAppDomain) { itemNotExistsAtAppDomain = false; if (itemRunnigVersionInformation != null) { ItemRunnigVersionInformation itemRunnigVersionInformationAtAppDomain = AppDomainItemRunnigVersionInformation.FirstOrDefault(t => t.ItemGuid == itemRunnigVersionInformation.ItemGuid); itemNotExistsAtAppDomain = (itemRunnigVersionInformationAtAppDomain == null); if (itemNotExistsAtAppDomain && (ignoreNullEntry)) { ExtensionMethodsFoPlayListVersionManager.ExtensionMethodsFoPlayListVersionManager.Add(AppDomainItemRunnigVersionInformation, itemRunnigVersionInformation); return true; } else if (!itemNotExistsAtAppDomain && (itemRunnigVersionInformationAtAppDomain.LastLoadTime <= itemRunnigVersionInformation.LastLoadTime)) return true; else return false; } else return ignoreNullEntry; } public static void DeleteItemRunnigAppDomain(string itemGuid) { ExtensionMethodsFoPlayListVersionManager.ExtensionMethodsFoPlayListVersionManager.Remove(AppDomainItemRunnigVersionInformation, NG.IPTOffice.Paloma.Helper.ExtensionMethodsFoPlayListVersionManager.ExtensionMethodsFoPlayListVersionManager.GetMatchingItemRunnigVersionInformation(AppDomainItemRunnigVersionInformation, itemGuid)); } } when more than one client requests the page i got "Collection was modified; enumeration operation may not execute." like below.. xception: System.Web.HttpUnhandledException: Exception of type 'System.Web.HttpUnhandledException' was thrown. ---> System.InvalidOperationException: Collection was modified; enumeration operation may not execute. at System.ThrowHelper.ThrowInvalidOperationException(ExceptionResource resource) at System.Collections.Generic.List1.Enumerator.MoveNextRare() at System.Collections.Generic.List1.Enumerator.MoveNext() at System.Linq.Enumerable.FirstOrDefault[TSource](IEnumerable1 source, Func2 predicate) at NG.IPTOffice.Paloma.Helper.PlayListVersionManager.UpdateItemRunnigAppDomainVersion(ItemRunnigVersionInformation itemRunnigVersionInformation) in at System.Web.UI.Control.LoadRecursive() at System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) --- End of inner exception stack trace --- at System.Web.UI.Page.HandleError(Exception e) at System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) at System.Web.UI.Page.ProcessRequest(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) at System.Web.UI.Page.ProcessRequest() at System.Web.UI.Page.ProcessRequestWithNoAssert(HttpContext context) at System.Web.UI.Page.ProcessRequest(HttpContext context) at ASP.playlistwebform_aspx.ProcessRequest(HttpContext context) in c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\ipservicestest\8921e5c8\5d09c94d\App_Web_n4qdnfcq.2.cs:line 0 at System.Web.HttpApplication.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() at System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously)----------- how to implement version management like this scnerio? how can i to avoid this exception? thnx

    Read the article

  • What would be a correct implemantation of JSF Converter if I need to get an Integer to run a query?

    - by Ignacio
    HI here's my code: List.xhmtl <h:selectOneMenu value="#{produtosController.items}"> <f:selectItems value="#{produtosController.itemsAvailableSelectOne}"/> </h:selectOneMenu> <h:commandButton action="#{produtosController.createByCodigos}" value="Buscar" /> My Controller Class with innner Converter implemantation @ManagedBean (name="produtosController") @SessionScoped public class ProdutosController { private Produtos current; private DataModel items = null; @EJB private controladores.ProdutosFacade ejbFacade; private PaginationHelper pagination; private int selectedItemIndex; public ProdutosController() { } public Produtos getSelected() { if (current == null) { current = new Produtos(); selectedItemIndex = -1; } return current; } private ProdutosFacade getFacade() { return ejbFacade; } public PaginationHelper getPagination() { if (pagination == null) { pagination = new PaginationHelper(10) { @Override public int getItemsCount() { return getFacade().count(); } @Override public DataModel createPageDataModel() { return new ListDataModel(getFacade().findRange(new int[]{getPageFirstItem(), getPageFirstItem()+getPageSize()})); } }; } return pagination; } public String prepareList() { recreateModel(); return "List"; } public String prepareView() { current = (Produtos)getItems().getRowData(); selectedItemIndex = pagination.getPageFirstItem() + getItems().getRowIndex(); return "View"; } public String prepareCreate() { current = new Produtos(); selectedItemIndex = -1; return "Create"; } public String create() { try { getFacade().create(current); JsfUtil.addSuccessMessage(ResourceBundle.getBundle("/Bundle").getString("ProdutosCreated")); return prepareCreate(); } catch (Exception e) { JsfUtil.addErrorMessage(e, ResourceBundle.getBundle("/Bundle").getString("PersistenceErrorOccured")); return null; } } public String createByMarcas() { items = new ListDataModel(ejbFacade.findByMarcas(current.getIdMarca())); updateCurrentItem(); return "List"; } public String createByModelos() { items = new ListDataModel(ejbFacade.findByModelos(current.getIdModelo())); updateCurrentItem(); return "List"; } public String createByCodigos(){ items = new ListDataModel(ejbFacade.findByCodigo(current.getCodigo())); updateCurrentItem(); return "List"; } public String prepareEdit() { current = (Produtos)getItems().getRowData(); selectedItemIndex = pagination.getPageFirstItem() + getItems().getRowIndex(); return "Edit"; } public String update() { try { getFacade().edit(current); JsfUtil.addSuccessMessage(ResourceBundle.getBundle("/Bundle").getString("ProdutosUpdated")); return "View"; } catch (Exception e) { JsfUtil.addErrorMessage(e, ResourceBundle.getBundle("/Bundle").getString("PersistenceErrorOccured")); return null; } } public String destroy() { current = (Produtos)getItems().getRowData(); selectedItemIndex = pagination.getPageFirstItem() + getItems().getRowIndex(); performDestroy(); recreateModel(); return "List"; } public String destroyAndView() { performDestroy(); recreateModel(); updateCurrentItem(); if (selectedItemIndex >= 0) { return "View"; } else { // all items were removed - go back to list recreateModel(); return "List"; } } private void performDestroy() { try { getFacade().remove(current); JsfUtil.addSuccessMessage(ResourceBundle.getBundle("/Bundle").getString("ProdutosDeleted")); } catch (Exception e) { JsfUtil.addErrorMessage(e, ResourceBundle.getBundle("/Bundle").getString("PersistenceErrorOccured")); } } private void updateCurrentItem() { int count = getFacade().count(); if (selectedItemIndex >= count) { // selected index cannot be bigger than number of items: selectedItemIndex = count-1; // go to previous page if last page disappeared: if (pagination.getPageFirstItem() >= count) { pagination.previousPage(); } } if (selectedItemIndex >= 0) { current = getFacade().findRange(new int[]{selectedItemIndex, selectedItemIndex+1}).get(0); } } public DataModel getItems() { if (items == null) { items = getPagination().createPageDataModel(); } return items; } private void recreateModel() { items = null; } public String next() { getPagination().nextPage(); recreateModel(); return "List"; } public String previous() { getPagination().previousPage(); recreateModel(); return "List"; } public SelectItem[] getItemsAvailableSelectMany() { return JsfUtil.getSelectItems(ejbFacade.findAll(), false); } public SelectItem[] getItemsAvailableSelectOne() { return JsfUtil.getSelectItems(ejbFacade.findAll(), true); } @FacesConverter(forClass=Produtos.class) public static class ProdutosControllerConverter implements Converter{ public Object getAsObject(FacesContext facesContext, UIComponent component, String value) { if (value == null || value.length() == 0) { return null; } ProdutosController controller = (ProdutosController)facesContext.getApplication().getELResolver(). getValue(facesContext.getELContext(), null, "produtosController"); return controller.ejbFacade.find(getKey(value)); } java.lang.Integer getKey(String value) { java.lang.Integer key; key = Integer.decode(value); return key; } String getStringKey(java.lang.Integer value) { StringBuffer sb = new StringBuffer(); sb.append(value); return sb.toString(); } public String getAsString(FacesContext facesContext, UIComponent component, Object object) { if (object == null) { return null; } if (object instanceof Produtos) { Produtos o = (Produtos) object; return getStringKey(o.getCodigo()); } else { throw new IllegalArgumentException("object " + object + " is of type " + object.getClass().getName() + "; expected type: "+ProdutosController.class.getName()); } } } } and my EJB @Entity @ViewScoped @Table(name = "produtos") @NamedQueries({ @NamedQuery(name = "Produtos.findAll", query = "SELECT p FROM Produtos p"), @NamedQuery(name = "Produtos.findById", query = "SELECT p FROM Produtos p WHERE p.id = :id"), @NamedQuery(name = "Produtos.findByCodigo", query = "SELECT p FROM Produtos p WHERE p.codigo = :codigo"), @NamedQuery(name = "Produtos.findByDescripcion", query = "SELECT p FROM Produtos p WHERE p.descripcion = :descripcion"), @NamedQuery(name = "Produtos.findByImagen", query = "SELECT p FROM Produtos p WHERE p.imagen = :imagen"), @NamedQuery(name = "Produtos.findByMarcas", query="SELECT m FROM Produtos m WHERE m.idMarca.id = :idMarca"), @NamedQuery(name = "Produtos.findByModelos", query="SELECT m FROM Produtos m WHERE m.idModelo.id = :idModelo")}) public class Produtos implements Serializable { private static final long serialVersionUID = 1L; @Id @GeneratedValue(strategy = GenerationType.IDENTITY) @Basic(optional = false) @Column(name = "id") private Integer id; @Column(name = "codigo") private Integer codigo; @Column(name = "descripcion") private String descripcion; @Column(name = "imagen") private String imagen; @JoinColumn(name = "id_modelo", referencedColumnName = "id") @ManyToOne(optional = false) private Modelos idModelo; @JoinColumn(name = "id_marca", referencedColumnName = "id") @ManyToOne(optional = false) private Marcas idMarca; public Produtos() { } public Produtos(Integer id) { this.id = id; } public Integer getId() { return id; } public void setId(Integer id) { this.id = id; } public Integer getCodigo() { return codigo; } public void setCodigo(Integer codigo) { this.codigo = codigo; } public String getDescripcion() { return descripcion; } public void setDescripcion(String descripcion) { this.descripcion = descripcion; } public String getImagen() { return imagen; } public void setImagen(String imagen) { this.imagen = imagen; } public Modelos getIdModelo() { return idModelo; } public void setIdModelo(Modelos idModelo) { this.idModelo = idModelo; } public Marcas getIdMarca() { return idMarca; } public void setIdMarca(Marcas idMarca) { this.idMarca = idMarca; } @Override public int hashCode() { int hash = 0; hash += (id != null ? id.hashCode() : 0); return hash; } @Override public boolean equals(Object object) { // TODO: Warning - this method won't work in the case the id fields are not set if (!(object instanceof Produtos)) { return false; } Produtos other = (Produtos) object; if ((this.id == null && other.id != null) || (this.id != null && !this.id.equals(other.id))) { return false; } return true; } @Override public String toString() { return "" + codigo + ""; } }

    Read the article

  • To display an album art from media store in android

    - by user1834724
    I'm not able to display album art from media store while listing albums,I'm getting following error Bad request for field slot 0,-1. numRows = 32, numColumns = 7 01-02 02:48:16.789: D/AndroidRuntime(4963): Shutting down VM 01-02 02:48:16.789: W/dalvikvm(4963): threadid=1: thread exiting with uncaught exception (group=0x4001e578) 01-02 02:48:16.804: E/AndroidRuntime(4963): FATAL EXCEPTION: main 01-02 02:48:16.804: E/AndroidRuntime(4963): java.lang.IllegalStateException: get field slot from row 0 col -1 failed Can anyone kindly help with this issue,Thanks in advance public class AlbumbsListActivity extends Activity { private ListAdapter albumListAdapter; private HashMap<Integer, Integer> albumInfo; private HashMap<Integer, Integer> albumListInfo; private HashMap<Integer, String> albumListTitleInfo; private String audioMediaId; private static final String TAG = "AlbumsListActivity"; Boolean showAlbumList = false; Boolean AlbumListTitle = false; ImageView album_art ; public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.albums_list_layout); Cursor cursor; ContentResolver cr = getApplicationContext().getContentResolver(); if (getIntent().hasExtra(Util.ALBUM_ID)) { int albumId = getIntent().getIntExtra(Util.ALBUM_ID, Util.MINUS_ONE); String[] projection = new String[] { Albums._ID, Albums.ALBUM, Albums.ARTIST, Albums.ALBUM_ART, Albums.NUMBER_OF_SONGS }; String selection = null; String[] selectionArgs = null; String sortOrder = Media.ALBUM + " ASC"; cursor = cr.query(Albums.EXTERNAL_CONTENT_URI, projection, selection, selectionArgs, sortOrder); /* final String[] ccols = new String[] { //MediaStore.Audio.Albums., MediaStore.Audio.Albums._ID, MediaStore.Audio.Albums.ALBUM, MediaStore.Audio.Albums.ARTIST, MediaStore.Audio.Albums.ALBUM_ART, MediaStore.Audio.Albums.NUMBER_OF_SONGS }; cursor = cr.query(MediaStore.Audio.Albums.getContentUri( "external"), ccols, null, null, MediaStore.Audio.Albums.DEFAULT_SORT_ORDER);*/ showAlbumList = true; } else { String order = MediaStore.Audio.Albums.ALBUM + " ASC"; String where = MediaStore.Audio.Albums.ALBUM; cursor = managedQuery(Media.EXTERNAL_CONTENT_URI, DbUtil.projection, null, null, order); showAlbumList = false; } albumInfo = new HashMap<Integer, Integer>(); albumListInfo = new HashMap<Integer, Integer>(); ListView listView = (ListView) findViewById(R.id.mylist_album); listView.setFastScrollEnabled(true); listView.setOnItemLongClickListener(new ItemLongClickListener()); listView.setAdapter(new AlbumCursorAdapter(this, cursor, DbUtil.displayFields, DbUtil.displayViews,showAlbumList)); final Uri uri = MediaStore.Audio.Albums.EXTERNAL_CONTENT_URI; final Cursor albumListCursor = cr.query(uri, DbUtil.Albumprojection, null, null, null); } private class AlbumCursorAdapter extends SimpleCursorAdapter implements SectionIndexer{ private final Context context; private final Cursor cursorValues; private Time musicTime; private Boolean isAlbumList; private MusicAlphabetIndexer mIndexer; private int mTitleIdx; public AlbumCursorAdapter(Context context, Cursor cursor, String[] from, int[] to,Boolean isAlbumList) { super(context, 0, cursor, from, to); this.context = context; this.cursorValues = cursor; //musicTime = new Time(); this.isAlbumList = isAlbumList; } String albumName=""; String artistName = ""; String numberofsongs = ""; long albumid; @Override public View getView(int position, View convertView, ViewGroup parent) { View rowView = convertView; if (rowView == null) { LayoutInflater inflater = (LayoutInflater) context .getSystemService(Context.LAYOUT_INFLATER_SERVICE); rowView = inflater .inflate(R.layout.row_album_layout, parent, false); } this.cursorValues.moveToPosition(position); String title = ""; String artistName = ""; String albumName = ""; int count; long albumid = 0; String songDuration = ""; if (isAlbumList) { albumInfo.put( position, Integer.parseInt(this.cursorValues.getString(this.cursorValues .getColumnIndex(MediaStore.Audio.Albums._ID)))); artistName = this.cursorValues .getString(this.cursorValues .getColumnIndex(MediaStore.Audio.Albums.ARTIST)); albumName = this.cursorValues .getString(this.cursorValues .getColumnIndex(MediaStore.Audio.Albums.ALBUM)); albumid=Integer.parseInt(this.cursorValues.getString(this.cursorValues .getColumnIndex(MediaStore.Audio.Albums.ALBUM_ID))); } else { albumInfo.put(position, Integer.parseInt(this.cursorValues .getString(this.cursorValues .getColumnIndex(MediaStore.Audio.Media._ID)))); artistName = this.cursorValues.getString(this.cursorValues .getColumnIndex(MediaStore.Audio.Media.ARTIST)); albumName = this.cursorValues.getString(this.cursorValues .getColumnIndex(MediaStore.Audio.Media.ALBUM)); albumid=Integer.parseInt(this.cursorValues.getString(this.cursorValues .getColumnIndex(MediaStore.Audio.Media.ALBUM_ID))); } //code for Alphabetical Indexer mTitleIdx = cursorValues.getColumnIndex(MediaStore.Audio.Media.ALBUM); mIndexer = new MusicAlphabetIndexer(cursorValues, mTitleIdx, getResources().getString(R.string.fast_scroll_alphabet)); //end TextView metaone = (TextView) rowView.findViewById(R.id.album_name); TextView metatwo = (TextView) rowView.findViewById(R.id.artist_name); ImageView metafour = (ImageView) rowView.findViewById(R.id.album_art); TextView metathree = (TextView) rowView .findViewById(R.id.songs_count); metaone.setText(albumName); metatwo.setText(artistName); (metafour)getAlbumArt(albumid); System.out.println("albumid----------"+albumid); metaThree.setText(DbUtil.makeTimeString(context, secs)); getAlbumArt(albumid); } TextView metaone = (TextView) rowView.findViewById(R.id.album_name); TextView metatwo = (TextView) rowView.findViewById(R.id.artist_name); album_art = (ImageView) rowView.findViewById(R.id.album_art); //TextView metathree = (TextView) rowView.findViewById(R.id.songs_count); metaone.setText(albumName); metatwo.setText(artistName); return rowView; } } String albumArtUri = ""; private void getAlbumArt(long albumid) { Uri uri=ContentUris.withAppendedId(MediaStore.Audio.Albums.EXTERNAL_CONTENT_URI, albumid); System.out.println("hhhhhhhhhhh" + uri); Cursor cursor = getContentResolver().query( ContentUris.withAppendedId( MediaStore.Audio.Albums.EXTERNAL_CONTENT_URI, albumid), new String[] { MediaStore.Audio.AlbumColumns.ALBUM_ART }, null, null, null); if (cursor.moveToFirst()) { albumArtUri = cursor.getString(0); } System.out.println("kkkkkkkkkkkkkkkkkkk :" + albumArtUri); cursor.close(); if(albumArtUri != null){ Options opts = new Options(); opts.inJustDecodeBounds = true; Bitmap albumCoverBitmap = BitmapFactory.decodeFile(albumArtUri, opts); opts.inJustDecodeBounds = false; albumCoverBitmap = BitmapFactory.decodeFile(albumArtUri, opts); if(albumCoverBitmap != null) album_art.setImageBitmap(albumCoverBitmap); }else { // TODO: Options opts = new Options(); Bitmap albumCoverBitmap = BitmapFactory.decodeResource(getApplicationContext().getResources(), R.drawable.albumart_mp_unknown_list, opts); if(albumCoverBitmap != null) album_art.setImageBitmap(albumCoverBitmap); } } } }

    Read the article

  • Capturing and Transforming ASP.NET Output with Response.Filter

    - by Rick Strahl
    During one of my Handlers and Modules session at DevConnections this week one of the attendees asked a question that I didn’t have an immediate answer for. Basically he wanted to capture response output completely and then apply some filtering to the output – effectively injecting some additional content into the page AFTER the page had completely rendered. Specifically the output should be captured from anywhere – not just a page and have this code injected into the page. Some time ago I posted some code that allows you to capture ASP.NET Page output by overriding the Render() method, capturing the HtmlTextWriter() and reading its content, modifying the rendered data as text then writing it back out. I’ve actually used this approach on a few occasions and it works fine for ASP.NET pages. But this obviously won’t work outside of the Page class environment and it’s not really generic – you have to create a custom page class in order to handle the output capture. [updated 11/16/2009 – updated ResponseFilterStream implementation and a few additional notes based on comments] Enter Response.Filter However, ASP.NET includes a Response.Filter which can be used – well to filter output. Basically Response.Filter is a stream through which the OutputStream is piped back to the Web Server (indirectly). As content is written into the Response object, the filter stream receives the appropriate Stream commands like Write, Flush and Close as well as read operations although for a Response.Filter that’s uncommon to be hit. The Response.Filter can be programmatically replaced at runtime which allows you to effectively intercept all output generation that runs through ASP.NET. A common Example: Dynamic GZip Encoding A rather common use of Response.Filter hooking up code based, dynamic  GZip compression for requests which is dead simple by applying a GZipStream (or DeflateStream) to Response.Filter. The following generic routines can be used very easily to detect GZip capability of the client and compress response output with a single line of code and a couple of library helper routines: WebUtils.GZipEncodePage(); which is handled with a few lines of reusable code and a couple of static helper methods: /// <summary> ///Sets up the current page or handler to use GZip through a Response.Filter ///IMPORTANT:  ///You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() {     HttpResponse Response = HttpContext.Current.Response;     if(IsGZipSupported())     {         stringAcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"];         if(AcceptEncoding.Contains("deflate"))         {             Response.Filter = newSystem.IO.Compression.DeflateStream(Response.Filter,                                        System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "deflate");         }         else        {             Response.Filter = newSystem.IO.Compression.GZipStream(Response.Filter,                                       System.IO.Compression.CompressionMode.Compress);             Response.AppendHeader("Content-Encoding", "gzip");                            }     }     // Allow proxy servers to cache encoded and unencoded versions separately    Response.AppendHeader("Vary", "Content-Encoding"); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } GZipStream and DeflateStream are streams that are assigned to Response.Filter and by doing so apply the appropriate compression on the active Response. Response.Filter content is chunked So to implement a Response.Filter effectively requires only that you implement a custom stream and handle the Write() method to capture Response output as it’s written. At first blush this seems very simple – you capture the output in Write, transform it and write out the transformed content in one pass. And that indeed works for small amounts of content. But you see, the problem is that output is written in small buffer chunks (a little less than 16k it appears) rather than just a single Write() statement into the stream, which makes perfect sense for ASP.NET to stream data back to IIS in smaller chunks to minimize memory usage en route. Unfortunately this also makes it a more difficult to implement any filtering routines since you don’t directly get access to all of the response content which is problematic especially if those filtering routines require you to look at the ENTIRE response in order to transform or capture the output as is needed for the solution the gentleman in my session asked for. So in order to address this a slightly different approach is required that basically captures all the Write() buffers passed into a cached stream and then making the stream available only when it’s complete and ready to be flushed. As I was thinking about the implementation I also started thinking about the few instances when I’ve used Response.Filter implementations. Each time I had to create a new Stream subclass and create my custom functionality but in the end each implementation did the same thing – capturing output and transforming it. I thought there should be an easier way to do this by creating a re-usable Stream class that can handle stream transformations that are common to Response.Filter implementations. Creating a semi-generic Response Filter Stream Class What I ended up with is a ResponseFilterStream class that provides a handful of Events that allow you to capture and/or transform Response content. The class implements a subclass of Stream and then overrides Write() and Flush() to handle capturing and transformation operations. By exposing events it’s easy to hook up capture or transformation operations via single focused methods. ResponseFilterStream exposes the following events: CaptureStream, CaptureString Captures the output only and provides either a MemoryStream or String with the final page output. Capture is hooked to the Flush() operation of the stream. TransformStream, TransformString Allows you to transform the complete response output with events that receive a MemoryStream or String respectively and can you modify the output then return it back as a return value. The transformed output is then written back out in a single chunk to the response output stream. These events capture all output internally first then write the entire buffer into the response. TransformWrite, TransformWriteString Allows you to transform the Response data as it is written in its original chunk size in the Stream’s Write() method. Unlike TransformStream/TransformString which operate on the complete output, these events only see the current chunk of data written. This is more efficient as there’s no caching involved, but can cause problems due to searched content splitting over multiple chunks. Using this implementation, creating a custom Response.Filter transformation becomes as simple as the following code. To hook up the Response.Filter using the MemoryStream version event: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformStream += filter_TransformStream; Response.Filter = filter; and the event handler to do the transformation: MemoryStream filter_TransformStream(MemoryStream ms) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = encoding.GetString(ms.ToArray()); output = FixPaths(output); ms = new MemoryStream(output.Length); byte[] buffer = encoding.GetBytes(output); ms.Write(buffer,0,buffer.Length); return ms; } private string FixPaths(string output) { string path = HttpContext.Current.Request.ApplicationPath; // override root path wonkiness if (path == "/") path = ""; output = output.Replace("\"~/", "\"" + path + "/").Replace("'~/", "'" + path + "/"); return output; } The idea of the event handler is that you can do whatever you want to the stream and return back a stream – either the same one that’s been modified or a brand new one – which is then sent back to as the final response. The above code can be simplified even more by using the string version events which handle the stream to string conversions for you: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; and the event handler to do the transformation calling the same FixPaths method shown above: string filter_TransformString(string output) { return FixPaths(output); } The events for capturing output and capturing and transforming chunks work in a very similar way. By using events to handle the transformations ResponseFilterStream becomes a reusable component and we don’t have to create a new stream class or subclass an existing Stream based classed. By the way, the example used here is kind of a cool trick which transforms “~/” expressions inside of the final generated HTML output – even in plain HTML controls not HTML controls – and transforms them into the appropriate application relative path in the same way that ResolveUrl would do. So you can write plain old HTML like this: <a href=”~/default.aspx”>Home</a>  and have it turned into: <a href=”/myVirtual/default.aspx”>Home</a>  without having to use an ASP.NET control like Hyperlink or Image or having to constantly use: <img src=”<%= ResolveUrl(“~/images/home.gif”) %>” /> in MVC applications (which frankly is one of the most annoying things about MVC especially given the path hell that extension-less and endpoint-less URLs impose). I can’t take credit for this idea. While discussing the Response.Filter issues on Twitter a hint from Dylan Beattie who pointed me at one of his examples which does something similar. I thought the idea was cool enough to use an example for future demos of Response.Filter functionality in ASP.NET next I time I do the Modules and Handlers talk (which was great fun BTW). How practical this is is debatable however since there’s definitely some overhead to using a Response.Filter in general and especially on one that caches the output and the re-writes it later. Make sure to test for performance anytime you use Response.Filter hookup and make sure it' doesn’t end up killing perf on you. You’ve been warned :-}. How does ResponseFilterStream work? The big win of this implementation IMHO is that it’s a reusable  component – so for implementation there’s no new class, no subclassing – you simply attach to an event to implement an event handler method with a straight forward signature to retrieve the stream or string you’re interested in. The implementation is based on a subclass of Stream as is required in order to handle the Response.Filter requirements. What’s different than other implementations I’ve seen in various places is that it supports capturing output as a whole to allow retrieving the full response output for capture or modification. The exception are the TransformWrite and TransformWrite events which operate only active chunk of data written by the Response. For captured output, the Write() method captures output into an internal MemoryStream that is cached until writing is complete. So Write() is called when ASP.NET writes to the Response stream, but the filter doesn’t pass on the Write immediately to the filter’s internal stream. The data is cached and only when the Flush() method is called to finalize the Stream’s output do we actually send the cached stream off for transformation (if the events are hooked up) and THEN finally write out the returned content in one big chunk. Here’s the implementation of ResponseFilterStream: /// <summary> /// A semi-generic Stream implementation for Response.Filter with /// an event interface for handling Content transformations via /// Stream or String. /// <remarks> /// Use with care for large output as this implementation copies /// the output into a memory stream and so increases memory usage. /// </remarks> /// </summary> public class ResponseFilterStream : Stream { /// <summary> /// The original stream /// </summary> Stream _stream; /// <summary> /// Current position in the original stream /// </summary> long _position; /// <summary> /// Stream that original content is read into /// and then passed to TransformStream function /// </summary> MemoryStream _cacheStream = new MemoryStream(5000); /// <summary> /// Internal pointer that that keeps track of the size /// of the cacheStream /// </summary> int _cachePointer = 0; /// <summary> /// /// </summary> /// <param name="responseStream"></param> public ResponseFilterStream(Stream responseStream) { _stream = responseStream; } /// <summary> /// Determines whether the stream is captured /// </summary> private bool IsCaptured { get { if (CaptureStream != null || CaptureString != null || TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Determines whether the Write method is outputting data immediately /// or delaying output until Flush() is fired. /// </summary> private bool IsOutputDelayed { get { if (TransformStream != null || TransformString != null) return true; return false; } } /// <summary> /// Event that captures Response output and makes it available /// as a MemoryStream instance. Output is captured but won't /// affect Response output. /// </summary> public event Action<MemoryStream> CaptureStream; /// <summary> /// Event that captures Response output and makes it available /// as a string. Output is captured but won't affect Response output. /// </summary> public event Action<string> CaptureString; /// <summary> /// Event that allows you transform the stream as each chunk of /// the output is written in the Write() operation of the stream. /// This means that that it's possible/likely that the input /// buffer will not contain the full response output but only /// one of potentially many chunks. /// /// This event is called as part of the filter stream's Write() /// operation. /// </summary> public event Func<byte[], byte[]> TransformWrite; /// <summary> /// Event that allows you to transform the response stream as /// each chunk of bytep[] output is written during the stream's write /// operation. This means it's possibly/likely that the string /// passed to the handler only contains a portion of the full /// output. Typical buffer chunks are around 16k a piece. /// /// This event is called as part of the stream's Write operation. /// </summary> public event Func<string, string> TransformWriteString; /// <summary> /// This event allows capturing and transformation of the entire /// output stream by caching all write operations and delaying final /// response output until Flush() is called on the stream. /// </summary> public event Func<MemoryStream, MemoryStream> TransformStream; /// <summary> /// Event that can be hooked up to handle Response.Filter /// Transformation. Passed a string that you can modify and /// return back as a return value. The modified content /// will become the final output. /// </summary> public event Func<string, string> TransformString; protected virtual void OnCaptureStream(MemoryStream ms) { if (CaptureStream != null) CaptureStream(ms); } private void OnCaptureStringInternal(MemoryStream ms) { if (CaptureString != null) { string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); OnCaptureString(content); } } protected virtual void OnCaptureString(string output) { if (CaptureString != null) CaptureString(output); } protected virtual byte[] OnTransformWrite(byte[] buffer) { if (TransformWrite != null) return TransformWrite(buffer); return buffer; } private byte[] OnTransformWriteStringInternal(byte[] buffer) { Encoding encoding = HttpContext.Current.Response.ContentEncoding; string output = OnTransformWriteString(encoding.GetString(buffer)); return encoding.GetBytes(output); } private string OnTransformWriteString(string value) { if (TransformWriteString != null) return TransformWriteString(value); return value; } protected virtual MemoryStream OnTransformCompleteStream(MemoryStream ms) { if (TransformStream != null) return TransformStream(ms); return ms; } /// <summary> /// Allows transforming of strings /// /// Note this handler is internal and not meant to be overridden /// as the TransformString Event has to be hooked up in order /// for this handler to even fire to avoid the overhead of string /// conversion on every pass through. /// </summary> /// <param name="responseText"></param> /// <returns></returns> private string OnTransformCompleteString(string responseText) { if (TransformString != null) TransformString(responseText); return responseText; } /// <summary> /// Wrapper method form OnTransformString that handles /// stream to string and vice versa conversions /// </summary> /// <param name="ms"></param> /// <returns></returns> internal MemoryStream OnTransformCompleteStringInternal(MemoryStream ms) { if (TransformString == null) return ms; //string content = ms.GetAsString(); string content = HttpContext.Current.Response.ContentEncoding.GetString(ms.ToArray()); content = TransformString(content); byte[] buffer = HttpContext.Current.Response.ContentEncoding.GetBytes(content); ms = new MemoryStream(); ms.Write(buffer, 0, buffer.Length); //ms.WriteString(content); return ms; } /// <summary> /// /// </summary> public override bool CanRead { get { return true; } } public override bool CanSeek { get { return true; } } /// <summary> /// /// </summary> public override bool CanWrite { get { return true; } } /// <summary> /// /// </summary> public override long Length { get { return 0; } } /// <summary> /// /// </summary> public override long Position { get { return _position; } set { _position = value; } } /// <summary> /// /// </summary> /// <param name="offset"></param> /// <param name="direction"></param> /// <returns></returns> public override long Seek(long offset, System.IO.SeekOrigin direction) { return _stream.Seek(offset, direction); } /// <summary> /// /// </summary> /// <param name="length"></param> public override void SetLength(long length) { _stream.SetLength(length); } /// <summary> /// /// </summary> public override void Close() { _stream.Close(); } /// <summary> /// Override flush by writing out the cached stream data /// </summary> public override void Flush() { if (IsCaptured && _cacheStream.Length > 0) { // Check for transform implementations _cacheStream = OnTransformCompleteStream(_cacheStream); _cacheStream = OnTransformCompleteStringInternal(_cacheStream); OnCaptureStream(_cacheStream); OnCaptureStringInternal(_cacheStream); // write the stream back out if output was delayed if (IsOutputDelayed) _stream.Write(_cacheStream.ToArray(), 0, (int)_cacheStream.Length); // Clear the cache once we've written it out _cacheStream.SetLength(0); } // default flush behavior _stream.Flush(); } /// <summary> /// /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> /// <returns></returns> public override int Read(byte[] buffer, int offset, int count) { return _stream.Read(buffer, offset, count); } /// <summary> /// Overriden to capture output written by ASP.NET and captured /// into a cached stream that is written out later when Flush() /// is called. /// </summary> /// <param name="buffer"></param> /// <param name="offset"></param> /// <param name="count"></param> public override void Write(byte[] buffer, int offset, int count) { if ( IsCaptured ) { // copy to holding buffer only - we'll write out later _cacheStream.Write(buffer, 0, count); _cachePointer += count; } // just transform this buffer if (TransformWrite != null) buffer = OnTransformWrite(buffer); if (TransformWriteString != null) buffer = OnTransformWriteStringInternal(buffer); if (!IsOutputDelayed) _stream.Write(buffer, offset, buffer.Length); } } The key features are the events and corresponding OnXXX methods that handle the event hookups, and the Write() and Flush() methods of the stream implementation. All the rest of the members tend to be plain jane passthrough stream implementation code without much consequence. I do love the way Action<t> and Func<T> make it so easy to create the event signatures for the various events – sweet. A few Things to consider Performance Response.Filter is not great for performance in general as it adds another layer of indirection to the ASP.NET output pipeline, and this implementation in particular adds a memory hit as it basically duplicates the response output into the cached memory stream which is necessary since you may have to look at the entire response. If you have large pages in particular this can cause potentially serious memory pressure in your server application. So be careful of wholesale adoption of this (or other) Response.Filters. Make sure to do some performance testing to ensure it’s not killing your app’s performance. Response.Filter works everywhere A few questions came up in comments and discussion as to capturing ALL output hitting the site and – yes you can definitely do that by assigning a Response.Filter inside of a module. If you do this however you’ll want to be very careful and decide which content you actually want to capture especially in IIS 7 which passes ALL content – including static images/CSS etc. through the ASP.NET pipeline. So it is important to filter only on what you’re looking for – like the page extension or maybe more effectively the Response.ContentType. Response.Filter Chaining Originally I thought that filter chaining doesn’t work at all due to a bug in the stream implementation code. But it’s quite possible to assign multiple filters to the Response.Filter property. So the following actually works to both compress the output and apply the transformed content: WebUtils.GZipEncodePage(); ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; However the following does not work resulting in invalid content encoding errors: ResponseFilterStream filter = new ResponseFilterStream(Response.Filter); filter.TransformString += filter_TransformString; Response.Filter = filter; WebUtils.GZipEncodePage(); In other words multiple Response filters can work together but it depends entirely on the implementation whether they can be chained or in which order they can be chained. In this case running the GZip/Deflate stream filters apparently relies on the original content length of the output and chokes when the content is modified. But if attaching the compression first it works fine as unintuitive as that may seem. Resources Download example code Capture Output from ASP.NET Pages © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

  • Design by Contract with Microsoft .Net Code Contract

    - by Fredrik N
    I have done some talks on different events and summits about Defensive Programming and Design by Contract, last time was at Cornerstone’s Developer Summit 2010. Next time will be at SweNug (Sweden .Net User Group). I decided to write a blog post about of some stuffs I was talking about. Users are a terrible thing! Protect your self from them ”Human users have a gift for doing the worst possible thing at the worst possible time.” – Michael T. Nygard, Release It! The kind of users Michael T. Nygard are talking about is the users of a system. We also have users that uses our code, the users I’m going to focus on is the users of our code. Me and you and another developers. “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” – Martin Fowler Good programmers also writes code that humans know how to use, good programmers also make sure software behave in a predictable manner despise inputs or user actions. Design by Contract   Design by Contract (DbC) is a way for us to make a contract between us (the code writer) and the users of our code. It’s about “If you give me this, I promise to give you this”. It’s not about business validations, that is something completely different that should be part of the domain model. DbC is to make sure the users of our code uses it in a correct way, and that we can rely on the contract and write code in a way where we know that the users will follow the contract. It will make it much easier for us to write code with a contract specified. Something like the following code is something we may see often: public void DoSomething(Object value) { value.DoIKnowThatICanDoThis(); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Where “value” can be uses directly or passed to other methods and later be used. What some of us can easily forget here is that the “value” can be “null”. We will probably not passing a null value, but someone else that uses our code maybe will do it. I think most of you (including me) have passed “null” into a method because you don’t know if the argument need to be specified to a valid value etc. I bet most of you also have got the “Null reference exception”. Sometimes this “Null reference exception” can be hard and take time to fix, because we need to search among our code to see where the “null” value was passed in etc. Wouldn’t it be much better if we can as early as possible specify that the value can’t not be null, so the users of our code also know it when the users starts to use our code, and before run time execution of the code? This is where DbC comes into the picture. We can use DbC to specify what we need, and by doing so we can rely on the contract when we write our code. So the code above can actually use the DoIKnowThatICanDoThis() method on the value object without being worried that the “value” can be null. The contract between the users of the code and us writing the code, says that the “value” can’t be null.   Pre- and Postconditions   When working with DbC we are specifying pre- and postconditions.  Precondition is a condition that should be met before a query or command is executed. An example of a precondition is: “The Value argument of the method can’t be null”, and we make sure the “value” isn’t null before the method is called. Postcondition is a condition that should be met when a command or query is completed, a postcondition will make sure the result is correct. An example of a postconditon is “The method will return a list with at least 1 item”. Commands an Quires When using DbC, we need to know what a Command and a Query is, because some principles that can be good to follow are based on commands and queries. A Command is something that will not return anything, like the SQL’s CREATE, UPDATE and DELETE. There are two kinds of Commands when using DbC, the Creation commands (for example a Constructor), and Others. Others can for example be a Command to add a value to a list, remove or update a value etc. //Creation commands public Stack(int size) //Other commands public void Push(object value); public void Remove(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   A Query, is something that will return something, for example an Attribute, Property or a Function, like the SQL’s SELECT.   There are two kinds of Queries, the Basic Queries  (Quires that aren’t based on another queries), and the Derived Queries, queries that is based on another queries. Here is an example of queries of a Stack: //Basic Queries public int Count; public object this[int index] { get; } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To understand about some principles that are good to follow when using DbC, we need to know about the Commands and different Queries. The 6 Principles When working with DbC, it’s advisable to follow some principles to make it easier to define and use contracts. The following DbC principles are: Separate commands and queries. Separate basic queries from derived queries. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries. For each command, write a postcondition that specifies the value of every basic query. For every query and command, decide on a suitable precondition. Write invariants to define unchanging properties of objects. Before I will write about each of them I want you to now that I’m going to use .Net 4.0 Code Contract. I will in the rest of the post uses a simple Stack (Yes I know, .Net already have a Stack class) to give you the basic understanding about using DbC. A Stack is a data structure where the first item in, will be the first item out. Here is a basic implementation of a Stack where not contract is specified yet: public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } //Is related to Count and this[] Query public object Top() { return this[Count]; } //Creation commands public Stack(uint size) { Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { this[++Count] = value; } public void Remove() { this[Count] = null; Count--; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The Stack is implemented in a way to demonstrate the use of Code Contract in a simple way, the implementation may not look like how you would implement it, so don’t think this is the perfect Stack implementation, only used for demonstration.   Before I will go deeper into the principles I will simply mention how we can use the .Net Code Contract. I mention before about pre- and postcondition, is about “Require” something and to “Ensure” something. When using Code Contract, we will use a static class called “Contract” and is located in he “System.Diagnostics.Contracts” namespace. The contract must be specified at the top or our member statement block. To specify a precondition with Code Contract we uses the Contract.Requires method, and to specify a postcondition, we uses the Contract.Ensure method. Here is an example where both a pre- and postcondition are used: public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The contract above requires that the Count is greater than 0, if not we can’t get the item at the Top of a Stack. We also Ensures that the results (By using the Contract.Result method, we can specify a postcondition that will check if the value returned from a method is correct) of the Top query is equal to this[Count].   1. Separate Commands and Queries   When working with DbC, it’s important to separate Command and Quires. A method should either be a command that performs an Action, or returning information to the caller, not both. By asking a question the answer shouldn’t be changed. The following is an example of a Command and a Query of a Stack: public void Push(object value) public object Top() .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The Push is a command and will not return anything, just add a value to the Stack, the Top is a query to get the item at the top of the stack.   2. Separate basic queries from derived queries There are two different kinds of queries,  the basic queries that doesn’t rely on another queries, and derived queries that uses a basic query. The “Separate basic queries from derived queries” principle is about about that derived queries can be specified in terms of basic queries. So this principles is more about recognizing that a query is a derived query or a basic query. It will then make is much easier to follow the other principles. The following code shows a basic query and a derived query: //Basic Queries public uint Count; //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   We can see that IsEmpty will use the Count query, and that makes the IsEmpty a Derived query.   3. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries.   When the derived query is recognize we can follow the 3ed principle. For each derived query, we can create a postcondition that specifies what result our derived query will return in terms of one or more basic queries. Remember that DbC is about contracts between the users of the code and us writing the code. So we can’t use demand that the users will pass in a valid value, we must also ensure that we will give the users what the users wants, when the user is following our contract. The IsEmpty query of the Stack will use a Count query and that will make the IsEmpty a Derived query, so we should now write a postcondition that specified what results will be returned, in terms of using a basic query and in this case the Count query, //Basic Queries public uint Count; //Derived Queries public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } The Contract.Ensures is used to create a postcondition. The above code will make sure that the results of the IsEmpty (by using the Contract.Result to get the result of the IsEmpty method) is correct, that will say that the IsEmpty will be either true or false based on Count is equal to 0 or not. The postcondition are using a basic query, so the IsEmpty is now following the 3ed principle. We also have another Derived Query, the Top query, it will also need a postcondition and it uses all basic queries. The Result of the Top method must be the same value as the this[] query returns. //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count and this[] Query public object Top() { Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   4. For each command, write a postcondition that specifies the value of every basic query.   For each command we will create a postconditon that specifies the value of basic queries. If we look at the Stack implementation we will have three Commands, one Creation command, the Constructor, and two others commands, Push and Remove. Those commands need a postcondition and they should include basic query to follow the 4th principle. //Creation commands public Stack(uint size) { Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   As you can see the Create command will Ensures that Count will be 0 when the Stack is created, when a Stack is created there shouldn’t be any items in the stack. The Push command will take a value and put it into the Stack, when an item is pushed into the Stack, the Count need to be increased to know the number of items added to the Stack, and we must also make sure the item is really added to the Stack. The postconditon of the Push method will make sure the that old value of the Count (by using the Contract.OldValue we can get the value a Query has before the method is called)  plus 1 will be equal to the Count query, this is the way we can ensure that the Push will increase the Count with one. We also make sure the this[] query will now contain the item we pushed into the Stack. The Remove method must make sure the Count is decreased by one when the top item is removed from the Stack. The Commands is now following the 4th principle, where each command now have a postcondition that used the value of basic queries. Note: The principle says every basic Query, the Remove only used one Query the Count, it’s because this command can’t use the this[] query because an item is removed, so the only way to make sure an item is removed is to just use the Count query, so the Remove will still follow the principle.   5. For every query and command, decide on a suitable precondition.   We have now focused only on postcondition, now time for some preconditons. The 5th principle is about deciding a suitable preconditon for every query and command. If we starts to look at one of our basic queries (will not go through all Queries and commands here, just some of them) the this[] query, we can’t pass an index that is lower then 1 (.Net arrays and list are zero based, but not the stack in this blog post ;)) and the index can’t be lesser than the number of items in the stack. So here we will need a preconditon. public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Think about the Contract as an documentation about how to use the code in a correct way, so if the contract could be specified elsewhere (not part of the method body), we could simply write “return _array[index]” and there is no need to check if index is greater or lesser than Count, because that is specified in a “contract”. The implementation of Code Contract, requires that the contract is specified in the code. As a developer I would rather have this contract elsewhere (Like Spec#) or implemented in a way Eiffel uses it as part of the language. Now when we have looked at one Query, we can also look at one command, the Remove command (You can see the whole implementation of the Stack at the end of this blog post, where precondition is added to more queries and commands then what I’m going to show in this section). We can only Remove an item if the Count is greater than 0. So we can write a precondition that will require that Count must be greater than 0. public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   6. Write invariants to define unchanging properties of objects.   The last principle is about making sure the object are feeling great! This is done by using invariants. When using Code Contract we can specify invariants by adding a method with the attribute ContractInvariantMethod, the method must be private or public and can only contains calls to Contract.Invariant. To make sure the Stack feels great, the Stack must have 0 or more items, the Count can’t never be a negative value to make sure each command and queries can be used of the Stack. Here is our invariant for the Stack object: [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The ObjectInvariant method will be called every time after a Query or Commands is called. Here is the full example using Code Contract:   public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } set { Contract.Requires(index >= 1); Contract.Requires(index <= Count); _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } //Is related to Count and this[] Query public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } //Creation commands public Stack(uint size) { Contract.Requires(size > 0); Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Requires(value != null); Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Summary By using Design By Contract we can make sure the users are using our code in a correct way, and we must also make sure the users will get the expected results when they uses our code. This can be done by specifying contracts. To make it easy to use Design By Contract, some principles may be good to follow like the separation of commands an queries. With .Net 4.0 we can use the Code Contract feature to specify contracts.

    Read the article

  • Is it possible to a db constraint in for this rule?

    - by Pure.Krome
    Hi folks, I wish to make sure that my data has a constraint the following check (constraint?) in place This table can only have one BorderColour per hub/category. (eg. #FFAABB) But it can have multiple nulls. (all the other rows are nulls, for this field) Table Schema ArticleId INT PRIMARY KEY NOT NULL HubId TINYINT NOT NULL CategoryId INT NOT NULL Title NVARCHAR(100) NOT NULL Content NVARCHAR(MAX) NOT NULL BorderColour VARCHAR(7) -- Can be nullable. I'm gussing I would have to make a check constraint? But i'm not sure how, etc. sample data. 1, 1, 1, 'test', 'blah...', '#FFAACC' 1, 1, 1, 'test2', 'sfsd', NULL 1, 1, 2, 'Test3', 'sdfsd dsf s', NULL 1, 1, 2, 'Test4', 'sfsdsss', '#AABBCC' now .. if i add the following line, i should get some sql error.... INSERT INTO tblArticle VALUES (1, 2, 'aaa', 'bbb', '#ABABAB') any ideas?

    Read the article

  • How to add correct cancellation when downloading a file with the example in the samples of the new P

    - by Mike
    Hello everybody, I have downloaded the last samples of the Parallel Programming team, and I don't succeed in adding correctly the possibility to cancel the download of a file. Here is the code I ended to have: var wreq = (HttpWebRequest)WebRequest.Create(uri); // Fire start event DownloadStarted(this, new DownloadStartedEventArgs(remoteFilePath)); long totalBytes = 0; wreq.DownloadDataInFileAsync(tmpLocalFile, cancellationTokenSource.Token, allowResume, totalBytesAction => { totalBytes = totalBytesAction; }, readBytes => { Log.Debug("Progression : {0} / {1} => {2}%", readBytes, totalBytes, 100 * (double)readBytes / totalBytes); DownloadProgress(this, new DownloadProgressEventArgs(remoteFilePath, readBytes, totalBytes, (int)(100 * readBytes / totalBytes))); }) .ContinueWith( (antecedent ) => { if (antecedent.IsFaulted) Log.Debug(antecedent.Exception.Message); //Fire end event SetEndDownload(antecedent.IsCanceled, antecedent.Exception, tmpLocalFile, 0); }, cancellationTokenSource.Token); I want to fire an end event after the download is finished, hence the ContinueWith. I slightly changed the code of the samples to add the CancellationToken and the 2 delegates to get the size of the file to download, and the progression of the download: return webRequest.GetResponseAsync() .ContinueWith(response => { if (totalBytesAction != null) totalBytesAction(response.Result.ContentLength); response.Result.GetResponseStream().WriteAllBytesAsync(filePath, ct, resumeDownload, progressAction).Wait(ct); }, ct); I had to add the call to the Wait function, because if I don't, the method exits and the end event is fired too early. Here are the modified method extensions (lot of code, apologies :p) public static Task WriteAllBytesAsync(this Stream stream, string filePath, CancellationToken ct, bool resumeDownload = false, Action<long> progressAction = null) { if (stream == null) throw new ArgumentNullException("stream"); // Copy from the source stream to the memory stream and return the copied data return stream.CopyStreamToFileAsync(filePath, ct, resumeDownload, progressAction); } public static Task CopyStreamToFileAsync(this Stream source, string destinationPath, CancellationToken ct, bool resumeDownload = false, Action<long> progressAction = null) { if (source == null) throw new ArgumentNullException("source"); if (destinationPath == null) throw new ArgumentNullException("destinationPath"); // Open the output file for writing var destinationStream = FileAsync.OpenWrite(destinationPath); // Copy the source to the destination stream, then close the output file. return CopyStreamToStreamAsync(source, destinationStream, ct, progressAction).ContinueWith(t => { var e = t.Exception; destinationStream.Close(); if (e != null) throw e; }, ct, TaskContinuationOptions.ExecuteSynchronously, TaskScheduler.Current); } public static Task CopyStreamToStreamAsync(this Stream source, Stream destination, CancellationToken ct, Action<long> progressAction = null) { if (source == null) throw new ArgumentNullException("source"); if (destination == null) throw new ArgumentNullException("destination"); return Task.Factory.Iterate(CopyStreamIterator(source, destination, ct, progressAction)); } private static IEnumerable<Task> CopyStreamIterator(Stream input, Stream output, CancellationToken ct, Action<long> progressAction = null) { // Create two buffers. One will be used for the current read operation and one for the current // write operation. We'll continually swap back and forth between them. byte[][] buffers = new byte[2][] { new byte[BUFFER_SIZE], new byte[BUFFER_SIZE] }; int filledBufferNum = 0; Task writeTask = null; int readBytes = 0; // Until there's no more data to be read or cancellation while (true) { ct.ThrowIfCancellationRequested(); // Read from the input asynchronously var readTask = input.ReadAsync(buffers[filledBufferNum], 0, buffers[filledBufferNum].Length); // If we have no pending write operations, just yield until the read operation has // completed. If we have both a pending read and a pending write, yield until both the read // and the write have completed. yield return writeTask == null ? readTask : Task.Factory.ContinueWhenAll(new[] { readTask, writeTask }, tasks => tasks.PropagateExceptions()); // If no data was read, nothing more to do. if (readTask.Result <= 0) break; readBytes += readTask.Result; if (progressAction != null) progressAction(readBytes); // Otherwise, write the written data out to the file writeTask = output.WriteAsync(buffers[filledBufferNum], 0, readTask.Result); // Swap buffers filledBufferNum ^= 1; } } So basically, at the end of the chain of called methods, I let the CancellationToken throw an OperationCanceledException if a Cancel has been requested. What I hoped was to get IsFaulted == true in the appealing code and to fire the end event with the canceled flags and the correct exception. But what I get is an unhandled exception on the line response.Result.GetResponseStream().WriteAllBytesAsync(filePath, ct, resumeDownload, progressAction).Wait(ct); telling me that I don't catch an AggregateException. I've tried various things, but I don't succeed to make the whole thing work properly. Does anyone of you have played enough with that library and may help me? Thanks in advance Mike

    Read the article

  • asp.net Dynamic Data Site with custom own MetaData

    - by loviji
    Hello, I'm searching info about configuring own MetaData in asp.NET Dynamic Site. For example. I have a table in MS Sql Server with structure shown below: CREATE TABLE [dbo].[someTable]( [id] [int] NOT NULL, [pname] [nvarchar](20) NULL, [FullName] [nvarchar](50) NULL, [age] [int] NULL) and I there are 2 Ms Sql tables (I've created), sysTables and sysColumns. sysTables: ID sysTableName TableName TableDescription 1 | someTable |Persons |All Data about Persons in system sysColumns: ID TableName sysColumnName ColumnName ColumnDesc ColumnType MUnit 1 |someTable | sometable_pname| Name | Persona Name(ex. John)| nvarchar(20) | null 2 |someTable | sometable_Fullname| Full Name | Persona Name(ex. John Black)| nvarchar(50) | null 3 |someTable | sometable_age| age | Person age| int | null I want that, in Details/Edit/Insert/List/ListDetails pages use as MetaData sysColumns and sysTableData. Because, for ex. in DetailsPage fullName, it is not beatiful as Full Name . someIdea, is it possible? thanks

    Read the article

  • asp.net Dynamic Data Site own MetaData

    - by loviji
    Hello, I'm searching info about configuring own MetaData in asp.NET Dynamic Site. For example. I have a table in MS Sql Server with structure shown below: CREATE TABLE [dbo].[someTable]( [id] [int] NOT NULL, [pname] [nvarchar](20) NULL, [FullName] [nvarchar](50) NULL, [age] [int] NULL) and I have Ms Sql table, sysTables and sysColumns. sysTables: ID sysTableName TableName TableDescription 1 | someTable |Persons |All Data about Persons in system sysColumns ID TableName sysColumnName ColumnName ColumnDesc ColumnType MUnit 1 |someTable | sometable_pname| Name | Persona Name(ex. John)| nvarchar(20) | null 2 |someTable | sometable_Fullname| Full Name | Persona Name(ex. John Black)| nvarchar(50) | null 3 |someTable | sometable_age| age | Person age| int | null

    Read the article

  • Constant value.

    - by Harikrishna
    Is there any constant value like if we display it in the datagridview it will not display and if we add it in the decimal value the value remains as it is ? Like what I am doing is, I am making addition of two columns say B,C for the column A like dataTable.Columns["A"].Expression="B+C"; Now problem is when there is any value of column B or C is null then there is no value in the column A because of A=B+C like 1+null is null. And even I can not replace 0 where there is null for the column B or C because I am displaying records of each column A,B and C in the datagridview and I don't want to display value for column which has value null so if I replace 0 where there is null then 0 will be displayed for that column which I don't want. So what should I do for that ? So what is the constant value which I should replace for null value for the column B and C so if value of A remains it is and even that value will not be displayed in the datagridview.

    Read the article

  • MySQL Query: Winning Auction Bid

    - by mabwi
    I have a small Bidding system that I'm using for a fantasy auction draft. I'm trying to use the below query to pull up the max bids on each player. However, it's not actually giving me the max bid, it's just giving me the first one entered in to the database. SELECT Bid.id FROM bids AS Bid WHERE Bid.active =1 GROUP BY player_id HAVING MAX( Bid.amount ) Here's the Bid table layout, in case it helps: CREATE TABLE IF NOT EXISTS `bids` ( `id` int(10) NOT NULL AUTO_INCREMENT, `user_id` int(10) NOT NULL, `player_id` int(10) NOT NULL, `amount` int(6) NOT NULL, `timestamp` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP, `winning_bid` int(1) NOT NULL DEFAULT '0', `active` int(1) NOT NULL DEFAULT '1', PRIMARY KEY (`id`) ) ENGINE=MyISAM DEFAULT CHARSET=latin1 ;

    Read the article

< Previous Page | 74 75 76 77 78 79 80 81 82 83 84 85  | Next Page >