Search Results

Search found 983 results on 40 pages for 'calculations'.

Page 8/40 | < Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >

  • UPS power requirements for server

    - by captainentropy
    Greetings! So, I just placed an order for a new server. The company recommended that I get a 3000W UPS. (!) As best as I could I calculated the following wattage consumption based on benchmarked data or datasheets provided by the manufacturers of each component: number watts **total watts** MoBo 1 240 240 CPUs (E5540) 2 80 160 RAID cards (3ware) 2 18 36 RAM (6x4GB) 6 3 18 DVD drive 1 7 7 floppy 1 2 2 RE4 drives 8 7 56 WD20 drives 8 6 48 Intel X25 SSD 2 0.15 0.3 total = 567 So that is for the PSU requirements only. The PSUs in the machine are a 720W for the master node and 800W each for two subsystems. That's a total of 2320W that can be delivered by these PSUs. But that is 4X the amount being consumed, at most, by the components. I didn't count case fans or the eSATA card (3W maybe?) or what the PSUs themselves require but assuming I double or triple my calculations I'm not even remotely close to the 3000W UPS I was suggested to get. They run at least $1100. I could get a 2000W for about $750 or a 1500W for $450 and still be well over my estimated power need. I don't think I need a whole lot of run time in the case of a power outage, maybe 20 minutes max, enough time to shutdown if the power doesn't come on within 5-10 minutes. Any thoughts? Am I off on my calculations? Did I overlook something major? If so what are your suggestions for a UPS? Thanks!

    Read the article

  • SQL Server 2012 memory usage steadily growing

    - by pgmo
    I am very worried about the SQL Server 2012 Express instance on which my database is running: the SQL Server process memory usage is growing steadily (1.5GB after only 2 days working). The database is made of seven tables, each having a bigint primary key (Identity) and at least one non-unique index with some included columns to serve the majority of incoming queries. An external application is calling via Microsoft OLE DB some stored procedures, each of which do some calculations using intermediate temporary tables and/or table variables and finally do an upsert (UPDATE....IF @@ROWCOUNT=0 INSERT.....) - I never DROP those temporary tables explicitly: the frequency of those calls is about 100 calls every 5 seconds (I saw that the DLL used by the external application open a connection to SQL Server, do the call and then close the connection for each and every call). The database files are organized in only one filgegroup, recovery type is set to simple. Some questions to diagnose the problem: is that steadily growing memory normal? did I do any mistake in database design which probably lead to this behaviour? (no explicit temp-table drop, filegroup organization, etc) can SQL Server manage such a stored procedure call rate (100 calls every 5 seconds, i.e. 100 upsert every 5 seconds, beyond intermediate calculations)? do the continuous "open connection/do sp call/close connection" pattern disturb SQL Server? is it possible to diagnose what is causing such a memory usage? Perhaps queues of wating requests? (I ran sp_who2, but I didn't see a big amount of orphan connections from the external application) if I restrict the amount of memory which SQL Server is allowed to use, may I sooner or later get into trouble?

    Read the article

  • How Should I Generate Trade Statistics For CouchDB/Rails3 Application?

    - by James
    My Problem: I am trying to developing a web application for currency traders. The application allows traders to enter or upload information about their trades and I want to calculate a wide variety of statistics based on what the user entered. Now, normally I would use a relational database for this, but I have two requirements that don't fit well with a relational database so I am attempting to use couchdb. Those two problems are: 1) Primarily, I have a companion desktop application that users will be able to work with and replicate to the site using couchdb's awesome replication feature and 2) I would like to allow users to be able to define their own custom things to track about trades and generate results based off of what they enter. The schema less nature of couch seems perfect here, but it may end up being harder than it sounds. (I already know couch requires you to define views in advance and such so I was just planning on sticking all the custom attributes in an array and then emitting the array in the view and further processing from there.) What I Am Doing: Right now I am just emitting each trade in couch keyed by each user's system and querying with the key of the system to get an array of trades per system. Simple. I am not using a reduce function currently to calculate any stats because I couldn't figure out how to get everything I need without getting a reduce overflow error. Here is an example of rows that are getting emitted from couch: {"total_rows":134,"offset":0,"rows":[ {"id":"5b1dcd47221e160d8721feee4ccc64be", "key":["80e40ba2fa43589d57ec3f1d19db41e6","2010/05/14 04:32:37 +0000"], null, "doc":{ "_id":"5b1dcd47221e160d8721feee4ccc64be", "_rev":"1-bc9fe763e2637694df47d6f5efb58e5b", "couchrest-type":"Trade", "system":"80e40ba2fa43589d57ec3f1d19db41e6", "pair":"EUR/USD", "direction":"Buy", "entry":12600, "exit":12700, "stop_loss":12500, "profit_target":12700, "status":"Closed", "slug":"101332132375", "custom_tracking": [{"name":"signal", "value":"Pin Bar"}] "updated_at":"2010/05/14 04:32:37 +0000", "created_at":"2010/05/14 04:32:37 +0000", "result":100}} ]} In my rails 3 controller I am basically just populating an array of trades such as the one above and then extracting out the relevant data into smaller arrays that I can compute my statistics on. Here is my show action for the page that I want to display the stats and all the trades: def show @trades = Trade.by_system(:startkey => [@system.id], :endkey => [@system.id, Time.now ]) @trades.each do |trade| if trade.result > 0 @winning_trades << trade.result elsif trade.result < 0 @losing_trades << trade.result else @breakeven_trades << trade.result end if trade.direction == "Buy" @long_trades << trade.result else @short_trades << trade.result end if trade["custom_tracking"] != nil @custom_tracking << {"result" => trade.result, "variables" => trade["custom_tracking"]} end end end I am omitting some other stuff that is going on, but that is the gist of what I am doing. Then I am calculating stuff in the view layer to produce some results: <% winning_long_trades = @long_trades.reject {|trade| trade <= 0 } %> <% winning_short_trades = @short_trades.reject {|trade| trade <= 0 } %> <ul> <li>Total Trades: <%= @trades.count %></li> <li>Winners: <%= @winning_trades.size %></li> <li>Biggest Winner (Pips): <%= @winning_trades.max %></li> <li>Average Win(Pips): <%= @winning_trades.sum/@winning_trades.size %></li> <li>Losers: <%= @losing_trades.size %></li> <li>Biggest Loser (Pips): <%= @losing_trades.min %></li> <li>Average Loss(Pips): <%= @losing_trades.sum/@losing_trades.size %></li> <li>Breakeven Trades: <%= @breakeven_trades.size %></li> <li>Long Trades: <%= @long_trades.size %></li> <li>Winning Long Trades: <%= winning_long_trades.size %></li> <li>Short Trades: <%= @short_trades.size %></li> <li>Winning Short Trades: <%= winning_short_trades.size %></li> <li>Total Pips: <%= @winning_trades.sum + @losing_trades.sum %></li> <li>Win Rate (%): <%= @winning_trades.size/@trades.count.to_f * 100 %></li> </ul> This produces the following results, which aside from a few things is exactly what I want: Total Trades: 134 Winners: 70 Biggest Winner (Pips): 1488 Average Win(Pips): 440 Losers: 58 Biggest Loser (Pips): -516 Average Loss(Pips): -225 Breakeven Trades: 6 Long Trades: 125 Winning Long Trades: 67 Short Trades: 9 Winning Short Trades: 3 Total Pips: 17819 Win Rate (%): 52.23880597014925 What I Am Wondering- Finally The Actual Questions: I am starting to get really skeptical of how well this method will work when a user has 5,000 trades instead of just 134 like in this example. I anticipate most users will only have somewhere under 200 per year, but some users may have a couple thousand trades per year. Probably no more than 5,000 per year. It seems to work ok now, but the page load times are already getting a tad high for my tastes. (About 800ms to generate the page according to rails logs with about a 250ms of that spent in the view layer.) I will end up caching this page I am sure, but I still need the regenerate the page each time a trade is updated and I can't afford to have this be too slow. Sooo..... Is doing something similar here possible with a straight couchdb reduce function? I am assuming handing this off to couch would possibly help with larger data sets. I couldn't figure out how, but I suppose that doesn't mean it isn't possible. If possible, any hints will be helpful. Could I use a list function if a reduce was not available due to reduce constraints? Are couchdb list functions suitable for this type of calculations? Anyone have any idea of whether or not list functions perform well? Any hints what one would look like for the type of calculations I am trying to achieve? I thought about other options such as running the calculations at the time each trade was saved or nightly if I had to and saving the results to a statistics doc that I could then query so that all the processing was done ahead of time. I would like this to be the last resort because then I can't really filter out trades by time periods dynamically like I would really like to. (I want to have a slider that a user can slide to only show trades from that time period using the startkey and endkey in couchdb if I can.) If I should continue running the calculations inside the rails app at the time of the page view, what can I do to improve my current implementation. I am new to rails, couch and programming in general. I am sure that I could be doing something better here. Do I need to create an array for each stat or is there a better way to do that. I guess I just would really like some advice on how to tackle this problem. I want to keep the page generation time minimal since I anticipate these being some of the highest trafficked pages. My gut is that I will need to offload the statistics calculation to either couch or run the stats in advance of when they are called, but I am not sure. Lastly: Like I mentioned above, one of the primary reasons for using couch is to allow users to define their own things to track per trade. Getting the data into couch is no problem, but how would I be able to take the custom_tracking array and find how many winning trades for each named tracking attribute. If anyone can give me any hints to the possibility of doing this that would be great. Thanks a bunch. Would really appreciate any help. Willing to fork out some $$$ if someone wants to take on the problem for me. (Don't know if that is allowed on stack overflow or not.)

    Read the article

  • Optimizing Solaris 11 SHA-1 on Intel Processors

    - by danx
    SHA-1 is a "hash" or "digest" operation that produces a 160 bit (20 byte) checksum value on arbitrary data, such as a file. It is intended to uniquely identify text and to verify it hasn't been modified. Max Locktyukhin and others at Intel have improved the performance of the SHA-1 digest algorithm using multiple techniques. This code has been incorporated into Solaris 11 and is available in the Solaris Crypto Framework via the libmd(3LIB), the industry-standard libpkcs11(3LIB) library, and Solaris kernel module sha1. The optimized code is used automatically on systems with a x86 CPU supporting SSSE3 (Intel Supplemental SSSE3). Intel microprocessor architectures that support SSSE3 include Nehalem, Westmere, Sandy Bridge microprocessor families. Further optimizations are available for microprocessors that support AVX (such as Sandy Bridge). Although SHA-1 is considered obsolete because of weaknesses found in the SHA-1 algorithm—NIST recommends using at least SHA-256, SHA-1 is still widely used and will be with us for awhile more. Collisions (the same SHA-1 result for two different inputs) can be found with moderate effort. SHA-1 is used heavily though in SSL/TLS, for example. And SHA-1 is stronger than the older MD5 digest algorithm, another digest option defined in SSL/TLS. Optimizations Review SHA-1 operates by reading an arbitrary amount of data. The data is read in 512 bit (64 byte) blocks (the last block is padded in a specific way to ensure it's a full 64 bytes). Each 64 byte block has 80 "rounds" of calculations (consisting of a mixture of "ROTATE-LEFT", "AND", and "XOR") applied to the block. Each round produces a 32-bit intermediate result, called W[i]. Here's what each round operates: The first 16 rounds, rounds 0 to 15, read the 512 bit block 32 bits at-a-time. These 32 bits is used as input to the round. The remaining rounds, rounds 16 to 79, use the results from the previous rounds as input. Specifically for round i it XORs the results of rounds i-3, i-8, i-14, and i-16 and rotates the result left 1 bit. The remaining calculations for the round is a series of AND, XOR, and ROTATE-LEFT operators on the 32-bit input and some constants. The 32-bit result is saved as W[i] for round i. The 32-bit result of the final round, W[79], is the SHA-1 checksum. Optimization: Vectorization The first 16 rounds can be vectorized (computed in parallel) because they don't depend on the output of a previous round. As for the remaining rounds, because of step 2 above, computing round i depends on the results of round i-3, W[i-3], one can vectorize 3 rounds at-a-time. Max Locktyukhin found through simple factoring, explained in detail in his article referenced below, that the dependencies of round i on the results of rounds i-3, i-8, i-14, and i-16 can be replaced instead with dependencies on the results of rounds i-6, i-16, i-28, and i-32. That is, instead of initializing intermediate result W[i] with: W[i] = (W[i-3] XOR W[i-8] XOR W[i-14] XOR W[i-16]) ROTATE-LEFT 1 Initialize W[i] as follows: W[i] = (W[i-6] XOR W[i-16] XOR W[i-28] XOR W[i-32]) ROTATE-LEFT 2 That means that 6 rounds could be vectorized at once, with no additional calculations, instead of just 3! This optimization is independent of Intel or any other microprocessor architecture, although the microprocessor has to support vectorization to use it, and exploits one of the weaknesses of SHA-1. Optimization: SSSE3 Intel SSSE3 makes use of 16 %xmm registers, each 128 bits wide. The 4 32-bit inputs to a round, W[i-6], W[i-16], W[i-28], W[i-32], all fit in one %xmm register. The following code snippet, from Max Locktyukhin's article, converted to ATT assembly syntax, computes 4 rounds in parallel with just a dozen or so SSSE3 instructions: movdqa W_minus_04, W_TMP pxor W_minus_28, W // W equals W[i-32:i-29] before XOR // W = W[i-32:i-29] ^ W[i-28:i-25] palignr $8, W_minus_08, W_TMP // W_TMP = W[i-6:i-3], combined from // W[i-4:i-1] and W[i-8:i-5] vectors pxor W_minus_16, W // W = (W[i-32:i-29] ^ W[i-28:i-25]) ^ W[i-16:i-13] pxor W_TMP, W // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) movdqa W, W_TMP // 4 dwords in W are rotated left by 2 psrld $30, W // rotate left by 2 W = (W >> 30) | (W << 2) pslld $2, W_TMP por W, W_TMP movdqa W_TMP, W // four new W values W[i:i+3] are now calculated paddd (K_XMM), W_TMP // adding 4 current round's values of K movdqa W_TMP, (WK(i)) // storing for downstream GPR instructions to read A window of the 32 previous results, W[i-1] to W[i-32] is saved in memory on the stack. This is best illustrated with a chart. Without vectorization, computing the rounds is like this (each "R" represents 1 round of SHA-1 computation): RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR With vectorization, 4 rounds can be computed in parallel: RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR RRRRRRRRRRRRRRRRRRRR Optimization: AVX The new "Sandy Bridge" microprocessor architecture, which supports AVX, allows another interesting optimization. SSSE3 instructions have two operands, a input and an output. AVX allows three operands, two inputs and an output. In many cases two SSSE3 instructions can be combined into one AVX instruction. The difference is best illustrated with an example. Consider these two instructions from the snippet above: pxor W_minus_16, W // W = (W[i-32:i-29] ^ W[i-28:i-25]) ^ W[i-16:i-13] pxor W_TMP, W // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) With AVX they can be combined in one instruction: vpxor W_minus_16, W, W_TMP // W = (W[i-32:i-29] ^ W[i-28:i-25] ^ W[i-16:i-13]) ^ W[i-6:i-3]) This optimization is also in Solaris, although Sandy Bridge-based systems aren't widely available yet. As an exercise for the reader, AVX also has 256-bit media registers, %ymm0 - %ymm15 (a superset of 128-bit %xmm0 - %xmm15). Can %ymm registers be used to parallelize the code even more? Optimization: Solaris-specific In addition to using the Intel code described above, I performed other minor optimizations to the Solaris SHA-1 code: Increased the digest(1) and mac(1) command's buffer size from 4K to 64K, as previously done for decrypt(1) and encrypt(1). This size is well suited for ZFS file systems, but helps for other file systems as well. Optimized encode functions, which byte swap the input and output data, to copy/byte-swap 4 or 8 bytes at-a-time instead of 1 byte-at-a-time. Enhanced the Solaris mdb(1) and kmdb(1) debuggers to display all 16 %xmm and %ymm registers (mdb "$x" command). Previously they only displayed the first 8 that are available in 32-bit mode. Can't optimize if you can't debug :-). Changed the SHA-1 code to allow processing in "chunks" greater than 2 Gigabytes (64-bits) Performance I measured performance on a Sun Ultra 27 (which has a Nehalem-class Xeon 5500 Intel W3570 microprocessor @3.2GHz). Turbo mode is disabled for consistent performance measurement. Graphs are better than words and numbers, so here they are: The first graph shows the Solaris digest(1) command before and after the optimizations discussed here, contained in libmd(3LIB). I ran the digest command on a half GByte file in swapfs (/tmp) and execution time decreased from 1.35 seconds to 0.98 seconds. The second graph shows the the results of an internal microbenchmark that uses the Solaris libpkcs11(3LIB) library. The operations are on a 128 byte buffer with 10,000 iterations. The results show operations increased from 320,000 to 416,000 operations per second. Finally the third graph shows the results of an internal kernel microbenchmark that uses the Solaris /kernel/crypto/amd64/sha1 module. The operations are on a 64Kbyte buffer with 100 iterations. third graph shows the results of an internal kernel microbenchmark that uses the Solaris /kernel/crypto/amd64/sha1 module. The operations are on a 64Kbyte buffer with 100 iterations. The results show for 1 kernel thread, operations increased from 410 to 600 MBytes/second. For 8 kernel threads, operations increase from 1540 to 1940 MBytes/second. Availability This code is in Solaris 11 FCS. It is available in the 64-bit libmd(3LIB) library for 64-bit programs and is in the Solaris kernel. You must be running hardware that supports Intel's SSSE3 instructions (for example, Intel Nehalem, Westmere, or Sandy Bridge microprocessor architectures). The easiest way to determine if SSSE3 is available is with the isainfo(1) command. For example, nehalem $ isainfo -v $ isainfo -v 64-bit amd64 applications sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu If the output also shows "avx", the Solaris executes the even-more optimized 3-operand AVX instructions for SHA-1 mentioned above: sandybridge $ isainfo -v 64-bit amd64 applications avx xsave pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov amd_sysc cx8 tsc fpu 32-bit i386 applications avx xsave pclmulqdq aes sse4.2 sse4.1 ssse3 popcnt tscp ahf cx16 sse3 sse2 sse fxsr mmx cmov sep cx8 tsc fpu No special configuration or setup is needed to take advantage of this code. Solaris libraries and kernel automatically determine if it's running on SSSE3 or AVX-capable machines and execute the correctly-tuned code for that microprocessor. Summary The Solaris 11 Crypto Framework, via the sha1 kernel module and libmd(3LIB) and libpkcs11(3LIB) libraries, incorporated a useful SHA-1 optimization from Intel for SSSE3-capable microprocessors. As with other Solaris optimizations, they come automatically "under the hood" with the current Solaris release. References "Improving the Performance of the Secure Hash Algorithm (SHA-1)" by Max Locktyukhin (Intel, March 2010). The source for these SHA-1 optimizations used in Solaris "SHA-1", Wikipedia Good overview of SHA-1 FIPS 180-1 SHA-1 standard (FIPS, 1995) NIST Comments on Cryptanalytic Attacks on SHA-1 (2005, revised 2006)

    Read the article

  • The best cross platform (portable) arbitrary precision math library

    - by Siu Ching Pong - Asuka Kenji
    Dear ninjas / hackers / wizards, I'm looking for a good arbitrary precision math library in C or C++. Could you please give me some advices / suggestions? The primary requirements: It MUST handle arbitrarily big integers (my primary interest is on integers). In case that you don't know what the word arbitrarily big means, imagine something like 100000! (the factorial of 100000). The precision MUST NOT NEED to be specified during library initialization / object creation. The precision should ONLY be constrained by the available resources of the system. It SHOULD utilize the full power of the platform, and should handle "small" numbers natively. That means on a 64-bit platform, calculating 2^33 + 2^32 should use the available 64-bit CPU instructions. The library SHOULD NOT calculate this in the same way as it does with 2^66 + 2^65 on the same platform. It MUST handle addition (+), subtraction (-), multiplication (*), integer division (/), remainder (%), power (**), increment (++), decrement (--), gcd(), factorial(), and other common integer arithmetic calculations efficiently. Ability to handle functions like sqrt() (square root), log() (logarithm) that do not produce integer results is a plus. Ability to handle symbolic computations is even better. Here are what I found so far: Java's BigInteger and BigDecimal class: I have been using these so far. I have read the source code, but I don't understand the math underneath. It may be based on theories / algorithms that I have never learnt. The built-in integer type or in core libraries of bc / Python / Ruby / Haskell / Lisp / Erlang / OCaml / PHP / some other languages: I have ever used some of these, but I have no idea on which library they are using, or which kind of implementation they are using. What I have already known: Using a char as a decimal digit, and a char* as a decimal string and do calculations on the digits using a for-loop. Using an int (or a long int, or a long long) as a basic "unit" and an array of it as an arbitrary long integer, and do calculations on the elements using a for-loop. Booth's multiplication algorithm What I don't know: Printing the binary array mentioned above in decimal without using naive methods. Example of a naive method: (1) add the bits from the lowest to the highest: 1, 2, 4, 8, 16, 32, ... (2) use a char* string mentioned above to store the intermediate decimal results). What I appreciate: Good comparisons on GMP, MPFR, decNumber (or other libraries that are good in your opinion). Good suggestions on books / articles that I should read. For example, an illustration with figures on how a un-naive arbitrarily long binary to decimal conversion algorithm works is good. Any help. Please DO NOT answer this question if: you think using a double (or a long double, or a long long double) can solve this problem easily. If you do think so, it means that you don't understand the issue under discussion. you have no experience on arbitrary precision mathematics. Thank you in advance! Asuka Kenji

    Read the article

  • OWB 11gR2 &ndash; OLAP and Simba

    - by David Allan
    Oracle Warehouse Builder was the first ETL product to provide a single integrated and complete environment for managing enterprise data warehouse solutions that also incorporate multi-dimensional schemas. The OWB 11gR2 release provides Oracle OLAP 11g deployment for multi-dimensional models (in addition to support for prior releases of OLAP). This means users can easily utilize Simba's MDX Provider for Oracle OLAP (see here for details and cost) which allows you to use the powerful and popular ad hoc query and analysis capabilities of Microsoft Excel PivotTables® and PivotCharts® with your Oracle OLAP business intelligence data. The extensions to the dimensional modeling capabilities have been built on established relational concepts, with the option to seamlessly move from a relational deployment model to a multi-dimensional model at the click of a button. This now means that ETL designers can logically model a complete data warehouse solution using one single tool and control the physical implementation of a logical model at deployment time. As a result data warehouse projects that need to provide a multi-dimensional model as part of the overall solution can be designed and implemented faster and more efficiently. Wizards for dimensions and cubes let you quickly build dimensional models and realize either relationally or as an Oracle database OLAP implementation, both 10g and 11g formats are supported based on a configuration option. The wizard provides a good first cut definition and the objects can be further refined in the editor. Both wizards let you choose the implementation, to deploy to OLAP in the database select MOLAP: multidimensional storage. You will then be asked what levels and attributes are to be defined, by default the wizard creates a level bases hierarchy, parent child hierarchies can be defined in the editor. Once the dimension or cube has been designed there are special mapping operators that make it easy to load data into the objects, below we load a constant value for the total level and the other levels from a source table.   Again when the cube is defined using the wizard we can edit the cube and define a number of analytic calculations by using the 'generate calculated measures' option on the measures panel. This lets you very easily add a lot of rich analytic measures to your cube. For example one of the measures is the percentage difference from a year ago which we can see in detail below. You can also add your own custom calculations to leverage the capabilities of the Oracle OLAP option, either by selecting existing template types such as moving averages to defining true custom expressions. The 11g OLAP option now supports percentage based summarization (the amount of data to precompute and store), this is available from the option 'cost based aggregation' in the cube's configuration. Ensure all measure-dimensions level based aggregation is switched off (on the cube-dimension panel) - previously level based aggregation was the only option. The 11g generated code now uses the new unified API as you see below, to generate the code, OWB needs a valid connection to a real schema, this was not needed before 11gR2 and is a new requirement since the OLAP API which OWB uses is not an offline one. Once all of the objects are deployed and the maps executed then we get to the fun stuff! How can we analyze the data? One option which is powerful and at many users' fingertips is using Microsoft Excel PivotTables® and PivotCharts®, which can be used with your Oracle OLAP business intelligence data by utilizing Simba's MDX Provider for Oracle OLAP (see Simba site for details of cost). I'll leave the exotic reporting illustrations to the experts (see Bud's demonstration here), but with Simba's MDX Provider for Oracle OLAP its very simple to easily access the analytics stored in the database (all built and loaded via the OWB 11gR2 release) and get the regular features of Excel at your fingertips such as using the conditional formatting features for example. That's a very quick run through of the OWB 11gR2 with respect to Oracle 11g OLAP integration and the reporting using Simba's MDX Provider for Oracle OLAP. Not a deep-dive in any way but a quick overview to illustrate the design capabilities and integrations possible.

    Read the article

  • Inappropriate Updates?

    - by Tony Davis
    A recent Simple-talk article by Kathi Kellenberger dissected the fastest SQL solution, submitted by Peter Larsson as part of Phil Factor's SQL Speed Phreak challenge, to the classic "running total" problem. In its analysis of the code, the article re-ignited a heated debate regarding the techniques that should, and should not, be deemed acceptable in your search for fast SQL code. Peter's code for running total calculation uses a variation of a somewhat contentious technique, sometimes referred to as a "quirky update": SET @Subscribers = Subscribers = @Subscribers + PeopleJoined - PeopleLeft This form of the UPDATE statement, @variable = column = expression, is documented and it allows you to set a variable to the value returned by the expression. Microsoft does not guarantee the order in which rows are updated in this technique because, in relational theory, a table doesn’t have a natural order to its rows and the UPDATE statement has no means of specifying the order. Traditionally, in cases where a specific order is requires, such as for running aggregate calculations, programmers who used the technique have relied on the fact that the UPDATE statement, without the WHERE clause, is executed in the order imposed by the clustered index, or in heap order, if there isn’t one. Peter wasn’t satisfied with this, and so used the ingenious device of assuring the order of the UPDATE by the use of an "ordered CTE", based on an underlying temporary staging table (a heap). However, in either case, the ordering is still not guaranteed and, in addition, would be broken under conditions of parallelism, or partitioning. Many argue, with validity, that this reliance on a given order where none can ever be guaranteed is an abuse of basic relational principles, and so is a bad practice; perhaps even irresponsible. More importantly, Microsoft doesn't wish to support the technique and offers no guarantee that it will always work. If you put it into production and it breaks in a later version, you can't file a bug. As such, many believe that the technique should never be tolerated in a production system, under any circumstances. Is this attitude justified? After all, both forms of the technique, using a clustered index to guarantee the order or using an ordered CTE, have been tested rigorously and are proven to be robust; although not guaranteed by Microsoft, the ordering is reliable, provided none of the conditions that are known to break it are violated. In Peter's particular case, the technique is being applied to a temporary table, where the developer has full control of the data ordering, and indexing, and knows that the table will never be subject to parallelism or partitioning. It might be argued that, in such circumstances, the technique is not really "quirky" at all and to ban it from your systems would server no real purpose other than to deprive yourself of a reliable technique that has uses that extend well beyond the running total calculations. Of course, it is doubly important that such a technique, including its unsupported status and the assumptions that underpin its success, is fully and clearly documented, preferably even when posting it online in a competition or forum post. Ultimately, however, this technique has been available to programmers throughout the time Sybase and SQL Server has existed, and so cannot be lightly cast aside, even if one sympathises with Microsoft for the awkwardness of maintaining an archaic way of doing updates. After all, a Table hint could easily be devised that, if specified in the WITH (<Table_Hint_Limited>) clause, could be used to request the database engine to do the update in the conventional order. Then perhaps everyone would be satisfied. Cheers, Tony.

    Read the article

  • How do I get FEATURE_LEVEL_9_3 to work with shaders in Direct3D11?

    - by Dominic
    Currently I'm going through some tutorials and learning DX11 on a DX10 machine (though I just ordered a new DX11 compatible computer) by means of setting the D3D_FEATURE_LEVEL_ setting to 10_0 and switching the vertex and pixel shader versions in D3DX11CompileFromFile to "vs_4_0" and "ps_4_0" respectively. This works fine as I'm not using any DX11-only features yet. I'd like to make it compatible with DX9.0c, which naively I thought I could do by changing the feature level setting to 9_3 or something and taking the vertex/pixel shader versions down to 3 or 2. However, no matter what I change the vertex/pixel shader versions to, it always fails when I try to call D3DX11CompileFromFile to compile the vertex/pixel shader files when I have D3D_FEATURE_LEVEL_9_3 enabled. Maybe this is due to the the vertex/pixel shader files themselves being incompatible for the lower vertex/pixel shader versions, but I'm not expert enough to say. My shader files are listed below: Vertex shader: cbuffer MatrixBuffer { matrix worldMatrix; matrix viewMatrix; matrix projectionMatrix; }; struct VertexInputType { float4 position : POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; }; struct PixelInputType { float4 position : SV_POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; }; PixelInputType LightVertexShader(VertexInputType input) { PixelInputType output; // Change the position vector to be 4 units for proper matrix calculations. input.position.w = 1.0f; // Calculate the position of the vertex against the world, view, and projection matrices. output.position = mul(input.position, worldMatrix); output.position = mul(output.position, viewMatrix); output.position = mul(output.position, projectionMatrix); // Store the texture coordinates for the pixel shader. output.tex = input.tex; // Calculate the normal vector against the world matrix only. output.normal = mul(input.normal, (float3x3)worldMatrix); // Normalize the normal vector. output.normal = normalize(output.normal); return output; } Pixel Shader: Texture2D shaderTexture; SamplerState SampleType; cbuffer LightBuffer { float4 ambientColor; float4 diffuseColor; float3 lightDirection; float padding; }; struct PixelInputType { float4 position : SV_POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; }; float4 LightPixelShader(PixelInputType input) : SV_TARGET { float4 textureColor; float3 lightDir; float lightIntensity; float4 color; // Sample the pixel color from the texture using the sampler at this texture coordinate location. textureColor = shaderTexture.Sample(SampleType, input.tex); // Set the default output color to the ambient light value for all pixels. color = ambientColor; // Invert the light direction for calculations. lightDir = -lightDirection; // Calculate the amount of light on this pixel. lightIntensity = saturate(dot(input.normal, lightDir)); if(lightIntensity > 0.0f) { // Determine the final diffuse color based on the diffuse color and the amount of light intensity. color += (diffuseColor * lightIntensity); } // Saturate the final light color. color = saturate(color); // Multiply the texture pixel and the final diffuse color to get the final pixel color result. color = color * textureColor; return color; }

    Read the article

  • Getting FEATURE_LEVEL_9_3 to work in DX11

    - by Dominic
    Currently I'm going through some tutorials and learning DX11 on a DX10 machine (though I just ordered a new DX11 compatible computer) by means of setting the D3D_FEATURE_LEVEL_ setting to 10_0 and switching the vertex and pixel shader versions in D3DX11CompileFromFile to "vs_4_0" and "ps_4_0" respectively. This works fine as I'm not using any DX11-only features yet. I'd like to make it compatible with DX9.0c, which naively I thought I could do by changing the feature level setting to 9_3 or something and taking the vertex/pixel shader versions down to 3 or 2. However, no matter what I change the vertex/pixel shader versions to, it always fails when I try to call D3DX11CompileFromFile to compile the vertex/pixel shader files when I have D3D_FEATURE_LEVEL_9_3 enabled. Maybe this is due to the the vertex/pixel shader files themselves being incompatible for the lower vertex/pixel shader versions, but I'm not expert enough to say. My shader files are listed below: Vertex shader: cbuffer MatrixBuffer { matrix worldMatrix; matrix viewMatrix; matrix projectionMatrix; }; struct VertexInputType { float4 position : POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; }; struct PixelInputType { float4 position : SV_POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; }; PixelInputType LightVertexShader(VertexInputType input) { PixelInputType output; // Change the position vector to be 4 units for proper matrix calculations. input.position.w = 1.0f; // Calculate the position of the vertex against the world, view, and projection matrices. output.position = mul(input.position, worldMatrix); output.position = mul(output.position, viewMatrix); output.position = mul(output.position, projectionMatrix); // Store the texture coordinates for the pixel shader. output.tex = input.tex; // Calculate the normal vector against the world matrix only. output.normal = mul(input.normal, (float3x3)worldMatrix); // Normalize the normal vector. output.normal = normalize(output.normal); return output; } Pixel Shader: Texture2D shaderTexture; SamplerState SampleType; cbuffer LightBuffer { float4 ambientColor; float4 diffuseColor; float3 lightDirection; float padding; }; struct PixelInputType { float4 position : SV_POSITION; float2 tex : TEXCOORD0; float3 normal : NORMAL; }; float4 LightPixelShader(PixelInputType input) : SV_TARGET { float4 textureColor; float3 lightDir; float lightIntensity; float4 color; // Sample the pixel color from the texture using the sampler at this texture coordinate location. textureColor = shaderTexture.Sample(SampleType, input.tex); // Set the default output color to the ambient light value for all pixels. color = ambientColor; // Invert the light direction for calculations. lightDir = -lightDirection; // Calculate the amount of light on this pixel. lightIntensity = saturate(dot(input.normal, lightDir)); if(lightIntensity > 0.0f) { // Determine the final diffuse color based on the diffuse color and the amount of light intensity. color += (diffuseColor * lightIntensity); } // Saturate the final light color. color = saturate(color); // Multiply the texture pixel and the final diffuse color to get the final pixel color result. color = color * textureColor; return color; }

    Read the article

  • How to convert pitch and yaw to x, y, z rotations?

    - by Aaron Anodide
    I'm a beginner using XNA to try and make a 3D Asteroids game. I'm really close to having my space ship drive around as if it had thrusters for pitch and yaw. The problem is I can't quite figure out how to translate the rotations, for instance, when I pitch forward 45 degrees and then start to turn - in this case there should be rotation being applied to all three directions to get the "diagonal yaw" - right? I thought I had it right with the calculations below, but they cause a partly pitched forward ship to wobble instead of turn.... :( So my quesiton is: how do you calculate the X, Y, and Z rotations for an object in terms of pitch and yaw? Here's current (almost working) calculations for the Rotation acceleration: float accel = .75f; // Thrust +Y / Forward if (currentKeyboardState.IsKeyDown(Keys.I)) { this.ship.AccelerationY += (float)Math.Cos(this.ship.RotationZ) * accel; this.ship.AccelerationX += (float)Math.Sin(this.ship.RotationZ) * -accel; this.ship.AccelerationZ += (float)Math.Sin(this.ship.RotationX) * accel; } // Rotation +Z / Yaw if (currentKeyboardState.IsKeyDown(Keys.J)) { this.ship.RotationAccelerationZ += (float)Math.Cos(this.ship.RotationX) * accel; this.ship.RotationAccelerationY += (float)Math.Sin(this.ship.RotationX) * accel; this.ship.RotationAccelerationX += (float)Math.Sin(this.ship.RotationY) * accel; } // Rotation -Z / Yaw if (currentKeyboardState.IsKeyDown(Keys.K)) { this.ship.RotationAccelerationZ += (float)Math.Cos(this.ship.RotationX) * -accel; this.ship.RotationAccelerationY += (float)Math.Sin(this.ship.RotationX) * -accel; this.ship.RotationAccelerationX += (float)Math.Sin(this.ship.RotationY) * -accel; } // Rotation +X / Pitch if (currentKeyboardState.IsKeyDown(Keys.F)) { this.ship.RotationAccelerationX += accel; } // Rotation -X / Pitch if (currentKeyboardState.IsKeyDown(Keys.D)) { this.ship.RotationAccelerationX -= accel; } I'm combining that with drawing code that does a rotation to the model: public void Draw(Matrix world, Matrix view, Matrix projection, TimeSpan elsapsedTime) { float seconds = (float)elsapsedTime.TotalSeconds; // update velocity based on acceleration this.VelocityX += this.AccelerationX * seconds; this.VelocityY += this.AccelerationY * seconds; this.VelocityZ += this.AccelerationZ * seconds; // update position based on velocity this.PositionX += this.VelocityX * seconds; this.PositionY += this.VelocityY * seconds; this.PositionZ += this.VelocityZ * seconds; // update rotational velocity based on rotational acceleration this.RotationVelocityX += this.RotationAccelerationX * seconds; this.RotationVelocityY += this.RotationAccelerationY * seconds; this.RotationVelocityZ += this.RotationAccelerationZ * seconds; // update rotation based on rotational velocity this.RotationX += this.RotationVelocityX * seconds; this.RotationY += this.RotationVelocityY * seconds; this.RotationZ += this.RotationVelocityZ * seconds; Matrix translation = Matrix.CreateTranslation(PositionX, PositionY, PositionZ); Matrix rotation = Matrix.CreateRotationX(RotationX) * Matrix.CreateRotationY(RotationY) * Matrix.CreateRotationZ(RotationZ); model.Root.Transform = rotation * translation * world; model.CopyAbsoluteBoneTransformsTo(boneTransforms); foreach (ModelMesh mesh in model.Meshes) { foreach (BasicEffect effect in mesh.Effects) { effect.World = boneTransforms[mesh.ParentBone.Index]; effect.View = view; effect.Projection = projection; effect.EnableDefaultLighting(); } mesh.Draw(); } }

    Read the article

  • Essbase BSO Data Fragmentation

    - by Ann Donahue
    Essbase BSO Data Fragmentation Data fragmentation naturally occurs in Essbase Block Storage (BSO) databases where there are a lot of end user data updates, incremental data loads, many lock and send, and/or many calculations executed.  If an Essbase database starts to experience performance slow-downs, this is an indication that there may be too much fragmentation.  See Chapter 54 Improving Essbase Performance in the Essbase DBA Guide for more details on measuring and eliminating fragmentation: http://docs.oracle.com/cd/E17236_01/epm.1112/esb_dbag/daprcset.html Fragmentation is likely to occur in the following situations: Read/write databases that users are constantly updating data Databases that execute calculations around the clock Databases that frequently update and recalculate dense members Data loads that are poorly designed Databases that contain a significant number of Dynamic Calc and Store members Databases that use an isolation level of uncommitted access with commit block set to zero There are two types of data block fragmentation Free space tracking, which is measured using the Average Fragmentation Quotient statistic. Block order on disk, which is measured using the Average Cluster Ratio statistic. Average Fragmentation Quotient The Average Fragmentation Quotient ratio measures free space in a given database.  As you update and calculate data, empty spaces occur when a block can no longer fit in its original space and will either append at the end of the file or fit in another empty space that is large enough.  These empty spaces take up space in the .PAG files.  The higher the number the more empty spaces you have, therefore, the bigger the .PAG file and the longer it takes to traverse through the .PAG file to get to a particular record.  An Average Fragmentation Quotient value of 3.174765 means the database is 3% fragmented with free space. Average Cluster Ratio Average Cluster Ratio describes the order the blocks actually exist in the database. An Average Cluster Ratio number of 1 means all the blocks are ordered in the correct sequence in the order of the Outline.  As you load data and calculate data blocks, the sequence can start to be out of order.  This is because when you write to a block it may not be able to place back in the exact same spot in the database that it existed before.  The lower this number the more out of order it becomes and the more it affects performance.  An Average Cluster Ratio value of 1 means no fragmentation.  Any value lower than 1 i.e. 0.01032828 means the data blocks are getting further out of order from the outline order. Eliminating Data Block Fragmentation Both types of data block fragmentation can be removed by doing a dense restructure or export/clear/import of the data.  There are two types of dense restructure: 1. Implicit Restructures Implicit dense restructure happens when outline changes are done using EAS Outline Editor or Dimension Build. Essbase restructures create new .PAG files restructuring the data blocks in the .PAG files. When Essbase restructures the data blocks, it regenerates the index automatically so that index entries point to the new data blocks. Empty blocks are NOT removed with implicit restructures. 2. Explicit Restructures Explicit dense restructure happens when a manual initiation of the database restructure is executed. An explicit dense restructure is a full restructure which comprises of a dense restructure as outlined above plus the removal of empty blocks Empty Blocks vs. Fragmentation The existence of empty blocks is not considered fragmentation.  Empty blocks can be created through calc scripts or formulas.  An empty block will add to an existing database block count and will be included in the block counts of the database properties.  There are no statistics for empty blocks.  The only way to determine if empty blocks exist in an Essbase database is to record your current block count, export the entire database, clear the database then import the exported data.  If the block count decreased, the difference is the number of empty blocks that had existed in the database.

    Read the article

  • C++ linking error when linking postgresql

    - by Brent Rowswell
    When compiling my code I run into an issue as follows: io.cpp:21: undefined reference to `PQconnectdb' as well as all other instances of missing postgres function calls occurring in my code. Obviously this is a linking problem, I'm just not sure what the link issue is. I'm compiling with the following: mpiCC -c -O2 -g -Wall -Werror -I /usr/include/postgresql/ decisioning_mpi.cpp g++ -c -O2 -g -Wall -Werror -I /usr/include/postgresql/ io.cpp g++ -c -O2 -g -Wall -Werror -I /usr/include/postgresql/ calculations.cpp g++ -c -O2 -g -Wall -Werror -I /usr/include/postgresql/ rules.cpp g++ -c -O2 -g -Wall -Werror -I /usr/include/postgresql/ Instrument.cpp g++ -c -O2 -g -Wall -Werror -I /usr/include/postgresql/ Backtest_Parameter_CPO.cpp g++ -c -O2 -g -Wall -Werror -I /usr/include/postgresql/ Backtest_Trade_CPO.cpp g++ -c -O2 -g -Wall -Werror -I /usr/include/postgresql/ Data_Bar.cpp mpiCC -o decisioning_mpi -O2 -g -Wall -Werror -L/usr/lib -lm -lpq decisioning_mpi.o io.o calculations.o rules.o Instrument.o Backtest_Parameter_CPO.o Backtest_Trade_CPO.o Data_Bar.o It should be noted that this is the correct directory for libpq-fe.h and that I'm linking pq, so I'm not exactly sure why the postgres functions aren't linking correctly. I'm running Ubuntu 12.04 and installed psql (PostgreSQL) 9.1.6 from synaptic. As well I'll short circuit this, I am using #include "libpq-fe.h". Any ideas on how I can get this linking issue resolved?

    Read the article

  • Problems with Runt overlap? but *only* within Rails

    - by trisignia
    Martin Fowler's Runt library is really handy for date/time comparisons, and this code works great in an irb console: require 'runt' include Runt r_start = PDate.month(2010,12) r_end = PDate.month(2011,12) range = DateRange.new(r_start,r_end) o_start = PDate.month(2010,11) o_end = PDate.month(2012,2) o_range = DateRange.new(o_start,o_end) range.overlap?(o_range) but if I add the Runt gem to my Rails 2.3.5 app and try to run the same commands in script/console, I get this error: NoMethodError: undefined method `to_datetime' for Mon, 01 Nov 2010 00:00:00 +0000..Wed, 01 Feb 2012 00:00:00 +0000:Runt::DateRange from /Users/jacob/work/matchbook/vendor/gems/runt-0.7.6/lib/runt/sugar.rb:130:in method_missing' from /Users/jacob/work/matchbook/vendor/rails/activesupport/lib/active_support/core_ext/date_time/calculations.rb:120:in <=' from /Users/jacob/work/matchbook/vendor/gems/runt-0.7.6/lib/runt/pdate.rb:91:in <=>' from /Users/jacob/work/matchbook/vendor/gems/runt-0.7.6/lib/runt/daterange.rb:34:in member?' from /Users/jacob/work/matchbook/vendor/gems/runt-0.7.6/lib/runt/daterange.rb:34:in `overlap?' from (irb):10 Has anyone encountered this error before, or does anyone know how to begin debugging this? I've tried looking at the spaceship operator in the ActiveSupport calculations module, but I can't figure out how to pick apart the problem. Thanks very much for your help, Jacob

    Read the article

  • Strange C++ performance difference?

    - by STingRaySC
    I just stumbled upon a change that seems to have counterintuitive performance ramifications. Can anyone provide a possible explanation for this behavior? Original code: for (int i = 0; i < ct; ++i) { // do some stuff... int iFreq = getFreq(i); double dFreq = iFreq; if (iFreq != 0) { // do some stuff with iFreq... // do some calculations with dFreq... } } While cleaning up this code during a "performance pass," I decided to move the definition of dFreq inside the if block, as it was only used inside the if. There are several calculations involving dFreq so I didn't eliminate it entirely as it does save the cost of multiple run-time conversions from int to double. I expected no performance difference, or if any at all, a negligible improvement. However, the perfomance decreased by nearly 10%. I have measured this many times, and this is indeed the only change I've made. The code snippet shown above executes inside a couple other loops. I get very consistent timings across runs and can definitely confirm that the change I'm describing decreases performance by ~10%. I would expect performance to increase because the int to double conversion would only occur when iFreq != 0. Chnaged code: for (int i = 0; i < ct; ++i) { // do some stuff... int iFreq = getFreq(i); if (iFreq != 0) { // do some stuff with iFreq... double dFreq = iFreq; // do some stuff with dFreq... } } Can anyone explain this? I am using VC++ 9.0 with /O2. I just want to understand what I'm not accounting for here.

    Read the article

  • Understanding floating point problems

    - by Maxim Gershkovich
    Could someone here please help me understand how to determine when floating point limitations will cause errors in your calculations. For example the following code. CalculateTotalTax = function (TaxRate, TaxFreePrice) { return ((parseFloat(TaxFreePrice) / 100) * parseFloat(TaxRate)).toFixed(4); }; I have been unable to input any two values that have caused for me an incorrect result for this method. If I remove the toFixed(4) I can infact see where the calculations start to lose accuracy (somewhere around the 6th decimal place). Having said that though, my understanding of floats is that even small numbers can sometimes fail to be represented or have I misunderstood and can 4 decimal places (for example) always be represented accurately. MSDN explains floats as such... This means they cannot hold an exact representation of any quantity that is not a binary fraction (of the form k / (2 ^ n) where k and n are integers) Now I assume this applies to all floats (inlcuding those used in javascript). Fundamentally my question boils down to this. How can one determine if any specific method will be vulnerable to errors in floating point operations, at what precision will those errors materialize and what inputs will be required to produce those errors? Hopefully what I am asking makes sense.

    Read the article

  • Calculating odds distribution with 6-sided dice

    - by Stephen
    I'm trying to calculate the odds distribution of a changing number of 6-sided die rolls. For example, 3d6 ranges from 3 to 18 as follows: 3:1, 4:3, 5:6, 6:10, 7:15, 8:21, 9:25, 10:27, 11:27, 12:25, 13:21, 14:15, 15:10, 16:6, 17:3, 18:1 I wrote this php program to calculate it: function distributionCalc($numberDice,$sides=6) { for ( $i=0; $i<pow($sides,$numberDice); $i++) { $sum=0; for ($j=0; $j<$numberDice; $j++) { $sum+=(1+(floor($i/pow($sides,$j))) % $sides); } $distribution[$sum]++; } return $distribution; } The inner $j for-loop uses the magic of the floor and modulus functions to create a base-6 counting sequence with the number of digits being the number of dice, so 3d6 would count as: 111,112,113,114,115,116,121,122,123,124,125,126,131,etc. The function takes the sum of each, so it would read as: 3,4,5,6,7,8,4,5,6,7,8,9,5,etc. It plows through all 3^6 possible results and adds 1 to the corresponding slot in the $distribution array between 3 and 18. Pretty straightforward. However, it only works until about 8d6, afterward i get server time-outs because it's now doing billions of calculations. But I don't think it's necessary because die probability follows a sweet bell-curve distribution. I'm wondering if there's a way to skip the number crunching and go straight to the curve itself. Is there a way to do this, so, for example, with 80d6 (80-480)? Can the distribution be projected without doing 6^80 calculations? I'm not a professional coder and probability is still new to me, so thanks for all the help! Stephen

    Read the article

  • Creating and publishing exel file in MOSS 2007 using data from SQL sever.

    - by Diomos
    Hello, I need help in this matter: We have a template of exel file in which all calculations are already set. User can request a 'report'. Idea is to create a button on our site (SharePoint portal). After clicking on it a new exel file is generated. This means to get actual data from database (SQL server 2005 SP2), import them into template, let all calculations to generate proper data and then allow user to see this file. For now it's enough to publish final exel file in document library. I am quite new in WSS 3.0 and MOSS 2007 and I need some advice in what can be the best solution. Looks like a quite complex task for me. Is there some direct way how to accomplish this? Or maybe I need one tool to get data from database and to import this data into exel file (SSRS?) and other tool to publish it in document library (MOSS7 Exel services?). I heard something about PerformancePoint Server 2007, is this a way to follow? Thanks forward for any advice!

    Read the article

  • Compile and optimize for different target architectures

    - by Peter Smit
    Summary: I want to take advantage of compiler optimizations and processor instruction sets, but still have a portable application (running on different processors). Normally I could indeed compile 5 times and let the user choose the right one to run. My question is: how can I can automate this, so that the processor is detected at runtime and the right executable is executed without the user having to chose it? I have an application with a lot of low level math calculations. These calculations will typically run for a long time. I would like to take advantage of as much optimization as possible, preferably also of (not always supported) instruction sets. On the other hand I would like my application to be portable and easy to use (so I would not like to compile 5 different versions and let the user choose). Is there a possibility to compile 5 different versions of my code and run dynamically the most optimized version that's possible at execution time? With 5 different versions I mean with different instruction sets and different optimizations for processors. I don't care about the size of the application. At this moment I'm using gcc on Linux (my code is in C++), but I'm also interested in this for the Intel compiler and for the MinGW compiler for compilation to Windows. The executable doesn't have to be able to run on different OS'es, but ideally there would be something possible with automatically selecting 32 bit and 64 bit as well. Edit: Please give clear pointers how to do it, preferably with small code examples or links to explanations. From my point of view I need a super generic solution, which is applicable on any random C++ project I have later. Edit I assigned the bounty to ShuggyCoUk, he had a great number of pointers to look out for. I would have liked to split it between multiple answers but that is not possible. I'm not having this implemented yet, so the question is still 'open'! Please, still add and/or improve answers, even though there is no bounty to be given anymore. Thanks everybody!

    Read the article

  • Design problem with callback functions in android

    - by Franz Xaver
    Hi folks! I'm currently developing an app in android that is accessing wifi values, that is, the application needs to scan for all access point and their specific signal strengths. I know that I have to extend the class BroadcastReceiver overwriting the method BroadcastReceiver.onReceive(Context context, Intent intent) which is called when the values are ready. Perhaps there exist solutions provided by the android system itself but I'm relatively new to android so I could need some help. The problem I encountered is that I got one class (an activity, thus controlled by the user) that needs this scan results for two different things (first to save the values in a database or second, to use them for further calculations but not both at one moment!) So how to design the callback system in order to "transport" the scan results from onReceive(Context context, Intent intent) to the operation intended by the user? My first solution was to define enums for each use case (save or use for calculations) which wlan-interested classes have to submit when querying for the values. But that would force the BroadcastReceiverextending class to save the current enum and use it as a parameter in the callback function of the querying class (this querying class needs to know what it asked for when getting backcalled) But that seems to me kind of dirty ;) So anyone a good idea for this?

    Read the article

  • Transfer data between C++ classes efficiently

    - by David
    Hi, Need help... I have 3 classes, Manager which holds 2 pointers. One to class A another to class B . A does not know about B and vise versa. A does some calculations and at the end it puts 3 floats into the clipboard. Next, B pulls from clipboard the 3 floats, and does it's own calculations. This loop is managed by the Manager and repeats many times (iteration after iteration). My problem: Now class A produces a vector of floats which class B needs. This vector can have more than 1000 values and I don't want to use the clipboard to transfer it to B as it will become time consumer, even bottleneck, since this behavior repeats step by step. Simple solution is that B will know A (set a pointer to A). Other one is to transfer a pointer to the vector via Manager But I'm looking for something different, more object oriented that won't break the existent separation between A and B Any ideas ? Many thanks David

    Read the article

  • How to automatically read in calculated values with PHPExcel?

    - by Edward Tanguay
    I have the following Excel file: I read it in by looping over every cell and getting the value with getCell(...)->getValue(): $highestColumnAsLetters = $this->objPHPExcel->setActiveSheetIndex(0)->getHighestColumn(); //e.g. 'AK' $highestRowNumber = $this->objPHPExcel->setActiveSheetIndex(0)->getHighestRow(); $highestColumnAsLetters++; for ($row = 1; $row < $highestRowNumber + 1; $row++) { $dataset = array(); for ($columnAsLetters = 'A'; $columnAsLetters != $highestColumnAsLetters; $columnAsLetters++) { $dataset[] = $this->objPHPExcel->setActiveSheetIndex(0)->getCell($columnAsLetters.$row)->getValue(); if ($row == 1) { $this->column_names[] = $columnAsLetters; } } $this->datasets[] = $dataset; } However, although it reads in the data fine, it reads in the calculations literally: I understand from discussions like this one that I can use getCalculatedValue() for calculated cells. The problem is that in the Excel sheets I am importing, I do not know beforehand which cells are calculated and which are not. Is there a way for me to read in the value of a cell in a way that automatically gets the value if it has a simple value and gets the result of the calculation if it is a calculation? Answer: It turns out that getCalculatedValue() works for all cells, makes me wonder why this isn't the default for getValue() since I would think one would usually want the value of the calculations instead of the equations themselves, in any case this works: ...->getCell($columnAsLetters.$row)->getCalculatedValue();

    Read the article

  • Temporary storage for keeping data between program iterations?

    - by mr.b
    I am working on an application that works like this: It fetches data from many sources, resulting in pool of about 500,000-1,500,000 records (depends on time/day) Data is parsed Part of data is processed in a way to compare it to pre-existing data (read from database), calculations are made, and stored in database. Resulting dataset that has to be stored in database is, however, much smaller in size (compared to original data set), and ranges from 5,000-50,000 records. This process almost always updates existing data, perhaps adds few more records. Then, data from step 2 should be kept somehow, somewhere, so that next time data is fetched, there is a data set which can be used to perform calculations, without touching pre-existing data in database. I should point out that this data can be lost, it's not irreplaceable (key information can be read from database if needed), but it would speed up the process next time. Application components can (and will be) run off different computers (in the same network), so storage has to be reachable from multiple hosts. I have considered using memcached, but I'm not quite sure should I do so, because one record is usually no smaller than 200 bytes, and if I have 1,500,000 records, I guess that it would amount to over 300 MB of memcached cache... But that doesn't seem scalable to me - what if data was 5x that amount? If it were to consume 1-2 GB of cache only to keep data in between iterations (which could easily happen)? So, the question is: which temporary storage mechanism would be most suitable for this kind of processing? I haven't considered using mysql temporary tables, as I'm not sure if they can persist between sessions, and be used by other hosts in network... Any other suggestion? Something I should consider?

    Read the article

  • Force a view change from a button when using UITabBarController

    - by user342197
    Hello - When using a UITabBarController, when the user enters some data on View1 and presses a button, I need to perform some calculations and present the results on View2. I have an AppDelegate, View1Controller, View2Controller, and View3Controller (View3 is a basically static view). My AppDelgate declares UITabBarController *rootController; On View1, I have the calculations being performed in an IBAction for buttonPressed; however, I can't seem to force the view to switch to View2 programmatically. I have done a lot of searching for similar problems, and think I should be doing something like "self.rootController.selectedIndex = 1"; however,when I do this from within buttonPressed on my View1Controller, I get an error "request for member rootController in something not in a structure or union". I think I'm missing something basic here... probably need do do something with my AppDelegate, but I'm banging my head against the wall. Can anyone provide some guidance in this situation...like key things I should do in View1Controller header and implementation with reference to my AppDelgate? Thank you!

    Read the article

  • Shortcut to create automatic properties using Visual Studio 2008/2010 or Resharper 5

    - by Piers Myers
    I have a class that contains a load of properties that contain results of some calculations e.g: public class Results { public double Result1 { get; set; } public double Result2 { get; set; } } In a different class I am doing calculations to populate the above properties, e.g: public class Calc { private Results Calc() { Results res = new Results(); res.Result1 = ... some calculation res.Result2 = ... some other calculation res.Result3 = ... // not yet defined in 'Results' class return res; } } When I am writing the Calc class, 'Result3' will be highlighted in red as it is not yet defined in the 'Results' class. Currently I am using the Resharper ALT-Enter shortcut, selecting "Create Property 'Result3'" which will create the following code int the 'Results' class: public double Result3 { get { throw new NotImplementedException(); } set { throw new NotImplementedException(); } } Which I need to manually change to: public double Result3 { get; set; } Then I use the CTRL-Shift-Backspace shortcut to take me back to the 'Calc' class. How can I easily create automatic properties in the 'Results' class if they are not yet defined directly from the 'Calc' class?

    Read the article

  • Difference between float and double

    - by VaioIsBorn
    I know, i've read about the difference between double precision and single precision etc. But they should give the same results on most cases right ? I was solving a problem on a programming contest and there were calculations with floating point numbers that were not really big so i decided to use float instead of double, and i checked it - i was getting the correct results. But when i send the solution, it said only 1 of 10 tests was correct. I checked again and again, until i found that using float is not the same using double. I put double for the calculations and double for the output, and the program gave the SAME results, but this time it passed all the 10 tests correctly. I repeat, the output was the SAME, the results were the SAME, but putting float didn't work - only double. The values were not so big too, and the program gave the same results on the same tests both with float and double, but the online judge accepted only the double-provided solution. Why ? What is the difference ?

    Read the article

< Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >