Search Results

Search found 215 results on 9 pages for 'jit'.

Page 8/9 | < Previous Page | 4 5 6 7 8 9  | Next Page >

  • How close can I get C# to the performance of C++ for small intensive tasks?

    - by SLC
    I was thinking about the speed difference of C++ to C# being mostly about C# compiling to byte-code that is taken in by the JIT compiler (is that correct?) and all the checks C# does. I notice that it is possible to turn a lot of these functions off, both in the compile options, and possibly through using the unsafe keyword as unsafe code is not verifiable by the common language runtime. Therefore if you were to write a simple console application in both languages, that flipped an imaginary coin an infinite number of times and displayed the results to the screen every 10,000 or so iterations, how much speed difference would there be? I chose this because it's a very simple program. I'd like to test this but I don't know C++ or have the tools to compile it. This is my C# version though: static void Main(string[] args) { unsafe { Random rnd = new Random(); int heads = 0, tails = 0; while (true) { if (rnd.NextDouble() > 0.5) heads++; else tails++; if ((heads + tails) % 1000000 == 0) Console.WriteLine("Heads: {0} Tails: {1}", heads, tails); } } } Is the difference enough to warrant deliberately compiling sections of code "unsafe" or into DLLs that do not have some of the compile options like overflow checking enabled? Or does it go the other way, where it would be beneficial to compile sections in C++? I'm sure interop speed comes into play too then. To avoid subjectivity, I reiterate the specific parts of this question as: Does C# have a performance boost from using unsafe code? Do the compile options such as disabling overflow checking boost performance, and do they affect unsafe code? Would the program above be faster in C++ or negligably different? Is it worth compiling long intensive number-crunching tasks in a language such as C++ or using /unsafe for a bonus? Less subjectively, could I complete an intensive operation faster by doing this?

    Read the article

  • Should a new language compiler target the JVM?

    - by Pindatjuh
    I'm developing a new language. My initial target was to compile to native x86 for the Windows platform, but now I am in doubt. I've seen some new languages target the JVM (most notable Scala and Clojure). Ofcourse it's not possible to port every language easily to the JVM; to do so, it may lead to small changes to the language and it's design. So that's the reason behind this doubt, and thus this question: Is targetting the JVM a good idea, when creating a compiler for a new language? Or should I stick with x86? I have experience in generating JVM bytecode. Are there any workarounds to JVM's GC? The language has deterministic implicit memory management. How to produce JIT-compatible bytecode, such that it will get the highest speedup? Is it similar to compiling for IA-32, such as the 4-1-1 muops pattern on Pentium? I can imagine some advantages (please correct me if I'm wrong): JVM bytecode is easier than x86. Like x86 communicates with Windows, JVM communicates with the Java Foundation Classes. To provide I/O, Threading, GUI, etc. Implementing "lightweight"-threads.I've seen a very clever implementation of this at http://www.malhar.net/sriram/kilim/. Most advantages of the Java Runtime (portability, etc.) The disadvantages, as I imagined, are: Less freedom? On x86 it'll be more easy to create low-level constructs, while JVM has a higher level (more abstract) processor. Most disadvantages of the Java Runtime (no native dynamic typing, etc.)

    Read the article

  • Visual Studio crashes consistently on web-related projects

    - by Traveling Tech Guy
    Hi, I have a brand new VS2010 installed on a Win2008R2 machine. I started getting this error when debugging a WCF service project: "Attempted to read or write protected memory. This is often an indication that other memory is corrupt." When I started developing a web site a week later, this became consistent - I can't debug it. The stack dump reads: at Microsoft.VisualStudio.WebHost.Host.ProcessRequest(Connection conn) at Microsoft.VisualStudio.WebHost.Server.OnSocketAccept(Object acceptedSocket) at System.Threading.QueueUserWorkItemCallback.WaitCallback_Context(Object state) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state, Boolean ignoreSyncCtx) at System.Threading.QueueUserWorkItemCallback.System.Threading.IThreadPoolWorkItem.ExecuteWorkItem() at System.Threading.ThreadPoolWorkQueue.Dispatch() at System.Threading._ThreadPoolWaitCallback.PerformWaitCallback() I tried searching online, and some recommend turning off the "Suppress JIT Optimizations" in the Debugging options - this dos not seem to make a difference. Clearly the problem is with the built in web server. But am I doing something wrong? Is there something I can do? Or is this a known bug? Thanks for your time, Guy Update 12/31: Today I tried using CassiniDev as a replacement to the original VS2010 WebServer - exact same result. My suspicion is that there's some internal conflict between VS2010, Windows Server 2008R2 and maybe the fact that it's a 64 bit OS. I switched to using IIS as my debug server - and that seems to work, with some annoying side effects. My conclusion: do not use a 64 bit server system as your dev machine. Develop on 32bit - deploy to 64bit. Side conclusion: there are some scenarios Microsoft's QA doesn't test.

    Read the article

  • getting CS1502 compiler error on dev environment but not production.

    - by nw
    When I try to run my ASP.NET app from my development environment I get the following error message: Compiler Error Message: CS1502: The best overloaded method match for 'mmars.Printing.printFunctions.SetPrintSummaryProperties(mmars.contextInfo, ref mmars.Printing.printObjSummary)' has some invalid arguments. When I publish and run on our production server I don't get this error. It seems to compile fine when I build from the build menu (in fact if I change the second argument of the bolded function call below, i get a compiler error in visual studio), but now i've suddenly started getting this error message at runtime. So another question I have in addition to getting rid of the error is why is the .NET development server even trying to do JIT compilation on my project if it is already compiled into a DLL? Printing.printObjSummary myPrintObj = new Printing.printObjSummary(); Printing.printFunctions.SetPrintSummaryProperties(ci, ref myPrintObj); printObjects.Add(myPrintObj); This seems to have just suddenly appeared from nowhere today and it's extremely frustrating. Also, though there are no warnings at compile-time, when I get redirected to the page with that first compilation error there are many warnings like the following: Warning: CS0436: The type 'mmars.MMARSSummaryDataItem' in 'c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\root\3dad423c\40569048\App_Code.b0rgpkzr.4.cs' conflicts with the imported type 'mmars.MMARSSummaryDataItem' in 'c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\root\3dad423c\40569048\assembly\dl3\7179c19a\345f948c_ece7ca01\mmars.DLL'. Using the type defined in 'c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\root\3dad423c\40569048\App_Code.b0rgpkzr.4.cs'. What's the deal with that? Is the webserver complaining about name conflicts in the source file and dll resulting from the source file?

    Read the article

  • Project builds skipped with Any CPU build platform

    - by JMarsch
    All: We are using Visual Studio 2010, and we have recently upgraded our workstations to Windows 7/64-bit. I have a question: When I create a new solution, it seems to want to use the x86 platform. If I change the solution to "any cpu" and then I add a new project to the solution, the project will not have an "any cpu" build option, and it will be deselected from building (in configuration manager). Something seems wrong here. Here's what I want to have (assuming that it is supported): I want my solutions' platforms to default to "Any CPU" (I believe that means that at JIT time, the assembly will be either x86 or 64-bit, based on the machine that loaded it). When I add a new project to the solution, I want for it to have an "any cpu" solution, and I want for that projec to build by default. (basically, the same behavior that we had in VS 2008 on 32-bit workstations). How do I do that? Is there some additional thing that I need to know now that I am using a 64-bit workstation?

    Read the article

  • Deterministic floating point and .NET

    - by code2code
    How can I guarantee that floating point calculations in a .NET application (say in C#) always produce the same bit-exact result? Especially when using different versions of .NET and running on different platforms (x86 vs x86_64). Inaccuracies of floating point operations do not matter. In Java I'd use strictfp. In C/C++ and other low level languages this problem is essentially solved by accessing the FPU / SSE control registers but that's probably not possible in .NET. Even with control of the FPU control register the JIT of .NET will generate different code on different platforms. Something like HotSpot would be even worse in this case... Why do I need it? I'm thinking about writing a real-time strategy (RTS) game which heavily depends on fast floating point math together with a lock stepped simulation. Essentially I will only transmit user input across the network. This also applies to other games which implement replays by storing the user input. Not an option are: decimals (too slow) fixed point values (too slow and cumbersome when using sqrt, sin, cos, tan, atan...) update state across the network like an FPS: Sending position information for hundreds or a few thousand units is not an option Any ideas?

    Read the article

  • Run code before class instanciation in ActionScript 3

    - by soow.fr
    I need to run code in a class declaration before its instanciation. This would be especially useful to automatically register classes in a factory. See: // Main.as public class Main extends Sprite { public function Main() : void { var o : Object = Factory.make(42); } } // Factory.as public class Factory { private static var _factory : Array = new Array(); public static function registerClass(id : uint, c : Class) : void { _factory[id] = function () : Object { return new c(); }; } public static function make(id : uint) : Object { return _factory[id](); } } // Foo.as public class Foo { // Run this code before instanciating Foo! Factory.registerClass(42, Foo); } AFAIK, the JIT machine for the ActionScript language won't let me do that since no reference to Foo is made in the Main method. The Foo class being generated, I can't (and don't want to) register the classes in Main: I'd like to register all the exported classes in a specific package (or library). Ideally, this would be done through package introspection, which doesn't exist in ActionScript 3. Do you know any fix (or other solution) to my design issue?

    Read the article

  • Many users, many cpus, no delays. Good for cloud?

    - by Eric
    I wish to set up a CPU-intensive time-important query service for users on the internet. A usage scenario is described below. Is cloud computing the right way to go for such an implementation? If so, what cloud vendor(s) cater to this type of application? I ask specifically, in terms of: 1) pricing 2) latency resulting from: - slow CPUs, instance creations, JIT compiles, etc.. - internal management and communication of processes inside the cloud (e.g. a queuing process and a calculation process) - communication between cloud and end user 3) ease of deployment A usage scenario I am expecting is: - A typical user sends a query (XML of size around 1K) once every 30 seconds on average. - Each query requires a numerical computation of average time 0.2 sec and max time 1 sec on a 1 GHz Pentium. The computation requires no data other than the query itself and is performed by the same piece of code each time. - The delay a user experiences between sending a query and receiving a response should be on average no more than 2 seconds and in general no more than 5 seconds. - A background save to a DB of the response should occur (not time critical) - There can be up to 30000 simultaneous users - i.e., on average 1000 queries a second, each requiring an average 0.2 sec calculation, so that would necessitate around 200 CPUs. Currently I'm look at GAE Java (for quicker deployment and less IT hassle) and EC2 (Speed and price optimization) as options. Where can I learn more about the right way to set ups such a system? past threads, different blogs, books, etc.. BTW, if my terminology is wrong or confusing, please let me know. I'd greatly appreciate any help.

    Read the article

  • TPROXY Not working with HAProxy, Ubuntu 14.04

    - by Nyxynyx
    I'm trying to use HAProxy as a fully transparent proxy using TPROXY in Ubuntu 14.04. HAProxy will be setup on the first server with eth1 111.111.250.250 and eth0 10.111.128.134. The single balanced server has eth1 and eth0 as well. eth1 is the public facing network interface while eth0 is for the private network which both servers are in. Problem: I'm able to connect to the balanced server's port 1234 directly (via eth1) but am not able to reach the balanced server via Haproxy port 1234 (which redirects to 1234 via eth0). Am I missing out something in this configuration? On the HAProxy server The current kernel is: Linux extremehash-lb2 3.13.0-24-generic #46-Ubuntu SMP Thu Apr 10 19:11:08 UTC 2014 x86_64 x86_64 x86_64 GNU/Linux The kernel appears to have TPROXY support: # grep TPROXY /boot/config-3.13.0-24-generic CONFIG_NETFILTER_XT_TARGET_TPROXY=m HAProxy was compiled with TPROXY support: haproxy -vv HA-Proxy version 1.5.3 2014/07/25 Copyright 2000-2014 Willy Tarreau <[email protected]> Build options : TARGET = linux26 CPU = x86_64 CC = gcc CFLAGS = -g -fno-strict-aliasing OPTIONS = USE_LINUX_TPROXY=1 USE_LIBCRYPT=1 USE_STATIC_PCRE=1 Default settings : maxconn = 2000, bufsize = 16384, maxrewrite = 8192, maxpollevents = 200 Encrypted password support via crypt(3): yes Built without zlib support (USE_ZLIB not set) Compression algorithms supported : identity Built without OpenSSL support (USE_OPENSSL not set) Built with PCRE version : 8.31 2012-07-06 PCRE library supports JIT : no (USE_PCRE_JIT not set) Built with transparent proxy support using: IP_TRANSPARENT IPV6_TRANSPARENT IP_FREEBIND Available polling systems : epoll : pref=300, test result OK poll : pref=200, test result OK select : pref=150, test result OK Total: 3 (3 usable), will use epoll. In /etc/haproxy/haproxy.cfg, I've configured a port to have the following options: listen test1235 :1234 mode tcp option tcplog balance leastconn source 0.0.0.0 usesrc clientip server balanced1 10.111.163.76:1234 check inter 5s rise 2 fall 4 weight 4 On the balanced server In /etc/networking/interfaces I've set the gateway for eth0 to be the HAProxy box 10.111.128.134 and restarted networking. auto eth0 eth1 iface eth0 inet static address 111.111.250.250 netmask 255.255.224.0 gateway 111.131.224.1 dns-nameservers 8.8.4.4 8.8.8.8 209.244.0.3 iface eth1 inet static address 10.111.163.76 netmask 255.255.0.0 gateway 10.111.128.134 ip route gives: default via 111.111.224.1 dev eth0 10.111.0.0/16 dev eth1 proto kernel scope link src 10.111.163.76 111.111.224.0/19 dev eth0 proto kernel scope link src 111.111.250.250

    Read the article

  • F# for the C# Programmer

    - by mbcrump
    Are you a C# Programmer and can’t make it past a day without seeing or hearing someone mention F#?  Today, I’m going to walk you through your first F# application and give you a brief introduction to the language. Sit back this will only take about 20 minutes. Introduction Microsoft's F# programming language is a functional language for the .NET framework that was originally developed at Microsoft Research Cambridge by Don Syme. In October 2007, the senior vice president of the developer division at Microsoft announced that F# was being officially productized to become a fully supported .NET language and professional developers were hired to create a team of around ten people to build the product version. In September 2008, Microsoft released the first Community Technology Preview (CTP), an official beta release, of the F# distribution . In December 2008, Microsoft announced that the success of this CTP had encouraged them to escalate F# and it is now will now be shipped as one of the core languages in Visual Studio 2010 , alongside C++, C# 4.0 and VB. The F# programming language incorporates many state-of-the-art features from programming language research and ossifies them in an industrial strength implementation that promises to revolutionize interactive, parallel and concurrent programming. Advantages of F# F# is the world's first language to combine all of the following features: Type inference: types are inferred by the compiler and generic definitions are created automatically. Algebraic data types: a succinct way to represent trees. Pattern matching: a comprehensible and efficient way to dissect data structures. Active patterns: pattern matching over foreign data structures. Interactive sessions: as easy to use as Python and Mathematica. High performance JIT compilation to native code: as fast as C#. Rich data structures: lists and arrays built into the language with syntactic support. Functional programming: first-class functions and tail calls. Expressive static type system: finds bugs during compilation and provides machine-verified documentation. Sequence expressions: interrogate huge data sets efficiently. Asynchronous workflows: syntactic support for monadic style concurrent programming with cancellations. Industrial-strength IDE support: multithreaded debugging, and graphical throwback of inferred types and documentation. Commerce friendly design and a viable commercial market. Lets try a short program in C# then F# to understand the differences. Using C#: Create a variable and output the value to the console window: Sample Program. using System;   namespace ConsoleApplication9 {     class Program     {         static void Main(string[] args)         {             var a = 2;             Console.WriteLine(a);             Console.ReadLine();         }     } } A breeze right? 14 Lines of code. We could have condensed it a bit by removing the “using” statment and tossing the namespace. But this is the typical C# program. Using F#: Create a variable and output the value to the console window: To start, open Visual Studio 2010 or Visual Studio 2008. Note: If using VS2008, then please download the SDK first before getting started. If you are using VS2010 then you are already setup and ready to go. So, click File-> New Project –> Other Languages –> Visual F# –> Windows –> F# Application. You will get the screen below. Go ahead and enter a name and click OK. Now, you will notice that the Solution Explorer contains the following: Double click the Program.fs and enter the following information. Hit F5 and it should run successfully. Sample Program. open System let a = 2        Console.WriteLine a As Shown below: Hmm, what? F# did the same thing in 3 lines of code. Show me the interactive evaluation that I keep hearing about. The F# development environment for Visual Studio 2010 provides two different modes of execution for F# code: Batch compilation to a .NET executable or DLL. (This was accomplished above). Interactive evaluation. (Demo is below) The interactive session provides a > prompt, requires a double semicolon ;; identifier at the end of a code snippet to force evaluation, and returns the names (if any) and types of resulting definitions and values. To access the F# prompt, in VS2010 Goto View –> Other Window then F# Interactive. Once you have the interactive window type in the following expression: 2+3;; as shown in the screenshot below: I hope this guide helps you get started with the language, please check out the following books for further information. F# Books for further reading   Foundations of F# Author: Robert Pickering An introduction to functional programming with F#. Including many samples, this book walks through the features of the F# language and libraries, and covers many of the .NET Framework features which can be leveraged with F#.       Functional Programming for the Real World: With Examples in F# and C# Authors: Tomas Petricek and Jon Skeet An introduction to functional programming for existing C# developers written by Tomas Petricek and Jon Skeet. This book explains the core principles using both C# and F#, shows how to use functional ideas when designing .NET applications and presents practical examples such as design of domain specific language, development of multi-core applications and programming of reactive applications.

    Read the article

  • IBM Keynote: (hardware,software)–>{IBM.java.patterns}

    - by Janice J. Heiss
    On Sunday evening, September 30, 2012, Jason McGee, IBM Distinguished Engineer and Chief Architect Cloud Computing, along with John Duimovich IBM Distinguished Engineer and Java CTO, gave an information- and idea-rich keynote that left Java developers with much to ponder.Their focus was on the challenges to make Java more efficient and productive given the hardware and software environments of 2012. “One idea that is very interesting is the idea of multi-tenancy,” said McGee, “and how we can move up the spectrum. In traditional systems, we ran applications on dedicated middleware, operating systems and hardware. A lot of customers still run that way. Now people introduce hardware virtualization and share the hardware. That is good but there is a lot more we can do. We can share middleware and the application itself.” McGee challenged developers to better enable the Java language to function in these higher density models. He spoke about the need to describe patterns that help us grasp the full environment that an application needs, whether it’s a web or full enterprise application. Developers need to understand the resources that an application interacts with in a way that is simple and straightforward. The task is to then automate that deployment so that the complexity of infrastructure can be by-passed and developers can live in a simpler world where the cloud can automatically configure the needed environment. McGee argued that the key, something IBM has been working on, is to use a simpler pattern that allows a cloud-based architecture to embrace the entire infrastructure required for an application and make it highly available, scalable and able to recover from failure. The cloud-based architecture would automate the complexity of setting up and managing the infrastructure. IBM has been trying to realize this vision for customers so they can describe their Java application environment simply and allow the cloud to automate the deployment and management of applications. “The point,” explained McGee, “is to package the executable used to describe applications, to drop it into a shared system and let that system provide some intelligence about how to deploy and manage those applications.”John Duimovich on Improvements in JavaMcGee then brought onstage IBM’s Distinguished Engineer and CTO for Java, John Duimovich, who showed the audience ways to deploy Java applications more efficiently.Duimovich explained that, “When you run lots of copies of Java in the cloud or any hypervisor virtualized system, there are a lot of duplications of code and jar files. IBM has a facility called ‘shared classes’ where we put shared code, read only artefacts in a cache that is sharable across hypervisors.” By putting JIT code in ahead of time, he explained that the application server will use 20% less memory and operate 30% faster.  He described another example of how the JVM allows for the maximum amount of sharing that manages the tenants and file sockets and memory use through throttling and control. Duimovich touched on the “thin is in” model and IBM’s Liberty Profile and lightweight runtime for the cloud, which allows for greater efficiency in interacting with the cloud.Duimovich discussed the confusion Java developers experience when, for example, the hypervisor tells them that that they have 8 and then 4 and then 16 cores. “Because hypervisors are virtualized, they can change based on resource needs across the hypervisor layer. You may have 10 instances of an operation system and you may need to reallocate memory, " explained Duimovich.  He showed how to resize LPARs, reallocate CPUs and migrate applications as needed. He explained how application servers can resize thread pools and better use resources based on information from the hypervisors.Java Challenges in Hardware and SoftwareMcGee ended the keynote with a summary of upcoming hardware and software challenges for the Java platform. He noted that one reason developers love Java is it allows them to ignore differences in hardware. He stated that the most important things happening in hardware were in network and storage – in developments such as the speed of SSD, the exploitation of high-speed, low-latency networking, and recent developments such as storage-class memory, and non-volatile main memory. “So we are challenged to maintain the benefits of Java and the abstraction it provides from hardware while still exploiting the new innovations in hardware,” said McGee.McGee discussed transactional messaging applications where developers send messages transactionally persist a message to storage, something traditionally done by backing messages on spinning disks, something mostly outdated. “Now,” he pointed out, “we would use SSD and store it in Flash and get 70,000 messages a second. If we stored it using a PCI express-based flash memory device, it is still Flash but put on a PCI express bus on a card closer to the CPU. This way I get 300,000 messages a second and 25% improvement in latency.” McGee’s central point was that hardware has a huge impact on the performance and scalability of applications. New technologies are enabling developers to build classes of Java applications previously unheard of. “We need to be able to balance these things in Java – we need to maintain the abstraction but also be able to exploit the evolution of hardware technology,” said McGee. According to McGee, IBM's current focus is on systems wherein hardware and software are shipped together in what are called Expert Integrated Systems – systems that are pre-optimized, and pre-integrated together. McGee closed IBM’s engaging and thought-provoking keynote by pointing out that the use of Java in complex applications is increasingly being augmented by a host of other languages with strong communities around them – JavaScript, JRuby, Scala, Python and so forth. Java developers now must understand the strengths and weaknesses of such newcomers as applications increasingly involve a complex interconnection of languages.

    Read the article

  • JDK bug migration: components and subcomponents

    - by darcy
    One subtask of the JDK migration from the legacy bug tracking system to JIRA was reclassifying bugs from a three-level taxonomy in the legacy system, (product, category, subcategory), to a fundamentally two-level scheme in our customized JIRA instance, (component, subcomponent). In the JDK JIRA system, there is technically a third project-level classification, but by design a large majority of JDK-related bugs were migrated into a single "JDK" project. In the end, over 450 legacy subcategories were simplified into about 120 subcomponents in JIRA. The 120 subcomponents are distributed among 17 components. A rule of thumb used was that a subcategory had to have at least 50 bugs in it for it to be retained. Below is a listing the component / subcomponent classification of the JDK JIRA project along with some notes and guidance on which OpenJDK email addresses cover different areas. Eventually, a separate incidents project to host new issues filed at bugs.sun.com will use a slightly simplified version of this scheme. The preponderance of bugs and subcomponents for the JDK are in library-related areas, with components named foo-libs and subcomponents primarily named after packages. While there was an overall condensation of subcomponents in the migration, in some cases long-standing informal divisions in core libraries based on naming conventions in the description were promoted to formal subcomponents. For example, hundreds of bugs in the java.util subcomponent whose descriptions started with "(coll)" were moved into java.util:collections. Likewise, java.lang bugs starting with "(reflect)" and "(proxy)" were moved into java.lang:reflect. client-libs (Predominantly discussed on 2d-dev and awt-dev and swing-dev.) 2d demo java.awt java.awt:i18n java.beans (See beans-dev.) javax.accessibility javax.imageio javax.sound (See sound-dev.) javax.swing core-libs (See core-libs-dev.) java.io java.io:serialization java.lang java.lang.invoke java.lang:class_loading java.lang:reflect java.math java.net java.nio (Discussed on nio-dev.) java.nio.charsets java.rmi java.sql java.sql:bridge java.text java.util java.util.concurrent java.util.jar java.util.logging java.util.regex java.util:collections java.util:i18n javax.annotation.processing javax.lang.model javax.naming (JNDI) javax.script javax.script:javascript javax.sql org.openjdk.jigsaw (See jigsaw-dev.) security-libs (See security-dev.) java.security javax.crypto (JCE: includes SunJCE/MSCAPI/UCRYPTO/ECC) javax.crypto:pkcs11 (JCE: PKCS11 only) javax.net.ssl (JSSE, includes javax.security.cert) javax.security javax.smartcardio javax.xml.crypto org.ietf.jgss org.ietf.jgss:krb5 other-libs corba corba:idl corba:orb corba:rmi-iiop javadb other (When no other subcomponent is more appropriate; use judiciously.) Most of the subcomponents in the xml component are related to jaxp. xml jax-ws jaxb javax.xml.parsers (JAXP) javax.xml.stream (JAXP) javax.xml.transform (JAXP) javax.xml.validation (JAXP) javax.xml.xpath (JAXP) jaxp (JAXP) org.w3c.dom (JAXP) org.xml.sax (JAXP) For OpenJDK, most JVM-related bugs are connected to the HotSpot Java virtual machine. hotspot (See hotspot-dev.) build compiler (See hotspot-compiler-dev.) gc (garbage collection, see hotspot-gc-dev.) jfr (Java Flight Recorder) jni (Java Native Interface) jvmti (JVM Tool Interface) mvm (Multi-Tasking Virtual Machine) runtime (See hotspot-runtime-dev.) svc (Servicability) test core-svc (See serviceability-dev.) debugger java.lang.instrument java.lang.management javax.management tools The full JDK bug database contains entries related to legacy virtual machines that predate HotSpot as well as retired APIs. vm-legacy jit (Sun Exact VM) jit_symantec (Symantec VM, before Exact VM) jvmdi (JVM Debug Interface ) jvmpi (JVM Profiler Interface ) runtime (Exact VM Runtime) Notable command line tools in the $JDK/bin directory have corresponding subcomponents. tools appletviewer apt (See compiler-dev.) hprof jar javac (See compiler-dev.) javadoc(tool) (See compiler-dev.) javah (See compiler-dev.) javap (See compiler-dev.) jconsole launcher updaters (Timezone updaters, etc.) visualvm Some aspects of JDK infrastructure directly affect JDK Hg repositories, but other do not. infrastructure build (See build-dev and build-infra-dev.) licensing (Covers updates to the third party readme, licenses, and similar files.) release_eng (Release engineering) staging (Staging of web pages related to JDK releases.) The specification subcomponent encompasses the formal language and virtual machine specifications. specification language (The Java Language Specification) vm (The Java Virtual Machine Specification) The code for the deploy and install areas is not currently included in OpenJDK. deploy deployment_toolkit plugin webstart install auto_update install servicetags In the JDK, there are a number of cross-cutting concerns whose organization is essentially orthogonal to other areas. Since these areas generally have dedicated teams working on them, it is easier to find bugs of interest if these bugs are grouped first by their cross-cutting component rather than by the affected technology. docs doclet guides hotspot release_notes tools tutorial embedded build hotspot libraries globalization locale-data translation performance hotspot libraries The list of subcomponents will no doubt grow over time, but my inclination is to resist that growth since the addition of each subcomponent makes the system as a whole more complicated and harder to use. When the system gets closer to being externalized, I plan to post more blog entries describing recommended use of various custom fields in the JDK project.

    Read the article

  • Five development tools I can't live without

    - by bconlon
    When applying to join Geeks with Blogs I had to specify the development tools I use every day. That got me thinking, it's taken a long time to whittle my tools of choice down to the selection I use, so it might be worth sharing. Before I begin, I appreciate we all have our preferred development tools, but these are the ones that work for me. Microsoft Visual Studio Microsoft Visual Studio has been my development tool of choice for more years than I care to remember. I first used this when it was Visual C++ 1.5 (hats off to those who started on 1.0) and by 2.2 it had everything I needed from a C++ IDE. Versions 4 and 5 followed and if I had to guess I would expect more Windows applications are written in VC++ 6 and VB6 than any other language. Then came the not so great versions Visual Studio .Net 2002 (7.0) and 2003 (7.1). If I'm honest I was still using v6. 2005 was better and 2008 was simply brilliant. Everything worked, the compiler was super fast and I was happy again...then came 2010...oh dear. 2010 is a big step backwards for me. It's not encouraging for my upcoming WPF exploits that 2010 is fronted in WPF technology, with the forever growing Find/Replace dialog, the issues with C++ intellisense, and the buggy debugger. That said it is still my tool of choice but I hope they sort the issue in SP1. I've tried other IDEs like Visual Age and Eclipse, but for me Visual Studio is the best. A really great tool. Liquid XML Studio XML development is a tricky business. The W3C standards are often difficult to get to the bottom of so it's great to have a graphical tool to help. I first used Liquid Technologies 5 or 6 years back when I needed to process XML data in C++. Their excellent XML Data Binding tool has an easy to use Wizard UI (as compared to Castor or JAXB command line tools) and allows you to generate code from an XML Schema. So instead of having to deal with untyped nodes like with a DOM parser, instead you get an Object Model providing a custom API in C++, C#, VB etc. More recently they developed a graphical XML IDE with XML Editor, XSLT, XQuery debugger and other XML tools. So now I can develop an XML Schema graphically, click a button to generate a Sample XML document, and click another button to run the Wizard to generate code including a Sample Application that will then load my Sample XML document into the generated object model. This is a very cool toolset. Note: XML Data Binding is nothing to do with WPF Data Binding, but I hope to cover both in more detail another time. .Net Reflector Note: I've just noticed that starting form the end of February 2011 this will no longer be a free tool !! .Net Reflector turns .Net byte code back into C# source code. But how can it work this magic? Well the clue is in the name, it uses reflection to inspect a compiled .Net assembly. The assembly is compiled to byte code, it doesn't get compiled to native machine code until its needed using a just-in-time (JIT) compiler. The byte code still has all of the information needed to see classes, variables. methods and properties, so reflector gathers this information and puts it in a handy tree. I have used .Net Reflector for years in order to understand what the .Net Framework is doing as it sometimes has undocumented, quirky features. This really has been invaluable in certain instances and I cannot praise enough kudos on the original developer Lutz Roeder. Smart Assembly In order to stop nosy geeks looking at our code using a tool like .Net Reflector, we need to obfuscate (mess up) the byte code. Smart Assembly is a tool that does this. Again I have used this for a long time. It is very quick and easy to use. Another excellent tool. Coincidentally, .Net Reflector and Smart Assembly are now both owned by Red Gate. Again kudos goes to the original developer Jean-Sebastien Lange. TortoiseSVN SVN (Apache Subversion) is a Source Control System developed as an open source project. TortoiseSVN is a graphical UI wrapper over SVN that hooks into Windows Explorer to enable files to be Updated, Committed, Merged etc. from the right click menu. This is an essential tool for keeping my hard work safe! Many years ago I used Microsoft Source Safe and I disliked CVS type systems. But TortoiseSVN is simply the best source control tool I have ever used. --- So there you have it, my top 5 development tools that I use (nearly) every day and have helped to make my working life a little easier. I'm sure there are other great tools that I wish I used but have never heard of, but if you have not used any of the above, I would suggest you check them out as they are all very, very cool products. #

    Read the article

  • Android app crashes on emulator - logCat shows no errors

    - by David Miler
    I have just added the SherlockActionBar library to my android project. After some small changes (FragmentActivity - SherlockFragmentActivity, getActionBar() - getSupportActionBar(), imports) it all compiled nicely. After I run the app, however, the debugger stops, as though it had encountered an exception. However, there are no errors shown in the LogCat output. I just can't wrap my head around what's going on. Here is the logCat output after I terminate the app. 10-02 14:11:19.227: I/SystemUpdateService(174): UpdateTask at time 1349187079227 10-02 14:11:19.237: I/ActivityThread(328): Pub com.android.email.attachmentprovider: com.android.email.provider.AttachmentProvider 10-02 14:11:19.687: I/dalvikvm(81): Jit: resizing JitTable from 512 to 1024 10-02 14:11:19.809: D/MediaScannerService(150): start scanning volume internal: [/system/media] 10-02 14:11:20.047: V/AlarmClock(239): AlarmInitReceiver finished 10-02 14:11:20.087: I/ActivityManager(81): Start proc com.android.quicksearchbox for broadcast com.android.quicksearchbox/.SearchWidgetProvider: pid=346 uid=10012 gids={3003} 10-02 14:11:20.127: D/ExchangeService(320): !!! EAS ExchangeService, onStartCommand, startingUp = false, running = false 10-02 14:11:20.427: I/ActivityThread(346): Pub com.android.quicksearchbox.google: com.android.quicksearchbox.google.GoogleSuggestionProvider 10-02 14:11:20.497: I/ActivityThread(346): Pub com.android.quicksearchbox.shortcuts: com.android.quicksearchbox.ShortcutsProvider 10-02 14:11:20.657: I/ActivityManager(81): Start proc com.android.music for broadcast com.android.music/.MediaAppWidgetProvider: pid=358 uid=10028 gids={3003, 1015} 10-02 14:11:20.927: D/ExchangeService(320): !!! EAS ExchangeService, onCreate 10-02 14:11:20.967: D/dalvikvm(260): GC_CONCURRENT freed 213K, 6% free 6409K/6791K, paused 5ms+101ms 10-02 14:11:21.077: D/ExchangeService(320): !!! EAS ExchangeService, onStartCommand, startingUp = true, running = false 10-02 14:11:21.567: D/GTalkService(174): [ReonnectMgr] ### report Inet condition: status=false, networkType=0 10-02 14:11:21.587: D/ConnectivityService(81): reportNetworkCondition(0, 0) 10-02 14:11:21.597: D/ConnectivityService(81): Inet connectivity change, net=0, condition=0,mActiveDefaultNetwork=0 10-02 14:11:21.597: D/ConnectivityService(81): starting a change hold 10-02 14:11:21.697: D/GTalkService(174): [RawStanzaProvidersMgr] ##### searchProvidersFromIntent 10-02 14:11:21.697: D/GTalkService(174): [RawStanzaProvidersMgr] no intent receivers found 10-02 14:11:21.847: I/SystemUpdateService(174): cancelUpdate (empty URL) 10-02 14:11:21.847: E/TelephonyManager(174): Hidden constructor called more than once per process! 10-02 14:11:21.867: D/dalvikvm(174): GC_CONCURRENT freed 337K, 7% free 6561K/7047K, paused 5ms+4ms 10-02 14:11:21.917: D/GTalkService(174): [ReonnectMgr] ### report Inet condition: status=false, networkType=0 10-02 14:11:21.917: D/ConnectivityService(81): reportNetworkCondition(0, 0) 10-02 14:11:21.917: D/ConnectivityService(81): Inet connectivity change, net=0, condition=0,mActiveDefaultNetwork=0 10-02 14:11:21.917: D/ConnectivityService(81): currently in hold - not setting new end evt 10-02 14:11:21.990: E/TelephonyManager(174): Original: com.google.android.location, new: com.google.android.gsf 10-02 14:11:22.027: I/SystemUpdateService(174): removeAllDownloads (cancelUpdate) 10-02 14:11:22.127: D/dalvikvm(328): GC_CONCURRENT freed 205K, 6% free 6506K/6855K, paused 660ms+3ms 10-02 14:11:22.197: D/Eas Debug(320): Logging: 10-02 14:11:22.319: D/dalvikvm(81): GREF has increased to 401 10-02 14:11:22.947: D/ExchangeService(320): !!! EAS ExchangeService, onStartCommand, startingUp = true, running = false 10-02 14:11:23.130: D/Eas Debug(320): Logging: 10-02 14:11:23.307: I//system/bin/fsck_msdos(29): Attempting to allocate 2044 KB for FAT 10-02 14:11:23.560: I/ActivityManager(81): Starting: Intent { flg=0x10000000 cmp=com.google.android.gsf/.update.SystemUpdateInstallDialog } from pid 174 10-02 14:11:23.587: I/ActivityManager(81): Starting: Intent { flg=0x10000000 cmp=com.google.android.gsf/.update.SystemUpdateDownloadDialog } from pid 174 10-02 14:11:24.087: W/ActivityManager(81): Activity pause timeout for ActivityRecord{407c7320 com.android.launcher/com.android.launcher2.Launcher} 10-02 14:11:24.237: E/TelephonyManager(174): Hidden constructor called more than once per process! 10-02 14:11:24.237: E/TelephonyManager(174): Original: com.google.android.location, new: com.google.android.gsf 10-02 14:11:24.507: D/dalvikvm(174): GC_EXPLICIT freed 231K, 7% free 6596K/7047K, paused 4ms+6ms 10-02 14:11:24.607: D/ConnectivityService(81): Inet hold end, net=0, condition =0, published condition =0 10-02 14:11:24.607: D/ConnectivityService(81): no change in condition - aborting 10-02 14:11:24.707: D/dalvikvm(174): GC_EXPLICIT freed 17K, 7% free 6579K/7047K, paused 4ms+4ms 10-02 14:11:24.947: I//system/bin/fsck_msdos(29): ** Phase 2 - Check Cluster Chains 10-02 14:11:25.117: I//system/bin/fsck_msdos(29): ** Phase 3 - Checking Directories 10-02 14:11:25.128: I//system/bin/fsck_msdos(29): ** Phase 4 - Checking for Lost Files 10-02 14:11:25.167: I//system/bin/fsck_msdos(29): 12 files, 1044448 free (522224 clusters) 10-02 14:11:25.227: I/Vold(29): Filesystem check completed OK 10-02 14:11:25.227: I/Vold(29): Device /dev/block/vold/179:0, target /mnt/sdcard mounted @ /mnt/secure/staging 10-02 14:11:25.237: D/Vold(29): Volume sdcard state changing 3 (Checking) -> 4 (Mounted) 10-02 14:11:25.257: I/PackageManager(81): Updating external media status from unmounted to mounted 10-02 14:11:25.457: D/dalvikvm(303): GC_EXPLICIT freed 35K, 6% free 6242K/6595K, paused 3ms+312ms 10-02 14:11:25.987: D/ExchangeService(320): !!! EAS ExchangeService, onStartCommand, startingUp = true, running = false 10-02 14:11:26.157: D/MediaScanner(150): prescan time: 2905ms 10-02 14:11:26.167: D/MediaScanner(150): scan time: 148ms 10-02 14:11:26.167: D/MediaScanner(150): postscan time: 2ms 10-02 14:11:26.167: D/MediaScanner(150): total time: 3055ms 10-02 14:11:26.197: D/MediaScannerService(150): done scanning volume internal 10-02 14:11:26.237: D/MediaScannerService(150): start scanning volume external: [/mnt/sdcard] 10-02 14:11:26.497: D/dalvikvm(143): GC_EXPLICIT freed 234K, 8% free 7735K/8327K, paused 3ms+5ms 10-02 14:11:27.180: D/dalvikvm(143): GC_CONCURRENT freed 150K, 4% free 8004K/8327K, paused 7ms+3ms 10-02 14:11:27.397: D/dalvikvm(143): GC_FOR_ALLOC freed 96K, 6% free 8310K/8775K, paused 76ms 10-02 14:11:27.580: D/dalvikvm(143): GC_FOR_ALLOC freed 515K, 11% free 8135K/9095K, paused 79ms 10-02 14:11:27.829: D/dalvikvm(143): GC_CONCURRENT freed 3K, 5% free 8694K/9095K, paused 7ms+6ms 10-02 14:11:28.137: V/TLINE(143): new: android.text.TextLine@4065b280 10-02 14:11:28.527: D/dalvikvm(143): GC_CONCURRENT freed 729K, 10% free 8764K/9671K, paused 5ms+13ms 10-02 14:11:28.677: D/dalvikvm(143): GC_FOR_ALLOC freed 152K, 11% free 8683K/9671K, paused 99ms 10-02 14:11:28.717: I/dalvikvm-heap(143): Grow heap (frag case) to 11.434MB for 2975968-byte allocation 10-02 14:11:28.807: D/dalvikvm(143): GC_FOR_ALLOC freed 0K, 9% free 11589K/12615K, paused 84ms 10-02 14:11:29.159: D/dalvikvm(143): GC_CONCURRENT freed 197K, 7% free 12195K/12999K, paused 8ms+6ms 10-02 14:11:29.647: D/dalvikvm(143): GC_EXPLICIT freed 351K, 6% free 12790K/13511K, paused 8ms+17ms 10-02 14:11:29.717: I/SurfaceFlinger(32): Boot is finished (70768 ms) 10-02 14:11:29.877: I/ARMAssembler(32): generated scanline__00000177:03010104_00000002_00000000 [ 44 ipp] (66 ins) at [0x407c7290:0x407c7398] in 990662 ns 10-02 14:11:29.907: I/ARMAssembler(32): generated scanline__00000177:03515104_00000001_00000000 [ 73 ipp] (95 ins) at [0x407c73a0:0x407c751c] in 989381 ns 10-02 14:11:30.287: D/dalvikvm(174): GC_EXPLICIT freed 25K, 8% free 6554K/7047K, paused 4ms+32ms 10-02 14:11:30.380: D/dalvikvm(143): GC_EXPLICIT freed 349K, 6% free 13124K/13895K, paused 5ms+25ms 10-02 14:11:30.957: D/dalvikvm(143): GC_FOR_ALLOC freed 1069K, 10% free 13860K/15239K, paused 81ms 10-02 14:11:32.177: D/dalvikvm(150): GC_CONCURRENT freed 183K, 6% free 6438K/6791K, paused 5ms+4ms 10-02 14:11:32.187: W/ActivityManager(81): No content provider found for: 10-02 14:11:32.607: V/MediaScanner(150): pruneDeadThumbnailFiles... android.database.sqlite.SQLiteCursor@406724a8 10-02 14:11:32.617: V/MediaScanner(150): /pruneDeadThumbnailFiles... android.database.sqlite.SQLiteCursor@406724a8 10-02 14:11:32.640: W/ActivityManager(81): No content provider found for: 10-02 14:11:32.640: D/VoldCmdListener(29): asec list 10-02 14:11:32.647: I/PackageManager(81): No secure containers on sdcard 10-02 14:11:32.667: D/MediaScanner(150): prescan time: 107ms 10-02 14:11:32.667: D/MediaScanner(150): scan time: 89ms 10-02 14:11:32.667: D/MediaScanner(150): postscan time: 61ms 10-02 14:11:32.667: D/MediaScanner(150): total time: 257ms 10-02 14:11:32.697: W/PackageManager(81): Unknown permission android.permission.ADD_SYSTEM_SERVICE in package com.android.phone 10-02 14:11:32.707: W/PackageManager(81): Unknown permission com.android.smspush.WAPPUSH_MANAGER_BIND in package com.android.phone 10-02 14:11:32.737: W/PackageManager(81): Not granting permission android.permission.SEND_DOWNLOAD_COMPLETED_INTENTS to package com.android.browser (protectionLevel=2 flags=0x9be45) 10-02 14:11:32.737: W/PackageManager(81): Not granting permission android.permission.BIND_APPWIDGET to package com.android.widgetpreview (protectionLevel=3 flags=0x28be44) 10-02 14:11:32.767: W/PackageManager(81): Unknown permission android.permission.READ_OWNER_DATA in package com.android.exchange 10-02 14:11:32.778: W/PackageManager(81): Unknown permission android.permission.READ_OWNER_DATA in package com.android.email 10-02 14:11:32.788: W/PackageManager(81): Unknown permission com.android.providers.im.permission.READ_ONLY in package com.google.android.apps.maps 10-02 14:11:32.797: W/PackageManager(81): Not granting permission android.permission.DEVICE_POWER to package com.android.deskclock (protectionLevel=2 flags=0x8be45) 10-02 14:11:33.137: D/MediaScannerService(150): done scanning volume external 10-02 14:11:33.197: D/PackageParser(81): Scanning package: /data/app/vmdl257911298.tmp 10-02 14:11:33.837: I/InputReader(81): Device reconfigured: id=0, name='qwerty2', surface size is now 1024x800 10-02 14:11:34.097: D/dalvikvm(81): GC_CONCURRENT freed 12185K, 47% free 13966K/26311K, paused 8ms+23ms 10-02 14:11:36.798: I/TabletStatusBar(124): DISABLE_CLOCK: no 10-02 14:11:36.798: I/TabletStatusBar(124): DISABLE_NAVIGATION: no 10-02 14:11:37.348: I/ARMAssembler(32): generated scanline__00000177:03515104_00001001_00000000 [ 91 ipp] (114 ins) at [0x407c7520:0x407c76e8] in 919320 ns 10-02 14:11:37.598: I/TabletStatusBar(124): DISABLE_BACK: no 10-02 14:11:37.710: I/ActivityManager(81): Displayed com.android.launcher/com.android.launcher2.Launcher: +46s212ms 10-02 14:11:38.817: D/dalvikvm(143): GC_CONCURRENT freed 969K, 8% free 14867K/16007K, paused 4ms+10ms 10-02 14:11:39.437: I/dalvikvm(81): Jit: resizing JitTable from 1024 to 2048 10-02 14:11:40.267: D/dalvikvm(143): GC_FOR_ALLOC freed 2357K, 16% free 14395K/17031K, paused 80ms 10-02 14:11:40.717: D/dalvikvm(143): GC_EXPLICIT freed 742K, 16% free 14358K/17031K, paused 8ms+4ms 10-02 14:11:41.617: D/dalvikvm(81): GC_CONCURRENT freed 1955K, 48% free 13869K/26311K, paused 9ms+10ms 10-02 14:11:42.559: D/dalvikvm(81): GC_CONCURRENT freed 1830K, 48% free 13881K/26311K, paused 9ms+9ms 10-02 14:11:42.758: I/PackageManager(81): Removing non-system package:cz.trilimi.sfaui 10-02 14:11:42.758: I/ActivityManager(81): Force stopping package cz.trilimi.sfaui uid=10036 10-02 14:11:42.967: D/PackageManager(81): Scanning package cz.trilimi.sfaui 10-02 14:11:42.967: I/PackageManager(81): Package cz.trilimi.sfaui codePath changed from /data/app/cz.trilimi.sfaui-1.apk to /data/app/cz.trilimi.sfaui-2.apk; Retaining data and using new 10-02 14:11:42.967: I/PackageManager(81): Unpacking native libraries for /data/app/cz.trilimi.sfaui-2.apk 10-02 14:11:43.097: D/installd(35): DexInv: --- BEGIN '/data/app/cz.trilimi.sfaui-2.apk' --- 10-02 14:11:45.317: D/dalvikvm(391): DexOpt: load 434ms, verify+opt 1260ms 10-02 14:11:45.407: D/installd(35): DexInv: --- END '/data/app/cz.trilimi.sfaui-2.apk' (success) --- 10-02 14:11:45.407: W/PackageManager(81): Code path for pkg : cz.trilimi.sfaui changing from /data/app/cz.trilimi.sfaui-1.apk to /data/app/cz.trilimi.sfaui-2.apk 10-02 14:11:45.407: W/PackageManager(81): Resource path for pkg : cz.trilimi.sfaui changing from /data/app/cz.trilimi.sfaui-1.apk to /data/app/cz.trilimi.sfaui-2.apk 10-02 14:11:45.407: D/PackageManager(81): Activities: cz.trilimi.sfaui.ItemListActivity cz.trilimi.sfaui.ItemDetailActivity 10-02 14:11:45.427: I/ActivityManager(81): Force stopping package cz.trilimi.sfaui uid=10036 10-02 14:11:45.657: I/installd(35): move /data/dalvik-cache/data@[email protected]@classes.dex -> /data/dalvik-cache/data@[email protected]@classes.dex 10-02 14:11:45.657: D/PackageManager(81): New package installed in /data/app/cz.trilimi.sfaui-2.apk 10-02 14:11:45.997: I/ActivityManager(81): Force stopping package cz.trilimi.sfaui uid=10036 10-02 14:11:46.147: D/dalvikvm(143): GC_EXPLICIT freed 3K, 16% free 14356K/17031K, paused 10ms+9ms 10-02 14:11:46.237: D/PackageManager(81): generateServicesMap(android.accounts.AccountAuthenticator): 3 services unchanged 10-02 14:11:46.277: D/PackageManager(81): generateServicesMap(android.content.SyncAdapter): 5 services unchanged 10-02 14:11:46.337: D/PackageManager(81): generateServicesMap(android.accounts.AccountAuthenticator): 3 services unchanged 10-02 14:11:46.347: D/PackageManager(81): generateServicesMap(android.content.SyncAdapter): 5 services unchanged 10-02 14:11:46.437: D/dalvikvm(208): GC_EXPLICIT freed 258K, 7% free 6488K/6919K, paused 3ms+5ms 10-02 14:11:46.477: W/RecognitionManagerService(81): no available voice recognition services found 10-02 14:11:46.897: I/ActivityManager(81): Start proc com.svox.pico for broadcast com.svox.pico/.VoiceDataInstallerReceiver: pid=398 uid=10006 gids={} 10-02 14:11:47.087: I/ActivityThread(398): Pub com.svox.pico.providers.SettingsProvider: com.svox.pico.providers.SettingsProvider 10-02 14:11:47.138: D/GTalkService(174): [GTalkService.1] handlePackageInstalled: re-initialize providers 10-02 14:11:47.147: D/GTalkService(174): [RawStanzaProvidersMgr] ##### searchProvidersFromIntent 10-02 14:11:47.147: D/GTalkService(174): [RawStanzaProvidersMgr] no intent receivers found 10-02 14:11:47.718: I/AccountTypeManager(208): Loaded meta-data for 1 account types, 0 accounts in 186ms 10-02 14:11:48.377: D/dalvikvm(143): GC_CONCURRENT freed 1865K, 15% free 14513K/17031K, paused 7ms+4ms 10-02 14:11:48.917: D/dalvikvm(208): GC_CONCURRENT freed 219K, 6% free 6788K/7175K, paused 7ms+73ms 10-02 14:11:49.207: D/dalvikvm(143): GC_FOR_ALLOC freed 4558K, 31% free 11866K/17031K, paused 89ms 10-02 14:11:49.587: D/dalvikvm(143): GC_CONCURRENT freed 713K, 24% free 13010K/17031K, paused 5ms+4ms 10-02 14:11:49.967: D/dalvikvm(143): GC_CONCURRENT freed 1046K, 19% free 13922K/17031K, paused 5ms+4ms 10-02 14:11:50.437: D/dalvikvm(81): GC_EXPLICIT freed 898K, 47% free 13955K/26311K, paused 6ms+39ms 10-02 14:11:50.467: I/installd(35): unlink /data/dalvik-cache/data@[email protected]@classes.dex 10-02 14:11:50.477: D/AndroidRuntime(227): Shutting down VM 10-02 14:11:50.507: D/dalvikvm(227): GC_CONCURRENT freed 97K, 84% free 331K/2048K, paused 1ms+2ms 10-02 14:11:50.507: I/AndroidRuntime(227): NOTE: attach of thread 'Binder Thread #3' failed 10-02 14:11:50.517: D/jdwp(227): adbd disconnected 10-02 14:11:51.177: D/AndroidRuntime(410): >>>>>> AndroidRuntime START com.android.internal.os.RuntimeInit <<<<<< 10-02 14:11:51.177: D/AndroidRuntime(410): CheckJNI is ON 10-02 14:11:51.897: D/AndroidRuntime(410): Calling main entry com.android.commands.am.Am 10-02 14:11:51.937: I/ActivityManager(81): Force stopping package cz.trilimi.sfaui uid=10036 10-02 14:11:51.937: I/ActivityManager(81): Starting: Intent { act=android.intent.action.MAIN cat=[android.intent.category.LAUNCHER] flg=0x10000000 cmp=cz.trilimi.sfaui/.ItemListActivity } from pid 410 10-02 14:11:51.968: W/WindowManager(81): Failure taking screenshot for (230x179) to layer 21005 10-02 14:11:51.997: I/ActivityManager(81): Start proc cz.trilimi.sfaui for activity cz.trilimi.sfaui/.ItemListActivity: pid=418 uid=10036 gids={} 10-02 14:11:52.007: D/AndroidRuntime(410): Shutting down VM 10-02 14:11:52.057: I/AndroidRuntime(410): NOTE: attach of thread 'Binder Thread #3' failed 10-02 14:11:52.097: D/dalvikvm(410): GC_CONCURRENT freed 98K, 83% free 360K/2048K, paused 1ms+0ms 10-02 14:11:52.097: D/jdwp(410): adbd disconnected 10-02 14:11:53.147: W/ActivityThread(418): Application cz.trilimi.sfaui is waiting for the debugger on port 8100... 10-02 14:11:53.207: I/System.out(418): Sending WAIT chunk 10-02 14:11:53.217: I/dalvikvm(418): Debugger is active 10-02 14:11:53.447: I/System.out(418): Debugger has connected 10-02 14:11:53.457: I/System.out(418): waiting for debugger to settle... 10-02 14:11:53.637: I/ARMAssembler(32): generated scanline__00000177:03515104_00001002_00000000 [ 87 ipp] (110 ins) at [0x407c76f0:0x407c78a8] in 598498 ns 10-02 14:11:53.660: I/System.out(418): waiting for debugger to settle... 10-02 14:11:53.857: I/System.out(418): waiting for debugger to settle... 10-02 14:11:54.057: I/System.out(418): waiting for debugger to settle... 10-02 14:11:54.257: I/System.out(418): waiting for debugger to settle... 10-02 14:11:54.317: V/TLINE(81): new: android.text.TextLine@4155dde8 10-02 14:11:54.467: I/System.out(418): waiting for debugger to settle... 10-02 14:11:54.667: I/System.out(418): waiting for debugger to settle... 10-02 14:11:54.870: I/System.out(418): waiting for debugger to settle... 10-02 14:11:55.027: D/dalvikvm(143): GC_EXPLICIT freed 900K, 16% free 14420K/17031K, paused 7ms+4ms 10-02 14:11:55.067: I/System.out(418): waiting for debugger to settle... 10-02 14:11:55.292: I/System.out(418): debugger has settled (1315) 10-02 14:12:02.008: W/ActivityManager(81): Launch timeout has expired, giving up wake lock! 10-02 14:12:02.971: W/ActivityManager(81): Activity idle timeout for ActivityRecord{4078c6b0 cz.trilimi.sfaui/.ItemListActivity} 10-02 14:12:08.359: D/ExchangeService(320): Received deviceId from Email app: androidc259148960 10-02 14:12:08.507: D/ExchangeService(320): Reconciling accounts... 10-02 14:16:11.437: D/SntpClient(81): request time failed: java.net.SocketException: Address family not supported by protocol 10-02 14:17:21.573: W/jdwp(418): Debugger is telling the VM to exit with code=1 10-02 14:17:21.573: I/dalvikvm(418): GC lifetime allocation: 8642 bytes 10-02 14:17:21.637: D/Zygote(33): Process 418 exited cleanly (1) 10-02 14:17:21.651: I/ActivityManager(81): Process cz.trilimi.sfaui (pid 418) has died. 10-02 14:17:21.847: D/dalvikvm(143): GC_EXPLICIT freed <1K, 16% free 14420K/17031K, paused 7ms+7ms 10-02 14:17:21.917: W/InputManagerService(81): Window already focused, ignoring focus gain of: com.android.internal.view.IInputMethodClient$Stub$Proxy@40bfbf28

    Read the article

  • WinForms Menu Toolstrip Get Status

    - by Yeti
    So I have a project where there is some automatic initialization going on through some classes that are created automatically as global variables (yeah they are static instances). At a point inside this (it has no relation with the C# GUI for the user, so it isn't derived from any C# class) I need to see if a flag is set or not. I use toolstrip menu with checked and unchecked status in order to set or unset the flag. The problem is that I have difficulties to see if the flag is checked or not from this static class. My class is inside a different project/namespace and a DLL is created what later is linked to the GUI of the application. The GUI depends from this Manager class so making the Manager class to depend from the GUI is not an option. Nevertheless, I should be able to see its state knowing its name or through some other means. I have tried the following: if(Application.OpenForms[1].Owner.Controls["useLocalImageForInitToolStripMenuItem"].Enabled) { }; Now the problem is that on the upper code snippet I get a nasty error. So how do I do this? The toolstrip menu: The error: See the end of this message for details on invoking just-in-time (JIT) debugging instead of this dialog box. ***** Exception Text ******* System.ArgumentOutOfRangeException: Index was out of range. Must be non-negative and less than the size of the collection. Parameter name: index at System.Collections.ArrayList.get_Item(Int32 index) at System.Windows.Forms.FormCollection.get_Item(Int32 index) at Manager.MyMainManager.MyMainManager.RealTimeInit() in C:\Dropbox\My Dropbox\Public\Program Code\RoboCup\Manager\MyMainManager\MyMainManager.cs:line 494 at mainApp.MainForm.ButtonInitClick(Object sender, EventArgs e) in C:\Dropbox\My Dropbox\Public\Program Code\RoboCup\mainApp\MainForm.cs:line 389 at System.Windows.Forms.Control.OnClick(EventArgs e) at System.Windows.Forms.Button.OnClick(EventArgs e) at System.Windows.Forms.Button.OnMouseUp(MouseEventArgs mevent) at System.Windows.Forms.Control.WmMouseUp(Message& m, MouseButtons button, Int32 clicks) at System.Windows.Forms.Control.WndProc(Message& m) at System.Windows.Forms.ButtonBase.WndProc(Message& m) at System.Windows.Forms.Button.WndProc(Message& m) at System.Windows.Forms.Control.ControlNativeWindow.OnMessage(Message& m) at System.Windows.Forms.Control.ControlNativeWindow.WndProc(Message& m) at System.Windows.Forms.NativeWindow.Callback(IntPtr hWnd, Int32 msg, IntPtr wparam, IntPtr lparam)

    Read the article

  • No value given for one or more required parameters in connection initialisation

    - by DarkJaff
    Hi everyone, I have an C# form application that use an access database. This application works perfectly in debug and release. It works on all version of Windows. But it crash on one computer with Windows 7. The message I got is: System.Data.OleDb.OleDbException: No value given for one or more required parameters. The function that is supposely not working is this: public void InitConnection(string strFile) { string strConnection = String.Format("Provider=Microsoft.Jet.OLEDB.4.0;Data Source={0};User Id=admin;Password=;", strFile); m_conn = new OleDbConnection(strConnection); try { //On vérifie si la connexion n'est pas ouverte if (m_conn.State != ConnectionState.Open) { m_conn.Open(); m_VCoeffModele = GetModeleCoeff(); } } catch (Exception err) { throw err; } } I think it's something related to the connection string but why only on that computer. Thanks for your help! DarkJaff EDIT Here is the complete error message: See the end of this message for details on invoking just-in-time (JIT) debugging instead of this dialog box. ***** Exception Text ******* System.Data.OleDb.OleDbException: No value given for one or more required parameters. at System.Data.OleDb.OleDbCommand.ExecuteCommandTextErrorHandling(OleDbHResult hr) at System.Data.OleDb.OleDbCommand.ExecuteCommandTextForSingleResult(tagDBPARAMS dbParams, Object& executeResult) at System.Data.OleDb.OleDbCommand.ExecuteCommandText(Object& executeResult) at System.Data.OleDb.OleDbCommand.ExecuteCommand(CommandBehavior behavior, Object& executeResult) at System.Data.OleDb.OleDbCommand.ExecuteReaderInternal(CommandBehavior behavior, String method) at System.Data.OleDb.OleDbCommand.ExecuteReader(CommandBehavior behavior) at System.Data.OleDb.OleDbCommand.ExecuteReader() at DatabaseLayer.DatabaseFacade.GetModeleCoeff() at DatabaseLayer.DatabaseFacade.InitConnection(String strFile) at CalculatriceCHW.ListeMesure.OuvrirFichier(String strFichier) at CalculatriceCHW.ListeMesure.nouveauFichierMenu_Click(Object sender, EventArgs e) at System.Windows.Forms.ToolStripItem.RaiseEvent(Object key, EventArgs e) at System.Windows.Forms.ToolStripMenuItem.OnClick(EventArgs e) at System.Windows.Forms.ToolStripItem.HandleClick(EventArgs e) at System.Windows.Forms.ToolStripItem.HandleMouseUp(MouseEventArgs e) at System.Windows.Forms.ToolStripItem.FireEventInteractive(EventArgs e, ToolStripItemEventType met) at System.Windows.Forms.ToolStripItem.FireEvent(EventArgs e, ToolStripItemEventType met) at System.Windows.Forms.ToolStrip.OnMouseUp(MouseEventArgs mea) at System.Windows.Forms.ToolStripDropDown.OnMouseUp(MouseEventArgs mea) at System.Windows.Forms.Control.WmMouseUp(Message& m, MouseButtons button, Int32 clicks) at System.Windows.Forms.Control.WndProc(Message& m) at System.Windows.Forms.ScrollableControl.WndProc(Message& m) at System.Windows.Forms.ToolStrip.WndProc(Message& m) at System.Windows.Forms.ToolStripDropDown.WndProc(Message& m) at System.Windows.Forms.Control.ControlNativeWindow.OnMessage(Message& m) at System.Windows.Forms.Control.ControlNativeWindow.WndProc(Message& m) at System.Windows.Forms.NativeWindow.Callback(IntPtr hWnd, Int32 msg, IntPtr wparam, IntPtr lparam)

    Read the article

  • What is a good platform for building a game framework targetting both web and native languages?

    - by fuzzyTew
    I would like to develop (or find, if one is already in development) a framework with support for accelerated graphics and sound built on a system flexible enough to compile to the following: native ppc/x86/x86_64/arm binaries or a language which compiles to them javascript actionscript bytecode or a language which compiles to it (actionscript 3, haxe) optionally java I imagine, for example, creating an API where I can open windows and make OpenGL-like calls and the framework maps this in a relatively efficient manner to either WebGL with a canvas object, 3d graphics in Flash, OpenGL ES 2 with EGL, or desktop OpenGL in an X11, Windows, or Cocoa window. I have so far looked into these avenues: Building the game library in haXe Pros: Targets exist for php, javascript, actionscript bytecode, c++ High level, object oriented language Cons: No support for finally{} blocks or destructors, making resource cleanup difficult C++ target does not allow room for producing highly optimized libraries -- the foreign function interface requires all primitive types be boxed in a wrapper object, as if writing bindings for a scripting language; these feel unideal for real-time graphics and audio, especially exporting low-level functions. Doesn't seem quite yet mature Using the C preprocessor to create a translator, writing programs entirely with macros Pros: CPP is widespread and simple to use Cons: This is an arduous task and probably the wrong tool for the job CPP implementations differ widely in support for features (e.g. xcode cpp has no variadic macros despite claiming C99 compliance) There is little-to-no room for optimization in this route Using llvm's support for multiple backends to target c/c++ to web languages Pros: Can code in c/c++ LLVM is a very mature highly optimizing compiler performing e.g. global inlining Targets exist for actionscript (alchemy) and javascript (emscripten) Cons: Actionscript target is closed source, unmaintained, and buggy. Javascript targets do not use features of HTML5 for appropriate optimization (e.g. linear memory with typed arrays) and are immature An LLVM target must convert from low-level bytecode, so high-level constructs are lost and bloated unreadable code is created from translating individual instructions, which may be more difficult for an unprepared JIT to optimize. "jump" instructions cause problems for languages with no "goto" statements. Using libclang to write a translator from C/C++ to web languages Pros: A beautiful parsing library providing easy access to the code structure Can code in C/C++ Has sponsored developer effort from Apple Cons: Incomplete; current feature set targets IDEs. Basic operators are unexposed and must be manually parsed from the returned AST element to be identified. Translating code prior to compilation may forgo optimizations assumed in c/c++ such as inlining. Creating new code generators for clang to translate into web languages Pros: Can code in C/C++ as libclang Cons: There is no API; code structure is unstable A much larger job than using libclang; the innards of clang are complex Building the game library in Common Lisp Pros: Flexible, ancient, well-developed language Extensive introspection should ease writing translators Translators exist for at least javascript Cons: Unfamiliar language No standardized library functions, widely varying implementations Which of these avenues should I pursue? Do you know of any others, or any systems that might be useful? Does a general project like this exist somewhere already? Thank you for any input.

    Read the article

  • Which programming language to choose? (for a specific problem/domain, details inside)

    - by Bijan
    I am building a trading portfolio management system that is responsible for production, optimization, and simulation of non-high frequency trading portfolios (dealing with 1min or 3min bars of data, not tick data). I plan on employing Amazon web services to take on the entire load of the application. I have four choices that I am considering as language. a) Java b) C++ c) C# d) Python Here is the scope of the extremes of the project scope. This isn't how it will be, maybe ever, but it's within the scope of the requirements: Weekly simulation of 10,000,000 trading systems. (Each trading system is expected to have its own data mining methods, including feature selection algorithms which are extremely computationally-expensive. Imagine 500-5000 features using wrappers. These are not run often by any means, but it's still a consideration) Real-time production of portfolio w/ 100,000 trading strategies Taking in 1 min or 3 min data from every stock/futures market around the globe (approx 100,000) Portfolio optimization of portfolios with up to 100,000 strategies. (rather intensive algorithm) Speed is a concern, but I believe that Java can handle the load. I just want to make sure that Java CAN handle the above requirements comfortably. I don't want to do the project in C++, but I will if it's required. The reason C# is on there is because I thought it was a good alternative to Java, even though I don't like Windows at all and would prefer Java if all things are the same. Python - I've read somethings on PyPy and pyscho that claim python can be optimized with JIT compiling to run at near C-like speeds.... That's pretty much the only reason it is on this list, besides that fact that Python is a great language and would probably be the most enjoyable language to code in, which is not a factor at all for this project, but a perk. To sum up: - real time production - weekly simulations of a large number of systems - weekly/monthly optimizations of portfolios - large numbers of connections to collect data from There is no dealing with millisecond or even second based trades. The only consideration is if Java can possibly deal with this kind of load when spread out of a necessary amount of EC2 servers. Thank you guys so much for your wisdom.

    Read the article

  • How to obtain a pointer out of a C++ vtable?

    - by Josh Haberman
    Say you have a C++ class like: class Foo { public: virtual ~Foo() {} virtual DoSomething() = 0; }; The C++ compiler translates a call into a vtable lookup: Foo* foo; // Translated by C++ to: // foo->vtable->DoSomething(foo); foo->DoSomething(); Suppose I was writing a JIT compiler and I wanted to obtain the address of the DoSomething() function for a particular instance of class Foo, so I can generate code that jumps to it directly instead of doing a table lookup and an indirect branch. My questions are: Is there any standard C++ way to do this (I'm almost sure the answer is no, but wanted to ask for the sake of completeness). Is there any remotely compiler-independent way of doing this, like a library someone has implemented that provides an API for accessing a vtable? I'm open to completely hacks, if they will work. For example, if I created my own derived class and could determine the address of its DoSomething method, I could assume that the vtable is the first (hidden) member of Foo and search through its vtable until I find my pointer value. However, I don't know a way of getting this address: if I write &DerivedFoo::DoSomething I get a pointer-to-member, which is something totally different. Maybe I could turn the pointer-to-member into the vtable offset. When I compile the following: class Foo { public: virtual ~Foo() {} virtual void DoSomething() = 0; }; void foo(Foo *f, void (Foo::*member)()) { (f->*member)(); } On GCC/x86-64, I get this assembly output: Disassembly of section .text: 0000000000000000 <_Z3fooP3FooMS_FvvE>: 0: 40 f6 c6 01 test sil,0x1 4: 48 89 74 24 e8 mov QWORD PTR [rsp-0x18],rsi 9: 48 89 54 24 f0 mov QWORD PTR [rsp-0x10],rdx e: 74 10 je 20 <_Z3fooP3FooMS_FvvE+0x20> 10: 48 01 d7 add rdi,rdx 13: 48 8b 07 mov rax,QWORD PTR [rdi] 16: 48 8b 74 30 ff mov rsi,QWORD PTR [rax+rsi*1-0x1] 1b: ff e6 jmp rsi 1d: 0f 1f 00 nop DWORD PTR [rax] 20: 48 01 d7 add rdi,rdx 23: ff e6 jmp rsi I don't fully understand what's going on here, but if I could reverse-engineer this or use an ABI spec I could generate a fragment like the above for each separate platform, as a way of obtaining a pointer out of a vtable.

    Read the article

  • Why do I get a WCF timeout even though my service call and callback are successful?

    - by KallDrexx
    I'm playing around with hooking up an in-game console to a WCF interface, so an external application can send console commands and receive console output. To accomplish this I created the following service contracts: public interface IConsoleNetworkCallbacks { [OperationContract(IsOneWay = true)] void NewOutput(IEnumerable<string> text, string category); } [ServiceContract(SessionMode = SessionMode.Required, CallbackContract = typeof(IConsoleNetworkCallbacks))] public interface IConsoleInterface { [OperationContract] void ProcessInput(string input); [OperationContract] void ChangeCategory(string category); } On the server I implemented it with: public class ConsoleNetworkInterface : IConsoleInterface, IDisposable { public ConsoleNetworkInterface() { ConsoleManager.Instance.RegisterOutputUpdateHandler(OutputHandler); } public void Dispose() { ConsoleManager.Instance.UnregisterOutputHandler(OutputHandler); } public void ProcessInput(string input) { ConsoleManager.Instance.ProcessInput(input); } public void ChangeCategory(string category) { ConsoleManager.Instance.UnregisterOutputHandler(OutputHandler); ConsoleManager.Instance.RegisterOutputUpdateHandler(OutputHandler, category); } protected void OutputHandler(IEnumerable<string> text, string category) { var callbacks = OperationContext.Current.GetCallbackChannel<IConsoleNetworkCallbacks>(); callbacks.NewOutput(text, category); } } On the client I implemented the callback with: public class Callbacks : IConsoleNetworkCallbacks { public void NewOutput(IEnumerable<string> text, string category) { MessageBox.Show(string.Format("{0} lines received for '{1}' category", text.Count(), category)); } } Finally, I establish the service host with the following class: public class ConsoleServiceHost : IDisposable { protected ServiceHost _host; public ConsoleServiceHost() { _host = new ServiceHost(typeof(ConsoleNetworkInterface), new Uri[] { new Uri("net.pipe://localhost") }); _host.AddServiceEndpoint(typeof(IConsoleInterface), new NetNamedPipeBinding(), "FrbConsolePipe"); _host.Open(); } public void Dispose() { _host.Close(); } } and use the following code on my client to establish the connection: protected Callbacks _callbacks; protected IConsoleInterface _proxy; protected void ConnectToConsoleServer() { _callbacks = new Callbacks(); var factory = new DuplexChannelFactory<IConsoleInterface>(_callbacks, new NetNamedPipeBinding(), new EndpointAddress("net.pipe://localhost/FrbConsolePipe")); _proxy = factory.CreateChannel(); _proxy.ProcessInput("Connected"); } So what happens is that my ConnectToConsoleServer() is called and then it gets all the way to _proxy.ProcessInput("Connected");. In my game (on the server) I immediately see the output caused by the ProcessInput call, but the client is still stalled on the _proxy.ProcessInput() call. After a minute my client gets a JIT TimeoutException however at the same time my MessageBox message appears. So obviously not only is my command being sent immediately, my callback is being correctly called. So why am I getting a timeout exception? Note: Even removing the MessageBox call, I still have this issue, so it's not an issue of the GUI blocking the callback response.

    Read the article

  • Could not load file or assembly ... or one of its dependencies. An attempt was made to load a progra

    - by Dan
    I am getting the following error message when compiling or attempting to run my application on Windows 7 64 bit. I've scoured the internet and many people have the same error message however none of the solutions address my problem or situation. Using VS 2010. Error 38 Could not load file or assembly 'file:///D:/Projects/Windows Projects/Weld/Components/FileAttachments/FileAttachments/FileAttachments/bin/x86/Debug/FileAttaching.dll' or one of its dependencies. An attempt was made to load a program with an incorrect format. Line 1212, position 5. D:\Projects\Windows Projects\Weld\Weld\Weld.UI\frmMain.resx 1212 5 Weld.UI Ok, so I have 2 projects a UI project and a FileAttachment project. UI project has a reference to FileAttachment project. When I compile UI project in "Any CPU" mode everything works fine and it runs. I assume 'Any CPU' will run in 64bit mode when I compile as that is the platform I am using. I want to run/compile as x86 so I try to do that, so I change configuration for all projects to x86 and verify that these configurations are compiling to x86. I compile and get the error as stated above. I find it odd that it compiles and works fine in 64bit but not 32bit. However when compiled and deployed to users as 'Any CPU', if these users have x86 it still works for them no problem. I just can't compile or run as x86 on my PC. Again, I can compile as Any CPU and deploy to a 32bit PC no problem. Neither project are referencing any 64bit only dlls. Both projects are verified to be targetting 32bit dll's and .NET Framework assemblies. I need to compile and run this locally under 32bit mode. I need JIT edit/continue among other things. Here is the line of code in the resx file that is causing the problem: </data> <data name="Appearance17.Image" type="System.Drawing.Bitmap, System.Drawing" mimetype="application/x-microsoft.net.object.bytearray.base64"> <value> The resx file is verified to be generated for .NET 2.0 amnd is only referencing .NET 2.0 assemblies and not .NET 4.0 versions. Any ideas here? I've searched the net and have found hundreds of people with the same error message but a different problem.

    Read the article

  • GeoIP and Nginx

    - by JavierMartinez
    I have a nginx with geoip, but it is not working rightly. The issue is the next: Nginx are getting geodata from $_SERVER['REMOTE_ADDR'] instead of $_SERVER['HTTP_X_HAPROXY_IP'], which have the real client ip. So, the reported geodata belongs to my server ip instead of client ip. Does anybody where could be the error to fix it? Nginx version and compiled modules: nginx -V nginx version: nginx/1.2.3 TLS SNI support enabled configure arguments: --prefix=/etc/nginx --conf-path=/etc/nginx/nginx.conf --error-log- path=/var/log/nginx/error.log --http-client-body-temp-path=/var/lib/nginx/body --http-fastcgi-temp-path=/var/lib/nginx/fastcgi --http-log-path=/var/log/nginx/access.log --http-proxy-temp-path=/var/lib/nginx/proxy --http-scgi-temp-path=/var/lib/nginx/scgi --http-uwsgi-temp-path=/var/lib/nginx/uwsgi --lock-path=/var/lock/nginx.lock --pid-path=/var/run/nginx.pid --with-pcre-jit --with-debug --with-file-aio --with-http_addition_module --with-http_dav_module --with-http_geoip_module --with-http_gzip_static_module --with-http_image_filter_module --with-http_realip_module --with-http_secure_link_module --with-http_stub_status_module --with-http_ssl_module --with-http_sub_module --with-http_xslt_module --with-ipv6 --with-sha1=/usr/include/openssl --with-md5=/usr/include/openssl --with-mail --with-mail_ssl_module --add-module=/usr/src/nginx/source/nginx-1.2.3/debian/modules/nginx-auth-pam --add-module=/usr/src/nginx/source/nginx-1.2.3/debian/modules/nginx-echo --add-module=/usr/src/nginx/source/nginx-1.2.3/debian/modules/nginx-upstream-fair --add-module=/usr/src/nginx/source/nginx-1.2.3/debian/modules/nginx-dav-ext-module --add-module=/usr/src/nginx/source/nginx-1.2.3/debian/modules/nginx-syslog --add-module=/usr/src/nginx/source/nginx-1.2.3/debian/modules/nginx-cache-purge nginx site conf (frontend machine) server { root /var/www/storage; server_name ~^.*(\.)?mydomain.com$; if ($host ~ ^(.*)\.mydomain\.com$) { set $new_host $1.mydomain.com; } if ($host !~ ^(.*)\.mydomain\.com$) { set $new_host www.mydomain.com; } add_header Staging true; real_ip_header X-HAProxy-IP; set_real_ip_from 10.5.0.10/32; location /files { expires 30d; if ($uri !~ ^/files/([a-fA-F0-9]+)_(220|45)\.jpg$) { return 403; } rewrite ^/files/([a-fA-F0-9][a-fA-F0-9])([a-fA-F0-9][a-fA-F0-9])([a-fA-F0-9][a-fA-F0-9])([a-fA-F0-9][a-fA-F0-9])([a-fA-F0-9]+)_(220|45)\.jpg$ /files/$1/$2/$3/$4/$1$2$3$4$5_$6.jpg break; try_files $uri @to_backend; } location /assets { if ($uri ~ ^/assets/r([a-zA-Z0-9]+[^/])(/(css|js|fonts)/.*)) { rewrite ^/assets/r([a-zA-Z0-9]+[^/])/(css|js|fonts)/(.*)$ /assets/$2/$3 break; } try_files $uri @to_backend; } location / { proxy_set_header Host $new_host; proxy_set_header X-HAProxy-IP $remote_addr; proxy_pass http://10.5.0.10:8080; } location @to_backend { proxy_set_header Host $new_host; proxy_pass http://10.5.0.10:8080; } } nginx.conf (backend machine) http{ ... ## # GeoIP Config ## geoip_country /etc/nginx/geoip/GeoIP.dat; # the country IP database geoip_city /etc/nginx/geoip/GeoLiteCity.dat; # the city IP database ... } fastcgi_params (backend machine) ### SET GEOIP Variables ### fastcgi_param GEOIP_COUNTRY_CODE $geoip_country_code; fastcgi_param GEOIP_COUNTRY_CODE3 $geoip_country_code3; fastcgi_param GEOIP_COUNTRY_NAME $geoip_country_name; fastcgi_param GEOIP_CITY_COUNTRY_CODE $geoip_city_country_code; fastcgi_param GEOIP_CITY_COUNTRY_CODE3 $geoip_city_country_code3; fastcgi_param GEOIP_CITY_COUNTRY_NAME $geoip_city_country_name; fastcgi_param GEOIP_REGION $geoip_region; fastcgi_param GEOIP_CITY $geoip_city; fastcgi_param GEOIP_POSTAL_CODE $geoip_postal_code; fastcgi_param GEOIP_CITY_CONTINENT_CODE $geoip_city_continent_code; fastcgi_param GEOIP_LATITUDE $geoip_latitude; fastcgi_param GEOIP_LONGITUDE $geoip_longitude; haproxy.conf (frontend machine) defaults log global option forwardfor option httpclose mode http retries 3 option redispatch maxconn 4096 contimeout 100000 clitimeout 100000 srvtimeout 100000 listen cluster_webs *:8080 mode http option tcpka option httpchk option httpclose option forwardfor balance roundrobin server backend-stage 10.5.0.11:80 weight 1 $_SERVER dump: http://paste.laravel.com/7dy Where 10.5.0.10 is frontend private ip and 10.5.0.11 backend private ip

    Read the article

  • Run Your Tests With Any NUnit Version

    - by Alois Kraus
    I always thought that the NUnit test runners and the test assemblies need to reference the same NUnit.Framework version. I wanted to be able to run my test assemblies with the newest GUI runner (currently 2.5.3). Ok so all I need to do is to reference both NUnit versions the newest one and the official for the current project. There is a nice article form Kent Bogart online how to reference the same assembly multiple times with different versions. The magic works by referencing one NUnit assembly with an alias which does prefix all types inside it. Then I could decorate my tests with the TestFixture and Test attribute from both NUnit versions and everything worked fine except that this was ugly. After playing a little bit around to make it simpler I found that I did not need to reference both NUnit.Framework assemblies. The test runners do not require the TestFixture and Test attribute in their specific version. That is really neat since the test runners are instructed by attributes what to do in a declarative way there is really no need to tie the runners to a specific version. At its core NUnit has this little method hidden to find matching TestFixtures and Tests   public bool CanBuildFrom(Type type) {     if (!(!type.IsAbstract || type.IsSealed))     {         return false;     }     return (((Reflect.HasAttribute(type,           "NUnit.Framework.TestFixtureAttribute", true) ||               Reflect.HasMethodWithAttribute(type, "NUnit.Framework.TestAttribute"       , true)) ||               Reflect.HasMethodWithAttribute(type, "NUnit.Framework.TestCaseAttribute"   , true)) ||               Reflect.HasMethodWithAttribute(type, "NUnit.Framework.TheoryAttribute"     , true)); } That is versioning and backwards compatibility at its best. I tell NUnit what to do by decorating my tests classes with NUnit Attributes and the runner executes my intent without the need to bind me to a specific version. The contract between NUnit versions is actually a bit more complex (think of AssertExceptions) but this is also handled nicely by using not the concrete type but simply to check for the catched exception type by string. What can we learn from this? Versioning can be easy if the contract is small and the users of your library use it in a declarative way (Attributes). Everything beyond it will force you to reference several versions of the same assembly with all its consequences. Type equality is lost between versions so none of your casts will work. That means that you cannot simply use IBigInterface in two versions. You will need a wrapper to call the correct versioned one. To get out of this mess you can use one (and only one) version agnostic driver to encapsulate your business logic from the concrete versions. This is of course more work but as NUnit shows it can be easy. Simplicity is therefore not a nice thing to have but also requirement number one if you intend to make things more complex in version two and want to support any version (older and newer). Any interaction model above easy will not be maintainable. There are different approached to versioning. Below are my own personal observations how versioning works within the  .NET Framwork and NUnit.   Versioning Models 1. Bug Fixing and New Isolated Features When you only need to fix bugs there is no need to break anything. This is especially true when you have a big API surface. Microsoft did this with the .NET Framework 3.0 which did leave the CLR as is but delivered new assemblies for the features WPF, WCF and Windows Workflow Foundations. Their basic model was that the .NET 2.0 assemblies were declared as red assemblies which must not change (well mostly but each change was carefully reviewed to minimize the risk of breaking changes as much as possible) whereas the new green assemblies of .NET 3,3.5 did not have such obligations since they did implement new unrelated features which did not have any impact on the red assemblies. This is versioning strategy aimed at maximum compatibility and the delivery of new unrelated features. If you have a big API surface you should strive hard to do the same or you will break your customers code with every release. 2. New Breaking Features There are times when really new things need to be added to an existing product. The .NET Framework 4.0 did change the CLR in many ways which caused subtle different behavior although the API´s remained largely unchanged. Sometimes it is possible to simply recompile an application to make it work (e.g. changed method signature void Func() –> bool Func()) but behavioral changes need much more thought and cannot be automated. To minimize the impact .NET 2.0,3.0,3.5 applications will not automatically use the .NET 4.0 runtime when installed but they will keep using the “old” one. What is interesting is that a side by side execution model of both CLR versions (2 and 4) within one process is possible. Key to success was total isolation. You will have 2 GCs, 2 JIT compilers, 2 finalizer threads within one process. The two .NET runtimes cannot talk  (except via the usual IPC mechanisms) to each other. Both runtimes share nothing and run independently within the same process. This enables Explorer plugins written for the CLR 2.0 to work even when a CLR 4 plugin is already running inside the Explorer process. The price for isolation is an increased memory footprint because everything is loaded and running two times.   3. New Non Breaking Features It really depends where you break things. NUnit has evolved and many different Assert, Expect… methods have been added. These changes are all localized in the NUnit.Framework assembly which can be easily extended. As long as the test execution contract (TestFixture, Test, AssertException) remains stable it is possible to write test executors which can run tests written for NUnit 10 because the execution contract has not changed. It is possible to write software which executes other components in a version independent way but this is only feasible if the interaction model is relatively simple.   Versioning software is hard and it looks like it will remain hard since you suddenly work in a severely constrained environment when you try to innovate and to keep everything backwards compatible at the same time. These are contradicting goals and do not play well together. The easiest way out of this is to carefully watch what your customers are doing with your software. Minimizing the impact is much easier when you do not need to guess how many people will be broken when this or that is removed.

    Read the article

  • Premature-Optimization and Performance Anxiety

    - by James Michael Hare
    While writing my post analyzing the new .NET 4 ConcurrentDictionary class (here), I fell into one of the classic blunders that I myself always love to warn about.  After analyzing the differences of time between a Dictionary with locking versus the new ConcurrentDictionary class, I noted that the ConcurrentDictionary was faster with read-heavy multi-threaded operations.  Then, I made the classic blunder of thinking that because the original Dictionary with locking was faster for those write-heavy uses, it was the best choice for those types of tasks.  In short, I fell into the premature-optimization anti-pattern. Basically, the premature-optimization anti-pattern is when a developer is coding very early for a perceived (whether rightly-or-wrongly) performance gain and sacrificing good design and maintainability in the process.  At best, the performance gains are usually negligible and at worst, can either negatively impact performance, or can degrade maintainability so much that time to market suffers or the code becomes very fragile due to the complexity. Keep in mind the distinction above.  I'm not talking about valid performance decisions.  There are decisions one should make when designing and writing an application that are valid performance decisions.  Examples of this are knowing the best data structures for a given situation (Dictionary versus List, for example) and choosing performance algorithms (linear search vs. binary search).  But these in my mind are macro optimizations.  The error is not in deciding to use a better data structure or algorithm, the anti-pattern as stated above is when you attempt to over-optimize early on in such a way that it sacrifices maintainability. In my case, I was actually considering trading the safety and maintainability gains of the ConcurrentDictionary (no locking required) for a slight performance gain by using the Dictionary with locking.  This would have been a mistake as I would be trading maintainability (ConcurrentDictionary requires no locking which helps readability) and safety (ConcurrentDictionary is safe for iteration even while being modified and you don't risk the developer locking incorrectly) -- and I fell for it even when I knew to watch out for it.  I think in my case, and it may be true for others as well, a large part of it was due to the time I was trained as a developer.  I began college in in the 90s when C and C++ was king and hardware speed and memory were still relatively priceless commodities and not to be squandered.  In those days, using a long instead of a short could waste precious resources, and as such, we were taught to try to minimize space and favor performance.  This is why in many cases such early code-bases were very hard to maintain.  I don't know how many times I heard back then to avoid too many function calls because of the overhead -- and in fact just last year I heard a new hire in the company where I work declare that she didn't want to refactor a long method because of function call overhead.  Now back then, that may have been a valid concern, but with today's modern hardware even if you're calling a trivial method in an extremely tight loop (which chances are the JIT compiler would optimize anyway) the results of removing method calls to speed up performance are negligible for the great majority of applications.  Now, obviously, there are those coding applications where speed is absolutely king (for example drivers, computer games, operating systems) where such sacrifices may be made.  But I would strongly advice against such optimization because of it's cost.  Many folks that are performing an optimization think it's always a win-win.  That they're simply adding speed to the application, what could possibly be wrong with that?  What they don't realize is the cost of their choice.  For every piece of straight-forward code that you obfuscate with performance enhancements, you risk the introduction of bugs in the long term technical debt of the application.  It will become so fragile over time that maintenance will become a nightmare.  I've seen such applications in places I have worked.  There are times I've seen applications where the designer was so obsessed with performance that they even designed their own memory management system for their application to try to squeeze out every ounce of performance.  Unfortunately, the application stability often suffers as a result and it is very difficult for anyone other than the original designer to maintain. I've even seen this recently where I heard a C++ developer bemoaning that in VS2010 the iterators are about twice as slow as they used to be because Microsoft added range checking (probably as part of the 0x standard implementation).  To me this was almost a joke.  Twice as slow sounds bad, but it almost never as bad as you think -- especially if you're gaining safety.  The only time twice is really that much slower is when once was too slow to begin with.  Think about it.  2 minutes is slow as a response time because 1 minute is slow.  But if an iterator takes 1 microsecond to move one position and a new, safer iterator takes 2 microseconds, this is trivial!  The only way you'd ever really notice this would be in iterating a collection just for the sake of iterating (i.e. no other operations).  To my mind, the added safety makes the extra time worth it. Always favor safety and maintainability when you can.  I know it can be a hard habit to break, especially if you started out your career early or in a language such as C where they are very performance conscious.  But in reality, these type of micro-optimizations only end up hurting you in the long run. Remember the two laws of optimization.  I'm not sure where I first heard these, but they are so true: For beginners: Do not optimize. For experts: Do not optimize yet. This is so true.  If you're a beginner, resist the urge to optimize at all costs.  And if you are an expert, delay that decision.  As long as you have chosen the right data structures and algorithms for your task, your performance will probably be more than sufficient.  Chances are it will be network, database, or disk hits that will be your slow-down, not your code.  As they say, 98% of your code's bottleneck is in 2% of your code so premature-optimization may add maintenance and safety debt that won't have any measurable impact.  Instead, code for maintainability and safety, and then, and only then, when you find a true bottleneck, then you should go back and optimize further.

    Read the article

  • Profiling Startup Of VS2012 &ndash; SpeedTrace Profiler

    - by Alois Kraus
    SpeedTrace is a relatively unknown profiler made a company called Ipcas. A single professional license does cost 449€+VAT. For the test I did use SpeedTrace 4.5 which is currently Beta. Although it is cheaper than dotTrace it has by far the most options to influence how profiling does work. First you need to create a tracing project which does configure tracing for one process type. You can start the application directly from the profiler or (much more interesting) it does attach to a specific process when it is started. For this you need to check “Trace the specified …” radio button and enter the process name in the “Process Name of the Trace” edit box. You can even selectively enable tracing for processes with a specific command line. Then you need to activate the trace project by pressing the Activate Project button and you are ready to start VS as usual. If you want to profile the next 10 VS instances that you start you can set the Number of Processes counter to e.g. 10. This is immensely helpful if you are trying to profile only the next 5 started processes. As you can see there are many more tabs which do allow to influence tracing in a much more sophisticated way. SpeedTrace is the only profiler which does not rely entirely on the profiling Api of .NET. Instead it does modify the IL code (instrumentation on the fly) to write tracing information to disc which can later be analyzed. This approach is not only very fast but it does give you unprecedented analysis capabilities. Once the traces are collected they do show up in your workspace where you can open the trace viewer. I do skip the other windows because this view is by far the most useful one. You can sort the methods not only by Wall Clock time but also by CPU consumption and wait time which none of the other products support in their views at the same time. If you want to optimize for CPU consumption sort by CPU time. If you want to find out where most time is spent you need Clock Total time and Clock Waiting. There you can directly see if the method did take long because it did wait on something or it did really execute stuff that did take so long. Once you have found a method you want to drill deeper you can double click on a method to get to the Caller/Callee view which is similar to the JetBrains Method Grid view. But this time you do see much more. In the middle is the clicked method. Above are the methods that call you and below are the methods that you do directly call. Normally you would then start digging deeper to find the end of the chain where the slow method worth optimizing is located. But there is a shortcut. You can press the magic   button to calculate the aggregation of all called methods. This is displayed in the lower left window where you can see each method call and how long it did take. There you can also sort to see if this call stack does only contain methods (e.g. WCF connect calls which you cannot make faster) not worth optimizing. YourKit has a similar feature where it is called Callees List. In the Functions tab you have in the context menu also many other useful analysis options One really outstanding feature is the View Call History Drilldown. When you select this one you get not a sum of all method invocations but a list with the duration of each method call. This is not surprising since SpeedTrace does use tracing to get its timings. There you can get many useful graphs how this method did behave over time. Did it become slower at some point in time or was only the first call slow? The diagrams and the list will tell you that. That is all fine but what should I do when one method call was slow? I want to see from where it was coming from. No problem select the method in the list hit F10 and you get the call stack. This is a life saver if you e.g. search for serialization problems. Today Serializers are used everywhere. You want to find out from where the 5s XmlSerializer.Deserialize call did come from? Hit F10 and you get the call stack which did invoke the 5s Deserialize call. The CPU timeline tab is also useful to find out where long pauses or excessive CPU consumption did happen. Click in the graph to get the Thread Stacks window where you can get a quick overview what all threads were doing at this time. This does look like the Stack Traces feature in YourKit. Only this time you get the last called method first which helps to quickly see what all threads were executing at this moment. YourKit does generate a rather long list which can be hard to go through when you have many threads. The thread list in the middle does not give you call stacks or anything like that but you see which methods were found most often executing code by the profiler which is a good indication for methods consuming most CPU time. This does sound too good to be true? I have not told you the best part yet. The best thing about this profiler is the staff behind it. When I do see a crash or some other odd behavior I send a mail to Ipcas and I do get usually the next day a mail that the problem has been fixed and a download link to the new version. The guys at Ipcas are even so helpful to log in to your machine via a Citrix Client to help you to get started profiling your actual application you want to profile. After a 2h telco I was converted from a hater to a believer of this tool. The fast response time might also have something to do with the fact that they are actively working on 4.5 to get out of the door. But still the support is by far the best I have encountered so far. The only downside is that you should instrument your assemblies including the .NET Framework to get most accurate numbers. You can profile without doing it but then you will see very high JIT times in your process which can severely affect the correctness of the measured timings. If you do not care about exact numbers you can also enable in the main UI in the Data Trace tab logging of method arguments of primitive types. If you need to know what files at which times were opened by your application you can find it out without a debugger. Since SpeedTrace does read huge trace files in its reader you should perhaps use a 64 bit machine to be able to analyze bigger traces as well. The memory consumption of the trace reader is too high for my taste. But they did promise for the next version to come up with something much improved.

    Read the article

< Previous Page | 4 5 6 7 8 9  | Next Page >