Search Results

Search found 654 results on 27 pages for 'principles'.

Page 8/27 | < Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >

  • On the search for my next great .Net Read

    - by user127954
    Just got done with "The art of unit testing". It was a great read and i think everyone should go buy a copy. With that said i think the next book I'm like to read would be a architecture / Design type book that would focus heavily on building your objects / software in such a way that it would be: Low Coupling High Cohesion Easily Maintainable / Extended Easy to test Easy to Navigate / Debug The above characteristcs are the most important ones but also maybe it would also include (but not necessary) designing for: Performance - Don't want to design a system at at the end find out its dog slow :) Scalability - Again don't want to design something at the end find out it won't scale. I'd also prefer (but not necessary again): Something newer - Architectural principles seem to gradually evolve / improve over time and id like something with current thinking. .Net as illustrating language - like i said above its not mandatory but since its what i use every day id prefer it to be in .net. Doesn't really matter if its in vb.net or c# Some of the topics that would be talked about its how to minimize dependencies and using interfaces throughout your solution rather than concrete classes. Maybe it would constract /compare some of the newest design principles like DDD, Repository Pattern, Ect... I already have "Clean Code" (don't know if its this type of book or not) and "Working effectively with legacy code" on my radar but id like to read a book based upon the topic i talked about above first. Is there such a book?

    Read the article

  • Designing for the future

    - by Dennis Vroegop
    User interfaces and user experience design is a fast moving field. It’s something that changes pretty quick: what feels fresh today will look outdated tomorrow. I remember the day I first got a beta version of Windows 95 and I felt swept away by the user interface of the OS. It felt so modern! If I look back now, it feels old. Well, it should: the design is 17 years old which is an eternity in our field. Of course, this is not limited to UI. Same goes for many industries. I want you to think back of the cars that amazed you when you were in your teens (if you are in your teens then this may not apply to you). Didn’t they feel like part of the future? Didn’t you think that this was the ultimate in designs? And aren’t those designs hopelessly outdated today (again, depending on your age, it may just be me)? Let’s review the Win95 design: And let’s compare that to Windows 7: There are so many differences here, I wouldn’t even know where to start explaining them. The general feeling however is one of more usability: studies have shown Windows 7 is much easier to understand for new users than the older versions of Windows did. Of course, experienced Windows users didn’t like it: people are usually afraid of changes and like to stick to what they know. But for new users this was a huge improvement. And that is what UX design is all about: make a product easier to use, with less training required and make users feel more productive. Still, there are areas where this doesn’t hold up. There are plenty examples of designs from the past that are still fresh today. But if you look closely at them, you’ll notice some subtle differences. This differences are what keep the designs fresh. A good example is the signs you’ll find on the road. They haven’t changed much over the years (otherwise people wouldn’t recognize them anymore) but they have been changing gradually to reflect changes in traffic. The same goes for computer interfaces. With each new product or version of a product, the UI and UX is changed gradually. Every now and then however, a bigger change is needed. Just think about the introduction of the Ribbon in Microsoft Office 2007: the whole UI was redesigned. A lot of old users (not in age, but in times of using older versions) didn’t like it a bit, but new users or casual users seem to be more efficient using the product. Which, of course, is exactly the reason behind the changes. I believe that a big engine behind the changes in User Experience design has been the web. In the old days (i.e. before the explosion of the internet) user interface design in Windows applications was limited to choosing the margins between your battleship gray buttons. When the web came along, and especially the web 2.0 where the browsers started to act more and more as application platforms, designers stepped in and made a huge impact. In the browser, they could do whatever they wanted. In the beginning this was limited to the darn blink tag but gradually people really started to think about UX. Even more so: the design of the UI and the whole experience was taken away from the developers and put into the hands of people who knew what they were doing: UX designers. This caused some problems. Everyone who has done a web project in the early 2000’s must have had the same experience: the designers give you a set of Photoshop files and tell you to translate it to HTML. Which, of course, is very hard to do. However, with new tooling and new standards this became much easier. The latest version of HTML and CSS has taken the responsibility for the design away from the developers and placed them in the capable hands of the designers. And that’s where that responsibility belongs, after all, I don’t want a designer to muck around in my c# code just as much as he or she doesn’t want me to poke in the sites style definitions. This change in responsibilities resulted in good looking but more important: better thought out user interfaces in websites. And when websites became more and more interactive, people started to expect the same sort of look and feel from their desktop applications. But that didn’t really happen. Most business applications still have that battleship gray look and feel. Ok, they may use a different color but we’re not talking colors here but usability. Now, you may not be able to read the Dutch captions, but even if you did you wouldn’t understand what was going on. At least, not when you first see it. You have to scan the screen, read all the labels, see how they are related to the other elements on the screen and then figure out what they do. If you’re an experienced user of this application however, this might be a good thing: you know what to do and you get all the information you need in one single screen. But for most applications this isn’t the case. A lot of people only use their computer for a limited time a day (a weird concept for me, but it happens) and need it to get something done and then get on with their lives. For them, a user interface experience like the above isn’t working. (disclaimer: I just picked a screenshot, I am not saying this is bad software but it is an example of about 95% of the Windows applications out there). For the knowledge worker, this isn’t a problem. They use one or two systems and they know exactly what they need to do to achieve their goal. They don’t want any clutter on their screen that distracts them from their task, they just want to be as efficient as possible. When they know the systems they are very productive. The point is, how long does it take to become productive? And: could they be even more productive if the UX was better? Are there things missing that they don’t know about? Are there better ways to achieve what they want to achieve? Also: could a system be designed in such a way that it is not only much more easy to work with but also less tiring? in the example above you need to switch between the keyboard and mouse a lot, something that we now know can be very tiring. The goal of most applications (being client apps or websites on any kind of device) is to provide information. Information is data that when given to the right people, on the right time, in the right place and when it is correct adds value for that person (please, remember that definition: I still hear the statement “the information was wrong” which doesn’t make sense: data can be wrong, information cannot be). So if a system provides data, how can we make sure the chances of becoming information is as high as possible? A good example of a well thought-out system that attempts this is the Zune client. It is a very good application, and I think the UX is much better than it’s main competitor iTunes. Have a look at both: On the left you see the iTunes screenshot, on the right the Zune. As you notice, the Zune screen has more images but less chrome (chrome being visuals not part of the data you want to show, i.e. edges around buttons). The whole thing is text oriented or image oriented, where that text or image is part of the information you need. What is important is big, what’s less important is smaller. Yet, everything you need to know at that point is present and your attention is drawn immediately to what you’re trying to achieve: information about music. You can easily switch between the content on your machine and content on your Zune player but clicking on the image of the player. But if you didn’t know that, you’d find out soon enough: the whole UX is designed in such a way that it invites you to play around. So sooner or later (probably sooner) you’d click on that image and you would see what it does. In the iTunes version it’s harder to find: the discoverability is a lot lower. For inexperienced people the Zune player feels much more natural than the iTunes player, and they get up to speed a lot faster. How does this all work? Why is this UX better? The answer lies in a project from Microsoft with the codename (it seems to be becoming the official name though) “Metro”. Metro is a design language, based on certain principles. When they thought about UX they took a good long look around them and went out in search of metaphors. And they found them. The team noticed that signage in streets, airports, roads, buildings and so on are usually very clear and very precise. These signs give you the information you need and nothing more. It’s simple, clearly understood and fast to understand. A good example are airport signs. Airports can be intimidating places, especially for the non-experienced traveler. In the early 1990’s Amsterdam Airport Schiphol decided to redesign all the signage to make the traveller feel less disoriented. They developed a set of guidelines for signs and implemented those. Soon, most airports around the world adopted these ideas and you see variations of the Dutch signs everywhere on the globe. The signs are text-oriented. Yes, there are icons explaining what it all means for the people who can’t read or don’t understand the language, but the basic sign language is text. It’s clear, it’s high-contrast and it’s easy to understand. One look at the sign and you know where to go. The only thing I don’t like is the green sign pointing to the emergency exit, but since this is the default style for emergency exits I understand why they did this. If you look at the Zune UI again, you’ll notice the similarities. Text oriented, little or no icons, clear usage of fonts and all the information you need. This design language has a set of principles: Clean, light, open and fast Content, not chrome Soulful and alive These are just a couple of the principles, you can read the whole philosophy behind Metro for Windows Phone 7 here. These ideas seem to work. I love my Windows Phone 7. It’s easy to use, it’s clear, there’s no clutter that I do not need. It works for me. And I noticed it works for a lot of other people as well, especially people who aren’t as proficient with computers as I am. You see these ideas in a lot other places. Corning, a manufacturer of glass, has made a video of possible usages of their products. It’s their glimpse into the future. You’ll notice that a lot of the UI in the screens look a lot like what Microsoft is doing with Metro (not coincidentally Corning is the supplier for the Gorilla glass display surface on the new SUR40 device (or Surface v2.0 as a lot of people call it)). The idea behind this vision is that data should be available everywhere where you it. Systems should be available at all times and data is presented in a clear and light manner so that you can turn that data into information. You don’t need a lot of fancy animations that only distract from the data. You want the data and you want it fast. Have a look at this truly inspiring video that made: This is what I believe the future will look like. Of course, not everything is possible, or even desirable. But it is a nice way to think about the future . I feel very strongly about designing applications in such a way that they add value to the user. Designing applications that turn data into information. Applications that make the user feel happy to use them. So… when are you going to drop the battleship-gray designs? Tags van Technorati: surface,design,windows phone 7,wp7,metro

    Read the article

  • TDD and your emerging design

    - by andrewstopford
    I was at DevWeek last week, it was a great week and I got a chance to speak with some of my geek heroes (Jeff Richter is a walking, talking CLR). One of the folks I most enjoyed listening to was ThoughtWorker Neal Ford who gave a session on emergeant design in TDD. Something struck me about the RGR cycle in TDD in that design could either be missed or misplaced if the refactor phase is never carried out and after the inital green phase the design is considered done. In TDD the emergant design that evolves as part of the cycle is key to the approach.  Neal talked about using cyclometric complexity as a measure of your emerging design but other considerations would surely include SOLID and DRY during the cycles. As you refactor to these kinds of design principles your design evolves.

    Read the article

  • New ADF Desktop Integration Components Demo Available

    - by juan.ruiz
    The new ADF Desktop Integration Components demo is available on the OTN and can be downloaded and ran in a standalone way.  The demo follows the same principles of the  ADF Faces and DVT Components demo, presenting the list of all the components available with its corresponding properties as well as feature demos exposing advanced functionality of the framework. It is a great demo that exposes from the very basics of each visual component as well as advanced functionality such as dependent list of values, master-details integration, event handling, integration with ADF Faces and web interfaces and parameter passing between ADF applications to excel. You need JDeveloper PS1 (11.1.2.0) and a Oracle database to install the sample schema. Your feedback is always welcome -let us know what you think. Access the demo here.

    Read the article

  • BDD IS Different to TDD

    - by Liam McLennan
    One of this morning’s sessions at Alt.NET 2010 discussed BDD. Charlie Pool expressed the opinion, which I have heard many times, that BDD is just a description of TDD done properly. For me, the core principles of BDD are: expressing behaviour in terms that show the value to the system actors Expressing behaviours / scenarios in a format that clearly separates the context, the action and the observations. If we go back to Kent Beck’s TDD book neither of these elements are mentioned as being core to TDD. BDD is an evolution of TDD. It is a specialisation of TDD, but it is not the same as TDD. Discussing BDD, and building specialised tools for BDD, is valuable even though the difference between BDD and TDD is subtle. Further, the existence of BDD does not mean that TDD is obsolete or invalidated.

    Read the article

  • The Incremental Architect&acute;s Napkin &ndash; #3 &ndash; Make Evolvability inevitable

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/06/04/the-incremental-architectacutes-napkin-ndash-3-ndash-make-evolvability-inevitable.aspxThe easier something to measure the more likely it will be produced. Deviations between what is and what should be can be readily detected. That´s what automated acceptance tests are for. That´s what sprint reviews in Scrum are for. It´s no small wonder our software looks like it looks. It has all the traits whose conformance with requirements can easily be measured. And it´s lacking traits which cannot easily be measured. Evolvability (or Changeability) is such a trait. If an operation is correct, if an operation if fast enough, that can be checked very easily. But whether Evolvability is high or low, that cannot be checked by taking a measure or two. Evolvability might correlate with certain traits, e.g. number of lines of code (LOC) per function or Cyclomatic Complexity or test coverage. But there is no threshold value signalling “evolvability too low”; also Evolvability is hardly tangible for the customer. Nevertheless Evolvability is of great importance - at least in the long run. You can get away without much of it for a short time. Eventually, though, it´s needed like any other requirement. Or even more. Because without Evolvability no other requirement can be implemented. Evolvability is the foundation on which all else is build. Such fundamental importance is in stark contrast with its immeasurability. To compensate this, Evolvability must be put at the very center of software development. It must become the hub around everything else revolves. Since we cannot measure Evolvability, though, we cannot start watching it more. Instead we need to establish practices to keep it high (enough) at all times. Chefs have known that for long. That´s why everybody in a restaurant kitchen is constantly seeing after cleanliness. Hygiene is important as is to have clean tools at standardized locations. Only then the health of the patrons can be guaranteed and production efficiency is constantly high. Still a kitchen´s level of cleanliness is easier to measure than software Evolvability. That´s why important practices like reviews, pair programming, or TDD are not enough, I guess. What we need to keep Evolvability in focus and high is… to continually evolve. Change must not be something to avoid but too embrace. To me that means the whole change cycle from requirement analysis to delivery needs to be gone through more often. Scrum´s sprints of 4, 2 even 1 week are too long. Kanban´s flow of user stories across is too unreliable; it takes as long as it takes. Instead we should fix the cycle time at 2 days max. I call that Spinning. No increment must take longer than from this morning until tomorrow evening to finish. Then it should be acceptance checked by the customer (or his/her representative, e.g. a Product Owner). For me there are several resasons for such a fixed and short cycle time for each increment: Clear expectations Absolute estimates (“This will take X days to complete.”) are near impossible in software development as explained previously. Too much unplanned research and engineering work lurk in every feature. And then pervasive interruptions of work by peers and management. However, the smaller the scope the better our absolute estimates become. That´s because we understand better what really are the requirements and what the solution should look like. But maybe more importantly the shorter the timespan the more we can control how we use our time. So much can happen over the course of a week and longer timespans. But if push comes to shove I can block out all distractions and interruptions for a day or possibly two. That´s why I believe we can give rough absolute estimates on 3 levels: Noon Tonight Tomorrow Think of a meeting with a Product Owner at 8:30 in the morning. If she asks you, how long it will take you to implement a user story or bug fix, you can say, “It´ll be fixed by noon.”, or you can say, “I can manage to implement it until tonight before I leave.”, or you can say, “You´ll get it by tomorrow night at latest.” Yes, I believe all else would be naive. If you´re not confident to get something done by tomorrow night (some 34h from now) you just cannot reliably commit to any timeframe. That means you should not promise anything, you should not even start working on the issue. So when estimating use these four categories: Noon, Tonight, Tomorrow, NoClue - with NoClue meaning the requirement needs to be broken down further so each aspect can be assigned to one of the first three categories. If you like absolute estimates, here you go. But don´t do deep estimates. Don´t estimate dozens of issues; don´t think ahead (“Issue A is a Tonight, then B will be a Tomorrow, after that it´s C as a Noon, finally D is a Tonight - that´s what I´ll do this week.”). Just estimate so Work-in-Progress (WIP) is 1 for everybody - plus a small number of buffer issues. To be blunt: Yes, this makes promises impossible as to what a team will deliver in terms of scope at a certain date in the future. But it will give a Product Owner a clear picture of what to pull for acceptance feedback tonight and tomorrow. Trust through reliability Our trade is lacking trust. Customers don´t trust software companies/departments much. Managers don´t trust developers much. I find that perfectly understandable in the light of what we´re trying to accomplish: delivering software in the face of uncertainty by means of material good production. Customers as well as managers still expect software development to be close to production of houses or cars. But that´s a fundamental misunderstanding. Software development ist development. It´s basically research. As software developers we´re constantly executing experiments to find out what really provides value to users. We don´t know what they need, we just have mediated hypothesises. That´s why we cannot reliably deliver on preposterous demands. So trust is out of the window in no time. If we switch to delivering in short cycles, though, we can regain trust. Because estimates - explicit or implicit - up to 32 hours at most can be satisfied. I´d say: reliability over scope. It´s more important to reliably deliver what was promised then to cover a lot of requirement area. So when in doubt promise less - but deliver without delay. Deliver on scope (Functionality and Quality); but also deliver on Evolvability, i.e. on inner quality according to accepted principles. Always. Trust will be the reward. Less complexity of communication will follow. More goodwill buffer will follow. So don´t wait for some Kanban board to show you, that flow can be improved by scheduling smaller stories. You don´t need to learn that the hard way. Just start with small batch sizes of three different sizes. Fast feedback What has been finished can be checked for acceptance. Why wait for a sprint of several weeks to end? Why let the mental model of the issue and its solution dissipate? If you get final feedback after one or two weeks, you hardly remember what you did and why you did it. Resoning becomes hard. But more importantly youo probably are not in the mood anymore to go back to something you deemed done a long time ago. It´s boring, it´s frustrating to open up that mental box again. Learning is harder the longer it takes from event to feedback. Effort can be wasted between event (finishing an issue) and feedback, because other work might go in the wrong direction based on false premises. Checking finished issues for acceptance is the most important task of a Product Owner. It´s even more important than planning new issues. Because as long as work started is not released (accepted) it´s potential waste. So before starting new work better make sure work already done has value. By putting the emphasis on acceptance rather than planning true pull is established. As long as planning and starting work is more important, it´s a push process. Accept a Noon issue on the same day before leaving. Accept a Tonight issue before leaving today or first thing tomorrow morning. Accept a Tomorrow issue tomorrow night before leaving or early the day after tomorrow. After acceptance the developer(s) can start working on the next issue. Flexibility As if reliability/trust and fast feedback for less waste weren´t enough economic incentive, there is flexibility. After each issue the Product Owner can change course. If on Monday morning feature slices A, B, C, D, E were important and A, B, C were scheduled for acceptance by Monday evening and Tuesday evening, the Product Owner can change her mind at any time. Maybe after A got accepted she asks for continuation with D. But maybe, just maybe, she has gotten a completely different idea by then. Maybe she wants work to continue on F. And after B it´s neither D nor E, but G. And after G it´s D. With Spinning every 32 hours at latest priorities can be changed. And nothing is lost. Because what got accepted is of value. It provides an incremental value to the customer/user. Or it provides internal value to the Product Owner as increased knowledge/decreased uncertainty. I find such reactivity over commitment economically very benefical. Why commit a team to some workload for several weeks? It´s unnecessary at beast, and inflexible and wasteful at worst. If we cannot promise delivery of a certain scope on a certain date - which is what customers/management usually want -, we can at least provide them with unpredecented flexibility in the face of high uncertainty. Where the path is not clear, cannot be clear, make small steps so you´re able to change your course at any time. Premature completion Customers/management are used to premeditating budgets. They want to know exactly how much to pay for a certain amount of requirements. That´s understandable. But it does not match with the nature of software development. We should know that by now. Maybe there´s somewhere in the world some team who can consistently deliver on scope, quality, and time, and budget. Great! Congratulations! I, however, haven´t seen such a team yet. Which does not mean it´s impossible, but I think it´s nothing I can recommend to strive for. Rather I´d say: Don´t try this at home. It might hurt you one way or the other. However, what we can do, is allow customers/management stop work on features at any moment. With spinning every 32 hours a feature can be declared as finished - even though it might not be completed according to initial definition. I think, progress over completion is an important offer software development can make. Why think in terms of completion beyond a promise for the next 32 hours? Isn´t it more important to constantly move forward? Step by step. We´re not running sprints, we´re not running marathons, not even ultra-marathons. We´re in the sport of running forever. That makes it futile to stare at the finishing line. The very concept of a burn-down chart is misleading (in most cases). Whoever can only think in terms of completed requirements shuts out the chance for saving money. The requirements for a features mostly are uncertain. So how does a Product Owner know in the first place, how much is needed. Maybe more than specified is needed - which gets uncovered step by step with each finished increment. Maybe less than specified is needed. After each 4–32 hour increment the Product Owner can do an experient (or invite users to an experiment) if a particular trait of the software system is already good enough. And if so, she can switch the attention to a different aspect. In the end, requirements A, B, C then could be finished just 70%, 80%, and 50%. What the heck? It´s good enough - for now. 33% money saved. Wouldn´t that be splendid? Isn´t that a stunning argument for any budget-sensitive customer? You can save money and still get what you need? Pull on practices So far, in addition to more trust, more flexibility, less money spent, Spinning led to “doing less” which also means less code which of course means higher Evolvability per se. Last but not least, though, I think Spinning´s short acceptance cycles have one more effect. They excert pull-power on all sorts of practices known for increasing Evolvability. If, for example, you believe high automated test coverage helps Evolvability by lowering the fear of inadverted damage to a code base, why isn´t 90% of the developer community practicing automated tests consistently? I think, the answer is simple: Because they can do without. Somehow they manage to do enough manual checks before their rare releases/acceptance checks to ensure good enough correctness - at least in the short term. The same goes for other practices like component orientation, continuous build/integration, code reviews etc. None of that is compelling, urgent, imperative. Something else always seems more important. So Evolvability principles and practices fall through the cracks most of the time - until a project hits a wall. Then everybody becomes desperate; but by then (re)gaining Evolvability has become as very, very difficult and tedious undertaking. Sometimes up to the point where the existence of a project/company is in danger. With Spinning that´s different. If you´re practicing Spinning you cannot avoid all those practices. With Spinning you very quickly realize you cannot deliver reliably even on your 32 hour promises. Spinning thus is pulling on developers to adopt principles and practices for Evolvability. They will start actively looking for ways to keep their delivery rate high. And if not, management will soon tell them to do that. Because first the Product Owner then management will notice an increasing difficulty to deliver value within 32 hours. There, finally there emerges a way to measure Evolvability: The more frequent developers tell the Product Owner there is no way to deliver anything worth of feedback until tomorrow night, the poorer Evolvability is. Don´t count the “WTF!”, count the “No way!” utterances. In closing For sustainable software development we need to put Evolvability first. Functionality and Quality must not rule software development but be implemented within a framework ensuring (enough) Evolvability. Since Evolvability cannot be measured easily, I think we need to put software development “under pressure”. Software needs to be changed more often, in smaller increments. Each increment being relevant to the customer/user in some way. That does not mean each increment is worthy of shipment. It´s sufficient to gain further insight from it. Increments primarily serve the reduction of uncertainty, not sales. Sales even needs to be decoupled from this incremental progress. No more promises to sales. No more delivery au point. Rather sales should look at a stream of accepted increments (or incremental releases) and scoup from that whatever they find valuable. Sales and marketing need to realize they should work on what´s there, not what might be possible in the future. But I digress… In my view a Spinning cycle - which is not easy to reach, which requires practice - is the core practice to compensate the immeasurability of Evolvability. From start to finish of each issue in 32 hours max - that´s the challenge we need to accept if we´re serious increasing Evolvability. Fortunately higher Evolvability is not the only outcome of Spinning. Customer/management will like the increased flexibility and “getting more bang for the buck”.

    Read the article

  • Puzzlepart Product Boxing Rocks

    - by madsn
    I had a few main drivers for starting the Puzzlepart project in the first place. First; working with great people, secondly having fun at work following the team principles.Third; always challenge with new ways of work. One of the main concepts that has evolved in our team is the concept of "tangible". Anything and everything HAS to be tangible and touchable and we thrive for this in everything that we do. The past two days of workshopping is a great example of this. Andreas had experienced good...(read more)

    Read the article

  • User Experience Fundamentals

    - by ultan o'broin
    Understanding what user experience means in the modern work environment is central to building great-looking usable applications on the desktop or mobile devices. What better place to start a series of blog posts on such Applications User Experience team enablement for customers and partners than by sharing what the term really means, writes team member Karen Scipi. Applications UX have gained valuable insights into developing a user experience that reflects the experience of today’s worker. We have observed real workers performing real tasks in real work environments, and we have developed a set of new standards of application design that have been scientifically proven to be beneficial to enable today’s workers. We share such expertise to enable our customers and partners to benefit from our insights and to further their return on investment when building Oracle applications. So, What is User Experience? ?The user interface (UI) is about the on-screen user context provided by the layout of widgets (such as icons, fields, and buttons and more) and the visual impact of colors, typographic choices, and so on. The UI comprises the “look and feel” of the application that users interact with, and reflects, in essence, the most immediate aspects of usability we can now all relate to.  User experience, on the other hand, is about understanding the whole context of the world of work, how workers go about completing tasks, crossing all sorts of boundaries along the way. It is a study of how business processes and workers goals coincide, how users work with technology or other tools to get their jobs done, their interactions with other users, and their response to the technical, physical, and cultural environment around them. User experience is all about how users work—their work environments, office layouts, desk tools, types of devices, their working day, and more. Even their job aids, such as sticky notes, offer insight for UX innovation. User experience matters because businesses needs to be efficient, work must be productive, and users now demand to be satisfied by the applications they work with. In simple terms, tasks finished quickly and accurately for a business evokes organization and worker satisfaction, which in turn makes workers feel good and more than willing to use the application again tomorrow. Design Principles for the Enterprise Worker The consumerization of information technology has raised the bar for enterprise applications. Applications must be consistent, simple, intuitive, but above all contextual, reflecting how and when workers work, in the office or on the go. For example, the Google search experience with its type-ahead keyword-prompting feature is how workers expect to be able to discover enterprise information, too. Type-ahead in PeopleSoft 9.1 To build software that enables workers to be productive, our design principles meet modern work requirements about consistency, with well-organized, context-driven information, geared for a working world of discovery and collaboration. Our applications must also behave in a simple, web-like way just like Amazon, Google, and Apple products that workers use at home or on the go. Our user experience must also reflect workers’ needs for flexibility and well-loved enterprise practices such as using popular desktop tools like Microsoft Excel or Outlook as required. Building User Experience Productively The building blocks of Oracle Fusion Applications are the user experience design patterns. Based on the Oracle Fusion Middleware technology used to build Oracle Fusion Applications, the patterns are reusable solutions to common usability challenges that ADF developers typically face as they build applications, extensions, and integrations. Developers use the patterns as part of their Oracle toolkits to realize great usability consistently and in a productive way. Our design pattern creation process is informed by user experience research and science, an understanding of our technology’s capabilities, the demands for simplification and intuitiveness from users, and the best of Oracle’s acquisitions strategy (an injection of smart people and smart innovation). The patterns are supported by usage guidelines and are tested in our labs and assembled into a library of proven resources we used to build own Oracle Fusion Applications and other Oracle applications user experiences. The design patterns library is now available to the ADF community and to our partners and customers, for free. Developers with ADF skills and other technology skills can now offer more than just coding and functionality and still use the best in enterprise methodologies to ensure that a great user experience is easily applied, scaled, and maintained, whether it be for SaaS or on-premise deployments for Oracle Fusion Applications, for applications coexistence, or for partner integrations scenarios.  Oracle partners and customers already using our design patterns to build solutions and win business in smart and productive ways are now sharing their experiences and insights on pattern use to benefit your entire business. Applications UX is going global with the message and the means. Our hands-on user experience enablement through ADF  is expanding. So, stay tuned to Misha Vaughan's Voice of User Experience (VOX) blog and follow along on Twitter at @usableapps for news of outreach events and other learning opportunities. Interested in Learning More? Oracle Fusion Applications User Experience Patterns and Guidelines Library Shout-outs for Oracle UX Design Patterns Oracle Fusion Applications User Experience Design Patterns: Productivity Realized

    Read the article

  • design pattern advice: graph -> computation

    - by csetzkorn
    I have a domain model, persisted in a database, which represents a graph. A graph consists of nodes (e.g. NodeTypeA, NodeTypeB) which are connected via branches. The two generic elements (nodes and branches will have properties). A graph will be sent to a computation engine. To perform computations the engine has to be initialised like so (simplified pseudo code): Engine Engine = new Engine() ; Object ID1 = Engine.AddNodeTypeA(TypeA.Property1, TypeA.Property2, …, TypeA.Propertyn); Object ID2 = Engine.AddNodeTypeB(TypeB.Property1, TypeB.Property2, …, TypeB.Propertyn); Engine.AddBranch(ID1,ID2); Finally the computation is performed like this: Engine.DoSomeComputation(); I am just wondering, if there are any relevant design patterns out there, which help to achieve the above using good design principles. I hope this makes sense. Any feedback would be very much appreciated.

    Read the article

  • How Lead-Acid Batteries Work [Video]

    - by Jason Fitzpatrick
    Every morning when you go out and start your car, you’re pulling power from a lead-acid battery. But how exactly do they work? In this informative video we see how lead plates and sulfuric acid provide the power your car craves. Courtesy of Engineer Guy Video: Bill explains the essential principles of a lead-acid battery. He shows the inside of motorcycle lead-acid battery, removes the lead and lead-oxide plates and shows how they generate a 2 volt potential difference when placed in sulfuric acid. He explains how the build up of lead sulfate between the plates will make the battery unusable if it discharged completely, which leads him to a description of how to make a deep cycle battery used for collecting solar energy. [via Make] How to Use an Xbox 360 Controller On Your Windows PC Download the Official How-To Geek Trivia App for Windows 8 How to Banish Duplicate Photos with VisiPic

    Read the article

  • Enterprise 2.0: Expectations vs. Reality

    - by kellsey.ruppel(at)oracle.com
    If you haven't heard it already, check out the podcast interview that Enterprise 2.0 expert John Brunswick did with Bob Rhubart, host of ArchBeat Podcast. Listen as John discusses some of the expectations vs. reality when it comes to Enterprise 2.0. Listen to Part 1 Listen to Part 2 Listen to Part 3 You can connect with John Brunswick and learn more about Enterprise 2.0 at the following links: John's Homepage Twitter: @johnbrunswick Linked In Oracle Fusion ECM Blog AIIM Enterprise 2.0 Blog Enterprise 2.0 Workbench (Youtube) JSP and Beyond (ebook) OTN Technical Articles: Extending the Business Value of SOA through Business Process Management Unlocking the Value of Enterprise 2.0 Collaboration and Authoring Tools Principles of Natural Participation And here are some additional links if you are interested in learning more about Bob Rhubart and ArchBeat: ArchBeat blog ArchBeat Podcast Oracle Architect Community Mix Profile Linked In FriendFeed Twitter: @brhubart

    Read the article

  • Web services, J2EE, Spring, DB integration project ideas - maybe data mining related?

    - by saral jain
    I am a graduate Computer Science student (Data Mining and Machine Learning) and have good exposure to core Java (3 years). I have read up on a bunch of stuff on the following topics: Design patterns, J2EE Web services (SOAP and REST), Spring, and Hibernate Java Concurrency - advanced features like Task and Executors. I would now like to do a project combining this stuff -- over my free time of course -- to get a better understanding of these things and to kind of make an end to end software (to learn the best design principles etc + SVN, maven). Any good project ideas would be really appreciated. I just want to build this stuff to learn, so I don't really mind re-inventing the wheel. Also, anything related to data mining would be an added bonus as it fits with my research but is absolutely not necessary since this project is more to learn to do large scale software development.

    Read the article

  • College Courses through distance learning

    - by Matt
    I realize this isn't really a programming question, but didn't really know where to post this in the stackexchange and because I am a computer science major i thought id ask here. This is pretty unique to the programmer community since my degree is about 95% programming. I have 1 semester left, but i work full time. I would like to finish up in December, but to make things easier i like to take online classes whenever I can. So, my question is does anyone know of any colleges that offer distance learning courses for computer science? I have been searching around and found a few potential classes, but not sure yet. I would like to gather some classes and see what i can get approval for. Class I need: Only need one C SC 437 Geometric Algorithms C SC 445 Algorithms C SC 473 Automata Only need one C SC 452 Operating Systems C SC 453 Compilers/Systems Software While i only need of each of the above courses i still need to take two more electives. These also have to be upper 400 level classes. So i can take multiple in each category. Some other classes I can take are: CSC 447 - Green Computing CSC 425 - Computer Networking CSC 460 - Database Design CSC 466 - Computer Security I hoping to take one or two of these courses over the summer. If not, then online over the regular semester would be ok too. Any help in helping find these classes would be awesome. Maybe you went to a college that offered distance learning. Some of these classes may be considered to be graduate courses too. Descriptions are listed below if you need. Thanks! Descriptions Computer Security This is an introductory course covering the fundamentals of computer security. In particular, the course will cover basic concepts of computer security such as threat models and security policies, and will show how these concepts apply to specific areas such as communication security, software security, operating systems security, network security, web security, and hardware-based security. Computer Networking Theory and practice of computer networks, emphasizing the principles underlying the design of network software and the role of the communications system in distributed computing. Topics include routing, flow and congestion control, end-to-end protocols, and multicast. Database Design Functions of a database system. Data modeling and logical database design. Query languages and query optimization. Efficient data storage and access. Database access through standalone and web applications. Green Computing This course covers fundamental principles of energy management faced by designers of hardware, operating systems, and data centers. We will explore basic energy management option in individual components such as CPUs, network interfaces, hard drives, memory. We will further present the energy management policies at the operating system level that consider performance vs. energy saving tradeoffs. Finally we will consider large scale data centers where energy management is done at multiple layers from individual components in the system to shutting down entries subset of machines. We will also discuss energy generation and delivery and well as cooling issues in large data centers. Compilers/Systems Software Basic concepts of compilation and related systems software. Topics include lexical analysis, parsing, semantic analysis, code generation; assemblers, loaders, linkers; debuggers. Operating Systems Concepts of modern operating systems; concurrent processes; process synchronization and communication; resource allocation; kernels; deadlock; memory management; file systems. Algorithms Introduction to the design and analysis of algorithms: basic analysis techniques (asymptotics, sums, recurrences); basic design techniques (divide and conquer, dynamic programming, greedy, amortization); acquiring an algorithm repertoire (sorting, median finding, strong components, spanning trees, shortest paths, maximum flow, string matching); and handling intractability (approximation algorithms, branch and bound). Automata Introduction to models of computation (finite automata, pushdown automata, Turing machines), representations of languages (regular expressions, context-free grammars), and the basic hierarchy of languages (regular, context-free, decidable, and undecidable languages). Geometric Algorithms The study of algorithms for geometric objects, using a computational geometry approach, with an emphasis on applications for graphics, VLSI, GIS, robotics, and sensor networks. Topics may include the representation and overlaying of maps, finding nearest neighbors, solving linear programming problems, and searching geometric databases.

    Read the article

  • [News] Excursion dans le monde Java d'un (bon) d?veloppeur .NET

    Ayende, l'architecte principal de l'outil NHibernate a d?cid? il y a quelques temps de se former ? JEE pour parfaire ses connaissances. Dans ce billet, qui date de quelques jours, mais qui n'a pas ?t? ?norm?ment relay?, il d?crit son exp?rience. Le constat est assez cinglant et forc?ment emprunt d'une certaine partialit?, mais toujours tr?s int?ressant ? lire : (...) "All in all, I find myself unimpressed by the amount of work that was shuffled to the tools, it doesn?t seem right. And it seems like a justification of a bad practice. When I consider my own design principles (Zero Friction!) in light of this, I am much happier that I am mainly working in the .NET world. But I think that having this understanding is going to be very helpful moving forward"

    Read the article

  • LSP vs OCP / Liskov Substitution VS Open Close

    - by Kolyunya
    I am trying to understand the SOLID principles of OOP and I've come to the conclusion that LSP and OCP have some similarities (if not to say more). the open/closed principle states "software entities (classes, modules, functions, etc.) should be open for extension, but closed for modification". LSP in simple words states that any instance of Foo can be replaced with any instance of Bar which is derived from Foo and the program will work the same very way. I'm not a pro OOP programmer, but it seems to me that LSP is only possible if Bar, derived from Foo does not change anything in it but only extends it. That means that in particular program LSP is true only when OCP is true and OCP is true only if LSP is true. That means that they are equal. Correct me if I'm wrong. I really want to understand these ideas. Great thanks for an answer.

    Read the article

  • Who are the outspoken critics of Object-Oriented design?

    - by Xepoch
    Sure, object-oriented techniques are great and have stuck around for a while. I know only less than a handful of critics of the OO principles. It seems as though most non-OO designs and architectures are shunned, yet we continue to write a lot of good software in C and solve a lot of data changes via awk/sed and countless other examples. Correct tool for the correct job, yes? I'm having a hard time finding articles, presentations, or published criticisms of OO (even Fred Brooks has blessed information hiding). Are there any well-known, published and/or outspoken critics of OO?

    Read the article

  • How to elevate engineering culture at large corporations?

    - by davidk01
    One thing I have realized working at a large corporation is that it doesn't matter how smart you are because if everyone else doesn't see the value in what you are doing then you are not going to get very far. It's much harder to convince 1000 people that a certain part of the software stack should be in groovy than it is to convince 10 people of the same thing. I'm curious how people go about elevating the engineering culture at large corporations because I've been running into walls left and right and I would like to be more proactive about how I go about it. I have been advocating tech talks and tech demos along with code reviews as potential solutions. Do people have other suggestions? Note that 1000 people and groovy are just representative examples. I am not married to groovy or any other language and 1000 people is meant to indicate large scale and how to go about teaching a large group of people about best practices and engineering principles in general.

    Read the article

  • Availability Best Practices on Oracle VM Server for SPARC

    - by jsavit
    This is the first of a series of blog posts on configuring Oracle VM Server for SPARC (also called Logical Domains) for availability. This series will show how to how to plan for availability, improve serviceability, avoid single points of failure, and provide resiliency against hardware and software failures. Availability is a broad topic that has filled entire books, so these posts will focus on aspects specifically related to Oracle VM Server for SPARC. The goal is to improve Reliability, Availability and Serviceability (RAS): An article defining RAS can be found here. Oracle VM Server for SPARC Principles for Availability Let's state some guiding principles for availability that apply to Oracle VM Server for SPARC: Avoid Single Points Of Failure (SPOFs). Systems should be configured so a component failure does not result in a loss of application service. The general method to avoid SPOFs is to provide redundancy so service can continue without interruption if a component fails. For a critical application there may be multiple levels of redundancy so multiple failures can be tolerated. Oracle VM Server for SPARC makes it possible to configure systems that avoid SPOFs. Configure for availability at a level of resource and effort consistent with business needs. Effort and resource should be consistent with business requirements. Production has different availability requirements than test/development, so it's worth expending resources to provide higher availability. Even within the category of production there may be different levels of criticality, outage tolerances, recovery and repair time requirements. Keep in mind that a simple design may be more understandable and effective than a complex design that attempts to "do everything". Design for availability at the appropriate tier or level of the platform stack. Availability can be provided in the application, in the database, or in the virtualization, hardware and network layers they depend on - or using a combination of all of them. It may not be necessary to engineer resilient virtualization for stateless web applications applications where availability is provided by a network load balancer, or for enterprise applications like Oracle Real Application Clusters (RAC) and WebLogic that provide their own resiliency. It's (often) the same architecture whether virtual or not: For example, providing resiliency against a lost device path or failing disk media is done for the same reasons and may use the same design whether in a domain or not. It's (often) the same technique whether using domains or not: Many configuration steps are the same. For example, configuring IPMP or creating a redundant ZFS pool is pretty much the same within the guest whether you're in a guest domain or not. There are configuration steps and choices for provisioning the guest with the virtual network and disk devices, which we will discuss. Sometimes it is different using domains: There are new resources to configure. Most notable is the use of alternate service domains, which provides resiliency in case of a domain failure, and also permits improved serviceability via "rolling upgrades". This is an important differentiator between Oracle VM Server for SPARC and traditional virtual machine environments where all virtual I/O is provided by a monolithic infrastructure that itself is a SPOF. Alternate service domains are widely used to provide resiliency in production logical domains environments. Some things are done via logical domains commands, and some are done in the guest: For example, with Oracle VM Server for SPARC we provide multiple network connections to the guest, and then configure network resiliency in the guest via IP Multi Pathing (IPMP) - essentially the same as for non-virtual systems. On the other hand, we configure virtual disk availability in the virtualization layer, and the guest sees an already-resilient disk without being aware of the details. These blogs will discuss configuration details like this. Live migration is not "high availability" in the sense of "continuous availability": If the server is down, then you don't live migrate from it! (A cluster or VM restart elsewhere would be used). However, live migration can be part of the RAS (Reliability, Availability, Serviceability) picture by improving Serviceability - you can move running domains off of a box before planned service or maintenance. The blog Best Practices - Live Migration on Oracle VM Server for SPARC discusses this. Topics Here are some of the topics that will be covered: Network availability using IP Multipathing and aggregates Disk path availability using virtual disks defined with multipath groups ("mpgroup") Disk media resiliency configuring for redundant disks that can tolerate media loss Multiple service domains - this is probably the most significant item and the one most specific to Oracle VM Server for SPARC. It is very widely deployed in production environments as the means to provide network and disk availability, but it can be confusing. Subsequent articles will describe why and how to configure multiple service domains. Note, for the sake of precision: an I/O domain is any domain that has a physical I/O resource (such as a PCIe bus root complex). A service domain is a domain providing virtual device services to other domains; it is almost always an I/O domain too (so it can have something to serve). Resources Here are some important links; we'll be drawing on their content in the next several articles: Oracle VM Server for SPARC Documentation Maximizing Application Reliability and Availability with SPARC T5 Servers whitepaper by Gary Combs Maximizing Application Reliability and Availability with the SPARC M5-32 Server whitepaper by Gary Combs Summary Oracle VM Server for SPARC offers features that can be used to provide highly-available environments. This and the following blog entries will describe how to plan and deploy them.

    Read the article

  • C-Sharpen Up at Philly.NET

    - by Steve Michelotti
    On October 6th, I’ll be presenting at C-Sharpen Up at Philly.NET at the Microsoft Malvern, PA location. I’ll be presenting along with Stephen Bohlen, Andy Schwam, and Danilo Diaz. This is a great one-day event that covers real-world usage of all major C# language features from C# 1.0 to C# 5.0. It also includes a great presentation on the SOLID principles by Stephen Bohlen. Registration won’t be open much longer. You can register here. Hope to see you there!

    Read the article

  • Taking Object Oriented development to the next level

    - by Songo
    Can you mention some advanced OO topics or concepts that one should be aware of? I have been a developer for 2 years now and currently aiming for a certain company that requires a web developer with a minimum experience of 3 years. I imagine the interview will have the basic object oriented topics like (Abstraction, Polymorphism, Inheritance, Design patterns, UML, Databases and ORMs, SOLID principles, DRY principle, ...etc) I have these topics covered, but what I'm looking forward to is bringing up topics such as Efferent Coupling, Afferent Coupling, Instability, The law of Demeter, ...etc. Till few days ago I never knew such concepts existed (maybe because I'm a communication engineer basically not a CS graduate.) Can you please recommend some more advanced topics concerning object oriented programming?

    Read the article

  • Web services, Java EE, Spring, DB integration project ideas - maybe data mining related?

    - by saral jain
    I am a graduate Computer Science student (Data Mining and Machine Learning) and have good exposure to core Java (3 years). I have read up on a bunch of stuff on the following topics: Design patterns, Java EE Web services (SOAP and REST), Spring, and Hibernate Java Concurrency - advanced features like Task and Executors. I would now like to do a project combining this stuff -- over my free time of course -- to get a better understanding of these things and to kind of make an end to end software (to learn the best design principles etc + SVN, maven). Any good project ideas would be really appreciated. I just want to build this stuff to learn, so I don't really mind re-inventing the wheel. Also, anything related to data mining would be an added bonus as it fits with my research but is absolutely not necessary since this project is more to learn to do large scale software development.

    Read the article

  • Search engine friendly, SEO blog software

    - by Steve
    Is there a comparison of the SEO capabilities of different blogging software/blogging plugins? I'd like things to be as optimised as possible. I have a basic grasp of SEO principles, probably 12-24 months old. I'm about to start a blog, after having a few previously. Also, I'm not up to speed on what pings are in the blogging world. What are they, and how do they work? I assume it is best to have blogging software that automatically pings.

    Read the article

  • What can programmers learn from the construction industry?

    - by Renesis
    When talking with colleagues about software design and development principles, I've noticed one of the most common sources for analogies is the construction industry. We build software and we consider the design and structure to be the architecture. One of the best ways to learn (or teach) are through analyzing analogies - what other analogies can be drawn from construction? (whether already in common use in software or not). Please provide a description, or your personal experience, regarding how the programming concept is similar to the construction concept. [Credit to Programming concepts taken from the arts and humanities for the idea]

    Read the article

  • Agile Executives

    - by Robert May
    Over the years, I have experienced many different styles of software development. In the early days, most of the development was Waterfall development. In the last few years, I’ve become an advocate of Scrum. As I talked about last month, many people have misconceptions about what Scrum really is. The reason why we do Scrum at Veracity is because of the difference it makes in the life of the team doing Scrum. Software is for people, and happy motivated people will build better software. However, not all executives understand Scrum and how to get the information from development teams that use Scrum. I think that these executives need a support system for managing Agile teams. Historical Software Management When Henry Ford pioneered the assembly line, I doubt he realized the impact he’d have on Management through the ages. Historically, management was about managing the process of building things. The people were just cogs in that process. Like all cogs, they were replaceable. Unfortunately, most of the software industry followed this same style of management. Many of today’s senior managers learned how to manage companies before software was a significant influence on how the company did business. Software development is a very creative process, but too many managers have treated it like an assembly line. Idea’s go in, working software comes out, and we just have to figure out how to make sure that the ideas going in are perfect, then the software will be perfect. Lean Manufacturing In the manufacturing industry, Lean manufacturing has revolutionized Henry Ford’s assembly line. Derived from the Toyota process, Lean places emphasis on always providing value for the customer. Anything the customer wouldn’t be willing to pay for is wasteful. Agile is based on similar principles. We’re building software for people, and anything that isn’t useful to them doesn’t add value. Waterfall development would have teams build reams and reams of documentation about how the software should work. Agile development dispenses with this work because excessive documentation doesn’t add value. Instead, teams focus on building documentation only when it truly adds value to the customer. Many other Agile principals are similar. Playing Catch-up Just like in the manufacturing industry, many managers in the software industry have yet to understand the value of the principles of Lean and Agile. They think they can wrap the uncertainties of software development up in a nice little package and then just execute, usually followed by failure. They spend a great deal of time and money trying to exactly predict the future. That expenditure of time and money doesn’t add value to the customer. Managers that understand that Agile know that there is a better way. They will instead focus on the priorities of the near term in detail, and leave the future to take care of itself. They have very detailed two week plans with less detailed quarterly plans. These plans are guided by a general corporate strategy that doesn’t focus on the exact implementation details. These managers also think in smaller features rather than large functionality. This adds a great deal of value to customers, since the features that matter most are the ones that the team focuses on in the near term and then are able to deliver to the customers that are paying for them. Agile managers also realize that stale software is very costly. They know that keeping the technology in their software current is much less expensive and risky than large rewrites that occur infrequently and schedule time in each release for refactoring of the existing software. Agile Executives Even though Agile is a better way, I’ve still seen failures using the Agile process. While some of these failures can be attributed to the team, most of them are caused by managers, not the team. Managers fail to understand what Agile is, how it works, and how to get the information that they need to make good business decisions. I think this is a shame. I’m very pleased that Veracity understands this problem and is trying to do something about it. Veracity is a key sponsor of Agile Executives. In fact, Galen is this year’s acting president for Agile Executives. The purpose of Agile Executives is to help managers better manage Agile teams and see better success. Agile Executives is trying to build a community of executives that range from managers interested in Agile to managers that have successfully adopted Agile. Together, these managers can form a community of support and ideas that will help make Agile teams more successful. Helping Your Team You can help too! Talk with your manager and get them involved in Agile Executives. Help Veracity build the community. If your manager understands Agile better, he’ll understand how to help his teams, which will result in software that adds more value for customers. If you have any questions about how you can be involved, please let me know. Technorati Tags: Agile,Agile Executives

    Read the article

  • Who is likely to need the most this high-quality, measurable, reliable approach to software? [closed]

    - by Marek Cruz
    Software engineering is the application of principles of engineering to software. Trouble is, most of those who like to flatter with the title "software engineer" don't do that. They just keep writing code and patching it until it's stable enough to foist off on users. That's not software engineering. Who is likely to need the most the practice of software engineering? (with all the project planning, requirements engineering, software design, implementation based on the design, testing, deployment, awareness of IEEE standards, metrics, security, dependability, usability, etc.)

    Read the article

< Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >