Search Results

Search found 1965 results on 79 pages for 'quantum computing'.

Page 8/79 | < Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >

  • What Parallel computing APIs take good use of sockets?

    - by Ole Jak
    What Parallel computing APIs take good use of sockets? So my programm uses soskets, what Parallel computing APIs I can use that would help me but will not obligate me to go from sockets to anything else... I mean when we are on claster with some special, not socket infrastructure sistem that API emulates something like socket but uses that infrustructure (so programm peforms much faster then on sockets, but keeps having nice soskets API)

    Read the article

  • Azure Grid Computing - Worker Roles as HPC Compute Nodes

    - by JoshReuben
    Overview ·        With HPC 2008 R2 SP1 You can add Azure worker roles as compute nodes in a local Windows HPC Server cluster. ·        The subscription for Windows Azure like any other Azure Service - charged for the time that the role instances are available, as well as for the compute and storage services that are used on the nodes. ·        Win-Win ? - Azure charges the computer hour cost (according to vm size) amortized over a month – so you save on purchasing compute node hardware. Microsoft wins because you need to purchase HPC to have a local head node for managing this compute cluster grid distributed in the cloud. ·        Blob storage is used to hold input & output files of each job. I can see how Parametric Sweep HPC jobs can be supported (where the same job is run multiple times on each node against different input units), but not MPI.NET (where different HPC Job instances function as coordinated agents and conduct master-slave inter-process communication), unless Azure is somehow tunneling MPI communication through inter-WorkerRole Azure Queues. ·        this is not the end of the story for Azure Grid Computing. If MS requires you to purchase a local HPC license (and administrate it), what's to stop a 3rd party from doing this and encapsulating exposing HPC WCF Broker Service to you for managing compute nodes? If MS doesn’t  provide head node as a service, someone else will! Process ·        requires creation of a worker node template that specifies a connection to an existing subscription for Windows Azure + an availability policy for the worker nodes. ·        After worker nodes are added to the cluster, you can start them, which provisions the Windows Azure role instances, and then bring them online to run HPC cluster jobs. ·        A Windows Azure worker role instance runs a HPC compatible Azure guest operating system which runs on the VMs that host your service. The guest operating system is updated monthly. You can choose to upgrade the guest OS for your service automatically each time an update is released - All role instances defined by your service will run on the guest operating system version that you specify. see Windows Azure Guest OS Releases and SDK Compatibility Matrix (http://go.microsoft.com/fwlink/?LinkId=190549). ·        use the hpcpack command to upload file packages and install files to run on the worker nodes. see hpcpack (http://go.microsoft.com/fwlink/?LinkID=205514). Requirements ·        assuming you have an azure subscription account and the HPC head node installed and configured. ·        Install HPC Pack 2008 R2 SP 1 -  see Microsoft HPC Pack 2008 R2 Service Pack 1 Release Notes (http://go.microsoft.com/fwlink/?LinkID=202812). ·        Configure the head node to connect to the Internet - connectivity is provided by the connection of the head node to the enterprise network. You may need to configure a proxy client on the head node. Any cluster network topology (1-5) is supported). ·        Configure the firewall - allow outbound TCP traffic on the following ports: 80,       443, 5901, 5902, 7998, 7999 ·        Note: HPC Server  uses Admin Mode (Elevated Privileges) in Windows Azure to give the service administrator of the subscription the necessary privileges to initialize HPC cluster services on the worker nodes. ·        Obtain a Windows Azure subscription certificate - the Windows Azure subscription must be configured with a public subscription (API) certificate -a valid X.509 certificate with a key size of at least 2048 bits. Generate a self-sign certificate & upload a .cer file to the Windows Azure Portal Account page > Manage my API Certificates link. see Using the Windows Azure Service Management API (http://go.microsoft.com/fwlink/?LinkId=205526). ·        import the certificate with an associated private key on the HPC cluster head node - into the trusted root store of the local computer account. Obtain Windows Azure Connection Information for HPC Server ·        required for each worker node template ·        copy from azure portal - Get from: navigation pane > Hosted Services > Storage Accounts & CDN ·        Subscription ID - a 32-char hex string in the form xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx. In Properties pane. ·        Subscription certificate thumbprint - a 40-char hex string (you need to remove spaces). In Management Certificates > Properties pane. ·        Service name - the value of <ServiceName> configured in the public URL of the service (http://<ServiceName>.cloudapp.net). In Hosted Services > Properties pane. ·        Blob Storage account name - the value of <StorageAccountName> configured in the public URL of the account (http://<StorageAccountName>.blob.core.windows.net). In Storage Accounts > Properties pane. Import the Azure Subscription Certificate on the HPC Head Node ·        enable the services for Windows HPC Server  to authenticate properly with the Windows Azure subscription. ·        use the Certificates MMC snap-in to import the certificate to the Trusted Root Certification Authorities store of the local computer account. The certificate must be in PFX format (.pfx or .p12 file) with a private key that is protected by a password. ·        see Certificates (http://go.microsoft.com/fwlink/?LinkId=163918). ·        To open the certificates snapin: Run > mmc. File > Add/Remove Snap-in > certificates > Computer account > Local Computer ·        To import the certificate via wizard - Certificates > Trusted Root Certification Authorities > Certificates > All Tasks > Import ·        After the certificate is imported, it appears in the details pane in the Certificates snap-in. You can open the certificate to check its status. Configure a Proxy Client on the HPC Head Node ·        the following Windows HPC Server services must be able to communicate over the Internet (through the firewall) with the services for Windows Azure: HPCManagement, HPCScheduler, HPCBrokerWorker. ·        Create a Windows Azure Worker Node Template ·        Edit HPC node templates in HPC Node Template Editor. ·        Specify: 1) Windows Azure subscription connection info (unique service name) for adding a set of worker nodes to the cluster + 2)worker node availability policy – rules for deploying / removing worker role instances in Windows Azure o   HPC Cluster Manager > Configuration > Navigation Pane > Node Templates > Actions pane > New à Create Node Template Wizard or Edit à Node Template Editor o   Choose Node Template Type page - Windows Azure worker node template o   Specify Template Name page – template name & description o   Provide Connection Information page – Azure Subscription ID (text) & Subscription certificate (browse) o   Provide Service Information page - Azure service name + blob storage account name (optionally click Retrieve Connection Information to get list of available from azure – possible LRT). o   Configure Azure Availability Policy page - how Windows Azure worker nodes start / stop (online / offline the worker role instance -  add / remove) – manual / automatic o   for automatic - In the Configure Windows Azure Worker Availability Policy dialog -select days and hours for worker nodes to start / stop. ·        To validate the Windows Azure connection information, on the template's Connection Information tab > Validate connection information. ·        You can upload a file package to the storage account that is specified in the template - eg upload application or service files that will run on the worker nodes. see hpcpack (http://go.microsoft.com/fwlink/?LinkID=205514). Add Azure Worker Nodes to the HPC Cluster ·        Use the Add Node Wizard – specify: 1) the worker node template, 2) The number of worker nodes   (within the quota of role instances in the azure subscription), and 3)           The VM size of the worker nodes : ExtraSmall, Small, Medium, Large, or ExtraLarge.  ·        to add worker nodes of different sizes, must run the Add Node Wizard separately for each size. ·        All worker nodes that are added to the cluster by using a specific worker node template define a set of worker nodes that will be deployed and managed together in Windows Azure when you start the nodes. This includes worker nodes that you add later by using the worker node template and, if you choose, worker nodes of different sizes. You cannot start, stop, or delete individual worker nodes. ·        To add Windows Azure worker nodes o   In HPC Cluster Manager: Node Management > Actions pane > Add Node à Add Node Wizard o   Select Deployment Method page - Add Azure Worker nodes o   Specify New Nodes page - select a worker node template, specify the number and size of the worker nodes ·        After you add worker nodes to the cluster, they are in the Not-Deployed state, and they have a health state of Unapproved. Before you can use the worker nodes to run jobs, you must start them and then bring them online. ·        Worker nodes are numbered consecutively in a naming series that begins with the root name AzureCN – this is non-configurable. Deploying Windows Azure Worker Nodes ·        To deploy the role instances in Windows Azure - start the worker nodes added to the HPC cluster and bring the nodes online so that they are available to run cluster jobs. This can be configured in the HPC Azure Worker Node Template – Azure Availability Policy -  to be automatic or manual. ·        The Start, Stop, and Delete actions take place on the set of worker nodes that are configured by a specific worker node template. You cannot perform one of these actions on a single worker node in a set. You also cannot perform a single action on two sets of worker nodes (specified by two different worker node templates). ·        ·          Starting a set of worker nodes deploys a set of worker role instances in Windows Azure, which can take some time to complete, depending on the number of worker nodes and the performance of Windows Azure. ·        To start worker nodes manually and bring them online o   In HPC Node Management > Navigation Pane > Nodes > List / Heat Map view - select one or more worker nodes. o   Actions pane > Start – in the Start Azure Worker Nodes dialog, select a node template. o   the state of the worker nodes changes from Not Deployed to track the provisioning progress – worker node Details Pane > Provisioning Log tab. o   If there were errors during the provisioning of one or more worker nodes, the state of those nodes is set to Unknown and the node health is set to Unapproved. To determine the reason for the failure, review the provisioning logs for the nodes. o   After a worker node starts successfully, the node state changes to Offline. To bring the nodes online, select the nodes that are in the Offline state > Bring Online. ·        Troubleshooting o   check node template. o   use telnet to test connectivity: telnet <ServiceName>.cloudapp.net 7999 o   check node status - Deployment status information appears in the service account information in the Windows Azure Portal - HPC queries this -  see  node status information for any failed nodes in HPC Node Management. ·        When role instances are deployed, file packages that were previously uploaded to the storage account using the hpcpack command are automatically installed. You can also upload file packages to storage after the worker nodes are started, and then manually install them on the worker nodes. see hpcpack (http://go.microsoft.com/fwlink/?LinkID=205514). ·        to remove a set of role instances in Windows Azure - stop the nodes by using HPC Cluster Manager (apply the Stop action). This deletes the role instances from the service and changes the state of the worker nodes in the HPC cluster to Not Deployed. ·        Each time that you start a set of worker nodes, two proxy role instances (size Small) are configured in Windows Azure to facilitate communication between HPC Cluster Manager and the worker nodes. The proxy role instances are not listed in HPC Cluster Manager after the worker nodes are added. However, the instances appear in the Windows Azure Portal. The proxy role instances incur charges in Windows Azure along with the worker node instances, and they count toward the quota of role instances in the subscription.

    Read the article

  • The Proper Use of the VM Role in Windows Azure

    - by BuckWoody
    At the Professional Developer’s Conference (PDC) in 2010 we announced an addition to the Computational Roles in Windows Azure, called the VM Role. This new feature allows a great deal of control over the applications you write, but some have confused it with our full infrastructure offering in Windows Hyper-V. There is a proper architecture pattern for both of them. Virtualization Virtualization is the process of taking all of the hardware of a physical computer and replicating it in software alone. This means that a single computer can “host” or run several “virtual” computers. These virtual computers can run anywhere - including at a vendor’s location. Some companies refer to this as Cloud Computing since the hardware is operated and maintained elsewhere. IaaS The more detailed definition of this type of computing is called Infrastructure as a Service (Iaas) since it removes the need for you to maintain hardware at your organization. The operating system, drivers, and all the other software required to run an application are still under your control and your responsibility to license, patch, and scale. Microsoft has an offering in this space called Hyper-V, that runs on the Windows operating system. Combined with a hardware hosting vendor and the System Center software to create and deploy Virtual Machines (a process referred to as provisioning), you can create a Cloud environment with full control over all aspects of the machine, including multiple operating systems if you like. Hosting machines and provisioning them at your own buildings is sometimes called a Private Cloud, and hosting them somewhere else is often called a Public Cloud. State-ful and Stateless Programming This paradigm does not create a new, scalable way of computing. It simply moves the hardware away. The reason is that when you limit the Cloud efforts to a Virtual Machine, you are in effect limiting the computing resources to what that single system can provide. This is because much of the software developed in this environment maintains “state” - and that requires a little explanation. “State-ful programming” means that all parts of the computing environment stay connected to each other throughout a compute cycle. The system expects the memory, CPU, storage and network to remain in the same state from the beginning of the process to the end. You can think of this as a telephone conversation - you expect that the other person picks up the phone, listens to you, and talks back all in a single unit of time. In “Stateless” computing the system is designed to allow the different parts of the code to run independently of each other. You can think of this like an e-mail exchange. You compose an e-mail from your system (it has the state when you’re doing that) and then you walk away for a bit to make some coffee. A few minutes later you click the “send” button (the network has the state) and you go to a meeting. The server receives the message and stores it on a mail program’s database (the mail server has the state now) and continues working on other mail. Finally, the other party logs on to their mail client and reads the mail (the other user has the state) and responds to it and so on. These events might be separated by milliseconds or even days, but the system continues to operate. The entire process doesn’t maintain the state, each component does. This is the exact concept behind coding for Windows Azure. The stateless programming model allows amazing rates of scale, since the message (think of the e-mail) can be broken apart by multiple programs and worked on in parallel (like when the e-mail goes to hundreds of users), and only the order of re-assembling the work is important to consider. For the exact same reason, if the system makes copies of those running programs as Windows Azure does, you have built-in redundancy and recovery. It’s just built into the design. The Difference Between Infrastructure Designs and Platform Designs When you simply take a physical server running software and virtualize it either privately or publicly, you haven’t done anything to allow the code to scale or have recovery. That all has to be handled by adding more code and more Virtual Machines that have a slight lag in maintaining the running state of the system. Add more machines and you get more lag, so the scale is limited. This is the primary limitation with IaaS. It’s also not as easy to deploy these VM’s, and more importantly, you’re often charged on a longer basis to remove them. your agility in IaaS is more limited. Windows Azure is a Platform - meaning that you get objects you can code against. The code you write runs on multiple nodes with multiple copies, and it all works because of the magic of Stateless programming. you don’t worry, or even care, about what is running underneath. It could be Windows (and it is in fact a type of Windows Server), Linux, or anything else - but that' isn’t what you want to manage, monitor, maintain or license. You don’t want to deploy an operating system - you want to deploy an application. You want your code to run, and you don’t care how it does that. Another benefit to PaaS is that you can ask for hundreds or thousands of new nodes of computing power - there’s no provisioning, it just happens. And you can stop using them quicker - and the base code for your application does not have to change to make this happen. Windows Azure Roles and Their Use If you need your code to have a user interface, in Visual Studio you add a Web Role to your project, and if the code needs to do work that doesn’t involve a user interface you can add a Worker Role. They are just containers that act a certain way. I’ll provide more detail on those later. Note: That’s a general description, so it’s not entirely accurate, but it’s accurate enough for this discussion. So now we’re back to that VM Role. Because of the name, some have mistakenly thought that you can take a Virtual Machine running, say Linux, and deploy it to Windows Azure using this Role. But you can’t. That’s not what it is designed for at all. If you do need that kind of deployment, you should look into Hyper-V and System Center to create the Private or Public Infrastructure as a Service. What the VM Role is actually designed to do is to allow you to have a great deal of control over the system where your code will run. Let’s take an example. You’ve heard about Windows Azure, and Platform programming. You’re convinced it’s the right way to code. But you have a lot of things you’ve written in another way at your company. Re-writing all of your code to take advantage of Windows Azure will take a long time. Or perhaps you have a certain version of Apache Web Server that you need for your code to work. In both cases, you think you can (or already have) code the the software to be “Stateless”, you just need more control over the place where the code runs. That’s the place where a VM Role makes sense. Recap Virtualizing servers alone has limitations of scale, availability and recovery. Microsoft’s offering in this area is Hyper-V and System Center, not the VM Role. The VM Role is still used for running Stateless code, just like the Web and Worker Roles, with the exception that it allows you more control over the environment of where that code runs.

    Read the article

  • Bytes by MSDN - Let's talk Cloud

    - by Wallym
    While I was at DevConnections in Las Vegas, I was honored to be interviewed by Tim Huckaby for "Bytes by MSDN" on Cloud Computing. Here's a short intro from the talk:Do you believe in the Cloud? Wallace McClure, Founder and Architect of Scalable Development, Inc., does. His customers are extremely interested in the value and economies of scale that Cloud Computing, and more specifically, Windows Azure can bring. Building out an infrastructure that supports your web service or application can be expensive, complicated and time consuming. Or you could look to the Microsoft cloud. The Windows Azure platform is a flexible cloud–computing platform that lets you focus on solving business problems and addressing customer needs. Wally talks about all this, and more, in this interview with Tim Huckaby, and in his Windows Azure podcasts.

    Read the article

  • Azure, a Beautiful Color, and So Much More...

    - by KKline
    Windows and SQL Azure Resources Cloud computing is more than just the latest buzz word in the IT trade papers. It is a remarkable paradigm shift with as much potential to "turn over the apple cart" of IT computing as client-server had for the world of mainframe and minicomputers. If you're not spending time to learn about cloud computing, in general, and SQL Azure, in particular, then you're missing the boat in a big way. (Ha! Two big metaphors in one afternoon. My high-school English teacher would...(read more)

    Read the article

  • Quantis Quantum Random Number Generator (QRNG) - any reviews?

    - by Tim Post
    I am thinking about getting one of these (PCI) to set up an internal entropy pool similar to this service who incidentally brought us fun captcha challenges. Prior to lightening my wallet, I'm hoping to gather feedback from people who may be using this device. As there is no possible 'correct' answer, I am making this CW and tagging it as subjective. I'm undertaking a project to help write Monte Carlo simulations for a non profit that distributes mosquito nets in Malaria stricken areas. The idea is to model areas to determine the best place to distribute mosquito nets. During development, I expect to consume gigs if not more of the RNG output. We really need our own source. Is this device reliable? Does it have to be re-started often? Is its bandwidth really as advertised? It passes all tests, as far as randomness goes (i.e. NIST/DIEHARD). What I don't want is something in deadlock due to some ioctl in disk sleep that does nothing but radiate heat. This is not a spamvertisement, I'm helping out of pocket and I really, really want to know if such a large purchase will bear fruit. I can't afford to build a HRNG based on radioactive decay, this looks like the next best thing. Any comments are appreciated. I will earn zero rep for this, please do not vote to close. This is no different than questions regarding the utilization of some branded GPU for some odd purpose. Answers pointing to other solutions will be gladly accepted, I'm not married to this idea.

    Read the article

  • cloud/grid computing

    - by tom smith
    Hi guys. I'm appologizing in advance to the guys who will tell me this isn't a tech/server/IT issue! But I've been beating my head around this for a couple of days now. I'm trying figure out who to talk to, or which company I can approach to try to see if there are Grid/Cloud Computing companies who have programs setup to deal with colleges. I'm dealing with a compsci course, and we're looking at a few projects that would require a great deal of computing/computational resources. But in calling different companies (HP/Rackspace/etc..) I'm either not getting through to the right depts, or to the right people, or the companies just aren't setup for this. There are plenty of companies who have discounts for desktop software/hardware, but who in the biz deals with discounts/offerings for Cloud/Grid Computing solutions?? Any thoughts/pointers would be greatly appreciated. Thanks -tom

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Register for Cloud Computing Bootcamp: Free Technical Training on Developing for Windows Azure

    This two-day workshop will help you prepare to deliver solutions on the Windows Azure Platform. We've worked to bring the region's best Azure experts together to teach you how to work in the cloud. Each day will be filled with training, discussion, reviewing real scenarios, and hands-on labs. It's more than just a training class, it's also an event-in-a box. If you don't see a class near you, then throw your own....Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Apple II Teardown and Restoration Offers a Peek at Computing History [Video]

    - by Jason Fitzpatrick
    In this extended teardown video, we’re granted a peek at the guts of an Apple IIe and treated to quite a bit of Apple IIe history in the process. Todd Harrison, via his project blog ToddFun, shares videos of his Apple IIe restoration project. The videos are lengthy, but include close up examination of all the parts and lots of information about the history of the computer and its construction. You can check out the rest of his Apple II videos and posts at the link below. Apple II Plus from 1982 teardown, repair, cleanup and demonstration [via The Unofficial Apple Weblog] HTG Explains: What Is RSS and How Can I Benefit From Using It? HTG Explains: Why You Only Have to Wipe a Disk Once to Erase It HTG Explains: Learn How Websites Are Tracking You Online

    Read the article

  • Cloud Computing Will Reshape IT Forever

    While end users may never even know that the application they're using is coming from the cloud, IT will be completely transformed, and the business as a whole will have an entirely new way of viewing, using and paying for technology.

    Read the article

  • English to French translation of computing terminology

    - by Rich
    I work in France as a Java programmer, mainly in French, but am a native English speaker. My level of French is pretty good (French wife!), but one thing I have problems with is working out whether to use English terminology or a French equivalent. Examples: lock (as in a synchronisation lock) - do I use the verb "locker" or do I use verrouiller? shard (databases) - "un shard" or "un tesson" (which means a shard of glass) ...and so-on... So, what do people recommend? Can anyone point out some good websites for translating this kind of terminology? The usual online translation tools are a bit too everyday English/French, not the slightly more specialised version that I find myself needing.

    Read the article

  • MSDN Magazine: Patterns for High Availability, Scalability, and Computing Power with Windows Azure

    In this article, Joshy Joseph, a principal architect with Microsoft Services Managed Solutions Group, examines the typical cloud platform architecture and some common architectural patterns, along with their implementation on the Windows Azure offering from Microsoft....Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

< Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >