Search Results

Search found 9970 results on 399 pages for 'regular john'.

Page 8/399 | < Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >

  • Regular Expressions Reference Tables Updated

    - by Jan Goyvaerts
    The regular expressions reference on the Regular-Expressions.info website was completely overhauled with the big update of that site last month. In the past, the reference section consisted of two parts. One part was a summary of the regex features commonly found in Perl-style regex flavors with short descriptions and examples. This part of the reference ignored differences between regex flavors and omitted most features that don’t have wide support. The other part was a regular expression flavor comparison that listed many more regex features along with YES/no indicators for many regex flavors, but without any explanations of the features. When reworking the site, I wanted to make the reference section more detailed, with descriptions and examples of all the syntax supported by the flavors discussed on the site. Doing that resulted in a reference that lists many features that are only supported by a few regex flavors. For such a reference to be usable, it needs to indicate which flavors support each feature. My original design for the new reference table used two rows for each feature. The first row had 4 columns with a label, syntax, description, and example, similar to the old reference tables. The second row had 20 columns indicating which versions of which flavors support these features. While the double-row design allowed all the information to fit within the table without requiring horizontal scrolling, it made it more difficult to quickly scan the tables for the feature you’re looking for. To make the new reference tables easier to read, they now have only a single row for each feature. The first 4 columns are the same as before. The remaining two columns show which versions of two regular expression flavors support the feature. You can use the drop-down lists above the table to choose the flavors the table should indicate. The site uses cookies to allow the flavor choices to persist while you navigate the reference. The result of this latest update is that the new regex tables are now just as easy to read as the ten-year-old tables on the old site were, while still covering all the features big and small of all the flavors discussed on the site.

    Read the article

  • Is it possible to have regexp that matches all valid regular expressions?

    - by Juha Syrjälä
    Is it possible to detect if a given string is valid regular expression, using just regular expressions? Say I have some strings, that may or may not be a valid regular expressions. I'd like to have a regular expression matches those string that correspond to valid regular expression. Is that possible? Or do I have use some higher level grammar (i.e. context free language) to detect this? Does it affect if I am using some extended version of regexps like Perl regexps? If that is possible, what the regexp matching regexp is?

    Read the article

  • John Burke's Weclome to the Applications Strategy Blog

    - by Tony Ouk
    Hi I'm John Burke and I'm the group Vice President of Oracle's Applications Business Unit.  Thanks for stopping by our Applications blog today.  The purpose of this site is to provide you, our customers, with timely, relevant, and balanced information about the state of the applications business, both here at Oracle and industry-wide. So on this site, you'll find information about Oracle's application products, how our customers have used those products to transform their businesses, and general industry trends which might help you craft YOUR applications roadmap.  So right now I'm walking to meet with one of Oracle's development executives.  I also plan to talk to Oracle customers and leading industry analysts.  I plan to provide a complete and balanced view of the total applications landscape.  I hope you check back often and view our updates.

    Read the article

  • Employee Engagement Q&A with John Brunswick

    - by Kellsey Ruppel
    As we are focusing this week on Employee Engagement, I recently sat down with industry expert and thought leader John Brunswick on the topic. Here is the Q&A dialogue we shared.  Q: How do you effectively engage employees to drive business value?A: Motivation, both extrinsic and intrinsic, combined with the relevancy of various channels to support it.  Beyond chaining business strategies like compensation models within an organization, engagement ultimately is most successful when driven by employee's motivations.  Business value derived from engagement through technical capabilities can be objectively measured through metrics like the rate and accuracy of problem solving for a given business function or frequency of innovation created.  Providing employees performing "knowledge work" with capabilities that allow them to perform work with a higher degree of accuracy in the same or ideally less time, adds value for that individual and in turn, drives their level of engagement to drive business value. Q: Organizations with high levels of employee engagement outperform the total stock market index by 22%. Can you comment on why you think this might be? A: Alignment through shared purpose.  Zappos is an excellent example of a culture that arguably has higher than average levels of employee engagement and it permeates every aspect of their organization – embodied externally through their customer experience.  I recently made my first purchase with them and it was obvious through their web experience, visual design, communication style, customer service and attention to detail down to green packaging, that they have an amazingly strong shared purpose.  The Zappos.com ‘About page’ outlines their "Family Core Values", the first three being "Deliver WOW Through Service, Embrace and Drive Change & Create Fun and A Little Weirdness" – all reflected externally in my interaction with them.  Strong shared purpose enables higher product and service experience, equating to a dedicated customer base, repeat purchases and expanded marketshare. Q: Have you seen any trends in the market regarding employee engagement? A: Some companies now see offering a form of social engagement similar to Facebook and LinkedIn as standard communication infrastructure like email or instant messaging.  Originally offered as standalone tools, the value is now seen when these capabilities are offered in an integrated fashion in the context of business entities.  An emerging area of focus is around employee activities related to their organization on external social platforms, implicitly creating external communities with employees acting on behalf of the brand and interacting with each other (e.g. Twitter).  Companies have reached a formal understand that this now established communication medium requires strategies allowing employees to engage.  I have personally met colleagues from Oracle, like Oracle User Experience Director Ultan O'Broin (@ultan), via Twitter before meeting first through internal channels. Q: Employee engagement is important, but what about engaging customers and partners? A: The last few years we have witnessed an interesting evolution from the novelty of self-service to expectations of "intelligent" self-service.  From a consumer standpoint, engagement can end up being a key differentiator, especially in mature markets.  Customers that perform some level of interaction with a brand develop greater affinity for the brand and have a greater probability of acting as an advocate.  As organizations move toward a model of deeper engagement, they must ensure that their business is positioned to support deeper relationships, offering potentially greater transparency. From a partner standpoint greater engagement can lead to new types of business opportunities, much in the way that Amazon.com offers a unified shopping experience that can potentially span various vendors.  This same model can be extended to blending services and product delivery models, based on a closeness not easily possible before increased capability of engagement mechanisms. Q: What types of solutions are available to successfully deliver employee engagement? A: Solutions enabling higher levels of engagement do so on the basis of relevancy.  This relevancy is generally supported by aspects of content management, social collaboration, business intelligence, portal and process management technologies.  These technologies can help deliver an experience tailored to a given role or process within an organization that applies equally to work that is structured or unstructured, appearing in the form of functionality as simple as an online employee directory search, knowledge communities supported by social collaboration, as well as more feature rich business intelligence dashboards and portals. Looking to learn more about how to effectively engage your employees? Check out this webcast, or read more from John Brunswick. 

    Read the article

  • I don't have permission to access other drives

    - by mcjohnalds45
    After messing with the user accounts & names, I found I can't access my external drives without using sudo. So when I access one normally with cd "/media/john/FreeAgent Drive" I receive bash: cd: /media/john/FreeAgent Drive: Permission denied However, using sudo: sudo cd /media/john sudo ls -l It gives: drwx------ 1 john john 20480 Sep 24 10:45 FreeAgent Drive/ And id returns uid=1003(john) gid=1003(john) groups=1003(john), ... So I'm interpreting this is as "you are john, only john can access this drive, however, you cannot access this drive." I have tried sudo chown john:john "FreeAgent Drive" and sudo chmod o+rw "john/FreeAgent Drive"but I still can't access it.

    Read the article

  • Does RVM "failover" to another ruby instance on error?

    - by JohnMetta
    Have a strange problem in that I have a Rake task that seems to be using multiple versions of Ruby. When one fails, it seems to try another one. Details MacBook running 10.6.5 rvm 1.1.0 Rubies: 1.8.7-p302, ree-1.8.7-2010.02, ruby-1.9.2-p0 Rake 0.8.7 Gem 1.3.7 Veewee (provisioning Virtual Machines using Opcode.com, Vagrant and Chef) I'm not entirely sure the specific details of the error matter, but since it might be an issue with Veewee itself. So, what I'm trying to do is build a new box base on a veewee definition. The command fails with an error about a missing method- but what's interesting is how it fails. Errors I managed to figure out that if I only have one Ruby installed with RVM, it just fails. If I have more than one Ruby install, it fails at the same place, but execution seems to continue in another interpreter. Here are two different clipped console outputs. I've clipped them for size. The full outputs of each error are available as a gist. One Ruby version installed Here is the command run when I only have a single version of Ruby (1.8.7) available in RVM boudica:veewee john$ rvm rake build['mettabox'] --trace rvm 1.1.0 by Wayne E. Seguin ([email protected]) [http://rvm.beginrescueend.com/] (in /Users/john/Work/veewee) ** Invoke build (first_time) ** Execute build … creating new harddrive rake aborted! undefined method `max_vdi_size' for #<VirtualBox::SystemProperties:0x102d6af80> /Users/john/.rvm/gems/ruby-1.8.7-p302/gems/virtualbox-0.8.3/lib/virtualbox/abstract_model/dirty.rb:172:in `method_missing' <------ stacktraces cut ----------> /Users/john/.rvm/gems/ruby-1.8.7-p302/gems/rake-0.8.7/bin/rake:31 /Users/john/.rvm/gems/ruby-1.8.7-p302@global/bin/rake:19:in `load' /Users/john/.rvm/gems/ruby-1.8.7-p302@global/bin/rake:19 Multiple Ruby Versions Here is the same command run with three versions of Ruby available in RVM. Prior to doing this, I used "rvm use 1.8.7." Again, I don't know how important the details of the specific errors are- what's interesting to me is that there are three separate errors- each with it's own stacktrace- and each in a different Ruby interpreter. Look at the bottom of each stacktrace and you'll see that they are all sourced from different interpreter locations- First ree-1.8.7, then ruby-1.8.7, then ruby-1.9.2: boudica:veewee john$ rvm rake build['mettabox'] --trace rvm 1.1.0 by Wayne E. Seguin ([email protected]) [http://rvm.beginrescueend.com/] (in /Users/john/Work/veewee) ** Invoke build (first_time) ** Execute build … creating new harddrive rake aborted! undefined method `max_vdi_size' for #<VirtualBox::SystemProperties:0x1059dd608> /Users/john/.rvm/gems/ree-1.8.7-2010.02/gems/virtualbox-0.8.3/lib/virtualbox/abstract_model/dirty.rb:172:in `method_missing' … /Users/john/.rvm/gems/ree-1.8.7-2010.02/gems/rake-0.8.7/bin/rake:31 /Users/john/.rvm/gems/ree-1.8.7-2010.02@global/bin/rake:19:in `load' /Users/john/.rvm/gems/ree-1.8.7-2010.02@global/bin/rake:19 (in /Users/john/Work/veewee) ** Invoke build (first_time) ** Execute build isofile ubuntu-10.04.1-server-amd64.iso is available ["a1b857f92eecaf9f0a31ecfc39dee906", "30b5c6fdddbfe7b397fe506400be698d"] [] Last good state: -1 Current step: 0 last good state -1 destroying machine+disks (re-)executing step 0-initial-a1b857f92eecaf9f0a31ecfc39dee906 VBoxManage: error: Machine settings file '/Users/john/VirtualBox VMs/mettabox/mettabox.vbox' already exists VBoxManage: error: Details: code VBOX_E_FILE_ERROR (0x80bb0004), component Machine, interface IMachine, callee nsISupports Context: "CreateMachine(bstrSettingsFile.raw(), name.raw(), osTypeId.raw(), Guid(id).toUtf16().raw(), FALSE , machine.asOutParam())" at line 247 of file VBoxManageMisc.cpp rake aborted! undefined method `memory_size=' for nil:NilClass /Users/john/Work/veewee/lib/veewee/session.rb:303:in `create_vm' /Users/john/Work/veewee/lib/veewee/session.rb:166:in `build' /Users/john/Work/veewee/lib/veewee/session.rb:560:in `transaction' /Users/john/Work/veewee/lib/veewee/session.rb:163:in `build' /Users/john/Work/veewee/Rakefile:87 /Users/john/.rvm/gems/ruby-1.8.7-p302/gems/rake-0.8.7/lib/rake.rb:636:in `call' /Users/john/.rvm/gems/ruby-1.8.7-p302/gems/rake-0.8.7/lib/rake.rb:636:in `execute' /Users/john/.rvm/gems/ruby-1.8.7-p302/gems/rake-0.8.7/lib/rake.rb:631:in `each' … /Users/john/.rvm/gems/ruby-1.8.7-p302/gems/rake-0.8.7/bin/rake:31 /Users/john/.rvm/gems/ruby-1.8.7-p302@global/bin/rake:19:in `load' /Users/john/.rvm/gems/ruby-1.8.7-p302@global/bin/rake:19 (in /Users/john/Work/veewee) ** Invoke build (first_time) ** Execute build isofile ubuntu-10.04.1-server-amd64.iso is available ["a9c4ab3257e1da3479c984eae9905c2a", "30b5c6fdddbfe7b397fe506400be698d"] [] Last good state: -1 Current step: 0 last good state -1 (re-)executing step 0-initial-a9c4ab3257e1da3479c984eae9905c2a VBoxManage: error: Machine settings file '/Users/john/VirtualBox VMs/mettabox/mettabox.vbox' already exists VBoxManage: error: Details: code VBOX_E_FILE_ERROR (0x80bb0004), component Machine, interface IMachine, callee nsISupports Context: "CreateMachine(bstrSettingsFile.raw(), name.raw(), osTypeId.raw(), Guid(id).toUtf16().raw(), FALSE , machine.asOutParam())" at line 247 of file VBoxManageMisc.cpp rake aborted! undefined method `memory_size=' for nil:NilClass /Users/john/Work/veewee/lib/veewee/session.rb:303:in `create_vm' /Users/john/Work/veewee/lib/veewee/session.rb:166:in `block in build' /Users/john/Work/veewee/lib/veewee/session.rb:560:in `transaction' /Users/john/Work/veewee/lib/veewee/session.rb:163:in `build' /Users/john/Work/veewee/Rakefile:87:in `block in <top (required)>' /Users/john/.rvm/rubies/ruby-1.9.2-p0/lib/ruby/1.9.1/rake.rb:634:in `call' /Users/john/.rvm/rubies/ruby-1.9.2-p0/lib/ruby/1.9.1/rake.rb:634:in `block in execute' … /Users/john/.rvm/rubies/ruby-1.9.2-p0/lib/ruby/1.9.1/rake.rb:2013:in `top_level' /Users/john/.rvm/rubies/ruby-1.9.2-p0/lib/ruby/1.9.1/rake.rb:1992:in `run' /Users/john/.rvm/rubies/ruby-1.9.2-p0/bin/rake:35:in `<main>' It isn't until we reach the last installed version of Ruby that execution halts. Discussion Does anyone have any idea what's going on here? Has anyone seen this "failover"-like behavior before? It seems strange to me that the first exception would not halt execution as it did with one interpreter, but I wonder if there are things happening when RVM is installed that we Ruby developers are not considering.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Regular Expressions Cookbook Ebook Deal of the Day

    - by Jan Goyvaerts
    Every day O’Reilly has an “ebook deal of the day” offering one or a bunch of their books in electronic format for only $9.99. Twice this year I received an email from O’Reilly notifying me that Regular Expressions Cookbook was on sale. But each time the email was sent on the morning of the day itself. When it’s morning in California it’s already bedtime for me here in Thailand. So I never saw the emails until the next day, making it rather pointless to blog about the deal. But this time O’Reilly has listened to my request for advance notification. I just got an email this morning saying Regular Expressions Cookbook will be part of the Ebook Deal of the Day for 15 September 2010. That’s 15 September on the US west coast. When I write this there’s a few hours to go before the deal starts at one past midnight California time. You can get any O’Reilly Cookbook as an ebook for only $9.99. The normal price for Regular Expressons Cookbook as an ebook is $31.99. The download includes the book in PDF, ePub, Mobi (for Kindle), DAISY, and Android formats.

    Read the article

  • Web Experience Management: Segmentation & Targeting - Chalk Talk with John

    - by Michael Snow
    Today's post comes from our WebCenter friend, John Brunswick.  Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Having trouble getting your arms around the differences between Web Content Management (WCM) and Web Experience Management (WEM)?  Told through story, the video below outlines the differences in an easy to understand manner. By following the journey of Mr. and Mrs. Smith on their adventure to find the best amusement park in two neighboring towns, we can clearly see what an impact context and relevancy play in our decision making within online channels.  Just as when we search to connect with the best products and services for our needs, the Smiths have their grandchildren coming to visit next week and finding the best park is essential to guarantee a great family vacation.  One town effectively Segments and Targets visitors to enhance their experience, reducing the effort needed to learn about their park. Have a look below to join the Smiths in their search.    Learn MORE about how you might measure up: Deliver Engaging Digital Experiences Drive Digital Marketing SuccessAccess Free Assessment Tool

    Read the article

  • What’s New in Delphi XE6 Regular Expressions

    - by Jan Goyvaerts
    There’s not much new in the regular expression support in Delphi XE6. The big change that should be made, upgrading to PCRE 8.30 or later and switching to the pcre16 functions that use UTF-16, still hasn’t been made. XE6 still uses PCRE 7.9 and thus continues to require conversion from the UTF-16 strings that Delphi uses natively to the UTF-8 strings that older versions of PCRE require. Delphi XE6 does fix one important issue that has plagued TRegEx since it was introduced in Delphi XE. Previously, TRegEx could not find zero-length matches. So a regex like (?m)^ that should find a zero-length match at the start of each line would not find any matches at all with TRegEx. The reason for this is that TRegEx uses TPerlRegEx to do the heavy lifting. TPerlRegEx sets its State property to [preNotEmpty] in its constructor, which tells it to skip zero-length matches. This is not a problem with TPerlRegEx because users of this class can change the State property. But TRegEx does not provide a way to change this property. So in Delphi XE5 and prior, TRegEx cannot find zero-length matches. In Delphi XE6 TPerlRegEx’s constructor was changed to initialize State to the empty set. This means TRegEx is now able to find zero-length matches. TRegex.Replace() using the regex (?m)^ now inserts the replacement at the start of each line, as you would expect. If you use TPerlRegEx directly, you’ll need to set State to [preNotEmpty] in your own code if you relied on its behavior to skip zero-length matches. You will need to check existing applications that use TRegEx for regular expressions that incorrectly allow zero-length matches. In XE5 and prior, TRegEx using \d* would match all numbers in a string. In XE6, the same regex still matches all numbers, but also finds a zero-length match at each position in the string. RegexBuddy 4 warns about zero-length matches on the Create panel if you set it to Detailed mode. At the bottom of the regex tree there will be a node saying either “your regular expression may find zero-length matches” or “zero-length matches will be skipped” depending on whether your application allows zero-length matches (XE6 TRegEx) or not (XE–XE5 TRegEx).

    Read the article

  • Visual Studio 2010 Find and Replace With Regular Expressions

    - by Lance Robinson
    Here is a quick notes about using regular expressions in the VS2010 Find Replace dialog.  1.  To create a backreference, use curly braces (“{“ and “}” ) instead of regular parentheses. 2.  To use the captured backreference, use \1\2 etc, where \1 is the first captured value, \2 is the second captured value, etc. Example: I want to find*: info.setFieldValue(param1, param2); and replace it with: SetFieldValue(info, param1, param2); To do this, I can use the following find/replace values: Find what: {[a-zA-Z0-9]+}.setFieldValue\({[a-zA-Z0-9., ]+}\); Replace with: SetFieldValue(\1, \2); Use Regular Expressions is checked, of course. *If you’re wondering why I’d want to do this – because I don’t have control over the setFieldValue function – its in a third party library that doesn’t behave in a very friendly manner. Technorati Tags: Visual Studio,Regular Expressions

    Read the article

  • Theory of Computation - Showing that a language is regular..

    - by Tony
    I'm reviewing some notes for my course on Theory of Computation and I'm a little bit stuck on showing the following statement and I was hoping somebody could help me out with an explanation :) Let A be a regular language. The language B = {ab | a exists in A and b does not exist in A*} Why is B a regular language? Some points are obvious to me. If b is simply a constant string, this is trivial. Since we know a is in A and b is a string, regular languages are closed under union, so unioning the language that accepts these two strings is obviously regular. I'm not sure that b is constant, however. Maybe it is, and if so, then this isn't really an issue. I'm having a hard time making sense of it. Thanks!

    Read the article

  • Regular Expressions Quick Reference

    - by Jan Goyvaerts
    The Regular-Expressions.info website has a new quick reference to regular expressions that lists all of the regex syntax in one single table along with a link to the tutorial section that explains the syntax. The quick reference is ordered by syntax whereas the full reference tables are ordered by feature. There are multiple entries for some of the syntax as different regex flavors may use the same syntax for different features. Use the quick reference if you’ve seen some syntax in somebody else’s regex and you have no idea what feature that syntax is for. Use the full reference tables if you already know the feature you want but forgot which syntax to use. Of course, an even quicker reference is to paste your regex into RegexBuddy, select the application you’re working with, and click on the part of the regex you don’t understand. RegexBuddy then selects the corresponding node in its regex tree which summarizes exactly what the syntax you clicked on does in your regex. If you need more information, press F1 or click the Explain Token button to open the relevant page in the regex tutorial in RegexBuddy’s help file.

    Read the article

  • New Regular Expression Features in Java 8

    - by Jan Goyvaerts
    Java 8 brings a few changes to Java’s regular expression syntax to make it more consistent with Perl 5.14 and later in matching horizontal and vertical whitespace. \h is a new feature. It is a shorthand character class that matches any horizontal whitespace character as defined in the Unicode standard. In Java 4 to 7 \v is a character escape that matches only the vertical tab character. In Java 8 \v is a shorthand character class that matches any vertical whitespace, including the vertical tab. When upgrading to Java 8, make sure that any regexes that use \v still do what you want. Use \x0B or \cK to match just the vertical tab in any version of Java. \R is also a new feature. It matches any line break as defined by the Unicode standard. Windows-style CRLF pairs are always matched as a whole. So \R matches \r\n while \R\R fails to match \r\n. \R is equivalent to (?\r\n|[\n\cK\f\r\u0085\u2028\u2029]) with an atomic group that prevents it from matching only the CR in a CRLF pair. Oracle’s documentation for the Pattern class omits the atomic group when explaining \R, which is incorrect. You cannot use \R inside a character class. RegexBuddy and RegexMagic have been updated to support Java 8. Java 4, 5, 6, and 7 are still supported. When you upgrade to Java 8 you can compare or convert your regular expressions between Java 8 and the Java version you were using previously.

    Read the article

  • Installing XAMPP in Xubuntu 13.10

    - by illage2
    I downloaded the XAMPP .run file from Apacheandfriends but the installation isn't working for me. I can't seem to navigate to my downloads folder and it just keeps saying command not found all the time. root@john-Aspire-V3-531:/home/john# cd ~/downloads bash: cd: /root/downloads: No such file or directory root@john-Aspire-V3-531:/home/john# cd ~/Downloads bash: cd: /root/Downloads: No such file or directory root@john-Aspire-V3-531:/home/john# /downloads bash: /downloads: No such file or directory root@john-Aspire-V3-531:/home/john# cd /downloads bash: cd: /downloads: No such file or directory root@john-Aspire-V3-531:/home/john# cd downloads bash: cd: downloads: No such file or directory root@john-Aspire-V3-531:/home/john# downloads downloads: command not found What do I need to do? Apacheandfriends says to: chmod 755 xampp-linux-1.8.2-0-installer.run and then ./xampp-linux-1.8.2-0-installer.run but it doesn't seem to think that the file exists. Can anyone help me?

    Read the article

  • Second Edition of Regular Expressions Cookbook Has Been Published

    - by Jan Goyvaerts
    %COOKBOOKFRAME% The first edition of Regular Expressions Cookbook was published in May of 2009. It quickly became a bestseller, briefly holding the #1 spot in computer books on Amazon.com. It also had staying power. The ebook version was O’Reilly’s top seller during the whole year of 2010. So it’s no surprise that our editor at O’Reilly soon contacted us for a second edition. With Steven and I always being very busy, those plans were delayed until finally both of us found the time to update the book. Work started in January. Today you can buy your own copy of the second edition of Regular Expressions Cookbook. O’Reilly’s online shop sells the eBook in DRM-free ePub, Mobi, and PDF formats for $39.99 and the print version for $49.99. These are the list prices for the eBook and the print book. If you’re looking for a discount and free shipping of the print book, you can pre-order on one of the various Amazon sites. Deliveries should start soon. The discount rates differ and are subject to change. Amazon will also pay me an affiliate commission if you use one of these links, which pretty much doubles the income I get from the book. Amazon.com. Free shipping to the USA. Amazon.co.uk. Free shipping to the UK and Ireland. Amazon.fr. Free shipping to France, Monaco, Luxembourg, and Belgium. Amazon.de. Free shipping to Germany, Austria, Switzerland, Luxembourg, Liechtenstein, Belgium, and The Netherlands. If you don’t want to wait for the print book to arrive, the Kindle edition is already available for instant delivery. The Kindle edition works on Amazon’s Kindle hardware, and on PCs via Amazon’s Kindle software (free download). Amazon.com Amazon.co.uk Amazon.fr Amazon.de I’ll blog more about the book in the coming days and weeks with details about what’s new in the second edition.

    Read the article

  • Second Edition of Regular Expressions Cookbook Now In Stock at Amazon.com

    - by Jan Goyvaerts
    %COOKBOOKFRAME% The second edition of Regular Expressions Cookbook is now in stock as a printed book Amazon.com. Right now, the printed book is discounted 45% to $27.51, which is actually more than a dollar cheaper than the Kindle edition. The European Amazon sites don’t have the printed book in stock yet. But it shouldn’t take too long for the book to make it from the US to Europe. They do have the Kindle edition.

    Read the article

  • Regular Expressions Cookbook Is in The Money—Win a Copy

    - by Jan Goyvaerts
    %COOKBOOKFRAME%You may have heard some people say that most book authors never get any royalties. That’s not true because most authors get an advance royalty that is paid before the book is published. That’s the author’s main incentive for writing the book, at least as far as money is concerned. (If money is your main concern, don’t write books.) What is true is that most authors never see any money beyond the advance royalty. Royalty rates are very low. A 10% royalty of the publisher’s price is considered normal. The publisher’s price is usually 45% of the retail price. So if you pay full price in a bookstore, the author gets 4.5% of your money. If there’s more than one author, they split the royalty. It doesn’t take a math degree to figure out that a book needs to sell quite a few copies for the royalty to add up to a meaningful amount of money. But Steven and I must have done something right. Regular Expressions Cookbook is in the money. My royalty statement for the 3rd quartier of 2009, which is the 2nd quarter that the book was on the market, came with a check. I actually received it last month but didn’t get around to blogging about. The amount of the check is insignificant. The point is that the balance is no longer negative. I’m taking this opportunity to pat myself and my co-author on the back. To celebrate the occassion O’Reilly has offered to sponsor a give-away of five (5) copies of Regular Expressions Cookbook. These are the rules of the game: You must post a comment to this blog article including your actual name and actual email address. Names are published, email addresses are not. Comments are moderated by myself (Jan Goyvaerts). If I consider a comment to be offensive or spam it will not be published and not be eligible for any prize. If you don’t know what to say in the comment, just wish me a happy 100000nd birthday, so I don’t have to feel so bad about entering the 6-bit era. Each person commenting has only one chance to win, regardless of the number of comments posted. O’Reilly will be provided with the names and email addresses of the winners (and those email addresses only) in order to arrange delivery. Each winner can choose to receive a printed copy or ebook (DRM-free PDF). If you choose the printed book, O’Reilly pays for shipping to anywhere in the world but not for any duties or taxes your country may impose on books imported from the USA. If you choose the ebook, you’ll need to create an O’Reilly account that is then granted access to the PDF download. You can make your choice after you’ve won, so it doesn’t influence your chance of winning. Contest ends 28 February 2010, GMT+7 (Thai time). Chosen by five calls to Random(78)+1 in Delphi 2010, the winners are: 48: Xiaozu 45: David Chisholm 19: Miquel Burns 33: Aaron Rice 17: David Laing Thanks to everybody who participated. The winners have been notified by email on how to collect their prize.

    Read the article

  • Understanding Regular Expressions (focus on URL Rewrite)–Part 11 (Sub-Part 2 of 2)

    - by OWScott
    This 2nd part (out of 2) on Regular Expressions covers the remaining tips necessary to get up to speed on a topic that at first seems daunting, but really isn’t that bad. Whether you use Regular Expressions for URL Rewrite, Visual Studio, PowerShell, programming or any other tool, these tips will allow you to understand the essentials of Regular Expressions. Be sure to watch Part 1 first. This is week 11 of a 52 week series on various web administration related tasks. Past and future videos can be found here.

    Read the article

  • XRegExp Regular Expression Library for JavaScript

    - by Jan Goyvaerts
    XRegExp is an open source JavaScript library. It extends JavaScript’s regex syntax with features such as free-spacing, named capture, mode modifiers, and Unicode categories, blocks, and scripts. It also provides its own test(), exec(), forEach(), replace(), and split() methods that eliminate most cross-browser inconstencies and bugs. Anyone using non-trivial regexes in their JavaScript code should seriously consider using XRegExp. Last month’s update of the Regular-Expressions.info website added full coverage of XRegExp to the regex tutorial and regex reference sections. But the tools & languages section was missing the XRegExp page, resulting in broken links in the tutorial and reference sections. This page has now been added.

    Read the article

< Previous Page | 4 5 6 7 8 9 10 11 12 13 14 15  | Next Page >