Search Results

Search found 191 results on 8 pages for 'vlans'.

Page 8/8 | < Previous Page | 4 5 6 7 8 

  • Layer 3 switch routing

    - by Yoshiwaan
    I need help moving over to using our layer 3 switch as the inter vlan routing device rather than our cisco router. I've mostly got it working but I've got stuck near the end and need some advice (I think I just need a bit of education on the subject really). Cur I have a Dell PowerConnect 7048 connecting to a Cisco 1841 router. I've got a few key excerpts from the configs to provide the key information. On the powerconnect I have the following: ip routing ip default-gateway 172.31.14.1 ip route 0.0.0.0 0.0.0.0 172.31.14.1 253 ! interface vlan 1 ip address 172.31.14.254 255.255.255.0 exit interface vlan 2 ip address 172.31.19.254 255.255.255.0 exit interface vlan 4 ip address 172.31.16.254 255.255.255.0 ! interface Gi1/0/1 description 'Link to L7Router01' switchport mode trunk switchport trunk allowed vlan except 3,7-4093 exit ! and on the Cisco the following: interface FastEthernet0/0 ip address 172.31.14.1 255.255.255.0 ip nat inside ip virtual-reassembly ! interface FastEthernet0/0.2 description Accounts VLAN encapsulation dot1Q 2 ip address 172.31.19.1 255.255.255.0 ip nat inside ip virtual-reassembly ! interface FastEthernet0/0.4 description Voice VLAN encapsulation dot1Q 4 ip address 172.31.16.1 255.255.255.0 ip nat inside ip virtual-reassembly ! So what I'm doing is moving clients over so that their default gateway is a 172.31.x.254 address rather than a 172.31.x.1 address. This works great for inter-vlan routing, I have no issues with this. The switch can also access the router no worries, and users on the 172.31.14.0/24 network can access all interfaces and sub-interfaces on the router, including 172.31.14.1. They can also access all of the interfaces that the router connects off to, no worries there. The problem I have is that users on the 172.31.16.0/24 and 172.31.19.0/24 subnets cannot access either 172.31.14.1 or any of the subnets the router connects to. They can, however, connect to BOTH of the sub interfaces on the router from either subnet. What am I missing here? Why can't the vlans connect to the non-sub interface on the router? Are tagged packets being sent to this interface?

    Read the article

  • Spanning-tree setup with incompatible switches

    - by wfaulk
    I have a set of eight HP ProCurve 2910al-48G Ethernet switches at my datacenter that are set up in a star topology with no physical loops. I want to partially mesh the switches for redundancy and manage the loops with a spanning-tree protocol. However, our connection to the datacenter is provided by two uplinks, each to a Cisco 3750. The datacenter's switches are handling the redundant connection using PVST spanning-tree, which is a Cisco-proprietary spanning-tree implementation that my HP switches do not support. It appears that my switches are not participating in the datacenter's spanning-tree domain, but are blindly passing the BPDUs between the two switchports on my side, which enables the datacenter's switches to recognize the loop and put one of the uplinks into the Blocking state. This is somewhat supposition, but I can confirm that, while my switches say that both of the uplink ports are forwarding, only one is passing any real quantity of data. (I am assuming that I cannot get the datacenter to move away from PVST. I don't know that I'd want them to make that significant of a change anyway.) The datacenter has also sent me this output from their switches (which I have expurgated of any identifiable info): 3750G-1#sh spanning-tree vlan nnn VLAN0nnn Spanning tree enabled protocol ieee Root ID Priority 10 Address 00d0.0114.xxxx Cost 4 Port 5 (GigabitEthernet1/0/5) Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Bridge ID Priority 32mmm (priority 32768 sys-id-ext nnn) Address 0018.73d3.yyyy Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Aging Time 300 sec Interface Role Sts Cost Prio.Nbr Type ------------------- ---- --- --------- -------- -------------------------------- Gi1/0/5 Root FWD 4 128.5 P2p Gi1/0/6 Altn BLK 4 128.6 P2p Gi1/0/8 Altn BLK 4 128.8 P2p and: 3750G-2#sh spanning-tree vlan nnn VLAN0nnn Spanning tree enabled protocol ieee Root ID Priority 10 Address 00d0.0114.xxxx Cost 4 Port 6 (GigabitEthernet1/0/6) Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Bridge ID Priority 32mmm (priority 32768 sys-id-ext nnn) Address 000f.f71e.zzzz Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec Aging Time 300 sec Interface Role Sts Cost Prio.Nbr Type ------------------- ---- --- --------- -------- -------------------------------- Gi1/0/1 Desg FWD 4 128.1 P2p Gi1/0/5 Altn BLK 4 128.5 P2p Gi1/0/6 Root FWD 4 128.6 P2p Gi1/0/8 Desg FWD 4 128.8 P2p The uplinks to my switches are on Gi1/0/8 on both of their switches. The uplink ports are configured with a single tagged VLAN. I am also using a number of other tagged VLANs in my switch infrastructure. And, to be clear, I am passing the tagged VLAN I'm receiving from the datacenter to other ports on other switches in my infrastructure. My question is: how do I configure my switches so that I can use a spanning tree protocol inside my switch infrastructure without breaking the datacenter's spanning tree that I cannot participate in?

    Read the article

  • Routing RFC1918 addresses through dd-wrt via a switch

    - by espenfjo
    I am a bit stuck with an experiment of mine. I have a network looking somewhat like this. | Internet | | ---- |Switch| ---- | | Server w/pub IP | DD-WRT router 192.168.1.1 | | RFC1918 clients 192.168.1.0/24 What I want is for the RFC1918 clients to speak directly with each others. On the server with the public IP I have this route: 192.168.1.0/24 dev eth0 scope link and can see that packets are infact reaching the dd-wrt router for 192.168.1.1, even though if I get no answer. Trying to reach one of the RFC1918 clients from the public IP server will get no result, as the dd-wrt router is not announcing that network on to its external interface (arp who-has 192.168.1.107 tell xxx.xxx.xxx.xxx, but no answer). The router being an WLAN dd-wrt router has of course a load of routes, VLANs and interfaces: xxx.xxx.xxx.1 dev vlan2 scope link 192.168.1.0/24 dev br0 proto kernel scope link src 192.168.1.1 192.168.1.0/24 dev eth1 proto kernel scope link src 192.168.1.244 84.215.64.0/18 dev vlan2 proto kernel scope link src xxx.xxx.xxx.xxx 169.254.0.0/16 dev br0 proto kernel scope link src 169.254.255.1 127.0.0.0/8 dev lo scope link 0.0.0.0 via xxx.xxx.xxx.1 dev vlan2 xxx.xxx.xxx.xxx being the public IP, and xxx.xxx.xxx.1 being the default route for the public IP. I am not sure where to continue with this. I would recon that I both need routing on the dd-wrt router, as well as some iptables magic? Why do something this complex? Why not ;) Also, do not mind that "Internet" can get RFC1918 traffic, it wont go outside of the walls. EDIT 1: Following the tip from stew I do indeed get the correct ARP flowing. And adding an iptables rule for allowing traffic from that specific public IPd machine I get traffic between the systems! Oddly enough though, the speed I get from Server w/pub IP - RFC1918 clients are the same as if the traffic were routed out onto the Internet and back. Edit 2: Ok, disconnecting the external Internet connection will still give the same, crappy transfer speed. So it has to be something else. Edit 3: Ok, I guess there are other reasons for this crappy speed. Case closed. :)

    Read the article

  • Configure vlan on Netgear switch via SNMP

    - by Russell Gallop
    I am trying to configure vlans on a netgear GS752TSX from the Linux command line with netsnmp. I have created vlan 99 on the web interface now want to control the pvid settings, egress and tagging. I have identified these as the MIBs I need to change: dot1qPvid.<port> dot1qVlanStaticEgressPorts.99 dot1qVlanStaticUntaggedPorts.99 Pvid works as I expect: $ snmpset -r 1 -t 20 -v 2c -c private <switch> dot1qPvid.17 u 99 Q-BRIDGE-MIB::dot1qPvid.17 = Gauge32: 99 $ snmpget -r 1 -t 20 -v 2c -c private <switch> dot1qPvid.17 Q-BRIDGE-MIB::dot1qPvid.17 = Gauge32: 99 and so do the egress ports: $ snmpset -r 1 -t 20 -v 2c -c private <switch> dot1qVlanStaticEgressPorts.99 x 'ff ff ff ff ff ff 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00' Q-BRIDGE-MIB::dot1qVlanStaticEgressPorts.99 = Hex-STRING: FF FF FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 $ snmpget -r 1 -t 20 -v 2c -c private <switch> dot1qVlanStaticEgressPorts.99 Q-BRIDGE-MIB::dot1qVlanStaticEgressPorts.99 = Hex-STRING: FF FF FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 But untagging the ports doesn't seem to remember my setting: $ snmpset -r 1 -t 20 -v 2c -c private <switch> dot1qVlanStaticUntaggedPorts.99 x 'ff ff ff ff ff ff 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00' Q-BRIDGE-MIB::dot1qVlanStaticUntaggedPorts.99 = Hex-STRING: FF FF FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 $ snmpget -r 1 -t 20 -v 2c -c private <switch> dot1qVlanStaticUntaggedPorts.99 Q-BRIDGE-MIB::dot1qVlanStaticUntaggedPorts.99 = Hex-STRING: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 I have tried netsnmp 5.4.1 and 5.7.2. Is there something I'm doing wrong?

    Read the article

  • routing through multiple subinterfaces in debian

    - by Kstro21
    my question is as simple as the title, i have a debian 6 , 2 NICs, 3 different subnets in a single interface, just like this: auto eth0 iface eth0 inet static address 192.168.106.254 netmask 255.255.255.0 auto eth0:0 iface eth0:0 inet static address 172.19.221.81 netmask 255.255.255.248 auto eth0:1 iface eth0:1 inet static address 192.168.254.1 netmask 255.255.255.248 auto eth1 iface eth1 inet static address 172.19.216.3 netmask 255.255.255.0 gateway 172.19.216.13 eth0 is conected to a swith with 3 differents vlans, eth1 is conected to a router. No iptables DROP, so, all traffic is allowed. Now, passing the traffic through eth0 is OK, passing the traffic through eth0:0 is OK, but, passing the traffic through eth0:1 is not working, i can ping the ip address of that sub interface from a pc where this ip is the default gateway, but can't get to servers in the subnet of the eth1 interface, the traffic is not passing, even when i set the iptables to log all the traffic in the FORWARD chain and i can see the traffic there, but, the traffic is not really passing. And the funny is i can do any the other way around, i mean, passing from eth1 to eth0:1, RDP, telnet, ping, etc, doing some work with the iptable, i manage to pass some traffic from eth0:1 to eth1, the iptables look like this: iptables -t nat PREROUTING -d 192.168.254.1/32 -p tcp -m multiport --dports 25,110,5269 -j DNAT --to-destination 172.19.216.1 iptables -t nat PREROUTING -d 192.168.254.1/32 -p udp -m udp --dport 53 -j DNAT --to-destination 172.19.216.9 iptables -t nat PREROUTING -d 192.168.254.1/32 -p tcp -m tcp --dport 21 -j DNAT --to-destination 172.19.216.11 iptables -t nat POSTROUTING -s 172.19.216.0/24 -d 172.19.221.80/29 -j SNAT --to-source 172.19.221.81 iptables -t nat POSTROUTING -s 172.19.216.0/24 -d 192.168.254.0/29 -j SNAT --to-source 192.168.254.1 iptables -t nat POSTROUTING -s 172.19.216.0/24 -o eth0 -j SNAT --to-source 192.168.106.254 dong this is working, but,it is really a headache have to map each port with the server, imagine if i move the service from server, so, now i have doubts: can debian route through multiple subinterfaces?? exist a limit for this?? if not, what i'm doing wrong when i have the same setup with other subnets and it is working ok?? without the iptables rules in the nat, it doesn't work thanks and i hope good comments/answers

    Read the article

  • Bridging and iptables SNAT conflict

    - by sad_admin
    Hello I am working on a setup here and have it working with one minor exception. Devices on one side of my bridge aren't getting SNAT'd to the Internet. The Diagram / Overview: Primary_Network (Site_A) | | Internet ------- Linux_Bridge_GW (GW) | | Secondary/CoLo Site (Site_B) Here is the setup: 1.) Site_A has all the production servers and workstations. 2.) Site_B has a set of servers that we would like to fail-over to and also serve our internet facing services from. 3.) GW has two interfaces that are trunked and carrying the appropriate VLAN traffic (allow layer-2 propagation of traffic between sites) //this all works perfectly fine. 4.) The problem that is being encountered is, hosts from Site_B have their default GW at Site_A (same subnet) GW does not have IPs on the VLANs that are being passed. 5.) All hosts at Site_A can reach the Internet without problem. 6.) GW has an addresses on a subnet that is ONLY for Internet destined traffic. (This was done so that Websense would not have to parse unnecessary traffic. We use this VLAN as the monitor port's source on the switch where Websense is sitting). What I think is happening: 1.) Packet/Frame comes in on physdev at Site_B destined for Internet. 2.) Kernel sees packet, and forwards it out the other side of the bridge to that host's default GW. 3.) Site_A (containing core-network's Default-GW) sees that packet is destined for a host it doesn't know about, so it sends it to it's default GW (the linux bridge, since it's Internet bound). 4.) The kernel says "Hey, I've seen you before" and therefore doesn't do SNAT'ing on the packet and sends it out to the Internet where it's black-holed. Why I think it's happening: 1.) A tcpdump on the internet facing NIC shows the packet leaving the interface with the private address as it's source. What I would like: 1.) Have the packet SNAT'd. 2.) Something like the below would be awesome a.) packet comes in from Site_B b.) kernel sees that the packet is NOT destined for itself or any private address c.) kernel says "OK, well since you're destined for the Internet I'm going to send you out this interface rather than forward you to your normal default GW that's WAAAY over there." d.) packet comes in from internet and is sent out the appropriate bridge physdev depending on which site the host it's destined for is at. Thanks for any assistance or guidance that you are willing to offer. Best Regards, Sad Admin

    Read the article

  • What's New in Oracle VM VirtualBox 4.2?

    - by Fat Bloke
    A year is a long time in the IT industry. Since the last VirtualBox feature release, which was a little over a year ago, we've seen: new releases of cool new operating systems, such as Windows 8, ChromeOS, and Mountain Lion; we've seen a myriad of new Linux releases from big Enterprise class distributions like Oracle 6.3, to accessible desktop distros like Ubuntu 12.04 and Fedora 17; and we've also seen the spec of a typical PC or laptop double in power. All of these events have influenced our new VirtualBox version which we're releasing today. Here's how... Powerful hosts  One of the trends we've seen is that as the average host platform becomes more powerful, our users are consistently running more and more vm's. Some of our users have large libraries of vm's of various vintages, whilst others have groups of vm's that are run together as an assembly of the various tiers in a multi-tiered software solution, for example, a database tier, middleware tier, and front-ends.  So we're pleased to unveil a more powerful VirtualBox Manager to address the needs of these users: VM Groups Groups allow you to organize your VM library in a sensible way, e.g.  by platform type, by project, by version, by whatever. To create groups you can drag one VM onto another or select one or more VM's and choose Machine...Group from the menu bar. You can expand and collapse groups to save screen real estate, and you can Enter and Leave a group (think iPad navigation here) by using the right and left arrow keys when groups are selected. But groups are more than passive folders, because you can now also perform operations on groups, rather than all the individual VMs. So if you have a multi-tiered solution you can start the whole stack up with just one click. Autostart Many VirtualBox users run dedicated services in their VMs, for example, running a Wiki. With these types of VM workloads, you really want the VM start up when the host machine boots up. So with 4.2 we've introduced a cross-platform Auto-start mechanism to allow you to treat VMs as host services. Headless VM Launching With VM's such as web servers, wikis, and other types of server-class workloads, the Console of the VM is pretty much redundant. For some time now VirtualBox has offered a separate launch mechanism for these VM's, namely the command-line interface commands VBoxHeadless or VBoxManage startvm ... --type headless commands. But with 4.2 we also allow you launch headless VMs from the Manager. Simply hold down Shift when launching the VM from the Manager.  It's that easy. But how do you stop a headless VM? Well, with 4.2 we allow you to Close the VM from the Manager. (BTW best to use the ACPI Shutdown method which allows the guest VM to close down gracefully.) Easy VM Creation For our expert users, the  New VM Wizard was a little tiresome, so now there's a faster 2-click VM creation mode. Just Hide the description when creating a new VM. Powerful VMs  As the hosts have become more powerful, so are the guests that are running inside them. Here are some of the 4.2 features to accommodate them: Virtual Network Interface Cards  With 4.2, it's now possible to create VMs with up to 36 NICs, when using the ICH9 chipset emulation. But with great power comes great responsibility (didn't Obi-Wan say something similar?), and so we have also introduced bandwidth limiting to prevent a rogue VM stealing the whole pipe. VLAN tagging Some of our users leverage VLANs extensively so we've enhanced the E1000 NICs to support this.  Processor Performance If you are running a CPU which supports Nested Paging (aka EPT in the Intel world) such as most of the Core i5 and i7 CPUs, or are running an AMD Bulldozer or later, you should see some performance improvements from our work with these processors. And while we're talking Processors, we've added support for some of the more modern VIA CPUs too. Powerful Automation Because VirtualBox runs atop a fully blown operating system, it makes sense to leverage the capabilities of the host to run scripts that can drive the guest VMs. Guest Automation was introduced in a prior release but with 4.2 we've revamped the APIs to allow a richer and more powerful set of operations to be executed by the guest. Check out the IGuest APIs in the VirtualBox Programming Guide and Reference (SDK). Powerful Platforms  All the hardcore engineering that has gone into 4.2 has been done for a purpose and that is to deliver a fast and powerful engine that can run almost any x86 OS because of the integrity of the virtualization. So we're pleased to add support for these platforms: Mac OS X "Mountain Lion"  Windows 8 Windows Server 2012 Ubuntu 12.04 (“Precise Pangolin”) Fedora 17 Oracle Linux 6.3  Here's the proof: We don't have time to go into the myriad of smaller improvements such as support for burning audio CDs from a guest, bi-directional clipboard control,  drag-and-drop of files into Linux guests, etc. so we'll leave that as an exercise for the user as soon as you've downloaded from the Oracle or community site and taken a peek at the User Guide. So all in all, a pretty solid release, one that we hope you'll enjoy discovering. - FB 

    Read the article

  • Using Juniper EX3300 as a router

    - by Richard Whitman
    So I have a Juniper EX3300 Switch. One of its uplink ports (ge-0/1/0) is connected to my ISP's router. ISP router's port address is xx.xx.xx.109. My switch's IP address is xx.xx.xx.110. From the switch, I can ping to xx.xx.xx.109 and any other IP in the world. I mean its connected to the Internet. I connected the port eth0 of a computer (running Ubuntu) to the port ge-0/0/0 of the switch (which in the same VLAN as ge-0/1/0). I configured the port eth0 as follows: iface eth0 inet static address yy.yy.yy.208 netmask 255.255.255.240 gateway xx.xx.xx.110 yy.yy.yy.208 is assigned to me by the ISP. So, now I can ping to the switch (xx.xx.xx.110) from this computer. But I can not ping to either xx.xx.xx.109 (ISP router) or any other IP. I want this computer to be connected to the Internet. What am I doing wrong? Here are some of the configurations on my switch: interfaces { ge-0/0/0 { unit 0 { family ethernet-switching; } } . . . ge-0/1/0 { ether-options { no-auto-negotiation; link-mode full-duplex; speed { 1g; } } unit 0 { family ethernet-switching { port-mode access; } } } . . . vlan { unit 0 { family inet { address 10.0.1.1/24; } } unit 1 { family inet { address xx.xx.xx.110/30; } } } } . . . routing-options { static { route 0.0.0.0/0 { next-hop xx.xx.xx.109; retain; } } } vlans { Cogent { vlan-id 3; interface { ge-0/1/0.0; ge-0/0/0.0; ge-0/0/1.0; ge-0/0/2.0; ge-0/0/3.0; } l3-interface vlan.1; } TFLan { vlan-id 2; interface { ge-0/0/5.0; ge-0/0/6.0; ge-0/0/7.0; ge-0/0/8.0; ge-0/0/9.0; ge-0/0/10.0; ge-0/0/11.0; ge-0/0/12.0; ge-0/0/13.0; ge-0/0/14.0; ge-0/0/15.0; ge-0/0/16.0; ge-0/0/17.0; ge-0/0/18.0; ge-0/0/19.0; ge-0/0/20.0; ge-0/0/21.0; ge-0/0/22.0; ge-0/0/23.0; ge-0/0/4.0; } l3-interface vlan.0; } }

    Read the article

  • vconfig created virtual interface and trunking - is the the interface untagged or tagged for that VLAN ID?

    - by kce
    I am trying to setup an additional VLAN on our Debian-based router/firewall (which exists as a virtual machine on Hyper-V), our core switch (an HP Procurve 5406) and a remote HP ProCurve 2610 that is connected via a WAN Transparent Lan Service (TLS) link. Let's work backwards from the network edge: The Debian server has an external connection attached to eth0. The internal interface is eth1, which is connected directly from our Hyper-V host to the 5406. The port that eth1 is attached to is setup as Trk12. The 2610 is attached to Trk9 (which trunks a whole slew of VLANs - Trk9 is our TLS head). I can successfully ping the management IP addresses for my VLAN from both switches but I cannot ping, from either switch, the virtual interface for my new VLAN on the Debian-base router and firewall. The existing VLAN works fine. What gives? The port eth1 is attached to is a trunk, the existing VLAN (ID 98) is untagged on the trunk, the new VLAN (ID 198) is tagged. VLAN 198 is tagged on Trk9 on the 5406 and on the 2610. I can ping the other switch's management IP (10.100.198.2 and 10.100.198.3) from the other respective switch. That leg of the VLAN works - however I cannot communicate with eth1.198's 10.100.198.1. I feel like I'm missing something elementary but what it is remains illusive to me. I suspect the issue is with the vconfig created eth1.198. It should pass the tagged VLAN 198 packets correct? But they cannot seem to get any further than the 5406. Communication on the existing VLAN 98 works fine. From the Debian box: eth1: eth1 Link encap:Ethernet HWaddr 00:15:5d:34:5e:03 inet addr:10.100.0.1 Bcast:10.100.255.255 Mask:255.255.0.0 inet6 addr: fe80::215:5dff:fe34:5e03/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:12179786 errors:0 dropped:0 overruns:0 frame:0 TX packets:20210532 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:1586498028 (1.4 GiB) TX bytes:26154226278 (24.3 GiB) Interrupt:9 Base address:0xec00 eth1.198: eth1.198 Link encap:Ethernet HWaddr 00:15:5d:34:5e:03 inet addr:10.100.198.1 Bcast:10.100.198.255 Mask:255.255.255.0 inet6 addr: fe80::215:5dff:fe34:5e03/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1496 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:72 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:0 (0.0 B) TX bytes:3528 (3.4 KiB) # cat /proc/net/vlan/eth1.198: eth1.198 VID: 198 REORDER_HDR: 0 dev->priv_flags: 1 total frames received 0 total bytes received 0 Broadcast/Multicast Rcvd 0 total frames transmitted 72 total bytes transmitted 3528 total headroom inc 0 total encap on xmit 39 Device: eth1 INGRESS priority mappings: 0:0 1:0 2:0 3:0 4:0 5:0 6:0 7:0 EGRESS priority mappings: # ip route 10.100.198.0/24 dev eth1.198 proto kernel scope link src 10.100.198.1 206.174.64.0/20 dev eth0 proto kernel scope link src 206.174.66.14 10.100.0.0/16 dev eth1 proto kernel scope link src 10.100.0.1 default via 206.174.64.1 dev eth0 # iptables -L -v Chain INPUT (policy DROP 6875 packets, 637K bytes) pkts bytes target prot opt in out source destination 41 4320 ACCEPT all -- lo any anywhere anywhere 11481 1560K ACCEPT all -- any any anywhere anywhere state RELATED,ESTABLISHED 107 8058 ACCEPT icmp -- any any anywhere anywhere 0 0 ACCEPT tcp -- eth1 any 10.100.0.0/24 anywhere tcp dpt:ssh 701 317K ACCEPT udp -- eth1 any anywhere anywhere udp dpts:bootps:bootpc Chain FORWARD (policy DROP 1 packets, 40 bytes) pkts bytes target prot opt in out source destination 156K 25M ACCEPT all -- eth1 any anywhere anywhere 215K 248M ACCEPT all -- eth0 eth1 anywhere anywhere state RELATED,ESTABLISHED 0 0 ACCEPT all -- eth1.198 any anywhere anywhere 0 0 ACCEPT all -- eth0 eth1.198 anywhere anywhere state RELATED,ESTABLISHED Chain OUTPUT (policy ACCEPT 13048 packets, 1640K bytes) pkts bytes target prot opt in out source destination From the 5406: # show vlan ports trk12 detail Status and Counters - VLAN Information - for ports Trk12 VLAN ID Name | Status Voice Jumbo Mode ------- -------------------- + ---------- ----- ----- -------- 98 WIFI | Port-based No No Untagged 198 VLAN198 | Port-based No No Tagged

    Read the article

  • VMware vSphere cluster design for site redundancy

    - by Stefan Radovanovici
    I have a question about the best design for site redudancy when using vSphere clusters. A bit of background info about our situation first though. We are a medium-sized company with two main offices, located in different countries. Our networks are linked by a Layer2 150Mbps leased line which is currently underused. We have a variety of services running for internal use within the company, some on physycal servers and some on existing vSphere clusters. In our department we also run several services (almost all running under various forms of Linux) like NTP, Syslog, jump servers, monitoring servers and so on. We have now the requirement that those servers need to be redundant within each location (which they are not at the moment) and also site redudant (which they are to some extent, the servers are duplicated in the 2nd location with configurations kept in sync via various methods at the application layer). There is no SAN available for us, at least not something that we can use at the moment. Cost is also an issue. While we do have some budget available for this, we can't afford to buy SANs for both locations for example. I looked at the VSA feature and it seems that this could be something for us but I am unsure how to solve the site-redudancy requirement. At the moment for testing purposes I am setting up in a lab a vSphere 5 with VSA on two ESXi hosts. I am currently using the Essentials Plus kit with VSA license, which allows me to build a VSA cluster on up to 3 hosts, together with a vCenter license to manage them. The hosts each have two dual-port network cards and two 600GB drives, running in Raid1. Hardware-wise this will be enough for us to run the all the services we need as VMs and will provide redundandcy within the site. At the moment I see only two option to have site redundancy: build an identical VSA cluter in the second location and keep the various services sync'ed at application layer (database sync, rsync and so on). simply move one of the hosts from the existing cluster to the second location, basically having the VSA cluster span the 150Mbps link between the sites. I would very much prefer the second option but I am unsure how well it'll work, if it can work at all. Technically it should, we can span the needed VLANs across the leased line and have them available in the second location. The advantage would be that we don't need to worry at all about sync'ing databases and the like. But I have the feeling that the bandwidth will not be enough, I have no way of knowing how much traffic will the VSA cluster generate between the hosts. I realize that this will most likely depend on the individual usage of the VMs but still, I have no idea how VSA replicates data between the ESXi hosts. Are these my only options or can my goals be achieved in some other way ? Is there perhaps a way to have some sort of "cold stand by" cluster in the second location where the VMs would be sync'ed once per night from the main location ? The idea is that in case the first site becomes unavailable, we would be able to bring all those VMs online there. We would be ok with the data being 1 day old. Any answers are appreciated. Best regards, Stefan

    Read the article

  • Introducing Oracle VM Server for SPARC

    - by Honglin Su
    As you are watching Oracle's Virtualization Strategy Webcast and exploring the great virtualization offerings of Oracle VM product line, I'd like to introduce Oracle VM Server for SPARC --  highly efficient, enterprise-class virtualization solution for Sun SPARC Enterprise Systems with Chip Multithreading (CMT) technology. Oracle VM Server for SPARC, previously called Sun Logical Domains, leverages the built-in SPARC hypervisor to subdivide supported platforms' resources (CPUs, memory, network, and storage) by creating partitions called logical (or virtual) domains. Each logical domain can run an independent operating system. Oracle VM Server for SPARC provides the flexibility to deploy multiple Oracle Solaris operating systems simultaneously on a single platform. Oracle VM Server also allows you to create up to 128 virtual servers on one system to take advantage of the massive thread scale offered by the CMT architecture. Oracle VM Server for SPARC integrates both the industry-leading CMT capability of the UltraSPARC T1, T2 and T2 Plus processors and the Oracle Solaris operating system. This combination helps to increase flexibility, isolate workload processing, and improve the potential for maximum server utilization. Oracle VM Server for SPARC delivers the following: Leading Price/Performance - The low-overhead architecture provides scalable performance under increasing workloads without additional license cost. This enables you to meet the most aggressive price/performance requirement Advanced RAS - Each logical domain is an entirely independent virtual machine with its own OS. It supports virtual disk mutipathing and failover as well as faster network failover with link-based IP multipathing (IPMP) support. Moreover, it's fully integrated with Solaris FMA (Fault Management Architecture), which enables predictive self healing. CPU Dynamic Resource Management (DRM) - Enable your resource management policy and domain workload to trigger the automatic addition and removal of CPUs. This ability helps you to better align with your IT and business priorities. Enhanced Domain Migrations - Perform domain migrations interactively and non-interactively to bring more flexibility to the management of your virtualized environment. Improve active domain migration performance by compressing memory transfers and taking advantage of cryptographic acceleration hardware. These methods provide faster migration for load balancing, power saving, and planned maintenance. Dynamic Crypto Control - Dynamically add and remove cryptographic units (aka MAU) to and from active domains. Also, migrate active domains that have cryptographic units. Physical-to-virtual (P2V) Conversion - Quickly convert an existing SPARC server running the Oracle Solaris 8, 9 or 10 OS into a virtualized Oracle Solaris 10 image. Use this image to facilitate OS migration into the virtualized environment. Virtual I/O Dynamic Reconfiguration (DR) - Add and remove virtual I/O services and devices without needing to reboot the system. CPU Power Management - Implement power saving by disabling each core on a Sun UltraSPARC T2 or T2 Plus processor that has all of its CPU threads idle. Advanced Network Configuration - Configure the following network features to obtain more flexible network configurations, higher performance, and scalability: Jumbo frames, VLANs, virtual switches for link aggregations, and network interface unit (NIU) hybrid I/O. Official Certification Based On Real-World Testing - Use Oracle VM Server for SPARC with the most sophisticated enterprise workloads under real-world conditions, including Oracle Real Application Clusters (RAC). Affordable, Full-Stack Enterprise Class Support - Obtain worldwide support from Oracle for the entire virtualization environment and workloads together. The support covers hardware, firmware, OS, virtualization, and the software stack. SPARC Server Virtualization Oracle offers a full portfolio of virtualization solutions to address your needs. SPARC is the leading platform to have the hard partitioning capability that provides the physical isolation needed to run independent operating systems. Many customers have already used Oracle Solaris Containers for application isolation. Oracle VM Server for SPARC provides another important feature with OS isolation. This gives you the flexibility to deploy multiple operating systems simultaneously on a single Sun SPARC T-Series server with finer granularity for computing resources.  For SPARC CMT processors, the natural level of granularity is an execution thread, not a time-sliced microsecond of execution resources. Each CPU thread can be treated as an independent virtual processor. The scheduler is naturally built into the CPU for lower overhead and higher performance. Your organizations can couple Oracle Solaris Containers and Oracle VM Server for SPARC with the breakthrough space and energy savings afforded by Sun SPARC Enterprise systems with CMT technology to deliver a more agile, responsive, and low-cost environment. Management with Oracle Enterprise Manager Ops Center The Oracle Enterprise Manager Ops Center Virtualization Management Pack provides full lifecycle management of virtual guests, including Oracle VM Server for SPARC and Oracle Solaris Containers. It helps you streamline operations and reduce downtime. Together, the Virtualization Management Pack and the Ops Center Provisioning and Patch Automation Pack provide an end-to-end management solution for physical and virtual systems through a single web-based console. This solution automates the lifecycle management of physical and virtual systems and is the most effective systems management solution for Oracle's Sun infrastructure. Ease of Deployment with Configuration Assistant The Oracle VM Server for SPARC Configuration Assistant can help you easily create logical domains. After gathering the configuration data, the Configuration Assistant determines the best way to create a deployment to suit your requirements. The Configuration Assistant is available as both a graphical user interface (GUI) and terminal-based tool. Oracle Solaris Cluster HA Support The Oracle Solaris Cluster HA for Oracle VM Server for SPARC data service provides a mechanism for orderly startup and shutdown, fault monitoring and automatic failover of the Oracle VM Server guest domain service. In addition, applications that run on a logical domain, as well as its resources and dependencies can be controlled and managed independently. These are managed as if they were running in a classical Solaris Cluster hardware node. Supported Systems Oracle VM Server for SPARC is supported on all Sun SPARC Enterprise Systems with CMT technology. UltraSPARC T2 Plus Systems ·   Sun SPARC Enterprise T5140 Server ·   Sun SPARC Enterprise T5240 Server ·   Sun SPARC Enterprise T5440 Server ·   Sun Netra T5440 Server ·   Sun Blade T6340 Server Module ·   Sun Netra T6340 Server Module UltraSPARC T2 Systems ·   Sun SPARC Enterprise T5120 Server ·   Sun SPARC Enterprise T5220 Server ·   Sun Netra T5220 Server ·   Sun Blade T6320 Server Module ·   Sun Netra CP3260 ATCA Blade Server Note that UltraSPARC T1 systems are supported on earlier versions of the software.Sun SPARC Enterprise Systems with CMT technology come with the right to use (RTU) of Oracle VM Server, and the software is pre-installed. If you have the systems under warranty or with support, you can download the software and system firmware as well as their updates. Oracle Premier Support for Systems provides fully-integrated support for your server hardware, firmware, OS, and virtualization software. Visit oracle.com/support for information about Oracle's support offerings for Sun systems. For more information about Oracle's virtualization offerings, visit oracle.com/virtualization.

    Read the article

  • Cisco ASA 5505 - L2TP over IPsec

    - by xraminx
    I have followed this document on cisco site to set up the L2TP over IPsec connection. When I try to establish a VPN to ASA 5505 from my Windows XP, after I click on "connect" button, the "Connecting ...." dialog box appears and after a while I get this error message: Error 800: Unable to establish VPN connection. The VPN server may be unreachable, or security parameters may not be configured properly for this connection. ASA version 7.2(4) ASDM version 5.2(4) Windows XP SP3 Windows XP and ASA 5505 are on the same LAN for test purposes. Edit 1: There are two VLANs defined on the cisco device (the standard setup on cisco ASA5505). - port 0 is on VLAN2, outside; - and ports 1 to 7 on VLAN1, inside. I run a cable from my linksys home router (10.50.10.1) to the cisco ASA5505 router on port 0 (outside). Port 0 have IP 192.168.1.1 used internally by cisco and I have also assigned the external IP 10.50.10.206 to port 0 (outside). I run a cable from Windows XP to Cisco router on port 1 (inside). Port 1 is assigned an IP from Cisco router 192.168.1.2. The Windows XP is also connected to my linksys home router via wireless (10.50.10.141). Edit 2: When I try to establish vpn, the Cisco device real time Log viewer shows 7 entries like this: Severity:5 Date:Sep 15 2009 Time: 14:51:29 SyslogID: 713904 Destination IP = 10.50.10.141, Decription: No crypto map bound to interface... dropping pkt Edit 3: This is the setup on the router right now. Result of the command: "show run" : Saved : ASA Version 7.2(4) ! hostname ciscoasa domain-name default.domain.invalid enable password HGFHGFGHFHGHGFHGF encrypted passwd NMMNMNMNMNMNMN encrypted names name 192.168.1.200 WebServer1 name 10.50.10.206 external-ip-address ! interface Vlan1 nameif inside security-level 100 ip address 192.168.1.1 255.255.255.0 ! interface Vlan2 nameif outside security-level 0 ip address external-ip-address 255.0.0.0 ! interface Vlan3 no nameif security-level 50 no ip address ! interface Ethernet0/0 switchport access vlan 2 ! interface Ethernet0/1 ! interface Ethernet0/2 ! interface Ethernet0/3 ! interface Ethernet0/4 ! interface Ethernet0/5 ! interface Ethernet0/6 ! interface Ethernet0/7 ! ftp mode passive dns server-group DefaultDNS domain-name default.domain.invalid object-group service l2tp udp port-object eq 1701 access-list outside_access_in remark Allow incoming tcp/http access-list outside_access_in extended permit tcp any host WebServer1 eq www access-list outside_access_in extended permit udp any any eq 1701 access-list inside_nat0_outbound extended permit ip any 192.168.1.208 255.255.255.240 access-list inside_cryptomap_1 extended permit ip interface outside interface inside pager lines 24 logging enable logging asdm informational mtu inside 1500 mtu outside 1500 ip local pool PPTP-VPN 192.168.1.210-192.168.1.220 mask 255.255.255.0 icmp unreachable rate-limit 1 burst-size 1 asdm image disk0:/asdm-524.bin no asdm history enable arp timeout 14400 global (outside) 1 interface nat (inside) 0 access-list inside_nat0_outbound nat (inside) 1 0.0.0.0 0.0.0.0 static (inside,outside) tcp interface www WebServer1 www netmask 255.255.255.255 access-group outside_access_in in interface outside timeout xlate 3:00:00 timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 icmp 0:00:02 timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00 mgcp-pat 0:05:00 timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00 sip-disconnect 0:02:00 timeout sip-provisional-media 0:02:00 uauth 0:05:00 absolute http server enable http 192.168.1.0 255.255.255.0 inside no snmp-server location no snmp-server contact snmp-server enable traps snmp authentication linkup linkdown coldstart crypto ipsec transform-set TRANS_ESP_3DES_SHA esp-3des esp-sha-hmac crypto ipsec transform-set TRANS_ESP_3DES_SHA mode transport crypto ipsec transform-set TRANS_ESP_3DES_MD5 esp-3des esp-md5-hmac crypto ipsec transform-set TRANS_ESP_3DES_MD5 mode transport crypto map outside_map 1 match address inside_cryptomap_1 crypto map outside_map 1 set transform-set TRANS_ESP_3DES_MD5 crypto map outside_map interface inside crypto isakmp enable outside crypto isakmp policy 10 authentication pre-share encryption 3des hash md5 group 2 lifetime 86400 telnet timeout 5 ssh timeout 5 console timeout 0 dhcpd auto_config outside ! dhcpd address 192.168.1.2-192.168.1.33 inside dhcpd enable inside ! group-policy DefaultRAGroup internal group-policy DefaultRAGroup attributes dns-server value 192.168.1.1 vpn-tunnel-protocol IPSec l2tp-ipsec username myusername password FGHFGHFHGFHGFGFHF nt-encrypted tunnel-group DefaultRAGroup general-attributes address-pool PPTP-VPN default-group-policy DefaultRAGroup tunnel-group DefaultRAGroup ipsec-attributes pre-shared-key * tunnel-group DefaultRAGroup ppp-attributes no authentication chap authentication ms-chap-v2 ! ! prompt hostname context Cryptochecksum:a9331e84064f27e6220a8667bf5076c1 : end

    Read the article

  • Juniper SSG-5 subinterface vlan routing to the internet

    - by catfish
    I'm unable to get a brand new Juniper SSG-5 with latest 6.3.0r05 firmware routing to the internet from a subinterface I created on bgroup0 setup as vlan2 (bgroup0.1 on "wifi" zone). When connected on the default vlan it gets on the internet just fine. When I switch to vlan2 I'm unable to get to the internet. I am able to get the correct ip address (10.150.0.0/24) from dhcp, able to get to the juniper management page, etc but nothing past the firewall, can't ping 4.2.2.2 or the internet gateway. Even setting up logging on the wifi-to-untrust policy and it does shows the attempts (it's it's timeouts). 172.31.16.0/24 is the untrusted lan, it's already nat'ed but works fine for testing. Can ping this ip from the default vlan but not from vlan2 192.168.1.0/24 is the trusted main lan 10.150.0.0/24 is the wifi isolated lan on vlan2 The idea is to setup an AP with lan and guest access (AP supports multiple ssid's on different vlans). I know I can setup the juniper to use different ports for the wifi lan and use their procurve switch to do the vlan separation, but I never used vlan'ing on a Juniper firewall and I would like to try it out this way. Here is the complete config file: unset key protection enable set clock timezone -5 set vrouter trust-vr sharable set vrouter "untrust-vr" exit set vrouter "trust-vr" unset auto-route-export exit set alg appleichat enable unset alg appleichat re-assembly enable set alg sctp enable set auth-server "Local" id 0 set auth-server "Local" server-name "Local" set auth default auth server "Local" set auth radius accounting port 1646 set admin name "netscreen" set admin password "xxxxxxxxxxxxxxxx" set admin auth web timeout 10 set admin auth dial-in timeout 3 set admin auth server "Local" set admin format dos set zone "Trust" vrouter "trust-vr" set zone "Untrust" vrouter "trust-vr" set zone "DMZ" vrouter "trust-vr" set zone "VLAN" vrouter "trust-vr" set zone id 100 "Wifi" set zone "Untrust-Tun" vrouter "trust-vr" set zone "Trust" tcp-rst set zone "Untrust" block unset zone "Untrust" tcp-rst set zone "MGT" block unset zone "V1-Trust" tcp-rst unset zone "V1-Untrust" tcp-rst set zone "DMZ" tcp-rst unset zone "V1-DMZ" tcp-rst unset zone "VLAN" tcp-rst unset zone "Wifi" tcp-rst set zone "Untrust" screen tear-drop set zone "Untrust" screen syn-flood set zone "Untrust" screen ping-death set zone "Untrust" screen ip-filter-src set zone "Untrust" screen land set zone "V1-Untrust" screen tear-drop set zone "V1-Untrust" screen syn-flood set zone "V1-Untrust" screen ping-death set zone "V1-Untrust" screen ip-filter-src set zone "V1-Untrust" screen land set interface "ethernet0/0" zone "Untrust" set interface "ethernet0/1" zone "Untrust" set interface "bgroup0" zone "Trust" set interface "bgroup0.1" tag 2 zone "Wifi" set interface "bgroup1" zone "DMZ" set interface bgroup0 port ethernet0/2 set interface bgroup0 port ethernet0/3 set interface bgroup0 port ethernet0/4 set interface bgroup0 port ethernet0/5 set interface bgroup0 port ethernet0/6 unset interface vlan1 ip set interface ethernet0/0 ip 172.31.16.243/24 set interface ethernet0/0 route set interface bgroup0 ip 192.168.1.1/24 set interface bgroup0 nat set interface bgroup0.1 ip 10.150.0.1/24 set interface bgroup0.1 nat set interface bgroup0.1 mtu 1500 unset interface vlan1 bypass-others-ipsec unset interface vlan1 bypass-non-ip set interface ethernet0/0 ip manageable set interface bgroup0 ip manageable set interface bgroup0.1 ip manageable set interface ethernet0/0 manage ping set interface ethernet0/1 manage ping set interface bgroup0.1 manage ping set interface bgroup0.1 manage telnet set interface bgroup0.1 manage web unset interface bgroup1 manage ping set interface bgroup0 dhcp server service set interface bgroup0.1 dhcp server service set interface bgroup0 dhcp server auto set interface bgroup0.1 dhcp server enable set interface bgroup0 dhcp server option gateway 192.168.1.1 set interface bgroup0 dhcp server option netmask 255.255.255.0 set interface bgroup0 dhcp server option dns1 8.8.8.8 set interface bgroup0.1 dhcp server option lease 1440 set interface bgroup0.1 dhcp server option gateway 10.150.0.1 set interface bgroup0.1 dhcp server option netmask 255.255.255.0 set interface bgroup0.1 dhcp server option dns1 8.8.8.8 set interface bgroup0 dhcp server ip 192.168.1.33 to 192.168.1.126 set interface bgroup0.1 dhcp server ip 10.150.0.50 to 10.150.0.100 unset interface bgroup0 dhcp server config next-server-ip unset interface bgroup0.1 dhcp server config next-server-ip set interface "serial0/0" modem settings "USR" init "AT&F" set interface "serial0/0" modem settings "USR" active set interface "serial0/0" modem speed 115200 set interface "serial0/0" modem retry 3 set interface "serial0/0" modem interval 10 set interface "serial0/0" modem idle-time 10 set flow tcp-mss unset flow no-tcp-seq-check set flow tcp-syn-check unset flow tcp-syn-bit-check set flow reverse-route clear-text prefer set flow reverse-route tunnel always set pki authority default scep mode "auto" set pki x509 default cert-path partial set crypto-policy exit set ike respond-bad-spi 1 set ike ikev2 ike-sa-soft-lifetime 60 unset ike ikeid-enumeration unset ike dos-protection unset ipsec access-session enable set ipsec access-session maximum 5000 set ipsec access-session upper-threshold 0 set ipsec access-session lower-threshold 0 set ipsec access-session dead-p2-sa-timeout 0 unset ipsec access-session log-error unset ipsec access-session info-exch-connected unset ipsec access-session use-error-log set url protocol websense exit set policy id 1 from "Trust" to "Untrust" "Any" "Any" "ANY" permit set policy id 1 exit set policy id 2 from "Wifi" to "Untrust" "Any" "Any" "ANY" permit log set policy id 2 exit set nsmgmt bulkcli reboot-timeout 60 set ssh version v2 set config lock timeout 5 unset license-key auto-update set telnet client enable set snmp port listen 161 set snmp port trap 162 set snmpv3 local-engine id "0162122009006149" set vrouter "untrust-vr" exit set vrouter "trust-vr" unset add-default-route set route 0.0.0.0/0 interface ethernet0/0 gateway 172.31.16.1 exit set vrouter "untrust-vr" exit set vrouter "trust-vr" exit

    Read the article

  • Load-balancing between a Procurve switch and a server

    - by vlad
    Hello I've been searching around the web for this problem i've been having. It's similar in a way to this question: How exactly & specifically does layer 3 LACP destination address hashing work? My setup is as follows: I have a central switch, a Procurve 2510G-24, image version Y.11.16. It's the center of a star topology, there are four switches connected to it via a single gigabit link. Those switches service the users. On the central switch, I have a server with two gigabit interfaces that I want to bond together in order to achieve higher throughput, and two other servers that have single gigabit connections to the switch. The topology looks as follows: sw1 sw2 sw3 sw4 | | | | --------------------- | sw0 | --------------------- || | | srv1 srv2 srv3 The servers were running FreeBSD 8.1. On srv1 I set up a lagg interface using the lacp protocol, and on the switch I set up a trunk for the two ports using lacp as well. The switch showed that the server was a lacp partner, I could ping the server from another computer, and the server could ping other computers. If I unplugged one of the cables, the connection would keep working, so everything looked fine. Until I tested throughput. There was only one link used between srv1 and sw0. All testing was conducted with iperf, and load distribution was checked with systat -ifstat. I was looking to test the load balancing for both receive and send operations, as I want this server to be a file server. There were therefore two scenarios: iperf -s on srv1 and iperf -c on the other servers iperf -s on the other servers and iperf -c on srv1 connected to all the other servers. Every time only one link was used. If one cable was unplugged, the connections would keep going. However, once the cable was plugged back in, the load was not distributed. Each and every server is able to fill the gigabit link. In one-to-one test scenarios, iperf was reporting around 940Mbps. The CPU usage was around 20%, which means that the servers could withstand a doubling of the throughput. srv1 is a dell poweredge sc1425 with onboard intel 82541GI nics (em driver on freebsd). After troubleshooting a previous problem with vlan tagging on top of a lagg interface, it turned out that the em could not support this. So I figured that maybe something else is wrong with the em drivers and / or lagg stack, so I started up backtrack 4r2 on this same server. So srv1 now uses linux kernel 2.6.35.8. I set up a bonding interface bond0. The kernel module was loaded with option mode=4 in order to get lacp. The switch was happy with the link, I could ping to and from the server. I could even put vlans on top of the bonding interface. However, only half the problem was solved: if I used srv1 as a client to the other servers, iperf was reporting around 940Mbps for each connection, and bwm-ng showed, of course, a nice distribution of the load between the two nics; if I run the iperf server on srv1 and tried to connect with the other servers, there was no load balancing. I thought that maybe I was out of luck and the hashes for the two mac addresses of the clients were the same, so I brought in two new servers and tested with the four of them at the same time, and still nothing changed. I tried disabling and reenabling one of the links, and all that happened was the traffic switched from one link to the other and back to the first again. I also tried setting the trunk to "plain trunk mode" on the switch, and experimented with other bonding modes (roundrobin, xor, alb, tlb) but I never saw any traffic distribution. One interesting thing, though: one of the four switches is a Cisco 2950, image version 12.1(22)EA7. It has 48 10/100 ports and 2 gigabit uplinks. I have a server (call it srv4) with a 4 channel trunk connected to it (4x100), FreeBSD 8.0 release. The switch is connected to sw0 via gigabit. If I set up an iperf server on one of the servers connected to sw0 and a client on srv4, ALL 4 links are used, and iperf reports around 330Mbps. systat -ifstat shows all four interfaces are used. The cisco port-channel uses src-mac to balance the load. The HP should use both the source and destination according to the manual, so it should work as well. Could this mean there is some bug in the HP firmware? Am I doing something wrong?

    Read the article

  • Cisco ASA 5505 - L2TP over IPsec

    - by xraminx
    I have followed this document on cisco site to set up the L2TP over IPsec connection. When I try to establish a VPN to ASA 5505 from my Windows XP, after I click on "connect" button, the "Connecting ...." dialog box appears and after a while I get this error message: Error 800: Unable to establish VPN connection. The VPN server may be unreachable, or security parameters may not be configured properly for this connection. ASA version 7.2(4) ASDM version 5.2(4) Windows XP SP3 Windows XP and ASA 5505 are on the same LAN for test purposes. Edit 1: There are two VLANs defined on the cisco device (the standard setup on cisco ASA5505). - port 0 is on VLAN2, outside; - and ports 1 to 7 on VLAN1, inside. I run a cable from my linksys home router (10.50.10.1) to the cisco ASA5505 router on port 0 (outside). Port 0 have IP 192.168.1.1 used internally by cisco and I have also assigned the external IP 10.50.10.206 to port 0 (outside). I run a cable from Windows XP to Cisco router on port 1 (inside). Port 1 is assigned an IP from Cisco router 192.168.1.2. The Windows XP is also connected to my linksys home router via wireless (10.50.10.141). Edit 2: When I try to establish vpn, the Cisco device real time Log viewer shows 7 entries like this: Severity:5 Date:Sep 15 2009 Time: 14:51:29 SyslogID: 713904 Destination IP = 10.50.10.141, Decription: No crypto map bound to interface... dropping pkt Edit 3: This is the setup on the router right now. Result of the command: "show run" : Saved : ASA Version 7.2(4) ! hostname ciscoasa domain-name default.domain.invalid enable password HGFHGFGHFHGHGFHGF encrypted passwd NMMNMNMNMNMNMN encrypted names name 192.168.1.200 WebServer1 name 10.50.10.206 external-ip-address ! interface Vlan1 nameif inside security-level 100 ip address 192.168.1.1 255.255.255.0 ! interface Vlan2 nameif outside security-level 0 ip address external-ip-address 255.0.0.0 ! interface Vlan3 no nameif security-level 50 no ip address ! interface Ethernet0/0 switchport access vlan 2 ! interface Ethernet0/1 ! interface Ethernet0/2 ! interface Ethernet0/3 ! interface Ethernet0/4 ! interface Ethernet0/5 ! interface Ethernet0/6 ! interface Ethernet0/7 ! ftp mode passive dns server-group DefaultDNS domain-name default.domain.invalid object-group service l2tp udp port-object eq 1701 access-list outside_access_in remark Allow incoming tcp/http access-list outside_access_in extended permit tcp any host WebServer1 eq www access-list outside_access_in extended permit udp any any eq 1701 access-list inside_nat0_outbound extended permit ip any 192.168.1.208 255.255.255.240 access-list inside_cryptomap_1 extended permit ip interface outside interface inside pager lines 24 logging enable logging asdm informational mtu inside 1500 mtu outside 1500 ip local pool PPTP-VPN 192.168.1.210-192.168.1.220 mask 255.255.255.0 icmp unreachable rate-limit 1 burst-size 1 asdm image disk0:/asdm-524.bin no asdm history enable arp timeout 14400 global (outside) 1 interface nat (inside) 0 access-list inside_nat0_outbound nat (inside) 1 0.0.0.0 0.0.0.0 static (inside,outside) tcp interface www WebServer1 www netmask 255.255.255.255 access-group outside_access_in in interface outside timeout xlate 3:00:00 timeout conn 1:00:00 half-closed 0:10:00 udp 0:02:00 icmp 0:00:02 timeout sunrpc 0:10:00 h323 0:05:00 h225 1:00:00 mgcp 0:05:00 mgcp-pat 0:05:00 timeout sip 0:30:00 sip_media 0:02:00 sip-invite 0:03:00 sip-disconnect 0:02:00 timeout sip-provisional-media 0:02:00 uauth 0:05:00 absolute http server enable http 192.168.1.0 255.255.255.0 inside no snmp-server location no snmp-server contact snmp-server enable traps snmp authentication linkup linkdown coldstart crypto ipsec transform-set TRANS_ESP_3DES_SHA esp-3des esp-sha-hmac crypto ipsec transform-set TRANS_ESP_3DES_SHA mode transport crypto ipsec transform-set TRANS_ESP_3DES_MD5 esp-3des esp-md5-hmac crypto ipsec transform-set TRANS_ESP_3DES_MD5 mode transport crypto map outside_map 1 match address inside_cryptomap_1 crypto map outside_map 1 set transform-set TRANS_ESP_3DES_MD5 crypto map outside_map interface inside crypto isakmp enable outside crypto isakmp policy 10 authentication pre-share encryption 3des hash md5 group 2 lifetime 86400 telnet timeout 5 ssh timeout 5 console timeout 0 dhcpd auto_config outside ! dhcpd address 192.168.1.2-192.168.1.33 inside dhcpd enable inside ! group-policy DefaultRAGroup internal group-policy DefaultRAGroup attributes dns-server value 192.168.1.1 vpn-tunnel-protocol IPSec l2tp-ipsec username myusername password FGHFGHFHGFHGFGFHF nt-encrypted tunnel-group DefaultRAGroup general-attributes address-pool PPTP-VPN default-group-policy DefaultRAGroup tunnel-group DefaultRAGroup ipsec-attributes pre-shared-key * tunnel-group DefaultRAGroup ppp-attributes no authentication chap authentication ms-chap-v2 ! ! prompt hostname context Cryptochecksum:a9331e84064f27e6220a8667bf5076c1 : end

    Read the article

  • Diving into OpenStack Network Architecture - Part 1

    - by Ronen Kofman
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} rkofman Normal rkofman 83 3045 2014-05-23T21:11:00Z 2014-05-27T06:58:00Z 3 1883 10739 Oracle Corporation 89 25 12597 12.00 140 Clean Clean false false false false EN-US X-NONE HE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;} Before we begin OpenStack networking has very powerful capabilities but at the same time it is quite complicated. In this blog series we will review an existing OpenStack setup using the Oracle OpenStack Tech Preview and explain the different network components through use cases and examples. The goal is to show how the different pieces come together and provide a bigger picture view of the network architecture in OpenStack. This can be very helpful to users making their first steps in OpenStack or anyone wishes to understand how networking works in this environment.  We will go through the basics first and build the examples as we go. According to the recent Icehouse user survey and the one before it, Neutron with Open vSwitch plug-in is the most widely used network setup both in production and in POCs (in terms of number of customers) and so in this blog series we will analyze this specific OpenStack networking setup. As we know there are many options to setup OpenStack networking and while Neturon + Open vSwitch is the most popular setup there is no claim that it is either best or the most efficient option. Neutron + Open vSwitch is an example, one which provides a good starting point for anyone interested in understanding OpenStack networking. Even if you are using different kind of network setup such as different Neutron plug-in or even not using Neutron at all this will still be a good starting point to understand the network architecture in OpenStack. The setup we are using for the examples is the one used in the Oracle OpenStack Tech Preview. Installing it is simple and it would be helpful to have it as reference. In this setup we use eth2 on all servers for VM network, all VM traffic will be flowing through this interface.The Oracle OpenStack Tech Preview is using VLANs for L2 isolation to provide tenant and network isolation. The following diagram shows how we have configured our deployment: This first post is a bit long and will focus on some basic concepts in OpenStack networking. The components we will be discussing are Open vSwitch, network namespaces, Linux bridge and veth pairs. Note that this is not meant to be a comprehensive review of these components, it is meant to describe the component as much as needed to understand OpenStack network architecture. All the components described here can be further explored using other resources. Open vSwitch (OVS) In the Oracle OpenStack Tech Preview OVS is used to connect virtual machines to the physical port (in our case eth2) as shown in the deployment diagram. OVS contains bridges and ports, the OVS bridges are different from the Linux bridge (controlled by the brctl command) which are also used in this setup. To get started let’s view the OVS structure, use the following command: # ovs-vsctl show 7ec51567-ab42-49e8-906d-b854309c9edf     Bridge br-int         Port br-int             Interface br-int type: internal         Port "int-br-eth2"             Interface "int-br-eth2"     Bridge "br-eth2"         Port "br-eth2"             Interface "br-eth2" type: internal         Port "eth2"             Interface "eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2" ovs_version: "1.11.0" We see a standard post deployment OVS on a compute node with two bridges and several ports hanging off of each of them. The example above is a compute node without any VMs, we can see that the physical port eth2 is connected to a bridge called “br-eth2”. We also see two ports "int-br-eth2" and "phy-br-eth2" which are actually a veth pair and form virtual wire between the two bridges, veth pairs are discussed later in this post. When a virtual machine is created a port is created on one the br-int bridge and this port is eventually connected to the virtual machine (we will discuss the exact connectivity later in the series). Here is how OVS looks after a VM was launched: # ovs-vsctl show efd98c87-dc62-422d-8f73-a68c2a14e73d     Bridge br-int         Port "int-br-eth2"             Interface "int-br-eth2"         Port br-int             Interface br-int type: internal         Port "qvocb64ea96-9f" tag: 1             Interface "qvocb64ea96-9f"     Bridge "br-eth2"         Port "phy-br-eth2"             Interface "phy-br-eth2"         Port "br-eth2"             Interface "br-eth2" type: internal         Port "eth2"             Interface "eth2" ovs_version: "1.11.0" Bridge "br-int" now has a new port "qvocb64ea96-9f" which connects to the VM and tagged with VLAN 1. Every VM which will be launched will add a port on the “br-int” bridge for every network interface the VM has. Another useful command on OVS is dump-flows for example: # ovs-ofctl dump-flows br-int NXST_FLOW reply (xid=0x4): cookie=0x0, duration=735.544s, table=0, n_packets=70, n_bytes=9976, idle_age=17, priority=3,in_port=1,dl_vlan=1000 actions=mod_vlan_vid:1,NORMAL cookie=0x0, duration=76679.786s, table=0, n_packets=0, n_bytes=0, idle_age=65534, hard_age=65534, priority=2,in_port=1 actions=drop cookie=0x0, duration=76681.36s, table=0, n_packets=68, n_bytes=7950, idle_age=17, hard_age=65534, priority=1 actions=NORMAL As we see the port which is connected to the VM has the VLAN tag 1. However the port on the VM network (eth2) will be using tag 1000. OVS is modifying the vlan as the packet flow from the VM to the physical interface. In OpenStack the Open vSwitch agent takes care of programming the flows in Open vSwitch so the users do not have to deal with this at all. If you wish to learn more about how to program the Open vSwitch you can read more about it at http://openvswitch.org looking at the documentation describing the ovs-ofctl command. Network Namespaces (netns) Network namespaces is a very cool Linux feature can be used for many purposes and is heavily used in OpenStack networking. Network namespaces are isolated containers which can hold a network configuration and is not seen from outside of the namespace. A network namespace can be used to encapsulate specific network functionality or provide a network service in isolation as well as simply help to organize a complicated network setup. Using the Oracle OpenStack Tech Preview we are using the latest Unbreakable Enterprise Kernel R3 (UEK3), this kernel provides a complete support for netns. Let's see how namespaces work through couple of examples to control network namespaces we use the ip netns command: Defining a new namespace: # ip netns add my-ns # ip netns list my-ns As mentioned the namespace is an isolated container, we can perform all the normal actions in the namespace context using the exec command for example running the ifconfig command: # ip netns exec my-ns ifconfig -a lo        Link encap:Local Loopback           LOOPBACK  MTU:16436 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) We can run every command in the namespace context, this is especially useful for debug using tcpdump command, we can ping or ssh or define iptables all within the namespace. Connecting the namespace to the outside world: There are various ways to connect into a namespaces and between namespaces we will focus on how this is done in OpenStack. OpenStack uses a combination of Open vSwitch and network namespaces. OVS defines the interfaces and then we can add those interfaces to namespace. So first let's add a bridge to OVS: # ovs-vsctl add-br my-bridge Now let's add a port on the OVS and make it internal: # ovs-vsctl add-port my-bridge my-port # ovs-vsctl set Interface my-port type=internal And let's connect it into the namespace: # ip link set my-port netns my-ns Looking inside the namespace: # ip netns exec my-ns ifconfig -a lo        Link encap:Local Loopback           LOOPBACK  MTU:65536 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) my-port   Link encap:Ethernet HWaddr 22:04:45:E2:85:21           BROADCAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) Now we can add more ports to the OVS bridge and connect it to other namespaces or other device like physical interfaces. Neutron is using network namespaces to implement network services such as DCHP, routing, gateway, firewall, load balance and more. In the next post we will go into this in further details. Linux Bridge and veth pairs Linux bridge is used to connect the port from OVS to the VM. Every port goes from the OVS bridge to a Linux bridge and from there to the VM. The reason for using regular Linux bridges is for security groups’ enforcement. Security groups are implemented using iptables and iptables can only be applied to Linux bridges and not to OVS bridges. Veth pairs are used extensively throughout the network setup in OpenStack and are also a good tool to debug a network problem. Veth pairs are simply a virtual wire and so veths always come in pairs. Typically one side of the veth pair will connect to a bridge and the other side to another bridge or simply left as a usable interface. In this example we will create some veth pairs, connect them to bridges and test connectivity. This example is using regular Linux server and not an OpenStack node: Creating a veth pair, note that we define names for both ends: # ip link add veth0 type veth peer name veth1 # ifconfig -a . . veth0     Link encap:Ethernet HWaddr 5E:2C:E6:03:D0:17           BROADCAST MULTICAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) veth1     Link encap:Ethernet HWaddr E6:B6:E2:6D:42:B8           BROADCAST MULTICAST  MTU:1500 Metric:1           RX packets:0 errors:0 dropped:0 overruns:0 frame:0           TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000           RX bytes:0 (0.0 b)  TX bytes:0 (0.0 b) . . To make the example more meaningful this we will create the following setup: veth0 => veth1 => br-eth3 => eth3 ======> eth2 on another Linux server br-eth3 – a regular Linux bridge which will be connected to veth1 and eth3 eth3 – a physical interface with no IP on it, connected to a private network eth2 – a physical interface on the remote Linux box connected to the private network and configured with the IP of 50.50.50.1 Once we create the setup we will ping 50.50.50.1 (the remote IP) through veth0 to test that the connection is up: # brctl addbr br-eth3 # brctl addif br-eth3 eth3 # brctl addif br-eth3 veth1 # brctl show bridge name     bridge id               STP enabled     interfaces br-eth3         8000.00505682e7f6       no              eth3                                                         veth1 # ifconfig veth0 50.50.50.50 # ping -I veth0 50.50.50.51 PING 50.50.50.51 (50.50.50.51) from 50.50.50.50 veth0: 56(84) bytes of data. 64 bytes from 50.50.50.51: icmp_seq=1 ttl=64 time=0.454 ms 64 bytes from 50.50.50.51: icmp_seq=2 ttl=64 time=0.298 ms When the naming is not as obvious as the previous example and we don't know who are the paired veth interfaces we can use the ethtool command to figure this out. The ethtool command returns an index we can look up using ip link command, for example: # ethtool -S veth1 NIC statistics: peer_ifindex: 12 # ip link . . 12: veth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 1000 Summary That’s all for now, we quickly reviewed OVS, network namespaces, Linux bridges and veth pairs. These components are heavily used in the OpenStack network architecture we are exploring and understanding them well will be very useful when reviewing the different use cases. In the next post we will look at how the OpenStack network is laid out connecting the virtual machines to each other and to the external world. @RonenKofman

    Read the article

< Previous Page | 4 5 6 7 8