Search Results

Search found 226 results on 10 pages for 'walter stickle'.

Page 8/10 | < Previous Page | 4 5 6 7 8 9 10  | Next Page >

  • Back from Russia

    - by Stephen Walther
    Thanks everyone who came to my talks on ASP.NET Web Forms and MVC in Moscow last week!  Here are the slide decks and demo code for the two talks (You need Visual Studio 2010):   What’s New in ASP.NET MVC 2?   What’s New in ASP.NET 4 Web Forms?   I had a great time in Russia. On the second day, I had an opportunity to walk around Moscow. Here’s a picture of me standing in Red Square:   Here’s a picture of me eating Chicken Kiev with Microsoft evangelist James Senior. James has just started his worldwide Web Camp tour to promote ASP.NET 4. He is traveling non-stop country to country. After Russia, he is off to China and Australia. You can find out more about the Web Camps here: http://www.webcamps.ms/

    Read the article

  • Metro: Promises

    - by Stephen.Walther
    The goal of this blog entry is to describe the Promise class in the WinJS library. You can use promises whenever you need to perform an asynchronous operation such as retrieving data from a remote website or a file from the file system. Promises are used extensively in the WinJS library. Asynchronous Programming Some code executes immediately, some code requires time to complete or might never complete at all. For example, retrieving the value of a local variable is an immediate operation. Retrieving data from a remote website takes longer or might not complete at all. When an operation might take a long time to complete, you should write your code so that it executes asynchronously. Instead of waiting for an operation to complete, you should start the operation and then do something else until you receive a signal that the operation is complete. An analogy. Some telephone customer service lines require you to wait on hold – listening to really bad music – until a customer service representative is available. This is synchronous programming and very wasteful of your time. Some newer customer service lines enable you to enter your telephone number so the customer service representative can call you back when a customer representative becomes available. This approach is much less wasteful of your time because you can do useful things while waiting for the callback. There are several patterns that you can use to write code which executes asynchronously. The most popular pattern in JavaScript is the callback pattern. When you call a function which might take a long time to return a result, you pass a callback function to the function. For example, the following code (which uses jQuery) includes a function named getFlickrPhotos which returns photos from the Flickr website which match a set of tags (such as “dog” and “funny”): function getFlickrPhotos(tags, callback) { $.getJSON( "http://api.flickr.com/services/feeds/photos_public.gne?jsoncallback=?", { tags: tags, tagmode: "all", format: "json" }, function (data) { if (callback) { callback(data.items); } } ); } getFlickrPhotos("funny, dogs", function(data) { $.each(data, function(index, item) { console.log(item); }); }); The getFlickr() function includes a callback parameter. When you call the getFlickr() function, you pass a function to the callback parameter which gets executed when the getFlicker() function finishes retrieving the list of photos from the Flickr web service. In the code above, the callback function simply iterates through the results and writes each result to the console. Using callbacks is a natural way to perform asynchronous programming with JavaScript. Instead of waiting for an operation to complete, sitting there and listening to really bad music, you can get a callback when the operation is complete. Using Promises The CommonJS website defines a promise like this (http://wiki.commonjs.org/wiki/Promises): “Promises provide a well-defined interface for interacting with an object that represents the result of an action that is performed asynchronously, and may or may not be finished at any given point in time. By utilizing a standard interface, different components can return promises for asynchronous actions and consumers can utilize the promises in a predictable manner.” A promise provides a standard pattern for specifying callbacks. In the WinJS library, when you create a promise, you can specify three callbacks: a complete callback, a failure callback, and a progress callback. Promises are used extensively in the WinJS library. The methods in the animation library, the control library, and the binding library all use promises. For example, the xhr() method included in the WinJS base library returns a promise. The xhr() method wraps calls to the standard XmlHttpRequest object in a promise. The following code illustrates how you can use the xhr() method to perform an Ajax request which retrieves a file named Photos.txt: var options = { url: "/data/photos.txt" }; WinJS.xhr(options).then( function (xmlHttpRequest) { console.log("success"); var data = JSON.parse(xmlHttpRequest.responseText); console.log(data); }, function(xmlHttpRequest) { console.log("fail"); }, function(xmlHttpRequest) { console.log("progress"); } ) The WinJS.xhr() method returns a promise. The Promise class includes a then() method which accepts three callback functions: a complete callback, an error callback, and a progress callback: Promise.then(completeCallback, errorCallback, progressCallback) In the code above, three anonymous functions are passed to the then() method. The three callbacks simply write a message to the JavaScript Console. The complete callback also dumps all of the data retrieved from the photos.txt file. Creating Promises You can create your own promises by creating a new instance of the Promise class. The constructor for the Promise class requires a function which accepts three parameters: a complete, error, and progress function parameter. For example, the code below illustrates how you can create a method named wait10Seconds() which returns a promise. The progress function is called every second and the complete function is not called until 10 seconds have passed: (function () { "use strict"; var app = WinJS.Application; function wait10Seconds() { return new WinJS.Promise(function (complete, error, progress) { var seconds = 0; var intervalId = window.setInterval(function () { seconds++; progress(seconds); if (seconds > 9) { window.clearInterval(intervalId); complete(); } }, 1000); }); } app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { wait10Seconds().then( function () { console.log("complete") }, function () { console.log("error") }, function (seconds) { console.log("progress:" + seconds) } ); } } app.start(); })(); All of the work happens in the constructor function for the promise. The window.setInterval() method is used to execute code every second. Every second, the progress() callback method is called. If more than 10 seconds have passed then the complete() callback method is called and the clearInterval() method is called. When you execute the code above, you can see the output in the Visual Studio JavaScript Console. Creating a Timeout Promise In the previous section, we created a custom Promise which uses the window.setInterval() method to complete the promise after 10 seconds. We really did not need to create a custom promise because the Promise class already includes a static method for returning promises which complete after a certain interval. The code below illustrates how you can use the timeout() method. The timeout() method returns a promise which completes after a certain number of milliseconds. WinJS.Promise.timeout(3000).then( function(){console.log("complete")}, function(){console.log("error")}, function(){console.log("progress")} ); In the code above, the Promise completes after 3 seconds (3000 milliseconds). The Promise returned by the timeout() method does not support progress events. Therefore, the only message written to the console is the message “complete” after 10 seconds. Canceling Promises Some promises, but not all, support cancellation. When you cancel a promise, the promise’s error callback is executed. For example, the following code uses the WinJS.xhr() method to perform an Ajax request. However, immediately after the Ajax request is made, the request is cancelled. // Specify Ajax request options var options = { url: "/data/photos.txt" }; // Make the Ajax request var request = WinJS.xhr(options).then( function (xmlHttpRequest) { console.log("success"); }, function (xmlHttpRequest) { console.log("fail"); }, function (xmlHttpRequest) { console.log("progress"); } ); // Cancel the Ajax request request.cancel(); When you run the code above, the message “fail” is written to the Visual Studio JavaScript Console. Composing Promises You can build promises out of other promises. In other words, you can compose promises. There are two static methods of the Promise class which you can use to compose promises: the join() method and the any() method. When you join promises, a promise is complete when all of the joined promises are complete. When you use the any() method, a promise is complete when any of the promises complete. The following code illustrates how to use the join() method. A new promise is created out of two timeout promises. The new promise does not complete until both of the timeout promises complete: WinJS.Promise.join([WinJS.Promise.timeout(1000), WinJS.Promise.timeout(5000)]) .then(function () { console.log("complete"); }); The message “complete” will not be written to the JavaScript Console until both promises passed to the join() method completes. The message won’t be written for 5 seconds (5,000 milliseconds). The any() method completes when any promise passed to the any() method completes: WinJS.Promise.any([WinJS.Promise.timeout(1000), WinJS.Promise.timeout(5000)]) .then(function () { console.log("complete"); }); The code above writes the message “complete” to the JavaScript Console after 1 second (1,000 milliseconds). The message is written to the JavaScript console immediately after the first promise completes and before the second promise completes. Summary The goal of this blog entry was to describe WinJS promises. First, we discussed how promises enable you to easily write code which performs asynchronous actions. You learned how to use a promise when performing an Ajax request. Next, we discussed how you can create your own promises. You learned how to create a new promise by creating a constructor function with complete, error, and progress parameters. Finally, you learned about several advanced methods of promises. You learned how to use the timeout() method to create promises which complete after an interval of time. You also learned how to cancel promises and compose promises from other promises.

    Read the article

  • Metro: Using Templates

    - by Stephen.Walther
    The goal of this blog post is to describe how templates work in the WinJS library. In particular, you learn how to use a template to display both a single item and an array of items. You also learn how to load a template from an external file. Why use Templates? Imagine that you want to display a list of products in a page. The following code is bad: var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productsHTML = ""; for (var i = 0; i < products.length; i++) { productsHTML += "<h1>Product Details</h1>" + "<div>Product Name: " + products[i].name + "</div>" + "<div>Product Price: " + products[i].price + "</div>"; } document.getElementById("productContainer").innerHTML = productsHTML; In the code above, an array of products is displayed by creating a for..next loop which loops through each element in the array. A string which represents a list of products is built through concatenation. The code above is a designer’s nightmare. You cannot modify the appearance of the list of products without modifying the JavaScript code. A much better approach is to use a template like this: <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> A template is simply a fragment of HTML that contains placeholders. Instead of displaying a list of products by concatenating together a string, you can render a template for each product. Creating a Simple Template Let’s start by using a template to render a single product. The following HTML page contains a template and a placeholder for rendering the template: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <!-- Product Template --> <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> <!-- Place where Product Template is Rendered --> <div id="productContainer"></div> </body> </html> In the page above, the template is defined in a DIV element with the id productTemplate. The contents of the productTemplate are not displayed when the page is opened in the browser. The contents of a template are automatically hidden when you convert the productTemplate into a template in your JavaScript code. Notice that the template uses data-win-bind attributes to display the product name and price properties. You can use both data-win-bind and data-win-bindsource attributes within a template. To learn more about these attributes, see my earlier blog post on WinJS data binding: http://stephenwalther.com/blog/archive/2012/02/26/windows-web-applications-declarative-data-binding.aspx The page above also includes a DIV element named productContainer. The rendered template is added to this element. Here’s the code for the default.js script which creates and renders the template: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var product = { name: "Tesla", price: 80000 }; var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); productTemplate.render(product, document.getElementById("productContainer")); } }; app.start(); })(); In the code above, a single product object is created with the following line of code: var product = { name: "Tesla", price: 80000 }; Next, the productTemplate element from the page is converted into an actual WinJS template with the following line of code: var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); The template is rendered to the templateContainer element with the following line of code: productTemplate.render(product, document.getElementById("productContainer")); The result of this work is that the product details are displayed: Notice that you do not need to call WinJS.Binding.processAll(). The Template render() method takes care of the binding for you. Displaying an Array in a Template If you want to display an array of products using a template then you simply need to create a for..next loop and iterate through the array calling the Template render() method for each element. (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); var productContainer = document.getElementById("productContainer"); var i, product; for (i = 0; i < products.length; i++) { product = products[i]; productTemplate.render(product, productContainer); } } }; app.start(); })(); After each product in the array is rendered with the template, the result is appended to the productContainer element. No changes need to be made to the HTML page discussed in the previous section to display an array of products instead of a single product. The same product template can be used in both scenarios. Rendering an HTML TABLE with a Template When using the WinJS library, you create a template by creating an HTML element in your page. One drawback to this approach of creating templates is that your templates are part of your HTML page. In order for your HTML page to validate, the HTML within your templates must also validate. This means, for example, that you cannot enclose a single HTML table row within a template. The following HTML is invalid because you cannot place a TR element directly within the body of an HTML document:   <!-- Product Template --> <tr> <td data-win-bind="innerText:name"></td> <td data-win-bind="innerText:price"></td> </tr> This template won’t validate because, in a valid HTML5 document, a TR element must appear within a THEAD or TBODY element. Instead, you must create the entire TABLE element in the template. The following HTML page illustrates how you can create a template which contains a TR element: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <!-- Product Template --> <div id="productTemplate"> <table> <tbody> <tr> <td data-win-bind="innerText:name"></td> <td data-win-bind="innerText:price"></td> </tr> </tbody> </table> </div> <!-- Place where Product Template is Rendered --> <table> <thead> <tr> <th>Name</th><th>Price</th> </tr> </thead> <tbody id="productContainer"> </tbody> </table> </body> </html>   In the HTML page above, the product template includes TABLE and TBODY elements: <!-- Product Template --> <div id="productTemplate"> <table> <tbody> <tr> <td data-win-bind="innerText:name"></td> <td data-win-bind="innerText:price"></td> </tr> </tbody> </table> </div> We discard these elements when we render the template. The only reason that we include the TABLE and THEAD elements in the template is to make the HTML page validate as valid HTML5 markup. Notice that the productContainer (the target of the template) in the page above is a TBODY element. We want to add the rows rendered by the template to the TBODY element in the page. The productTemplate is rendered in the default.js file: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); var productContainer = document.getElementById("productContainer"); var i, product, row; for (i = 0; i < products.length; i++) { product = products[i]; productTemplate.render(product).then(function (result) { row = WinJS.Utilities.query("tr", result).get(0); productContainer.appendChild(row); }); } } }; app.start(); })(); When the product template is rendered, the TR element is extracted from the rendered template by using the WinJS.Utilities.query() method. Next, only the TR element is added to the productContainer: productTemplate.render(product).then(function (result) { row = WinJS.Utilities.query("tr", result).get(0); productContainer.appendChild(row); }); I discuss the WinJS.Utilities.query() method in depth in a previous blog entry: http://stephenwalther.com/blog/archive/2012/02/23/windows-web-applications-query-selectors.aspx When everything gets rendered, the products are displayed in an HTML table: You can see the actual HTML rendered by looking at the Visual Studio DOM Explorer window:   Loading an External Template Instead of embedding a template in an HTML page, you can place your template in an external HTML file. It makes sense to create a template in an external file when you need to use the same template in multiple pages. For example, you might need to use the same product template in multiple pages in your application. The following HTML page does not contain a template. It only contains a container that will act as a target for the rendered template: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <!-- Place where Product Template is Rendered --> <div id="productContainer"></div> </body> </html> The template is contained in a separate file located at the path /templates/productTemplate.html:   Here’s the contents of the productTemplate.html file: <!-- Product Template --> <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> Notice that the template file only contains the template and not the standard opening and closing HTML elements. It is an HTML fragment. If you prefer, you can include all of the standard opening and closing HTML elements in your external template – these elements get stripped away automatically: <html> <head><title>product template</title></head> <body> <!-- Product Template --> <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> </body> </html> Either approach – using a fragment or using a full HTML document  — works fine. Finally, the following default.js file loads the external template, renders the template for each product, and appends the result to the product container: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productTemplate = new WinJS.Binding.Template(null, { href: "/templates/productTemplate.html" }); var productContainer = document.getElementById("productContainer"); var i, product, row; for (i = 0; i < products.length; i++) { product = products[i]; productTemplate.render(product, productContainer); } } }; app.start(); })(); The path to the external template is passed to the constructor for the Template class as one of the options: var productTemplate = new WinJS.Binding.Template(null, {href:"/templates/productTemplate.html"}); When a template is contained in a page then you use the first parameter of the WinJS.Binding.Template constructor to represent the template – instead of null, you pass the element which contains the template. When a template is located in an external file, you pass the href for the file as part of the second parameter for the WinJS.Binding.Template constructor. Summary The goal of this blog entry was to describe how you can use WinJS templates to render either a single item or an array of items to a page. We also explored two advanced topics. You learned how to render an HTML table by extracting the TR element from a template. You also learned how to place a template in an external file.

    Read the article

  • Metro Walkthrough: Creating a Task List with a ListView and IndexedDB

    - by Stephen.Walther
    The goal of this blog entry is to describe how you can work with data in a Metro style application written with JavaScript. In particular, we create a super simple Task List application which enables you to create and delete tasks. Here’s a video which demonstrates how the Task List application works: In order to build this application, I had to take advantage of several features of the WinJS library and technologies including: IndexedDB – The Task List application stores data in an IndexedDB database. HTML5 Form Validation – The Task List application uses HTML5 validation to ensure that a required field has a value. ListView Control – The Task List application displays the tasks retrieved from the IndexedDB database in a WinJS ListView control. Creating the IndexedDB Database The Task List application stores all of its data in an IndexedDB database named TasksDB. This database is opened/created with the following code: var db; var req = window.msIndexedDB.open("TasksDB", 1); req.onerror = function () { console.log("Could not open database"); }; req.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement:true }); }; The msIndexedDB.open() method accepts two parameters: the name of the database to open and the version of the database to open. If a database with a matching version already exists, then calling the msIndexedDB.open() method opens a connection to the existing database. If the database does not exist then the upgradeneeded event is raised. You handle the upgradeneeded event to create a new database. In the code above, the upgradeneeded event handler creates an object store named “tasks” (An object store roughly corresponds to a database table). When you add items to the tasks object store then each item gets an id property with an auto-incremented value automatically. The code above also includes an error event handler. If the IndexedDB database cannot be opened or created, for whatever reason, then an error message is written to the Visual Studio JavaScript Console window. Displaying a List of Tasks The TaskList application retrieves its list of tasks from the tasks object store, which we created above, and displays the list of tasks in a ListView control. Here is how the ListView control is declared: <div id="tasksListView" data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource: TaskList.tasks.dataSource, itemTemplate: select('#taskTemplate'), tapBehavior: 'toggleSelect', selectionMode: 'multi', layout: { type: WinJS.UI.ListLayout } }"> </div> The ListView control is bound to the TaskList.tasks.dataSource data source. The TaskList.tasks.dataSource is created with the following code: // Create the data source var tasks = new WinJS.Binding.List(); // Open the database var db; var req = window.msIndexedDB.open("TasksDB", 1); req.onerror = function () { console.log("Could not open database"); }; req.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement:true }); }; // Load the data source with data from the database req.onsuccess = function () { db = req.result; var tran = db.transaction("tasks"); tran.objectStore("tasks").openCursor().onsuccess = function(event) { var cursor = event.target.result; if (cursor) { tasks.dataSource.insertAtEnd(null, cursor.value); cursor.continue(); }; }; }; // Expose the data source and functions WinJS.Namespace.define("TaskList", { tasks: tasks }); Notice the success event handler. This handler is called when a database is successfully opened/created. In the code above, all of the items from the tasks object store are retrieved into a cursor and added to a WinJS.Binding.List object named tasks. Because the ListView control is bound to the WinJS.Binding.List object, copying the tasks from the object store into the WinJS.Binding.List object causes the tasks to appear in the ListView: Adding a New Task You add a new task in the Task List application by entering the title of a new task into an HTML form and clicking the Add button. Here’s the markup for creating the form: <form id="addTaskForm"> <input id="newTaskTitle" title="New Task" required /> <button>Add</button> </form> Notice that the INPUT element includes a required attribute. In a Metro application, you can take advantage of HTML5 Validation to validate form fields. If you don’t enter a value for the newTaskTitle field then the following validation error message is displayed: For a brief introduction to HTML5 validation, see my previous blog entry: http://stephenwalther.com/blog/archive/2012/03/13/html5-form-validation.aspx When you click the Add button, the form is submitted and the form submit event is raised. The following code is executed in the default.js file: // Handle Add Task document.getElementById("addTaskForm").addEventListener("submit", function (evt) { evt.preventDefault(); var newTaskTitle = document.getElementById("newTaskTitle"); TaskList.addTask({ title: newTaskTitle.value }); newTaskTitle.value = ""; }); The code above retrieves the title of the new task and calls the addTask() method in the tasks.js file. Here’s the code for the addTask() method which is responsible for actually adding the new task to the IndexedDB database: // Add a new task function addTask(taskToAdd) { var transaction = db.transaction("tasks", "readwrite"); var addRequest = transaction.objectStore("tasks").add(taskToAdd); addRequest.onsuccess = function (evt) { taskToAdd.id = evt.target.result; tasks.dataSource.insertAtEnd(null, taskToAdd); } } The code above does two things. First, it adds the new task to the tasks object store in the IndexedDB database. Second, it adds the new task to the data source bound to the ListView. The dataSource.insertAtEnd() method is called to add the new task to the data source so the new task will appear in the ListView (with a nice little animation). Deleting Existing Tasks The Task List application enables you to select one or more tasks by clicking or tapping on one or more tasks in the ListView. When you click the Delete button, the selected tasks are removed from both the IndexedDB database and the ListView. For example, in the following screenshot, two tasks are selected. The selected tasks appear with a teal background and a checkmark: When you click the Delete button, the following code in the default.js file is executed: // Handle Delete Tasks document.getElementById("btnDeleteTasks").addEventListener("click", function (evt) { tasksListView.winControl.selection.getItems().then(function(items) { items.forEach(function (item) { TaskList.deleteTask(item); }); }); }); The selected tasks are retrieved with the TaskList selection.getItem() method. In the code above, the deleteTask() method is called for each of the selected tasks. Here’s the code for the deleteTask() method: // Delete an existing task function deleteTask(listViewItem) { // Database key != ListView key var dbKey = listViewItem.data.id; var listViewKey = listViewItem.key; // Remove item from db and, if success, remove item from ListView var transaction = db.transaction("tasks", “readwrite”); var deleteRequest = transaction.objectStore("tasks").delete(dbKey); deleteRequest.onsuccess = function () { tasks.dataSource.remove(listViewKey); } } This code does two things: it deletes the existing task from the database and removes the existing task from the ListView. In both cases, the right task is removed by using the key associated with the task. However, the task key is different in the case of the database and in the case of the ListView. In the case of the database, the task key is the value of the task id property. In the case of the ListView, on the other hand, the task key is auto-generated by the ListView. When the task is removed from the ListView, an animation is used to collapse the tasks which appear above and below the task which was removed. The Complete Code Above, I did a lot of jumping around between different files in the application and I left out sections of code. For the sake of completeness, I want to include the entire code here: the default.html, default.js, and tasks.js files. Here are the contents of the default.html file. This file contains the UI for the Task List application: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Task List</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- TaskList references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script type="text/javascript" src="js/tasks.js"></script> <style type="text/css"> body { font-size: x-large; } form { display: inline; } #appContainer { margin: 20px; width: 600px; } .win-container { padding: 10px; } </style> </head> <body> <div> <!-- Templates --> <div id="taskTemplate" data-win-control="WinJS.Binding.Template"> <div> <span data-win-bind="innerText:title"></span> </div> </div> <h1>Super Task List</h1> <div id="appContainer"> <form id="addTaskForm"> <input id="newTaskTitle" title="New Task" required /> <button>Add</button> </form> <button id="btnDeleteTasks">Delete</button> <div id="tasksListView" data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource: TaskList.tasks.dataSource, itemTemplate: select('#taskTemplate'), tapBehavior: 'toggleSelect', selectionMode: 'multi', layout: { type: WinJS.UI.ListLayout } }"> </div> </div> </div> </body> </html> Here is the code for the default.js file. This code wires up the Add Task form and Delete button: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { WinJS.UI.processAll().then(function () { // Get reference to Tasks ListView var tasksListView = document.getElementById("tasksListView"); // Handle Add Task document.getElementById("addTaskForm").addEventListener("submit", function (evt) { evt.preventDefault(); var newTaskTitle = document.getElementById("newTaskTitle"); TaskList.addTask({ title: newTaskTitle.value }); newTaskTitle.value = ""; }); // Handle Delete Tasks document.getElementById("btnDeleteTasks").addEventListener("click", function (evt) { tasksListView.winControl.selection.getItems().then(function(items) { items.forEach(function (item) { TaskList.deleteTask(item); }); }); }); }); } }; app.start(); })(); Finally, here is the tasks.js file. This file contains all of the code for opening, creating, and interacting with IndexedDB: (function () { "use strict"; // Create the data source var tasks = new WinJS.Binding.List(); // Open the database var db; var req = window.msIndexedDB.open("TasksDB", 1); req.onerror = function () { console.log("Could not open database"); }; req.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement:true }); }; // Load the data source with data from the database req.onsuccess = function () { db = req.result; var tran = db.transaction("tasks"); tran.objectStore("tasks").openCursor().onsuccess = function(event) { var cursor = event.target.result; if (cursor) { tasks.dataSource.insertAtEnd(null, cursor.value); cursor.continue(); }; }; }; // Add a new task function addTask(taskToAdd) { var transaction = db.transaction("tasks", "readwrite"); var addRequest = transaction.objectStore("tasks").add(taskToAdd); addRequest.onsuccess = function (evt) { taskToAdd.id = evt.target.result; tasks.dataSource.insertAtEnd(null, taskToAdd); } } // Delete an existing task function deleteTask(listViewItem) { // Database key != ListView key var dbKey = listViewItem.data.id; var listViewKey = listViewItem.key; // Remove item from db and, if success, remove item from ListView var transaction = db.transaction("tasks", "readwrite"); var deleteRequest = transaction.objectStore("tasks").delete(dbKey); deleteRequest.onsuccess = function () { tasks.dataSource.remove(listViewKey); } } // Expose the data source and functions WinJS.Namespace.define("TaskList", { tasks: tasks, addTask: addTask, deleteTask: deleteTask }); })(); Summary I wrote this blog entry because I wanted to create a walkthrough of building a simple database-driven application. In particular, I wanted to demonstrate how you can use a ListView control with an IndexedDB database to store and retrieve database data.

    Read the article

  • Metro: Namespaces and Modules

    - by Stephen.Walther
    The goal of this blog entry is to describe how you can use the Windows JavaScript (WinJS) library to create namespaces. In particular, you learn how to use the WinJS.Namespace.define() and WinJS.Namespace.defineWithParent() methods. You also learn how to hide private methods by using the module pattern. Why Do We Need Namespaces? Before we do anything else, we should start by answering the question: Why do we need namespaces? What function do they serve? Do they just add needless complexity to our Metro applications? After all, plenty of JavaScript libraries do just fine without introducing support for namespaces. For example, jQuery has no support for namespaces and jQuery is the most popular JavaScript library in the universe. If jQuery can do without namespaces, why do we need to worry about namespaces at all? Namespaces perform two functions in a programming language. First, namespaces prevent naming collisions. In other words, namespaces enable you to create more than one object with the same name without conflict. For example, imagine that two companies – company A and company B – both want to make a JavaScript shopping cart control and both companies want to name the control ShoppingCart. By creating a CompanyA namespace and CompanyB namespace, both companies can create a ShoppingCart control: a CompanyA.ShoppingCart and a CompanyB.ShoppingCart control. The second function of a namespace is organization. Namespaces are used to group related functionality even when the functionality is defined in different physical files. For example, I know that all of the methods in the WinJS library related to working with classes can be found in the WinJS.Class namespace. Namespaces make it easier to understand the functionality available in a library. If you are building a simple JavaScript application then you won’t have much reason to care about namespaces. If you need to use multiple libraries written by different people then namespaces become very important. Using WinJS.Namespace.define() In the WinJS library, the most basic method of creating a namespace is to use the WinJS.Namespace.define() method. This method enables you to declare a namespace (of arbitrary depth). The WinJS.Namespace.define() method has the following parameters: · name – A string representing the name of the new namespace. You can add nested namespace by using dot notation · members – An optional collection of objects to add to the new namespace For example, the following code sample declares two new namespaces named CompanyA and CompanyB.Controls. Both namespaces contain a ShoppingCart object which has a checkout() method: // Create CompanyA namespace with ShoppingCart WinJS.Namespace.define("CompanyA"); CompanyA.ShoppingCart = { checkout: function (){ return "Checking out from A"; } }; // Create CompanyB.Controls namespace with ShoppingCart WinJS.Namespace.define( "CompanyB.Controls", { ShoppingCart: { checkout: function(){ return "Checking out from B"; } } } ); // Call CompanyA ShoppingCart checkout method console.log(CompanyA.ShoppingCart.checkout()); // Writes "Checking out from A" // Call CompanyB.Controls checkout method console.log(CompanyB.Controls.ShoppingCart.checkout()); // Writes "Checking out from B" In the code above, the CompanyA namespace is created by calling WinJS.Namespace.define(“CompanyA”). Next, the ShoppingCart is added to this namespace. The namespace is defined and an object is added to the namespace in separate lines of code. A different approach is taken in the case of the CompanyB.Controls namespace. The namespace is created and the ShoppingCart object is added to the namespace with the following single line of code: WinJS.Namespace.define( "CompanyB.Controls", { ShoppingCart: { checkout: function(){ return "Checking out from B"; } } } ); Notice that CompanyB.Controls is a nested namespace. The top level namespace CompanyB contains the namespace Controls. You can declare a nested namespace using dot notation and the WinJS library handles the details of creating one namespace within the other. After the namespaces have been defined, you can use either of the two shopping cart controls. You call CompanyA.ShoppingCart.checkout() or you can call CompanyB.Controls.ShoppingCart.checkout(). Using WinJS.Namespace.defineWithParent() The WinJS.Namespace.defineWithParent() method is similar to the WinJS.Namespace.define() method. Both methods enable you to define a new namespace. The difference is that the defineWithParent() method enables you to add a new namespace to an existing namespace. The WinJS.Namespace.defineWithParent() method has the following parameters: · parentNamespace – An object which represents a parent namespace · name – A string representing the new namespace to add to the parent namespace · members – An optional collection of objects to add to the new namespace The following code sample demonstrates how you can create a root namespace named CompanyA and add a Controls child namespace to the CompanyA parent namespace: WinJS.Namespace.define("CompanyA"); WinJS.Namespace.defineWithParent(CompanyA, "Controls", { ShoppingCart: { checkout: function () { return "Checking out"; } } } ); console.log(CompanyA.Controls.ShoppingCart.checkout()); // Writes "Checking out" One significant advantage of using the defineWithParent() method over the define() method is the defineWithParent() method is strongly-typed. In other words, you use an object to represent the base namespace instead of a string. If you misspell the name of the object (CompnyA) then you get a runtime error. Using the Module Pattern When you are building a JavaScript library, you want to be able to create both public and private methods. Some methods, the public methods, are intended to be used by consumers of your JavaScript library. The public methods act as your library’s public API. Other methods, the private methods, are not intended for public consumption. Instead, these methods are internal methods required to get the library to function. You don’t want people calling these internal methods because you might need to change them in the future. JavaScript does not support access modifiers. You can’t mark an object or method as public or private. Anyone gets to call any method and anyone gets to interact with any object. The only mechanism for encapsulating (hiding) methods and objects in JavaScript is to take advantage of functions. In JavaScript, a function determines variable scope. A JavaScript variable either has global scope – it is available everywhere – or it has function scope – it is available only within a function. If you want to hide an object or method then you need to place it within a function. For example, the following code contains a function named doSomething() which contains a nested function named doSomethingElse(): function doSomething() { console.log("doSomething"); function doSomethingElse() { console.log("doSomethingElse"); } } doSomething(); // Writes "doSomething" doSomethingElse(); // Throws ReferenceError You can call doSomethingElse() only within the doSomething() function. The doSomethingElse() function is encapsulated in the doSomething() function. The WinJS library takes advantage of function encapsulation to hide all of its internal methods. All of the WinJS methods are defined within self-executing anonymous functions. Everything is hidden by default. Public methods are exposed by explicitly adding the public methods to namespaces defined in the global scope. Imagine, for example, that I want a small library of utility methods. I want to create a method for calculating sales tax and a method for calculating the expected ship date of a product. The following library encapsulates the implementation of my library in a self-executing anonymous function: (function (global) { // Public method which calculates tax function calculateTax(price) { return calculateFederalTax(price) + calculateStateTax(price); } // Private method for calculating state tax function calculateStateTax(price) { return price * 0.08; } // Private method for calculating federal tax function calculateFederalTax(price) { return price * 0.02; } // Public method which returns the expected ship date function calculateShipDate(currentDate) { currentDate.setDate(currentDate.getDate() + 4); return currentDate; } // Export public methods WinJS.Namespace.define("CompanyA.Utilities", { calculateTax: calculateTax, calculateShipDate: calculateShipDate } ); })(this); // Show expected ship date var shipDate = CompanyA.Utilities.calculateShipDate(new Date()); console.log(shipDate); // Show price + tax var price = 12.33; var tax = CompanyA.Utilities.calculateTax(price); console.log(price + tax); In the code above, the self-executing anonymous function contains four functions: calculateTax(), calculateStateTax(), calculateFederalTax(), and calculateShipDate(). The following statement is used to expose only the calcuateTax() and the calculateShipDate() functions: // Export public methods WinJS.Namespace.define("CompanyA.Utilities", { calculateTax: calculateTax, calculateShipDate: calculateShipDate } ); Because the calculateTax() and calcuateShipDate() functions are added to the CompanyA.Utilities namespace, you can call these two methods outside of the self-executing function. These are the public methods of your library which form the public API. The calculateStateTax() and calculateFederalTax() methods, on the other hand, are forever hidden within the black hole of the self-executing function. These methods are encapsulated and can never be called outside of scope of the self-executing function. These are the internal methods of your library. Summary The goal of this blog entry was to describe why and how you use namespaces with the WinJS library. You learned how to define namespaces using both the WinJS.Namespace.define() and WinJS.Namespace.defineWithParent() methods. We also discussed how to hide private members and expose public members using the module pattern.

    Read the article

  • Ajax Talk at .NET Developers Association

    - by Stephen Walther
    Thanks everyone who came to my Ajax talk tonight at the .NET Developers Association! The slides and demos from the talk can be downloaded by clicking the following link:   ASP.NET Ajax: What’s New?    You need Visual Studio  2010 to view the code samples. The first project, named Demos, contains the following samples: ASPAjax4 1_CompositeScripts.aspx – Demonstrates how to use the ScriptManger to combine, compress, and cache JavaScript files automatically. 2_EnableCdn.aspx – Demonstrates how to retrieve ASP.NET Ajax framework scripts from the Microsoft Ajax CDN automatically. jQuery 1_Selectors.aspx – Demonstrates how to use jQuery selectors 2_WebForms.aspx – Demonstrates how to use the client tablesorter plugin with ASP.NET Web Forms. 3_MVC.aspx – Demonstrates how to use jQuery animation and the templating plugin with ASP.NET MVC. 4_OData.aspx – Demonstrates how to use jQuery with the Netflix API by using JSONP and odata. 5_Templating.aspx – Demonstrates how to use jQuery client templating. 6_TemplateConditionals.aspx – Demonstrates how to use logic within a jQuery template. 7_DataLinking.aspx – Demonstrates how to perform data-binding in jQuery. 8_Converters.aspx – Demonstrates how to defines converters that work with data-binding. The second project, named ACT_Tools, illustrates how to use the Microsoft Ajax Minifier and the JSBuild JavaScript preprocessor. When you perform a build in Visual Studio, all JavaScript and CSS files are minified automatically. Furthermore, any *.pre.js file is processed using the JSBuild preprocessor and the output is saved to the ScriptOutput folder. Select Show All Files in Visual Studio to see the generated results of the minifier and the preprocessor.

    Read the article

  • Speaking at Tech-Ed Europe Next Week

    - by Stephen Walther
    I’m going to Berlin! Next week, I’m giving talks at Tech-Ed Europe on two of my favorite topics: What's New in Microsoft ASP.NET Model-View-Controller ASP.NET Model-View-Controller (MVC) 2 introduces new features to make you more productive when building an ASP.NET MVC application. Templated helpers allow automatically associatiating edit and display elements with data types. Areas provide a means of dividing a large Web application into multiple projects. Data annotations allow attaching metadata attributes on a model to control validation. Microsoft ASP.NET AJAX: Taking AJAX to the Next Level Hear how ASP.NET AJAX 4.0 makes building pure client-side AJAX Web applications even easier, and watch us build an entire data-driven ASP.NET AJAX application from start to finish by taking advantage of only JavaScript, HTML pages, and Windows Communication Foundation (WCF) services. Also learn about new ASP.NET AJAX features including the DataView control, declarative templates, live client-side data binding, WCF, and REST integration.   The conference has sold out, but you can register for the wait list: http://www.microsoft.com/europe/TechEd/

    Read the article

  • Metro: Understanding CSS Media Queries

    - by Stephen.Walther
    If you are building a Metro style application then your application needs to look great when used on a wide variety of devices. Your application needs to work on tiny little phones, slates, desktop monitors, and the super high resolution displays of the future. Your application also must support portable devices used with different orientations. If someone tilts their phone from portrait to landscape mode then your application must still be usable. Finally, your Metro style application must look great in different states. For example, your Metro application can be in a “snapped state” when it is shrunk so it can share screen real estate with another application. In this blog post, you learn how to use Cascading Style Sheet media queries to support different devices, different device orientations, and different application states. First, you are provided with an overview of the W3C Media Query recommendation and you learn how to detect standard media features. Next, you learn about the Microsoft extensions to media queries which are supported in Metro style applications. For example, you learn how to use the –ms-view-state feature to detect whether an application is in a “snapped state” or “fill state”. Finally, you learn how to programmatically detect the features of a device and the state of an application. You learn how to use the msMatchMedia() method to execute a media query with JavaScript. Using CSS Media Queries Media queries enable you to apply different styles depending on the features of a device. Media queries are not only supported by Metro style applications, most modern web browsers now support media queries including Google Chrome 4+, Mozilla Firefox 3.5+, Apple Safari 4+, and Microsoft Internet Explorer 9+. Loading Different Style Sheets with Media Queries Imagine, for example, that you want to display different content depending on the horizontal resolution of a device. In that case, you can load different style sheets optimized for different sized devices. Consider the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>U.S. Robotics and Mechanical Men</title> <link href="main.css" rel="stylesheet" type="text/css" /> <!-- Less than 1100px --> <link href="medium.css" rel="stylesheet" type="text/css" media="(max-width:1100px)" /> <!-- Less than 800px --> <link href="small.css" rel="stylesheet" type="text/css" media="(max-width:800px)" /> </head> <body> <div id="header"> <h1>U.S. Robotics and Mechanical Men</h1> </div> <!-- Advertisement Column --> <div id="leftColumn"> <img src="advertisement1.gif" alt="advertisement" /> <img src="advertisement2.jpg" alt="advertisement" /> </div> <!-- Product Search Form --> <div id="mainContentColumn"> <label>Search Products</label> <input id="search" /><button>Search</button> </div> <!-- Deal of the Day Column --> <div id="rightColumn"> <h1>Deal of the Day!</h1> <p> Buy two cameras and get a third camera for free! Offer is good for today only. </p> </div> </body> </html> The HTML page above contains three columns: a leftColumn, mainContentColumn, and rightColumn. When the page is displayed on a low resolution device, such as a phone, only the mainContentColumn appears: When the page is displayed in a medium resolution device, such as a slate, both the leftColumn and the mainContentColumns are displayed: Finally, when the page is displayed in a high-resolution device, such as a computer monitor, all three columns are displayed: Different content is displayed with the help of media queries. The page above contains three style sheet links. Two of the style links include a media attribute: <link href="main.css" rel="stylesheet" type="text/css" /> <!-- Less than 1100px --> <link href="medium.css" rel="stylesheet" type="text/css" media="(max-width:1100px)" /> <!-- Less than 800px --> <link href="small.css" rel="stylesheet" type="text/css" media="(max-width:800px)" /> The main.css style sheet contains default styles for the elements in the page. The medium.css style sheet is applied when the page width is less than 1100px. This style sheet hides the rightColumn and changes the page background color to lime: html { background-color: lime; } #rightColumn { display:none; } Finally, the small.css style sheet is loaded when the page width is less than 800px. This style sheet hides the leftColumn and changes the page background color to red: html { background-color: red; } #leftColumn { display:none; } The different style sheets are applied as you stretch and contract your browser window. You don’t need to refresh the page after changing the size of the page for a media query to be applied: Using the @media Rule You don’t need to divide your styles into separate files to take advantage of media queries. You can group styles by using the @media rule. For example, the following HTML page contains one set of styles which are applied when a device’s orientation is portrait and another set of styles when a device’s orientation is landscape: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title>Application1</title> <style type="text/css"> html { font-family:'Segoe UI Semilight'; font-size: xx-large; } @media screen and (orientation:landscape) { html { background-color: lime; } p.content { width: 50%; margin: auto; } } @media screen and (orientation:portrait) { html { background-color: red; } p.content { width: 90%; margin: auto; } } </style> </head> <body> <p class="content"> Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </p> </body> </html> When a device has a landscape orientation then the background color is set to the color lime and the text only takes up 50% of the available horizontal space: When the device has a portrait orientation then the background color is red and the text takes up 90% of the available horizontal space: Using Standard CSS Media Features The official list of standard media features is contained in the W3C CSS Media Query recommendation located here: http://www.w3.org/TR/css3-mediaqueries/ Here is the official list of the 13 media features described in the standard: · width – The current width of the viewport · height – The current height of the viewport · device-width – The width of the device · device-height – The height of the device · orientation – The value portrait or landscape · aspect-ratio – The ratio of width to height · device-aspect-ratio – The ratio of device width to device height · color – The number of bits per color supported by the device · color-index – The number of colors in the color lookup table of the device · monochrome – The number of bits in the monochrome frame buffer · resolution – The density of the pixels supported by the device · scan – The values progressive or interlace (used for TVs) · grid – The values 0 or 1 which indicate whether the device supports a grid or a bitmap Many of the media features in the list above support the min- and max- prefix. For example, you can test for the min-width using a query like this: (min-width:800px) You can use the logical and operator with media queries when you need to check whether a device supports more than one feature. For example, the following query returns true only when the width of the device is between 800 and 1,200 pixels: (min-width:800px) and (max-width:1200px) Finally, you can use the different media types – all, braille, embossed, handheld, print, projection, screen, speech, tty, tv — with a media query. For example, the following media query only applies to a page when a page is being printed in color: print and (color) If you don’t specify a media type then media type all is assumed. Using Metro Style Media Features Microsoft has extended the standard list of media features which you can include in a media query with two custom media features: · -ms-high-contrast – The values any, black-white, white-black · -ms-view-state – The values full-screen, fill, snapped, device-portrait You can take advantage of the –ms-high-contrast media feature to make your web application more accessible to individuals with disabilities. In high contrast mode, you should make your application easier to use for individuals with vision disabilities. The –ms-view-state media feature enables you to detect the state of an application. For example, when an application is snapped, the application only occupies part of the available screen real estate. The snapped application appears on the left or right side of the screen and the rest of the screen real estate is dominated by the fill application (Metro style applications can only be snapped on devices with a horizontal resolution of greater than 1,366 pixels). Here is a page which contains style rules for an application in both a snap and fill application state: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title>MyWinWebApp</title> <style type="text/css"> html { font-family:'Segoe UI Semilight'; font-size: xx-large; } @media screen and (-ms-view-state:snapped) { html { background-color: lime; } } @media screen and (-ms-view-state:fill) { html { background-color: red; } } </style> </head> <body> <p class="content"> Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </p> </body> </html> When the application is snapped, the application appears with a lime background color: When the application state is fill then the background color changes to red: When the application takes up the entire screen real estate – it is not in snapped or fill state – then no special style rules apply and the application appears with a white background color. Querying Media Features with JavaScript You can perform media queries using JavaScript by taking advantage of the window.msMatchMedia() method. This method returns a MSMediaQueryList which has a matches method that represents success or failure. For example, the following code checks whether the current device is in portrait mode: if (window.msMatchMedia("(orientation:portrait)").matches) { console.log("portrait"); } else { console.log("landscape"); } If the matches property returns true, then the device is in portrait mode and the message “portrait” is written to the Visual Studio JavaScript Console window. Otherwise, the message “landscape” is written to the JavaScript Console window. You can create an event listener which triggers code whenever the results of a media query changes. For example, the following code writes a message to the JavaScript Console whenever the current device is switched into or out of Portrait mode: window.msMatchMedia("(orientation:portrait)").addListener(function (mql) { if (mql.matches) { console.log("Switched to portrait"); } }); Be aware that the event listener is triggered whenever the result of the media query changes. So the event listener is triggered both when you switch from landscape to portrait and when you switch from portrait to landscape. For this reason, you need to verify that the matches property has the value true before writing the message. Summary The goal of this blog entry was to explain how CSS media queries work in the context of a Metro style application written with JavaScript. First, you were provided with an overview of the W3C CSS Media Query recommendation. You learned about the standard media features which you can query such as width and orientation. Next, we focused on the Microsoft extensions to media queries. You learned how to use –ms-view-state to detect whether a Metro style application is in “snapped” or “fill” state. You also learned how to use the msMatchMedia() method to perform a media query from JavaScript.

    Read the article

  • Good Book for Learning Meteor: Discover Meteor

    - by Stephen.Walther
    A week or so ago, Sacha Greif asked me whether I would be willing to write a review of his new book on Meteor (published today) entitled Discover Meteor. Sacha wrote the book with Tom Coleman. Both Sacha and Tom are very active in the Meteor community – they are responsible for several well-known Meteor packages and projects including Atmosphere, Meteorite, meteor-router and Telescope — so I suspected that their book would be good. If you have not heard of Meteor, Meteor is a new framework for building web applications which is built on top of Node.js. Meteor excels at building a new category of constantly-connected, real-time web applications. It has some jaw-dropping features which I described in a previous blog entry: http://stephenwalther.com/archive/2013/03/18/an-introduction-to-meteor.aspx So, I am super excited about Meteor. Unfortunately, because it is evolving so quickly, learning how to write Meteor applications can be challenging. The official documentation at Meteor.com is good, but it is too basic. I’m happy to report that Discovering Meteor is a really good book: · The book is a fun read. The writing is smooth and I read through the book from cover to cover in a single Saturday afternoon with pleasure. · The book is well organized. It contains a walk-through of building a social media app (Microscope). Interleaved through the app building chapters, it contains tutorial chapters on Meteor features such as deployment and reactivity. · The book covers several advanced topics which I have not seen covered anywhere else. The chapters on publications and subscriptions, routing, and animation are especially good. I came away from the book with a deeper understanding of all of these topics. I wish that I had read Discover Meteor a couple of months ago and it would have saved me several weeks of reading Stack Overflow posts and struggling with the Meteor documentation If you want to buy Discover Meteor, the authors gave me the following link which provides you with a 20% discount: http://discovermeteor.com/orionids

    Read the article

  • Metro: Creating a Master/Detail View with a WinJS ListView Control

    - by Stephen.Walther
    The goal of this blog entry is to explain how you can create a simple master/detail view by using the WinJS ListView and Template controls. In particular, I explain how you can use a ListView control to display a list of movies and how you can use a Template control to display the details of the selected movie. Creating a master/detail view requires completing the following four steps: Create the data source – The data source contains the list of movies. Declare the ListView control – The ListView control displays the entire list of movies. It is the master part of the master/detail view. Declare the Details Template control – The Details Template control displays the details for the selected movie. It is the details part of the master/detail view. Handle the selectionchanged event – You handle the selectionchanged event to display the details for a movie when a new movie is selected. Creating the Data Source There is nothing special about our data source. We initialize a WinJS.Binding.List object to represent a list of movies: (function () { "use strict"; var movies = new WinJS.Binding.List([ { title: "Star Wars", director: "Lucas"}, { title: "Shrek", director: "Adamson" }, { title: "Star Trek", director: "Abrams" }, { title: "Spiderman", director: "Raimi" }, { title: "Memento", director: "Nolan" }, { title: "Minority Report", director: "Spielberg" } ]); // Expose the data source WinJS.Namespace.define("ListViewDemos", { movies: movies }); })(); The data source is exposed to the rest of our application with the name ListViewDemos.movies. Declaring the ListView Control The ListView control is declared with the following markup: <div id="movieList" data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource: ListViewDemos.movies.dataSource, itemTemplate: select('#masterItemTemplate'), tapBehavior: 'directSelect', selectionMode: 'single', layout: { type: WinJS.UI.ListLayout } }"> </div> The data-win-options attribute is used to set the following properties of the ListView control: itemDataSource – The ListView is bound to the list of movies which we created in the previous section. Notice that the ListView is bound to ListViewDemos.movies.dataSource and not just ListViewDemos.movies. itemTemplate – The item template contains the template used for rendering each item in the ListView. The markup for this template is included below. tabBehavior – This enumeration determines what happens when you tap or click on an item in the ListView. The possible values are directSelect, toggleSelect, invokeOnly, none. Because we want to handle the selectionchanged event, we set tapBehavior to the value directSelect. selectionMode – This enumeration determines whether you can select multiple items or only a single item. The possible values are none, single, multi. In the code above, this property is set to the value single. layout – You can use ListLayout or GridLayout with a ListView. If you want to display a vertical ListView, then you should select ListLayout. You must associate a ListView with an item template if you want to render anything interesting. The ListView above is associated with an item template named #masterItemTemplate. Here’s the markup for the masterItemTemplate: <div id="masterItemTemplate" data-win-control="WinJS.Binding.Template"> <div class="movie"> <span data-win-bind="innerText:title"></span> </div> </div> This template simply renders the title of each movie. Declaring the Details Template Control The details part of the master/detail view is created with the help of a Template control. Here’s the markup used to declare the Details Template control: <div id="detailsTemplate" data-win-control="WinJS.Binding.Template"> <div> <div> Title: <span data-win-bind="innerText:title"></span> </div> <div> Director: <span data-win-bind="innerText:director"></span> </div> </div> </div> The Details Template control displays the movie title and director.   Handling the selectionchanged Event The ListView control can raise two types of events: the iteminvoked and selectionchanged events. The iteminvoked event is raised when you click on a ListView item. The selectionchanged event is raised when one or more ListView items are selected. When you set the tapBehavior property of the ListView control to the value “directSelect” then tapping or clicking a list item raised both the iteminvoked and selectionchanged event. Tapping a list item causes the item to be selected and the item appears with a checkmark. In our code, we handle the selectionchanged event to update the movie details Template when you select a new movie. Here’s the code from the default.js file used to handle the selectionchanged event: var movieList = document.getElementById("movieList"); var detailsTemplate = document.getElementById("detailsTemplate"); var movieDetails = document.getElementById("movieDetails"); // Setup selectionchanged handler movieList.winControl.addEventListener("selectionchanged", function (evt) { if (movieList.winControl.selection.count() > 0) { movieList.winControl.selection.getItems().then(function (items) { // Clear the template container movieDetails.innerHTML = ""; // Render the template detailsTemplate.winControl.render(items[0].data, movieDetails); }); } }); The code above sets up an event handler (listener) for the selectionchanged event. The event handler first verifies that an item has been selected in the ListView (selection.count() > 0). Next, the details for the movie are rendered using the movie details Template (we created this Template in the previous section). The Complete Code For the sake of completeness, I’ve included the complete code for the master/detail view below. I’ve included both the default.html, default.js, and movies.js files. Here is the final code for the default.html file: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewMasterDetail</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewMasterDetail references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script type="text/javascript" src="js/movies.js"></script> <style type="text/css"> body { font-size: xx-large; } .movie { padding: 5px; } #masterDetail { display: -ms-box; } #movieList { width: 300px; margin: 20px; } #movieDetails { margin: 20px; } </style> </head> <body> <!-- Templates --> <div id="masterItemTemplate" data-win-control="WinJS.Binding.Template"> <div class="movie"> <span data-win-bind="innerText:title"></span> </div> </div> <div id="detailsTemplate" data-win-control="WinJS.Binding.Template"> <div> <div> Title: <span data-win-bind="innerText:title"></span> </div> <div> Director: <span data-win-bind="innerText:director"></span> </div> </div> </div> <!-- Master/Detail --> <div id="masterDetail"> <!-- Master --> <div id="movieList" data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource: ListViewDemos.movies.dataSource, itemTemplate: select('#masterItemTemplate'), tapBehavior: 'directSelect', selectionMode: 'single', layout: { type: WinJS.UI.ListLayout } }"> </div> <!-- Detail --> <div id="movieDetails"></div> </div> </body> </html> Here is the default.js file: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { WinJS.UI.processAll(); var movieList = document.getElementById("movieList"); var detailsTemplate = document.getElementById("detailsTemplate"); var movieDetails = document.getElementById("movieDetails"); // Setup selectionchanged handler movieList.winControl.addEventListener("selectionchanged", function (evt) { if (movieList.winControl.selection.count() > 0) { movieList.winControl.selection.getItems().then(function (items) { // Clear the template container movieDetails.innerHTML = ""; // Render the template detailsTemplate.winControl.render(items[0].data, movieDetails); }); } }); } }; app.start(); })();   Here is the movies.js file: (function () { "use strict"; var movies = new WinJS.Binding.List([ { title: "Star Wars", director: "Lucas"}, { title: "Shrek", director: "Adamson" }, { title: "Star Trek", director: "Abrams" }, { title: "Spiderman", director: "Raimi" }, { title: "Memento", director: "Nolan" }, { title: "Minority Report", director: "Spielberg" } ]); // Expose the data source WinJS.Namespace.define("ListViewDemos", { movies: movies }); })();   Summary The purpose of this blog entry was to describe how to create a simple master/detail view by taking advantage of the WinJS ListView control. We handled the selectionchanged event of the ListView control to display movie details when you select a movie in the ListView.

    Read the article

  • Metro: Creating an IndexedDbDataSource for WinJS

    - by Stephen.Walther
    The goal of this blog entry is to describe how you can create custom data sources which you can use with the controls in the WinJS library. In particular, I explain how you can create an IndexedDbDataSource which you can use to store and retrieve data from an IndexedDB database. If you want to skip ahead, and ignore all of the fascinating content in-between, I’ve included the complete code for the IndexedDbDataSource at the very bottom of this blog entry. What is IndexedDB? IndexedDB is a database in the browser. You can use the IndexedDB API with all modern browsers including Firefox, Chrome, and Internet Explorer 10. And, of course, you can use IndexedDB with Metro style apps written with JavaScript. If you need to persist data in a Metro style app written with JavaScript then IndexedDB is a good option. Each Metro app can only interact with its own IndexedDB databases. And, IndexedDB provides you with transactions, indices, and cursors – the elements of any modern database. An IndexedDB database might be different than the type of database that you normally use. An IndexedDB database is an object-oriented database and not a relational database. Instead of storing data in tables, you store data in object stores. You store JavaScript objects in an IndexedDB object store. You create new IndexedDB object stores by handling the upgradeneeded event when you attempt to open a connection to an IndexedDB database. For example, here’s how you would both open a connection to an existing database named TasksDB and create the TasksDB database when it does not already exist: var reqOpen = window.indexedDB.open(“TasksDB”, 2); reqOpen.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); }; reqOpen.onsuccess = function () { var db = reqOpen.result; // Do something with db }; When you call window.indexedDB.open(), and the database does not already exist, then the upgradeneeded event is raised. In the code above, the upgradeneeded handler creates a new object store named tasks. The new object store has an auto-increment column named id which acts as the primary key column. If the database already exists with the right version, and you call window.indexedDB.open(), then the success event is raised. At that point, you have an open connection to the existing database and you can start doing something with the database. You use asynchronous methods to interact with an IndexedDB database. For example, the following code illustrates how you would add a new object to the tasks object store: var transaction = db.transaction(“tasks”, “readwrite”); var reqAdd = transaction.objectStore(“tasks”).add({ name: “Feed the dog” }); reqAdd.onsuccess = function() { // Tasks added successfully }; The code above creates a new database transaction, adds a new task to the tasks object store, and handles the success event. If the new task gets added successfully then the success event is raised. Creating a WinJS IndexedDbDataSource The most powerful control in the WinJS library is the ListView control. This is the control that you use to display a collection of items. If you want to display data with a ListView control, you need to bind the control to a data source. The WinJS library includes two objects which you can use as a data source: the List object and the StorageDataSource object. The List object enables you to represent a JavaScript array as a data source and the StorageDataSource enables you to represent the file system as a data source. If you want to bind an IndexedDB database to a ListView then you have a choice. You can either dump the items from the IndexedDB database into a List object or you can create a custom data source. I explored the first approach in a previous blog entry. In this blog entry, I explain how you can create a custom IndexedDB data source. Implementing the IListDataSource Interface You create a custom data source by implementing the IListDataSource interface. This interface contains the contract for the methods which the ListView needs to interact with a data source. The easiest way to implement the IListDataSource interface is to derive a new object from the base VirtualizedDataSource object. The VirtualizedDataSource object requires a data adapter which implements the IListDataAdapter interface. Yes, because of the number of objects involved, this is a little confusing. Your code ends up looking something like this: var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); The code above is used to create a new class named IndexedDbDataSource which derives from the base VirtualizedDataSource class. In the constructor for the new class, the base class _baseDataSourceConstructor() method is called. A data adapter is passed to the _baseDataSourceConstructor() method. The code above creates a new method exposed by the IndexedDbDataSource named nuke(). The nuke() method deletes all of the objects from an object store. The code above also overrides a method named remove(). Our derived remove() method accepts any type of key and removes the matching item from the object store. Almost all of the work of creating a custom data source goes into building the data adapter class. The data adapter class implements the IListDataAdapter interface which contains the following methods: · change() · getCount() · insertAfter() · insertAtEnd() · insertAtStart() · insertBefore() · itemsFromDescription() · itemsFromEnd() · itemsFromIndex() · itemsFromKey() · itemsFromStart() · itemSignature() · moveAfter() · moveBefore() · moveToEnd() · moveToStart() · remove() · setNotificationHandler() · compareByIdentity Fortunately, you are not required to implement all of these methods. You only need to implement the methods that you actually need. In the case of the IndexedDbDataSource, I implemented the getCount(), itemsFromIndex(), insertAtEnd(), and remove() methods. If you are creating a read-only data source then you really only need to implement the getCount() and itemsFromIndex() methods. Implementing the getCount() Method The getCount() method returns the total number of items from the data source. So, if you are storing 10,000 items in an object store then this method would return the value 10,000. Here’s how I implemented the getCount() method: getCount: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore().then(function (store) { var reqCount = store.count(); reqCount.onerror = that._error; reqCount.onsuccess = function (evt) { complete(evt.target.result); }; }); }); } The first thing that you should notice is that the getCount() method returns a WinJS promise. This is a requirement. The getCount() method is asynchronous which is a good thing because all of the IndexedDB methods (at least the methods implemented in current browsers) are also asynchronous. The code above retrieves an object store and then uses the IndexedDB count() method to get a count of the items in the object store. The value is returned from the promise by calling complete(). Implementing the itemsFromIndex method When a ListView displays its items, it calls the itemsFromIndex() method. By default, it calls this method multiple times to get different ranges of items. Three parameters are passed to the itemsFromIndex() method: the requestIndex, countBefore, and countAfter parameters. The requestIndex indicates the index of the item from the database to show. The countBefore and countAfter parameters represent hints. These are integer values which represent the number of items before and after the requestIndex to retrieve. Again, these are only hints and you can return as many items before and after the request index as you please. Here’s how I implemented the itemsFromIndex method: itemsFromIndex: function (requestIndex, countBefore, countAfter) { var that = this; return new WinJS.Promise(function (complete, error) { that.getCount().then(function (count) { if (requestIndex >= count) { return WinJS.Promise.wrapError(new WinJS.ErrorFromName(WinJS.UI.FetchError.doesNotExist)); } var startIndex = Math.max(0, requestIndex - countBefore); var endIndex = Math.min(count, requestIndex + countAfter + 1); that._getObjectStore().then(function (store) { var index = 0; var items = []; var req = store.openCursor(); req.onerror = that._error; req.onsuccess = function (evt) { var cursor = evt.target.result; if (index < startIndex) { index = startIndex; cursor.advance(startIndex); return; } if (cursor && index < endIndex) { index++; items.push({ key: cursor.value[store.keyPath].toString(), data: cursor.value }); cursor.continue(); return; } results = { items: items, offset: requestIndex - startIndex, totalCount: count }; complete(results); }; }); }); }); } In the code above, a cursor is used to iterate through the objects in an object store. You fetch the next item in the cursor by calling either the cursor.continue() or cursor.advance() method. The continue() method moves forward by one object and the advance() method moves forward a specified number of objects. Each time you call continue() or advance(), the success event is raised again. If the cursor is null then you know that you have reached the end of the cursor and you can return the results. Some things to be careful about here. First, the return value from the itemsFromIndex() method must implement the IFetchResult interface. In particular, you must return an object which has an items, offset, and totalCount property. Second, each item in the items array must implement the IListItem interface. Each item should have a key and a data property. Implementing the insertAtEnd() Method When creating the IndexedDbDataSource, I wanted to go beyond creating a simple read-only data source and support inserting and deleting objects. If you want to support adding new items with your data source then you need to implement the insertAtEnd() method. Here’s how I implemented the insertAtEnd() method for the IndexedDbDataSource: insertAtEnd:function(unused, data) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function(store) { var reqAdd = store.add(data); reqAdd.onerror = that._error; reqAdd.onsuccess = function (evt) { var reqGet = store.get(evt.target.result); reqGet.onerror = that._error; reqGet.onsuccess = function (evt) { var newItem = { key:evt.target.result[store.keyPath].toString(), data:evt.target.result } complete(newItem); }; }; }); }); } When implementing the insertAtEnd() method, you need to be careful to return an object which implements the IItem interface. In particular, you should return an object that has a key and a data property. The key must be a string and it uniquely represents the new item added to the data source. The value of the data property represents the new item itself. Implementing the remove() Method Finally, you use the remove() method to remove an item from the data source. You call the remove() method with the key of the item which you want to remove. Implementing the remove() method in the case of the IndexedDbDataSource was a little tricky. The problem is that an IndexedDB object store uses an integer key and the VirtualizedDataSource requires a string key. For that reason, I needed to override the remove() method in the derived IndexedDbDataSource class like this: var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); When you call remove(), you end up calling a method of the IndexedDbDataAdapter named removeInternal() . Here’s what the removeInternal() method looks like: setNotificationHandler: function (notificationHandler) { this._notificationHandler = notificationHandler; }, removeInternal: function(key) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqDelete = store.delete (key); reqDelete.onerror = that._error; reqDelete.onsuccess = function (evt) { that._notificationHandler.removed(key.toString()); complete(); }; }); }); } The removeInternal() method calls the IndexedDB delete() method to delete an item from the object store. If the item is deleted successfully then the _notificationHandler.remove() method is called. Because we are not implementing the standard IListDataAdapter remove() method, we need to notify the data source (and the ListView control bound to the data source) that an item has been removed. The way that you notify the data source is by calling the _notificationHandler.remove() method. Notice that we get the _notificationHandler in the code above by implementing another method in the IListDataAdapter interface: the setNotificationHandler() method. You can raise the following types of notifications using the _notificationHandler: · beginNotifications() · changed() · endNotifications() · inserted() · invalidateAll() · moved() · removed() · reload() These methods are all part of the IListDataNotificationHandler interface in the WinJS library. Implementing the nuke() Method I wanted to implement a method which would remove all of the items from an object store. Therefore, I created a method named nuke() which calls the IndexedDB clear() method: nuke: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqClear = store.clear(); reqClear.onerror = that._error; reqClear.onsuccess = function (evt) { that._notificationHandler.reload(); complete(); }; }); }); } Notice that the nuke() method calls the _notificationHandler.reload() method to notify the ListView to reload all of the items from its data source. Because we are implementing a custom method here, we need to use the _notificationHandler to send an update. Using the IndexedDbDataSource To illustrate how you can use the IndexedDbDataSource, I created a simple task list app. You can add new tasks, delete existing tasks, and nuke all of the tasks. You delete an item by selecting an item (swipe or right-click) and clicking the Delete button. Here’s the HTML page which contains the ListView, the form for adding new tasks, and the buttons for deleting and nuking tasks: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title>DataSources</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.1.0.RC/css/ui-dark.css" rel="stylesheet" /> <script src="//Microsoft.WinJS.1.0.RC/js/base.js"></script> <script src="//Microsoft.WinJS.1.0.RC/js/ui.js"></script> <!-- DataSources references --> <link href="indexedDb.css" rel="stylesheet" /> <script type="text/javascript" src="indexedDbDataSource.js"></script> <script src="indexedDb.js"></script> </head> <body> <div id="tmplTask" data-win-control="WinJS.Binding.Template"> <div class="taskItem"> Id: <span data-win-bind="innerText:id"></span> <br /><br /> Name: <span data-win-bind="innerText:name"></span> </div> </div> <div id="lvTasks" data-win-control="WinJS.UI.ListView" data-win-options="{ itemTemplate: select('#tmplTask'), selectionMode: 'single' }"></div> <form id="frmAdd"> <fieldset> <legend>Add Task</legend> <label>New Task</label> <input id="inputTaskName" required /> <button>Add</button> </fieldset> </form> <button id="btnNuke">Nuke</button> <button id="btnDelete">Delete</button> </body> </html> And here is the JavaScript code for the TaskList app: /// <reference path="//Microsoft.WinJS.1.0.RC/js/base.js" /> /// <reference path="//Microsoft.WinJS.1.0.RC/js/ui.js" /> function init() { WinJS.UI.processAll().done(function () { var lvTasks = document.getElementById("lvTasks").winControl; // Bind the ListView to its data source var tasksDataSource = new DataSources.IndexedDbDataSource("TasksDB", 1, "tasks", upgrade); lvTasks.itemDataSource = tasksDataSource; // Wire-up Add, Delete, Nuke buttons document.getElementById("frmAdd").addEventListener("submit", function (evt) { evt.preventDefault(); tasksDataSource.beginEdits(); tasksDataSource.insertAtEnd(null, { name: document.getElementById("inputTaskName").value }).done(function (newItem) { tasksDataSource.endEdits(); document.getElementById("frmAdd").reset(); lvTasks.ensureVisible(newItem.index); }); }); document.getElementById("btnDelete").addEventListener("click", function () { if (lvTasks.selection.count() == 1) { lvTasks.selection.getItems().done(function (items) { tasksDataSource.remove(items[0].data.id); }); } }); document.getElementById("btnNuke").addEventListener("click", function () { tasksDataSource.nuke(); }); // This method is called to initialize the IndexedDb database function upgrade(evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); } }); } document.addEventListener("DOMContentLoaded", init); The IndexedDbDataSource is created and bound to the ListView control with the following two lines of code: var tasksDataSource = new DataSources.IndexedDbDataSource("TasksDB", 1, "tasks", upgrade); lvTasks.itemDataSource = tasksDataSource; The IndexedDbDataSource is created with four parameters: the name of the database to create, the version of the database to create, the name of the object store to create, and a function which contains code to initialize the new database. The upgrade function creates a new object store named tasks with an auto-increment property named id: function upgrade(evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); } The Complete Code for the IndexedDbDataSource Here’s the complete code for the IndexedDbDataSource: (function () { /************************************************ * The IndexedDBDataAdapter enables you to work * with a HTML5 IndexedDB database. *************************************************/ var IndexedDbDataAdapter = WinJS.Class.define( function (dbName, dbVersion, objectStoreName, upgrade, error) { this._dbName = dbName; // database name this._dbVersion = dbVersion; // database version this._objectStoreName = objectStoreName; // object store name this._upgrade = upgrade; // database upgrade script this._error = error || function (evt) { console.log(evt.message); }; }, { /******************************************* * IListDataAdapter Interface Methods ********************************************/ getCount: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore().then(function (store) { var reqCount = store.count(); reqCount.onerror = that._error; reqCount.onsuccess = function (evt) { complete(evt.target.result); }; }); }); }, itemsFromIndex: function (requestIndex, countBefore, countAfter) { var that = this; return new WinJS.Promise(function (complete, error) { that.getCount().then(function (count) { if (requestIndex >= count) { return WinJS.Promise.wrapError(new WinJS.ErrorFromName(WinJS.UI.FetchError.doesNotExist)); } var startIndex = Math.max(0, requestIndex - countBefore); var endIndex = Math.min(count, requestIndex + countAfter + 1); that._getObjectStore().then(function (store) { var index = 0; var items = []; var req = store.openCursor(); req.onerror = that._error; req.onsuccess = function (evt) { var cursor = evt.target.result; if (index < startIndex) { index = startIndex; cursor.advance(startIndex); return; } if (cursor && index < endIndex) { index++; items.push({ key: cursor.value[store.keyPath].toString(), data: cursor.value }); cursor.continue(); return; } results = { items: items, offset: requestIndex - startIndex, totalCount: count }; complete(results); }; }); }); }); }, insertAtEnd:function(unused, data) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function(store) { var reqAdd = store.add(data); reqAdd.onerror = that._error; reqAdd.onsuccess = function (evt) { var reqGet = store.get(evt.target.result); reqGet.onerror = that._error; reqGet.onsuccess = function (evt) { var newItem = { key:evt.target.result[store.keyPath].toString(), data:evt.target.result } complete(newItem); }; }; }); }); }, setNotificationHandler: function (notificationHandler) { this._notificationHandler = notificationHandler; }, /***************************************** * IndexedDbDataSource Method ******************************************/ removeInternal: function(key) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqDelete = store.delete (key); reqDelete.onerror = that._error; reqDelete.onsuccess = function (evt) { that._notificationHandler.removed(key.toString()); complete(); }; }); }); }, nuke: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqClear = store.clear(); reqClear.onerror = that._error; reqClear.onsuccess = function (evt) { that._notificationHandler.reload(); complete(); }; }); }); }, /******************************************* * Private Methods ********************************************/ _ensureDbOpen: function () { var that = this; // Try to get cached Db if (that._cachedDb) { return WinJS.Promise.wrap(that._cachedDb); } // Otherwise, open the database return new WinJS.Promise(function (complete, error, progress) { var reqOpen = window.indexedDB.open(that._dbName, that._dbVersion); reqOpen.onerror = function (evt) { error(); }; reqOpen.onupgradeneeded = function (evt) { that._upgrade(evt); that._notificationHandler.invalidateAll(); }; reqOpen.onsuccess = function () { that._cachedDb = reqOpen.result; complete(that._cachedDb); }; }); }, _getObjectStore: function (type) { type = type || "readonly"; var that = this; return new WinJS.Promise(function (complete, error) { that._ensureDbOpen().then(function (db) { var transaction = db.transaction(that._objectStoreName, type); complete(transaction.objectStore(that._objectStoreName)); }); }); }, _get: function (key) { return new WinJS.Promise(function (complete, error) { that._getObjectStore().done(function (store) { var reqGet = store.get(key); reqGet.onerror = that._error; reqGet.onsuccess = function (item) { complete(item); }; }); }); } } ); var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); WinJS.Namespace.define("DataSources", { IndexedDbDataSource: IndexedDbDataSource }); })(); Summary In this blog post, I provided an overview of how you can create a new data source which you can use with the WinJS library. I described how you can create an IndexedDbDataSource which you can use to bind a ListView control to an IndexedDB database. While describing how you can create a custom data source, I explained how you can implement the IListDataAdapter interface. You also learned how to raise notifications — such as a removed or invalidateAll notification — by taking advantage of the methods of the IListDataNotificationHandler interface.

    Read the article

  • Time Tracking on an Agile Team

    - by Stephen.Walther
    What’s the best way to handle time-tracking on an Agile team? Your gut reaction to this question might be to resist any type of time-tracking at all. After all, one of the principles of the Agile Manifesto is “Individuals and interactions over processes and tools”.  Forcing the developers on your team to track the amount of time that they devote to completing stories or tasks might seem like useless bureaucratic red tape: an impediment to getting real work done. I completely understand this reaction. I’ve been required to use time-tracking software in the past to account for each hour of my workday. It made me feel like Fred Flintstone punching in at the quarry mine and not like a professional. Why You Really Do Need Time-Tracking There are, however, legitimate reasons to track time spent on stories even when you are a member of an Agile team.  First, if you are working with an outside client, you might need to track the number of hours spent on different stories for the purposes of billing. There might be no way to avoid time-tracking if you want to get paid. Second, the Product Owner needs to know when the work on a story has gone over the original time estimated for the story. The Product Owner is concerned with Return On Investment. If the team has gone massively overtime on a story, then the Product Owner has a legitimate reason to halt work on the story and reconsider the story’s business value. Finally, you might want to track how much time your team spends on different types of stories or tasks. For example, if your team is spending 75% of their time doing testing then you might need to bring in more testers. Or, if 10% of your team’s time is expended performing a software build at the end of each iteration then it is time to consider better ways of automating the build process. Time-Tracking in SonicAgile For these reasons, we added time-tracking as a feature to SonicAgile which is our free Agile Project Management tool. We were heavily influenced by Jeff Sutherland (one of the founders of Scrum) in the way that we implemented time-tracking (see his article http://scrum.jeffsutherland.com/2007/03/time-tracking-is-anti-scrum-what-do-you.html). In SonicAgile, time-tracking is disabled by default. If you want to use this feature then the project owner must enable time-tracking in Project Settings. You can choose to estimate using either days or hours. If you are estimating at the level of stories then it makes more sense to choose days. Otherwise, if you are estimating at the level of tasks then it makes more sense to use hours. After you enable time-tracking then you can assign three estimates to a story: Original Estimate – This is the estimate that you enter when you first create a story. You don’t change this estimate. Time Spent – This is the amount of time that you have already devoted to the story. You update the time spent on each story during your daily standup meeting. Time Left – This is the amount of time remaining to complete the story. Again, you update the time left during your daily standup meeting. So when you first create a story, you enter an original estimate that becomes the time left. During each daily standup meeting, you update the time spent and time left for each story on the Kanban. If you had perfect predicative power, then the original estimate would always be the same as the sum of the time spent and the time left. For example, if you predict that a story will take 5 days to complete then on day 3, the story should have 3 days spent and 2 days left. Unfortunately, never in the history of mankind has anyone accurately predicted the exact amount of time that it takes to complete a story. For this reason, SonicAgile does not update the time spent and time left automatically. Each day, during the daily standup, your team should update the time spent and time left for each story. For example, the following table shows the history of the time estimates for a story that was originally estimated to take 3 days but, eventually, takes 5 days to complete: Day Original Estimate Time Spent Time Left Day 1 3 days 0 days 3 days Day 2 3 days 1 day 2 days Day 3 3 days 2 days 2 days Day 4 3 days 3 days 2 days Day 5 3 days 4 days 0 days In the table above, everything goes as predicted until you reach day 3. On day 3, the team realizes that the work will require an additional two days. The situation does not improve on day 4. All of the sudden, on day 5, all of the remaining work gets done. Real work often follows this pattern. There are long periods when nothing gets done punctuated by occasional and unpredictable bursts of progress. We designed SonicAgile to make it as easy as possible to track the time spent and time left on a story. Detecting when a Story Goes Over the Original Estimate Sometimes, stories take much longer than originally estimated. There’s a surprise. For example, you discover that a new software component is incompatible with existing software components. Or, you discover that you have to go through a month-long certification process to finish a story. In those cases, the Product Owner has a legitimate reason to halt work on a story and re-evaluate the business value of the story. For example, the Product Owner discovers that a story will require weeks to implement instead of days, then the story might not be worth the expense. SonicAgile displays a warning on both the Backlog and the Kanban when the time spent on a story goes over the original estimate. An icon of a clock is displayed. Time-Tracking and Tasks Another optional feature of SonicAgile is tasks. If you enable Tasks in Project Settings then you can break stories into one or more tasks. You can perform time-tracking at the level of a story or at the level of a task. If you don’t break a story into tasks then you can enter the time left and time spent for the story. As soon as you break a story into tasks, then you can no longer enter the time left and time spent at the level of the story. Instead, the time left and time spent for a story is rolled up from its tasks. On the Kanban, you can see how the time left and time spent for each task gets rolled up into each story. The progress bar for the story is rolled up from the progress bars for each task. The original estimate is never rolled up – even when you break a story into tasks. A story’s original estimate is entered separately from the original estimates of each of the story’s tasks. Summary Not every Agile team can avoid time-tracking. You might be forced to track time to get paid, to detect when you are spending too much time on a particular story, or to track the amount of time that you are devoting to different types of tasks. We designed time-tracking in SonicAgile to require the least amount of work to track the information that you need. Time-tracking is an optional feature. If you enable time-tracking then you can track the original estimate, time left, and time spent for each story and task. You can use time-tracking with SonicAgile for free. Register at http://SonicAgile.com.

    Read the article

  • Metro: Understanding Observables

    - by Stephen.Walther
    The goal of this blog entry is to describe how the Observer Pattern is implemented in the WinJS library. You learn how to create observable objects which trigger notifications automatically when their properties are changed. Observables enable you to keep your user interface and your application data in sync. For example, by taking advantage of observables, you can update your user interface automatically whenever the properties of a product change. Observables are the foundation of declarative binding in the WinJS library. The WinJS library is not the first JavaScript library to include support for observables. For example, both the KnockoutJS library and the Microsoft Ajax Library (now part of the Ajax Control Toolkit) support observables. Creating an Observable Imagine that I have created a product object like this: var product = { name: "Milk", description: "Something to drink", price: 12.33 }; Nothing very exciting about this product. It has three properties named name, description, and price. Now, imagine that I want to be notified automatically whenever any of these properties are changed. In that case, I can create an observable product from my product object like this: var observableProduct = WinJS.Binding.as(product); This line of code creates a new JavaScript object named observableProduct from the existing JavaScript object named product. This new object also has a name, description, and price property. However, unlike the properties of the original product object, the properties of the observable product object trigger notifications when the properties are changed. Each of the properties of the new observable product object has been changed into accessor properties which have both a getter and a setter. For example, the observable product price property looks something like this: price: { get: function () { return this.getProperty(“price”); } set: function (value) { this.setProperty(“price”, value); } } When you read the price property then the getProperty() method is called and when you set the price property then the setProperty() method is called. The getProperty() and setProperty() methods are methods of the observable product object. The observable product object supports the following methods and properties: · addProperty(name, value) – Adds a new property to an observable and notifies any listeners. · backingData – An object which represents the value of each property. · bind(name, action) – Enables you to execute a function when a property changes. · getProperty(name) – Returns the value of a property using the string name of the property. · notify(name, newValue, oldValue) – A private method which executes each function in the _listeners array. · removeProperty(name) – Removes a property and notifies any listeners. · setProperty(name, value) – Updates a property and notifies any listeners. · unbind(name, action) – Enables you to stop executing a function in response to a property change. · updateProperty(name, value) – Updates a property and notifies any listeners. So when you create an observable, you get a new object with the same properties as an existing object. However, when you modify the properties of an observable object, then you can notify any listeners of the observable that the value of a particular property has changed automatically. Imagine that you change the value of the price property like this: observableProduct.price = 2.99; In that case, the following sequence of events is triggered: 1. The price setter calls the setProperty(“price”, 2.99) method 2. The setProperty() method updates the value of the backingData.price property and calls the notify() method 3. The notify() method executes each function in the collection of listeners associated with the price property Creating Observable Listeners If you want to be notified when a property of an observable object is changed, then you need to register a listener. You register a listener by using the bind() method like this: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { // Simple product object var product = { name: "Milk", description: "Something to drink", price: 12.33 }; // Create observable product var observableProduct = WinJS.Binding.as(product); // Execute a function when price is changed observableProduct.bind("price", function (newValue) { console.log(newValue); }); // Change the price observableProduct.price = 2.99; } }; app.start(); })(); In the code above, the bind() method is used to associate the price property with a function. When the price property is changed, the function logs the new value of the price property to the Visual Studio JavaScript console. The price property is associated with the function using the following line of code: // Execute a function when price is changed observableProduct.bind("price", function (newValue) { console.log(newValue); }); Coalescing Notifications If you make multiple changes to a property – one change immediately following another – then separate notifications won’t be sent. Instead, any listeners are notified only once. The notifications are coalesced into a single notification. For example, in the following code, the product price property is updated three times. However, only one message is written to the JavaScript console. Only the last value assigned to the price property is written to the JavaScript Console window: // Simple product object var product = { name: "Milk", description: "Something to drink", price: 12.33 }; // Create observable product var observableProduct = WinJS.Binding.as(product); // Execute a function when price is changed observableProduct.bind("price", function (newValue) { console.log(newValue); }); // Change the price observableProduct.price = 3.99; observableProduct.price = 2.99; observableProduct.price = 1.99; Only the last value assigned to price, the value 1.99, appears in the console: If there is a time delay between changes to a property then changes result in different notifications. For example, the following code updates the price property every second: // Simple product object var product = { name: "Milk", description: "Something to drink", price: 12.33 }; // Create observable product var observableProduct = WinJS.Binding.as(product); // Execute a function when price is changed observableProduct.bind("price", function (newValue) { console.log(newValue); }); // Add 1 to price every second window.setInterval(function () { observableProduct.price += 1; }, 1000); In this case, separate notification messages are logged to the JavaScript Console window: If you need to prevent multiple notifications from being coalesced into one then you can take advantage of promises. I discussed WinJS promises in a previous blog entry: http://stephenwalther.com/blog/archive/2012/02/22/windows-web-applications-promises.aspx Because the updateProperty() method returns a promise, you can create different notifications for each change in a property by using the following code: // Change the price observableProduct.updateProperty("price", 3.99) .then(function () { observableProduct.updateProperty("price", 2.99) .then(function () { observableProduct.updateProperty("price", 1.99); }); }); In this case, even though the price is immediately changed from 3.99 to 2.99 to 1.99, separate notifications for each new value of the price property are sent. Bypassing Notifications Normally, if a property of an observable object has listeners and you change the property then the listeners are notified. However, there are certain situations in which you might want to bypass notification. In other words, you might need to change a property value silently without triggering any functions registered for notification. If you want to change a property without triggering notifications then you should change the property by using the backingData property. The following code illustrates how you can change the price property silently: // Simple product object var product = { name: "Milk", description: "Something to drink", price: 12.33 }; // Create observable product var observableProduct = WinJS.Binding.as(product); // Execute a function when price is changed observableProduct.bind("price", function (newValue) { console.log(newValue); }); // Change the price silently observableProduct.backingData.price = 5.99; console.log(observableProduct.price); // Writes 5.99 The price is changed to the value 5.99 by changing the value of backingData.price. Because the observableProduct.price property is not set directly, any listeners associated with the price property are not notified. When you change the value of a property by using the backingData property, the change in the property happens synchronously. However, when you change the value of an observable property directly, the change is always made asynchronously. Summary The goal of this blog entry was to describe observables. In particular, we discussed how to create observables from existing JavaScript objects and bind functions to observable properties. You also learned how notifications are coalesced (and ways to prevent this coalescing). Finally, we discussed how you can use the backingData property to update an observable property without triggering notifications. In the next blog entry, we’ll see how observables are used with declarative binding to display the values of properties in an HTML document.

    Read the article

  • Metro: Understanding the default.js File

    - by Stephen.Walther
    The goal of this blog entry is to describe — in painful detail — the contents of the default.js file in a Metro style application written with JavaScript. When you use Visual Studio to create a new Metro application then you get a default.js file automatically. The file is located in a folder named \js\default.js. The default.js file kicks off all of your custom JavaScript code. It is the main entry point to a Metro application. The default contents of the default.js file are included below: // For an introduction to the Blank template, see the following documentation: // http://go.microsoft.com/fwlink/?LinkId=232509 (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { if (eventObject.detail.previousExecutionState !== Windows.ApplicationModel.Activation.ApplicationExecutionState.terminated) { // TODO: This application has been newly launched. Initialize // your application here. } else { // TODO: This application has been reactivated from suspension. // Restore application state here. } WinJS.UI.processAll(); } }; app.oncheckpoint = function (eventObject) { // TODO: This application is about to be suspended. Save any state // that needs to persist across suspensions here. You might use the // WinJS.Application.sessionState object, which is automatically // saved and restored across suspension. If you need to complete an // asynchronous operation before your application is suspended, call // eventObject.setPromise(). }; app.start(); })(); There are several mysterious things happening in this file. The purpose of this blog entry is to dispel this mystery. Understanding the Module Pattern The first thing that you should notice about the default.js file is that the entire contents of this file are enclosed within a self-executing JavaScript function: (function () { ... })(); Metro applications written with JavaScript use something called the module pattern. The module pattern is a common pattern used in JavaScript applications to create private variables, objects, and methods. Anything that you create within the module is encapsulated within the module. Enclosing all of your custom code within a module prevents you from stomping on code from other libraries accidently. Your application might reference several JavaScript libraries and the JavaScript libraries might have variables, objects, or methods with the same names. By encapsulating your code in a module, you avoid overwriting variables, objects, or methods in the other libraries accidently. Enabling Strict Mode with “use strict” The first statement within the default.js module enables JavaScript strict mode: 'use strict'; Strict mode is a new feature of ECMAScript 5 (the latest standard for JavaScript) which enables you to make JavaScript more strict. For example, when strict mode is enabled, you cannot declare variables without using the var keyword. The following statement would result in an exception: hello = "world!"; When strict mode is enabled, this statement throws a ReferenceError. When strict mode is not enabled, a global variable is created which, most likely, is not what you want to happen. I’d rather get the exception instead of the unwanted global variable. The full specification for strict mode is contained in the ECMAScript 5 specification (look at Annex C): http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-262.pdf Aliasing the WinJS.Application Object The next line of code in the default.js file is used to alias the WinJS.Application object: var app = WinJS.Application; This line of code enables you to use a short-hand syntax when referring to the WinJS.Application object: for example,  app.onactivated instead of WinJS.Application.onactivated. The WinJS.Application object  represents your running Metro application. Handling Application Events The default.js file contains an event handler for the WinJS.Application activated event: app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { if (eventObject.detail.previousExecutionState !== Windows.ApplicationModel.Activation.ApplicationExecutionState.terminated) { // TODO: This application has been newly launched. Initialize // your application here. } else { // TODO: This application has been reactivated from suspension. // Restore application state here. } WinJS.UI.processAll(); } }; This WinJS.Application class supports the following events: · loaded – Happens after browser DOMContentLoaded event. After this event, the DOM is ready and you can access elements in a page. This event is raised before external images have been loaded. · activated – Triggered by the Windows.UI.WebUI.WebUIApplication activated event. After this event, the WinRT is ready. · ready – Happens after both loaded and activated events. · unloaded – Happens before application is unloaded. The following default.js file has been modified to capture each of these events and write a message to the Visual Studio JavaScript Console window: (function () { "use strict"; var app = WinJS.Application; WinJS.Application.onloaded = function (e) { console.log("Loaded"); }; WinJS.Application.onactivated = function (e) { console.log("Activated"); }; WinJS.Application.onready = function (e) { console.log("Ready"); } WinJS.Application.onunload = function (e) { console.log("Unload"); } app.start(); })(); When you execute the code above, a message is written to the Visual Studio JavaScript Console window when each event occurs with the exception of the Unload event (presumably because the console is not attached when that event is raised).   Handling Different Activation Contexts The code for the activated handler in the default.js file looks like this: app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { if (eventObject.detail.previousExecutionState !== Windows.ApplicationModel.Activation.ApplicationExecutionState.terminated) { // TODO: This application has been newly launched. Initialize // your application here. } else { // TODO: This application has been reactivated from suspension. // Restore application state here. } WinJS.UI.processAll(); } }; Notice that the code contains a conditional which checks the Kind of the event (the value of e.detail.kind). The startup code is executed only when the activated event is triggered by a Launch event, The ActivationKind enumeration has the following values: · launch · search · shareTarget · file · protocol · fileOpenPicker · fileSavePicker · cacheFileUpdater · contactPicker · device · printTaskSettings · cameraSettings Metro style applications can be activated in different contexts. For example, a camera application can be activated when modifying camera settings. In that case, the ActivationKind would be CameraSettings. Because we want to execute our JavaScript code when our application first launches, we verify that the kind of the activation event is an ActivationKind.Launch event. There is a second conditional within the activated event handler which checks whether an application is being newly launched or whether the application is being resumed from a suspended state. When running a Metro application with Visual Studio, you can use Visual Studio to simulate different application execution states by taking advantage of the Debug toolbar and the new Debug Location toolbar.  Handling the checkpoint Event The default.js file also includes an event handler for the WinJS.Application checkpoint event: app.oncheckpoint = function (eventObject) { // TODO: This application is about to be suspended. Save any state // that needs to persist across suspensions here. You might use the // WinJS.Application.sessionState object, which is automatically // saved and restored across suspension. If you need to complete an // asynchronous operation before your application is suspended, call // eventObject.setPromise(). }; The checkpoint event is raised when your Metro application goes into a suspended state. The idea is that you can save your application data when your application is suspended and reload your application data when your application resumes. Starting the Application The final statement in the default.js file is the statement that gets everything going: app.start(); Events are queued up in a JavaScript array named eventQueue . Until you call the start() method, the events in the queue are not processed. If you don’t call the start() method then the Loaded, Activated, Ready, and Unloaded events are never raised. Summary The goal of this blog entry was to describe the contents of the default.js file which is the JavaScript file which you use to kick off your custom code in a Windows Metro style application written with JavaScript. In this blog entry, I discussed the module pattern, JavaScript strict mode, handling first chance exceptions, WinJS Application events, and activation contexts.

    Read the article

  • New January 2013 Release of the Ajax Control Toolkit

    - by Stephen.Walther
    I am super excited to announce the January 2013 release of the Ajax Control Toolkit! I have one word to describe this release and that word is “Charts” – we’ve added lots of great new chart controls to the Ajax Control Toolkit. You can download the new release directly from http://AjaxControlToolkit.CodePlex.com – or, just fire the following command from the Visual Studio Library Package Manager Console Window (NuGet): Install-Package AjaxControlToolkit You also can view the new chart controls by visiting the “live” Ajax Control Toolkit Sample Site. 5 New Ajax Control Toolkit Chart Controls The Ajax Control Toolkit contains five new chart controls: the AreaChart, BarChart, BubbleChart, LineChart, and PieChart controls. Here is a sample of each of the controls: AreaChart: BarChart: BubbleChart: LineChart: PieChart: We realize that people love to customize the appearance of their charts so all of the chart controls include properties such as color properties. The chart controls render the chart on the browser using SVG. The chart controls are compatible with any browser which supports SVG including Internet Explorer 9 and new and recent versions of Google Chrome, Mozilla Firefox, and Apple Safari. (If you attempt to display a chart on a browser which does not support SVG then you won’t get an error – you just won’t get anything). Updates to the HTML Sanitizer If you are using the HtmlEditorExtender on a public-facing website then it is really important that you enable the HTML Sanitizer to prevent Cross-Site Scripting (XSS) attacks. The HtmlEditorExtender uses the HTML Sanitizer by default. The HTML Sanitizer strips out any suspicious content (like JavaScript code and CSS expressions) from the HTML submitted with the HtmlEditorExtender. We followed the recommendations of OWASP and ha.ckers.org to identify suspicious content. We updated the HTML Sanitizer with this release to protect against new types of XSS attacks. The HTML Sanitizer now has over 220 unit tests. The Ajax Control Toolkit team would like to thank Gil Cohen who helped us identify and block additional XSS attacks. Change in Ajax Control Toolkit Version Format We ran out of numbers. The Ajax Control Toolkit was first released way back in 2006. In previous releases, the version of the Ajax Control Toolkit followed the format: Release Year + Date. So, the previous release was 60919 where 6 represented the 6th release year and 0919 represent September 19. Unfortunately, the AssembyVersion attribute uses a UInt16 data type which has a maximum size of 65,534. The number 70123 is bigger than 65,534 so we had to change our version format with this release. Fortunately, the AssemblyVersion attribute actually accepts four UInt16 numbers so we used another one. This release of the Ajax Control Toolkit is officially version 7.0123. This new version format should work for another 65,000 years. And yes, I realize that 7.0123 is less than 60,919, but we ran out of numbers. Summary I hope that you find the chart controls included with this latest release of the Ajax Control Toolkit useful. Let me know if you use them in applications that you build. And, let me know if you run into any issues using the new chart controls. Next month, back to improving the File Upload control – more exciting stuff.

    Read the article

  • Leaving Microsoft

    - by Stephen Walther
    After two and a half years working with the ASP.NET team, I’ve decided that this is the right time to leave Microsoft and, with the help of some friends, re-launch my ASP.NET training and consulting company. The company has the modest name Superexpert. While working on my Ph.D. at MIT, I was surrounded by professors and students who were passionate about knowledge. During the Internet boom, I was lucky enough to work side-by-side with some very smart and hard-working people to create several successful startups. However, the people I worked with at Microsoft were among the smartest and hardest working. Microsoft hires a small number of people and gives them huge responsibilities. It continues to amaze me that so few people work on the ASP.NET team when you consider how much the team produces. I had the opportunity to work with a number of inspiring people at Microsoft. I’ll miss working with Scott Hunter, Dave Reed, Boris Moore, Eilon Lipton, Scott Guthrie, James Senior, Jim Wang, Phil Haack, Damian Edwards, Vishal Joshi, Mike Pope, Jon Young, Dmitry Robsman, Simon Calvert, Stefan Schackow, and many others. I’m proud of what we accomplished while I was working at Microsoft. We reached out to the jQuery team and changed direction from Microsoft Ajax to jQuery. We successfully contributed several important new features to the open-source jQuery project including jQuery Templates, jQuery Data-Linking, jQuery Globalization, and (as John Resig announced at the last jQuery conference) jQuery Require. I’m looking forward to returning to training and consulting. We want to focus on providing consulting on the “right way” of building ASP.NET websites, which we call Modern ASP.NET applications. By Modern ASP.NET applications, I mean applications built with ASP.NET MVC, jQuery, HTML5, and Visual Studio ALM. Additionally, we want to help companies that have existing ASP.NET Web Forms applications migrate to ASP.NET MVC. If you are interested in having us provide training for your company or you need help building a custom ASP.NET application then please contact us at [email protected] or visit our website at Superexpert.com.

    Read the article

  • Security Issues with Single Page Apps

    - by Stephen.Walther
    Last week, I was asked to do a code review of a Single Page App built using the ASP.NET Web API, Durandal, and Knockout (good stuff!). In particular, I was asked to investigate whether there any special security issues associated with building a Single Page App which are not present in the case of a traditional server-side ASP.NET application. In this blog entry, I discuss two areas in which you need to exercise extra caution when building a Single Page App. I discuss how Single Page Apps are extra vulnerable to both Cross-Site Scripting (XSS) attacks and Cross-Site Request Forgery (CSRF) attacks. This goal of this blog post is NOT to persuade you to avoid writing Single Page Apps. I’m a big fan of Single Page Apps. Instead, the goal is to ensure that you are fully aware of some of the security issues related to Single Page Apps and ensure that you know how to guard against them. Cross-Site Scripting (XSS) Attacks According to WhiteHat Security, over 65% of public websites are open to XSS attacks. That’s bad. By taking advantage of XSS holes in a website, a hacker can steal your credit cards, passwords, or bank account information. Any website that redisplays untrusted information is open to XSS attacks. Let me give you a simple example. Imagine that you want to display the name of the current user on a page. To do this, you create the following server-side ASP.NET page located at http://MajorBank.com/SomePage.aspx: <%@Page Language="C#" %> <html> <head> <title>Some Page</title> </head> <body> Welcome <%= Request["username"] %> </body> </html> Nothing fancy here. Notice that the page displays the current username by using Request[“username”]. Using Request[“username”] displays the username regardless of whether the username is present in a cookie, a form field, or a query string variable. Unfortunately, by using Request[“username”] to redisplay untrusted information, you have now opened your website to XSS attacks. Here’s how. Imagine that an evil hacker creates the following link on another website (hackers.com): <a href="/SomePage.aspx?username=<script src=Evil.js></script>">Visit MajorBank</a> Notice that the link includes a query string variable named username and the value of the username variable is an HTML <SCRIPT> tag which points to a JavaScript file named Evil.js. When anyone clicks on the link, the <SCRIPT> tag will be injected into SomePage.aspx and the Evil.js script will be loaded and executed. What can a hacker do in the Evil.js script? Anything the hacker wants. For example, the hacker could display a popup dialog on the MajorBank.com site which asks the user to enter their password. The script could then post the password back to hackers.com and now the evil hacker has your secret password. ASP.NET Web Forms and ASP.NET MVC have two automatic safeguards against this type of attack: Request Validation and Automatic HTML Encoding. Protecting Coming In (Request Validation) In a server-side ASP.NET app, you are protected against the XSS attack described above by a feature named Request Validation. If you attempt to submit “potentially dangerous” content — such as a JavaScript <SCRIPT> tag — in a form field or query string variable then you get an exception. Unfortunately, Request Validation only applies to server-side apps. Request Validation does not help in the case of a Single Page App. In particular, the ASP.NET Web API does not pay attention to Request Validation. You can post any content you want – including <SCRIPT> tags – to an ASP.NET Web API action. For example, the following HTML page contains a form. When you submit the form, the form data is submitted to an ASP.NET Web API controller on the server using an Ajax request: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title></title> </head> <body> <form data-bind="submit:submit"> <div> <label> User Name: <input data-bind="value:user.userName" /> </label> </div> <div> <label> Email: <input data-bind="value:user.email" /> </label> </div> <div> <input type="submit" value="Submit" /> </div> </form> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { user: { userName: ko.observable(), email: ko.observable() }, submit: function () { $.post("/api/users", ko.toJS(this.user)); } }; ko.applyBindings(viewModel); </script> </body> </html> The form above is using Knockout to bind the form fields to a view model. When you submit the form, the view model is submitted to an ASP.NET Web API action on the server. Here’s the server-side ASP.NET Web API controller and model class: public class UsersController : ApiController { public HttpResponseMessage Post(UserViewModel user) { var userName = user.UserName; return Request.CreateResponse(HttpStatusCode.OK); } } public class UserViewModel { public string UserName { get; set; } public string Email { get; set; } } If you submit the HTML form, you don’t get an error. The “potentially dangerous” content is passed to the server without any exception being thrown. In the screenshot below, you can see that I was able to post a username form field with the value “<script>alert(‘boo’)</script”. So what this means is that you do not get automatic Request Validation in the case of a Single Page App. You need to be extra careful in a Single Page App about ensuring that you do not display untrusted content because you don’t have the Request Validation safety net which you have in a traditional server-side ASP.NET app. Protecting Going Out (Automatic HTML Encoding) Server-side ASP.NET also protects you from XSS attacks when you render content. By default, all content rendered by the razor view engine is HTML encoded. For example, the following razor view displays the text “<b>Hello!</b>” instead of the text “Hello!” in bold: @{ var message = "<b>Hello!</b>"; } @message   If you don’t want to render content as HTML encoded in razor then you need to take the extra step of using the @Html.Raw() helper. In a Web Form page, if you use <%: %> instead of <%= %> then you get automatic HTML Encoding: <%@ Page Language="C#" %> <% var message = "<b>Hello!</b>"; %> <%: message %> This automatic HTML Encoding will prevent many types of XSS attacks. It prevents <script> tags from being rendered and only allows &lt;script&gt; tags to be rendered which are useless for executing JavaScript. (This automatic HTML encoding does not protect you from all forms of XSS attacks. For example, you can assign the value “javascript:alert(‘evil’)” to the Hyperlink control’s NavigateUrl property and execute the JavaScript). The situation with Knockout is more complicated. If you use the Knockout TEXT binding then you get HTML encoded content. On the other hand, if you use the HTML binding then you do not: <!-- This JavaScript DOES NOT execute --> <div data-bind="text:someProp"></div> <!-- This Javacript DOES execute --> <div data-bind="html:someProp"></div> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { someProp : "<script>alert('Evil!')<" + "/script>" }; ko.applyBindings(viewModel); </script>   So, in the page above, the DIV element which uses the TEXT binding is safe from XSS attacks. According to the Knockout documentation: “Since this binding sets your text value using a text node, it’s safe to set any string value without risking HTML or script injection.” Just like server-side HTML encoding, Knockout does not protect you from all types of XSS attacks. For example, there is nothing in Knockout which prevents you from binding JavaScript to a hyperlink like this: <a data-bind="attr:{href:homePageUrl}">Go</a> <script src="Scripts/jquery-1.7.1.min.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { homePageUrl: "javascript:alert('evil!')" }; ko.applyBindings(viewModel); </script> In the page above, the value “javascript:alert(‘evil’)” is bound to the HREF attribute using Knockout. When you click the link, the JavaScript executes. Cross-Site Request Forgery (CSRF) Attacks Cross-Site Request Forgery (CSRF) attacks rely on the fact that a session cookie does not expire until you close your browser. In particular, if you visit and login to MajorBank.com and then you navigate to Hackers.com then you will still be authenticated against MajorBank.com even after you navigate to Hackers.com. Because MajorBank.com cannot tell whether a request is coming from MajorBank.com or Hackers.com, Hackers.com can submit requests to MajorBank.com pretending to be you. For example, Hackers.com can post an HTML form from Hackers.com to MajorBank.com and change your email address at MajorBank.com. Hackers.com can post a form to MajorBank.com using your authentication cookie. After your email address has been changed, by using a password reset page at MajorBank.com, a hacker can access your bank account. To prevent CSRF attacks, you need some mechanism for detecting whether a request is coming from a page loaded from your website or whether the request is coming from some other website. The recommended way of preventing Cross-Site Request Forgery attacks is to use the “Synchronizer Token Pattern” as described here: https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet When using the Synchronizer Token Pattern, you include a hidden input field which contains a random token whenever you display an HTML form. When the user opens the form, you add a cookie to the user’s browser with the same random token. When the user posts the form, you verify that the hidden form token and the cookie token match. Preventing Cross-Site Request Forgery Attacks with ASP.NET MVC ASP.NET gives you a helper and an action filter which you can use to thwart Cross-Site Request Forgery attacks. For example, the following razor form for creating a product shows how you use the @Html.AntiForgeryToken() helper: @model MvcApplication2.Models.Product <h2>Create Product</h2> @using (Html.BeginForm()) { @Html.AntiForgeryToken(); <div> @Html.LabelFor( p => p.Name, "Product Name:") @Html.TextBoxFor( p => p.Name) </div> <div> @Html.LabelFor( p => p.Price, "Product Price:") @Html.TextBoxFor( p => p.Price) </div> <input type="submit" /> } The @Html.AntiForgeryToken() helper generates a random token and assigns a serialized version of the same random token to both a cookie and a hidden form field. (Actually, if you dive into the source code, the AntiForgeryToken() does something a little more complex because it takes advantage of a user’s identity when generating the token). Here’s what the hidden form field looks like: <input name=”__RequestVerificationToken” type=”hidden” value=”NqqZGAmlDHh6fPTNR_mti3nYGUDgpIkCiJHnEEL59S7FNToyyeSo7v4AfzF2i67Cv0qTB1TgmZcqiVtgdkW2NnXgEcBc-iBts0x6WAIShtM1″ /> And here’s what the cookie looks like using the Google Chrome developer toolbar: You use the [ValidateAntiForgeryToken] action filter on the controller action which is the recipient of the form post to validate that the token in the hidden form field matches the token in the cookie. If the tokens don’t match then validation fails and you can’t post the form: public ActionResult Create() { return View(); } [ValidateAntiForgeryToken] [HttpPost] public ActionResult Create(Product productToCreate) { if (ModelState.IsValid) { // save product to db return RedirectToAction("Index"); } return View(); } How does this all work? Let’s imagine that a hacker has copied the Create Product page from MajorBank.com to Hackers.com – the hacker grabs the HTML source and places it at Hackers.com. Now, imagine that the hacker trick you into submitting the Create Product form from Hackers.com to MajorBank.com. You’ll get the following exception: The Cross-Site Request Forgery attack is blocked because the anti-forgery token included in the Create Product form at Hackers.com won’t match the anti-forgery token stored in the cookie in your browser. The tokens were generated at different times for different users so the attack fails. Preventing Cross-Site Request Forgery Attacks with a Single Page App In a Single Page App, you can’t prevent Cross-Site Request Forgery attacks using the same method as a server-side ASP.NET MVC app. In a Single Page App, HTML forms are not generated on the server. Instead, in a Single Page App, forms are loaded dynamically in the browser. Phil Haack has a blog post on this topic where he discusses passing the anti-forgery token in an Ajax header instead of a hidden form field. He also describes how you can create a custom anti-forgery token attribute to compare the token in the Ajax header and the token in the cookie. See: http://haacked.com/archive/2011/10/10/preventing-csrf-with-ajax.aspx Also, take a look at Johan’s update to Phil Haack’s original post: http://johan.driessen.se/posts/Updated-Anti-XSRF-Validation-for-ASP.NET-MVC-4-RC (Other server frameworks such as Rails and Django do something similar. For example, Rails uses an X-CSRF-Token to prevent CSRF attacks which you generate on the server – see http://excid3.com/blog/rails-tip-2-include-csrf-token-with-every-ajax-request/#.UTFtgDDkvL8 ). For example, if you are creating a Durandal app, then you can use the following razor view for your one and only server-side page: @{ Layout = null; } <!DOCTYPE html> <html> <head> <title>Index</title> </head> <body> @Html.AntiForgeryToken() <div id="applicationHost"> Loading app.... </div> @Scripts.Render("~/scripts/vendor") <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> </body> </html> Notice that this page includes a call to @Html.AntiForgeryToken() to generate the anti-forgery token. Then, whenever you make an Ajax request in the Durandal app, you can retrieve the anti-forgery token from the razor view and pass the token as a header: var csrfToken = $("input[name='__RequestVerificationToken']").val(); $.ajax({ headers: { __RequestVerificationToken: csrfToken }, type: "POST", dataType: "json", contentType: 'application/json; charset=utf-8', url: "/api/products", data: JSON.stringify({ name: "Milk", price: 2.33 }), statusCode: { 200: function () { alert("Success!"); } } }); Use the following code to create an action filter which you can use to match the header and cookie tokens: using System.Linq; using System.Net.Http; using System.Web.Helpers; using System.Web.Http.Controllers; namespace MvcApplication2.Infrastructure { public class ValidateAjaxAntiForgeryToken : System.Web.Http.AuthorizeAttribute { protected override bool IsAuthorized(HttpActionContext actionContext) { var headerToken = actionContext .Request .Headers .GetValues("__RequestVerificationToken") .FirstOrDefault(); ; var cookieToken = actionContext .Request .Headers .GetCookies() .Select(c => c[AntiForgeryConfig.CookieName]) .FirstOrDefault(); // check for missing cookie or header if (cookieToken == null || headerToken == null) { return false; } // ensure that the cookie matches the header try { AntiForgery.Validate(cookieToken.Value, headerToken); } catch { return false; } return base.IsAuthorized(actionContext); } } } Notice that the action filter derives from the base AuthorizeAttribute. The ValidateAjaxAntiForgeryToken only works when the user is authenticated and it will not work for anonymous requests. Add the action filter to your ASP.NET Web API controller actions like this: [ValidateAjaxAntiForgeryToken] public HttpResponseMessage PostProduct(Product productToCreate) { // add product to db return Request.CreateResponse(HttpStatusCode.OK); } After you complete these steps, it won’t be possible for a hacker to pretend to be you at Hackers.com and submit a form to MajorBank.com. The header token used in the Ajax request won’t travel to Hackers.com. This approach works, but I am not entirely happy with it. The one thing that I don’t like about this approach is that it creates a hard dependency on using razor. Your single page in your Single Page App must be generated from a server-side razor view. A better solution would be to generate the anti-forgery token in JavaScript. Unfortunately, until all browsers support a way to generate cryptographically strong random numbers – for example, by supporting the window.crypto.getRandomValues() method — there is no good way to generate anti-forgery tokens in JavaScript. So, at least right now, the best solution for generating the tokens is the server-side solution with the (regrettable) dependency on razor. Conclusion The goal of this blog entry was to explore some ways in which you need to handle security differently in the case of a Single Page App than in the case of a traditional server app. In particular, I focused on how to prevent Cross-Site Scripting and Cross-Site Request Forgery attacks in the case of a Single Page App. I want to emphasize that I am not suggesting that Single Page Apps are inherently less secure than server-side apps. Whatever type of web application you build – regardless of whether it is a Single Page App, an ASP.NET MVC app, an ASP.NET Web Forms app, or a Rails app – you must constantly guard against security vulnerabilities.

    Read the article

  • HTML5 Form Validation

    - by Stephen.Walther
    The latest versions of Google Chrome (16+), Mozilla Firefox (8+), and Internet Explorer (10+) all support HTML5 client-side validation. It is time to take HTML5 validation seriously. The purpose of the blog post is to describe how you can take advantage of HTML5 client-side validation regardless of the type of application that you are building. You learn how to use the HTML5 validation attributes, how to perform custom validation using the JavaScript validation constraint API, and how to simulate HTML5 validation on older browsers by taking advantage of a jQuery plugin. Finally, we discuss the security issues related to using client-side validation. Using Client-Side Validation Attributes The HTML5 specification discusses several attributes which you can use with INPUT elements to perform client-side validation including the required, pattern, min, max, step, and maxlength attributes. For example, you use the required attribute to require a user to enter a value for an INPUT element. The following form demonstrates how you can make the firstName and lastName form fields required: <!DOCTYPE html> <html > <head> <title>Required Demo</title> </head> <body> <form> <label> First Name: <input required title="First Name is Required!" /> </label> <label> Last Name: <input required title="Last Name is Required!" /> </label> <button>Register</button> </form> </body> </html> If you attempt to submit this form without entering a value for firstName or lastName then you get the validation error message: Notice that the value of the title attribute is used to display the validation error message “First Name is Required!”. The title attribute does not work this way with the current version of Firefox. If you want to display a custom validation error message with Firefox then you need to include an x-moz-errormessage attribute like this: <input required title="First Name is Required!" x-moz-errormessage="First Name is Required!" /> The pattern attribute enables you to validate the value of an INPUT element against a regular expression. For example, the following form includes a social security number field which includes a pattern attribute: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Pattern</title> </head> <body> <form> <label> Social Security Number: <input required pattern="^\d{3}-\d{2}-\d{4}$" title="###-##-####" /> </label> <button>Register</button> </form> </body> </html> The regular expression in the form above requires the social security number to match the pattern ###-##-####: Notice that the input field includes both a pattern and a required validation attribute. If you don’t enter a value then the regular expression is never triggered. You need to include the required attribute to force a user to enter a value and cause the value to be validated against the regular expression. Custom Validation You can take advantage of the HTML5 constraint validation API to perform custom validation. You can perform any custom validation that you need. The only requirement is that you write a JavaScript function. For example, when booking a hotel room, you might want to validate that the Arrival Date is in the future instead of the past: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Constraint Validation API</title> </head> <body> <form> <label> Arrival Date: <input id="arrivalDate" type="date" required /> </label> <button>Submit Reservation</button> </form> <script type="text/javascript"> var arrivalDate = document.getElementById("arrivalDate"); arrivalDate.addEventListener("input", function() { var value = new Date(arrivalDate.value); if (value < new Date()) { arrivalDate.setCustomValidity("Arrival date must be after now!"); } else { arrivalDate.setCustomValidity(""); } }); </script> </body> </html> The form above contains an input field named arrivalDate. Entering a value into the arrivalDate field triggers the input event. The JavaScript code adds an event listener for the input event and checks whether the date entered is greater than the current date. If validation fails then the validation error message “Arrival date must be after now!” is assigned to the arrivalDate input field by calling the setCustomValidity() method of the validation constraint API. Otherwise, the validation error message is cleared by calling setCustomValidity() with an empty string. HTML5 Validation and Older Browsers But what about older browsers? For example, what about Apple Safari and versions of Microsoft Internet Explorer older than Internet Explorer 10? What the world really needs is a jQuery plugin which provides backwards compatibility for the HTML5 validation attributes. If a browser supports the HTML5 validation attributes then the plugin would do nothing. Otherwise, the plugin would add support for the attributes. Unfortunately, as far as I know, this plugin does not exist. I have not been able to find any plugin which supports both the required and pattern attributes for older browsers, but does not get in the way of these attributes in the case of newer browsers. There are several jQuery plugins which provide partial support for the HTML5 validation attributes including: · jQuery Validation — http://docs.jquery.com/Plugins/Validation · html5Form — http://www.matiasmancini.com.ar/jquery-plugin-ajax-form-validation-html5.html · h5Validate — http://ericleads.com/h5validate/ The jQuery Validation plugin – the most popular JavaScript validation library – supports the HTML5 required attribute, but it does not support the HTML5 pattern attribute. Likewise, the html5Form plugin does not support the pattern attribute. The h5Validate plugin provides the best support for the HTML5 validation attributes. The following page illustrates how this plugin supports both the required and pattern attributes: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>h5Validate</title> <style type="text/css"> .validationError { border: solid 2px red; } .validationValid { border: solid 2px green; } </style> </head> <body> <form id="customerForm"> <label> First Name: <input id="firstName" required /> </label> <label> Social Security Number: <input id="ssn" required pattern="^\d{3}-\d{2}-\d{4}$" title="Expected pattern is ###-##-####" /> </label> <input type="submit" /> </form> <script type="text/javascript" src="Scripts/jquery-1.4.4.min.js"></script> <script type="text/javascript" src="Scripts/jquery.h5validate.js"></script> <script type="text/javascript"> // Enable h5Validate plugin $("#customerForm").h5Validate({ errorClass: "validationError", validClass: "validationValid" }); // Prevent form submission when errors $("#customerForm").submit(function (evt) { if ($("#customerForm").h5Validate("allValid") === false) { evt.preventDefault(); } }); </script> </body> </html> When an input field fails validation, the validationError CSS class is applied to the field and the field appears with a red border. When an input field passes validation, the validationValid CSS class is applied to the field and the field appears with a green border. From the perspective of HTML5 validation, the h5Validate plugin is the best of the plugins. It adds support for the required and pattern attributes to browsers which do not natively support these attributes such as IE9. However, this plugin does not include everything in my wish list for a perfect HTML5 validation plugin. Here’s my wish list for the perfect back compat HTML5 validation plugin: 1. The plugin would disable itself when used with a browser which natively supports HTML5 validation attributes. The plugin should not be too greedy – it should not handle validation when a browser could do the work itself. 2. The plugin should simulate the same user interface for displaying validation error messages as the user interface displayed by browsers which natively support HTML5 validation. Chrome, Firefox, and Internet Explorer all display validation errors in a popup. The perfect plugin would also display a popup. 3. Finally, the plugin would add support for the setCustomValidity() method and the other methods of the HTML5 validation constraint API. That way, you could implement custom validation in a standards compatible way and you would know that it worked across all browsers both old and new. Security It would be irresponsible of me to end this blog post without mentioning the issue of security. It is important to remember that any client-side validation — including HTML5 validation — can be bypassed. You should use client-side validation with the intention to create a better user experience. Client validation is great for providing a user with immediate feedback when the user is in the process of completing a form. However, client-side validation cannot prevent an evil hacker from submitting unexpected form data to your web server. You should always enforce your validation rules on the server. The only way to ensure that a required field has a value is to verify that the required field has a value on the server. The HTML5 required attribute does not guarantee anything. Summary The goal of this blog post was to describe the support for validation contained in the HTML5 standard. You learned how to use both the required and the pattern attributes in an HTML5 form. We also discussed how you can implement custom validation by taking advantage of the setCustomValidity() method. Finally, I discussed the available jQuery plugins for adding support for the HTM5 validation attributes to older browsers. Unfortunately, I am unaware of any jQuery plugin which provides a perfect solution to the problem of backwards compatibility.

    Read the article

  • Metro: Introduction to the WinJS ListView Control

    - by Stephen.Walther
    The goal of this blog entry is to provide a quick introduction to the ListView control – just the bare minimum that you need to know to start using the control. When building Metro style applications using JavaScript, the ListView control is the primary control that you use for displaying lists of items. For example, if you are building a product catalog app, then you can use the ListView control to display the list of products. The ListView control supports several advanced features that I plan to discuss in future blog entries. For example, you can group the items in a ListView, you can create master/details views with a ListView, and you can efficiently work with large sets of items with a ListView. In this blog entry, we’ll keep things simple and focus on displaying a list of products. There are three things that you need to do in order to display a list of items with a ListView: Create a data source Create an Item Template Declare the ListView Creating the ListView Data Source The first step is to create (or retrieve) the data that you want to display with the ListView. In most scenarios, you will want to bind a ListView to a WinJS.Binding.List object. The nice thing about the WinJS.Binding.List object is that it enables you to take a standard JavaScript array and convert the array into something that can be bound to the ListView. It doesn’t matter where the JavaScript array comes from. It could be a static array that you declare or you could retrieve the array as the result of an Ajax call to a remote server. The following JavaScript file – named products.js – contains a list of products which can be bound to a ListView. (function () { "use strict"; var products = new WinJS.Binding.List([ { name: "Milk", price: 2.44 }, { name: "Oranges", price: 1.99 }, { name: "Wine", price: 8.55 }, { name: "Apples", price: 2.44 }, { name: "Steak", price: 1.99 }, { name: "Eggs", price: 2.44 }, { name: "Mushrooms", price: 1.99 }, { name: "Yogurt", price: 2.44 }, { name: "Soup", price: 1.99 }, { name: "Cereal", price: 2.44 }, { name: "Pepsi", price: 1.99 } ]); WinJS.Namespace.define("ListViewDemos", { products: products }); })(); The products variable represents a WinJS.Binding.List object. This object is initialized with a plain-old JavaScript array which represents an array of products. To avoid polluting the global namespace, the code above uses the module pattern and exposes the products using a namespace. The list of products is exposed to the world as ListViewDemos.products. To learn more about the module pattern and namespaces in WinJS, see my earlier blog entry: http://stephenwalther.com/blog/archive/2012/02/22/metro-namespaces-and-modules.aspx Creating the ListView Item Template The ListView control does not know how to render anything. It doesn’t know how you want each list item to appear. To get the ListView control to render something useful, you must create an Item Template. Here’s what our template for rendering an individual product looks like: <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> This template displays the product name and price from the data source. Normally, you will declare your template in the same file as you declare the ListView control. In our case, both the template and ListView are declared in the default.html file. To learn more about templates, see my earlier blog entry: http://stephenwalther.com/blog/archive/2012/02/27/metro-using-templates.aspx Declaring the ListView The final step is to declare the ListView control in a page. Here’s the markup for declaring a ListView: <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate') }"> </div> You declare a ListView by adding the data-win-control to an HTML DIV tag. The data-win-options attribute is used to set two properties of the ListView. The ListView is associated with its data source with the itemDataSource property. Notice that the data source is ListViewDemos.products.dataSource and not just ListViewDemos.products. You need to associate the ListView with the dataSoure property. The ListView is associated with its item template with the help of the itemTemplate property. The ID of the item template — #productTemplate – is used to select the template from the page. Here’s what the complete version of the default.html page looks like: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewDemos</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewDemos references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script src="/js/products.js" type="text/javascript"></script> <style type="text/css"> .product { width: 200px; height: 100px; border: white solid 1px; } </style> </head> <body> <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate') }"> </div> </body> </html> Notice that the page above includes a reference to the products.js file: <script src=”/js/products.js” type=”text/javascript”></script> The page above also contains a Template control which contains the ListView item template. Finally, the page includes the declaration of the ListView control. Summary The goal of this blog entry was to describe the minimal set of steps which you must complete to use the WinJS ListView control to display a simple list of items. You learned how to create a data source, declare an item template, and declare a ListView control.

    Read the article

  • Metro Walkthrough: Creating a Task List with a ListView and IndexedDB

    - by Stephen.Walther
    The goal of this blog entry is to describe how you can work with data in a Metro style application written with JavaScript. In particular, we create a super simple Task List application which enables you to create and delete tasks. Here’s a video which demonstrates how the Task List application works: In order to build this application, I had to take advantage of several features of the WinJS library and technologies including: IndexedDB – The Task List application stores data in an IndexedDB database. HTML5 Form Validation – The Task List application uses HTML5 validation to ensure that a required field has a value. ListView Control – The Task List application displays the tasks retrieved from the IndexedDB database in a WinJS ListView control. Creating the IndexedDB Database The Task List application stores all of its data in an IndexedDB database named TasksDB. This database is opened/created with the following code: var db; var req = window.msIndexedDB.open("TasksDB", 1); req.onerror = function () { console.log("Could not open database"); }; req.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement:true }); }; The msIndexedDB.open() method accepts two parameters: the name of the database to open and the version of the database to open. If a database with a matching version already exists, then calling the msIndexedDB.open() method opens a connection to the existing database. If the database does not exist then the upgradeneeded event is raised. You handle the upgradeneeded event to create a new database. In the code above, the upgradeneeded event handler creates an object store named “tasks” (An object store roughly corresponds to a database table). When you add items to the tasks object store then each item gets an id property with an auto-incremented value automatically. The code above also includes an error event handler. If the IndexedDB database cannot be opened or created, for whatever reason, then an error message is written to the Visual Studio JavaScript Console window. Displaying a List of Tasks The TaskList application retrieves its list of tasks from the tasks object store, which we created above, and displays the list of tasks in a ListView control. Here is how the ListView control is declared: <div id="tasksListView" data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource: TaskList.tasks.dataSource, itemTemplate: select('#taskTemplate'), tapBehavior: 'toggleSelect', selectionMode: 'multi', layout: { type: WinJS.UI.ListLayout } }"> </div> The ListView control is bound to the TaskList.tasks.dataSource data source. The TaskList.tasks.dataSource is created with the following code: // Create the data source var tasks = new WinJS.Binding.List(); // Open the database var db; var req = window.msIndexedDB.open("TasksDB", 1); req.onerror = function () { console.log("Could not open database"); }; req.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement:true }); }; // Load the data source with data from the database req.onsuccess = function () { db = req.result; var tran = db.transaction("tasks"); tran.objectStore("tasks").openCursor().onsuccess = function(event) { var cursor = event.target.result; tasks.dataSource.beginEdits(); if (cursor) { tasks.dataSource.insertAtEnd(null, cursor.value); cursor.continue(); } else { tasks.dataSource.endEdits(); }; }; }; // Expose the data source and functions WinJS.Namespace.define("TaskList", { tasks: tasks }); Notice the success event handler. This handler is called when a database is successfully opened/created. In the code above, all of the items from the tasks object store are retrieved into a cursor and added to a WinJS.Binding.List object named tasks. Because the ListView control is bound to the WinJS.Binding.List object, copying the tasks from the object store into the WinJS.Binding.List object causes the tasks to appear in the ListView: Adding a New Task You add a new task in the Task List application by entering the title of a new task into an HTML form and clicking the Add button. Here’s the markup for creating the form: <form id="addTaskForm"> <input id="newTaskTitle" title="New Task" required /> <button>Add</button> </form> Notice that the INPUT element includes a required attribute. In a Metro application, you can take advantage of HTML5 Validation to validate form fields. If you don’t enter a value for the newTaskTitle field then the following validation error message is displayed: For a brief introduction to HTML5 validation, see my previous blog entry: http://stephenwalther.com/blog/archive/2012/03/13/html5-form-validation.aspx When you click the Add button, the form is submitted and the form submit event is raised. The following code is executed in the default.js file: // Handle Add Task document.getElementById("addTaskForm").addEventListener("submit", function (evt) { evt.preventDefault(); var newTaskTitle = document.getElementById("newTaskTitle"); TaskList.addTask({ title: newTaskTitle.value }); newTaskTitle.value = ""; }); The code above retrieves the title of the new task and calls the addTask() method in the tasks.js file. Here’s the code for the addTask() method which is responsible for actually adding the new task to the IndexedDB database: // Add a new task function addTask(taskToAdd) { var transaction = db.transaction("tasks", IDBTransaction.READ_WRITE); var addRequest = transaction.objectStore("tasks").add(taskToAdd); addRequest.onsuccess = function (evt) { taskToAdd.id = evt.target.result; tasks.dataSource.insertAtEnd(null, taskToAdd); } } The code above does two things. First, it adds the new task to the tasks object store in the IndexedDB database. Second, it adds the new task to the data source bound to the ListView. The dataSource.insertAtEnd() method is called to add the new task to the data source so the new task will appear in the ListView (with a nice little animation). Deleting Existing Tasks The Task List application enables you to select one or more tasks by clicking or tapping on one or more tasks in the ListView. When you click the Delete button, the selected tasks are removed from both the IndexedDB database and the ListView. For example, in the following screenshot, two tasks are selected. The selected tasks appear with a teal background and a checkmark: When you click the Delete button, the following code in the default.js file is executed: // Handle Delete Tasks document.getElementById("btnDeleteTasks").addEventListener("click", function (evt) { tasksListView.winControl.selection.getItems().then(function(items) { items.forEach(function (item) { TaskList.deleteTask(item); }); }); }); The selected tasks are retrieved with the TaskList selection.getItem() method. In the code above, the deleteTask() method is called for each of the selected tasks. Here’s the code for the deleteTask() method: // Delete an existing task function deleteTask(listViewItem) { // Database key != ListView key var dbKey = listViewItem.data.id; var listViewKey = listViewItem.key; // Remove item from db and, if success, remove item from ListView var transaction = db.transaction("tasks", IDBTransaction.READ_WRITE); var deleteRequest = transaction.objectStore("tasks").delete(dbKey); deleteRequest.onsuccess = function () { tasks.dataSource.remove(listViewKey); } } This code does two things: it deletes the existing task from the database and removes the existing task from the ListView. In both cases, the right task is removed by using the key associated with the task. However, the task key is different in the case of the database and in the case of the ListView. In the case of the database, the task key is the value of the task id property. In the case of the ListView, on the other hand, the task key is auto-generated by the ListView. When the task is removed from the ListView, an animation is used to collapse the tasks which appear above and below the task which was removed. The Complete Code Above, I did a lot of jumping around between different files in the application and I left out sections of code. For the sake of completeness, I want to include the entire code here: the default.html, default.js, and tasks.js files. Here are the contents of the default.html file. This file contains the UI for the Task List application: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Task List</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- TaskList references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script type="text/javascript" src="js/tasks.js"></script> <style type="text/css"> body { font-size: x-large; } form { display: inline; } #appContainer { margin: 20px; width: 600px; } .win-container { padding: 10px; } </style> </head> <body> <div> <!-- Templates --> <div id="taskTemplate" data-win-control="WinJS.Binding.Template"> <div> <span data-win-bind="innerText:title"></span> </div> </div> <h1>Super Task List</h1> <div id="appContainer"> <form id="addTaskForm"> <input id="newTaskTitle" title="New Task" required /> <button>Add</button> </form> <button id="btnDeleteTasks">Delete</button> <div id="tasksListView" data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource: TaskList.tasks.dataSource, itemTemplate: select('#taskTemplate'), tapBehavior: 'toggleSelect', selectionMode: 'multi', layout: { type: WinJS.UI.ListLayout } }"> </div> </div> </div> </body> </html> Here is the code for the default.js file. This code wires up the Add Task form and Delete button: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { WinJS.UI.processAll().then(function () { // Get reference to Tasks ListView var tasksListView = document.getElementById("tasksListView"); // Handle Add Task document.getElementById("addTaskForm").addEventListener("submit", function (evt) { evt.preventDefault(); var newTaskTitle = document.getElementById("newTaskTitle"); TaskList.addTask({ title: newTaskTitle.value }); newTaskTitle.value = ""; }); // Handle Delete Tasks document.getElementById("btnDeleteTasks").addEventListener("click", function (evt) { tasksListView.winControl.selection.getItems().then(function(items) { items.forEach(function (item) { TaskList.deleteTask(item); }); }); }); }); } }; app.start(); })(); Finally, here is the tasks.js file. This file contains all of the code for opening, creating, and interacting with IndexedDB: (function () { "use strict"; // Create the data source var tasks = new WinJS.Binding.List(); // Open the database var db; var req = window.msIndexedDB.open("TasksDB", 1); req.onerror = function () { console.log("Could not open database"); }; req.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement:true }); }; // Load the data source with data from the database req.onsuccess = function () { db = req.result; var tran = db.transaction("tasks"); tran.objectStore("tasks").openCursor().onsuccess = function(event) { var cursor = event.target.result; tasks.dataSource.beginEdits(); if (cursor) { tasks.dataSource.insertAtEnd(null, cursor.value); cursor.continue(); } else { tasks.dataSource.endEdits(); }; }; }; // Add a new task function addTask(taskToAdd) { var transaction = db.transaction("tasks", IDBTransaction.READ_WRITE); var addRequest = transaction.objectStore("tasks").add(taskToAdd); addRequest.onsuccess = function (evt) { taskToAdd.id = evt.target.result; tasks.dataSource.insertAtEnd(null, taskToAdd); } } // Delete an existing task function deleteTask(listViewItem) { // Database key != ListView key var dbKey = listViewItem.data.id; var listViewKey = listViewItem.key; // Remove item from db and, if success, remove item from ListView var transaction = db.transaction("tasks", IDBTransaction.READ_WRITE); var deleteRequest = transaction.objectStore("tasks").delete(dbKey); deleteRequest.onsuccess = function () { tasks.dataSource.remove(listViewKey); } } // Expose the data source and functions WinJS.Namespace.define("TaskList", { tasks: tasks, addTask: addTask, deleteTask: deleteTask }); })(); Summary I wrote this blog entry because I wanted to create a walkthrough of building a simple database-driven application. In particular, I wanted to demonstrate how you can use a ListView control with an IndexedDB database to store and retrieve database data.

    Read the article

  • June 2013 Release of the Ajax Control Toolkit

    - by Stephen.Walther
    I’m happy to announce the June 2013 release of the Ajax Control Toolkit. For this release, we enhanced the AjaxFileUpload control to support uploading files directly to Windows Azure. We also improved the SlideShow control by adding support for CSS3 animations. You can get the latest release of the Ajax Control Toolkit by visiting the project page at CodePlex (http://AjaxControlToolkit.CodePlex.com). Alternatively, you can execute the following NuGet command from the Visual Studio Library Package Manager window: Uploading Files to Azure The AjaxFileUpload control enables you to efficiently upload large files and display progress while uploading. With this release, we’ve added support for uploading large files directly to Windows Azure Blob Storage (You can continue to upload to your server hard drive if you prefer). Imagine, for example, that you have created an Azure Blob Storage container named pictures. In that case, you can use the following AjaxFileUpload control to upload to the container: <toolkit:ToolkitScriptManager runat="server" /> <toolkit:AjaxFileUpload ID="AjaxFileUpload1" StoreToAzure="true" AzureContainerName="pictures" runat="server" /> Notice that the AjaxFileUpload control is declared with two properties related to Azure. The StoreToAzure property causes the AjaxFileUpload control to upload a file to Azure instead of the local computer. The AzureContainerName property points to the blob container where the file is uploaded. .int3{position:absolute;clip:rect(487px,auto,auto,444px);}SMALL cash advance VERY CHEAP To use the AjaxFileUpload control, you need to modify your web.config file so it contains some additional settings. You need to configure the AjaxFileUpload handler and you need to point your Windows Azure connection string to your Blob Storage account. <configuration> <appSettings> <!--<add key="AjaxFileUploadAzureConnectionString" value="UseDevelopmentStorage=true"/>--> <add key="AjaxFileUploadAzureConnectionString" value="DefaultEndpointsProtocol=https;AccountName=testact;AccountKey=RvqL89Iw4npvPlAAtpOIPzrinHkhkb6rtRZmD0+ojZupUWuuAVJRyyF/LIVzzkoN38I4LSr8qvvl68sZtA152A=="/> </appSettings> <system.web> <compilation debug="true" targetFramework="4.5" /> <httpRuntime targetFramework="4.5" /> <httpHandlers> <add verb="*" path="AjaxFileUploadHandler.axd" type="AjaxControlToolkit.AjaxFileUploadHandler, AjaxControlToolkit"/> </httpHandlers> </system.web> <system.webServer> <validation validateIntegratedModeConfiguration="false" /> <handlers> <add name="AjaxFileUploadHandler" verb="*" path="AjaxFileUploadHandler.axd" type="AjaxControlToolkit.AjaxFileUploadHandler, AjaxControlToolkit"/> </handlers> <security> <requestFiltering> <requestLimits maxAllowedContentLength="4294967295"/> </requestFiltering> </security> </system.webServer> </configuration> You supply the connection string for your Azure Blob Storage account with the AjaxFileUploadAzureConnectionString property. If you set the value “UseDevelopmentStorage=true” then the AjaxFileUpload will upload to the simulated Blob Storage on your local machine. After you create the necessary configuration settings, you can use the AjaxFileUpload control to upload files directly to Azure (even very large files). Here’s a screen capture of how the AjaxFileUpload control appears in Google Chrome: After the files are uploaded, you can view the uploaded files in the Windows Azure Portal. You can see that all 5 files were uploaded successfully: New AjaxFileUpload Events In response to user feedback, we added two new events to the AjaxFileUpload control (on both the server and the client): · UploadStart – Raised on the server before any files have been uploaded. · UploadCompleteAll – Raised on the server when all files have been uploaded. · OnClientUploadStart – The name of a function on the client which is called before any files have been uploaded. · OnClientUploadCompleteAll – The name of a function on the client which is called after all files have been uploaded. These new events are most useful when uploading multiple files at a time. The updated AjaxFileUpload sample page demonstrates how to use these events to show the total amount of time required to upload multiple files (see the AjaxFileUpload.aspx file in the Ajax Control Toolkit sample site). SlideShow Animated Slide Transitions With this release of the Ajax Control Toolkit, we also added support for CSS3 animations to the SlideShow control. The animation is used when transitioning from one slide to another. Here’s the complete list of animations: · FadeInFadeOut · ScaleX · ScaleY · ZoomInOut · Rotate · SlideLeft · SlideDown You specify the animation which you want to use by setting the SlideShowAnimationType property. For example, here is how you would use the Rotate animation when displaying a set of slides: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSlideShow.aspx.cs" Inherits="TestACTJune2013.ShowSlideShow" %> <%@ Register TagPrefix="toolkit" Namespace="AjaxControlToolkit" Assembly="AjaxControlToolkit" %> <script runat="Server" type="text/C#"> [System.Web.Services.WebMethod] [System.Web.Script.Services.ScriptMethod] public static AjaxControlToolkit.Slide[] GetSlides() { return new AjaxControlToolkit.Slide[] { new AjaxControlToolkit.Slide("slides/Blue hills.jpg", "Blue Hills", "Go Blue"), new AjaxControlToolkit.Slide("slides/Sunset.jpg", "Sunset", "Setting sun"), new AjaxControlToolkit.Slide("slides/Winter.jpg", "Winter", "Wintery..."), new AjaxControlToolkit.Slide("slides/Water lilies.jpg", "Water lillies", "Lillies in the water"), new AjaxControlToolkit.Slide("slides/VerticalPicture.jpg", "Sedona", "Portrait style picture") }; } </script> <!DOCTYPE html> <html > <head runat="server"> <title></title> </head> <body> <form id="form1" runat="server"> <div> <toolkit:ToolkitScriptManager ID="ToolkitScriptManager1" runat="server" /> <asp:Image ID="Image1" Height="300" Runat="server" /> <toolkit:SlideShowExtender ID="SlideShowExtender1" TargetControlID="Image1" SlideShowServiceMethod="GetSlides" AutoPlay="true" Loop="true" SlideShowAnimationType="Rotate" runat="server" /> </div> </form> </body> </html> In the code above, the set of slides is exposed by a page method named GetSlides(). The SlideShowAnimationType property is set to the value Rotate. The following animated GIF gives you an idea of the resulting slideshow: If you want to use either the SlideDown or SlideRight animations, then you must supply both an explicit width and height for the Image control which is the target of the SlideShow extender. For example, here is how you would declare an Image and SlideShow control to use a SlideRight animation: <toolkit:ToolkitScriptManager ID="ToolkitScriptManager1" runat="server" /> <asp:Image ID="Image1" Height="300" Width="300" Runat="server" /> <toolkit:SlideShowExtender ID="SlideShowExtender1" TargetControlID="Image1" SlideShowServiceMethod="GetSlides" AutoPlay="true" Loop="true" SlideShowAnimationType="SlideRight" runat="server" /> Notice that the Image control includes both a Height and Width property. Here’s an approximation of this animation using an animated GIF: Summary The Superexpert team worked hard on this release. We hope you like the new improvements to both the AjaxFileUpload and the SlideShow controls. We’d love to hear your feedback in the comments. On to the next sprint!

    Read the article

  • Metro: Creating a Master/Detail View with a WinJS ListView Control

    - by Stephen.Walther
    The goal of this blog entry is to explain how you can create a simple master/detail view by using the WinJS ListView and Template controls. In particular, I explain how you can use a ListView control to display a list of movies and how you can use a Template control to display the details of the selected movie. Creating a master/detail view requires completing the following four steps: Create the data source – The data source contains the list of movies. Declare the ListView control – The ListView control displays the entire list of movies. It is the master part of the master/detail view. Declare the Details Template control – The Details Template control displays the details for the selected movie. It is the details part of the master/detail view. Handle the selectionchanged event – You handle the selectionchanged event to display the details for a movie when a new movie is selected. Creating the Data Source There is nothing special about our data source. We initialize a WinJS.Binding.List object to represent a list of movies: (function () { "use strict"; var movies = new WinJS.Binding.List([ { title: "Star Wars", director: "Lucas"}, { title: "Shrek", director: "Adamson" }, { title: "Star Trek", director: "Abrams" }, { title: "Spiderman", director: "Raimi" }, { title: "Memento", director: "Nolan" }, { title: "Minority Report", director: "Spielberg" } ]); // Expose the data source WinJS.Namespace.define("ListViewDemos", { movies: movies }); })(); The data source is exposed to the rest of our application with the name ListViewDemos.movies. Declaring the ListView Control The ListView control is declared with the following markup: <div id="movieList" data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource: ListViewDemos.movies.dataSource, itemTemplate: select('#masterItemTemplate'), tapBehavior: 'directSelect', selectionMode: 'single', layout: { type: WinJS.UI.ListLayout } }"> </div> The data-win-options attribute is used to set the following properties of the ListView control: itemDataSource – The ListView is bound to the list of movies which we created in the previous section. Notice that the ListView is bound to ListViewDemos.movies.dataSource and not just ListViewDemos.movies. itemTemplate – The item template contains the template used for rendering each item in the ListView. The markup for this template is included below. tabBehavior – This enumeration determines what happens when you tap or click on an item in the ListView. The possible values are directSelect, toggleSelect, invokeOnly, none. Because we want to handle the selectionchanged event, we set tapBehavior to the value directSelect. selectionMode – This enumeration determines whether you can select multiple items or only a single item. The possible values are none, single, multi. In the code above, this property is set to the value single. layout – You can use ListLayout or GridLayout with a ListView. If you want to display a vertical ListView, then you should select ListLayout. You must associate a ListView with an item template if you want to render anything interesting. The ListView above is associated with an item template named #masterItemTemplate. Here’s the markup for the masterItemTemplate: <div id="masterItemTemplate" data-win-control="WinJS.Binding.Template"> <div class="movie"> <span data-win-bind="innerText:title"></span> </div> </div> This template simply renders the title of each movie. Declaring the Details Template Control The details part of the master/detail view is created with the help of a Template control. Here’s the markup used to declare the Details Template control: <div id="detailsTemplate" data-win-control="WinJS.Binding.Template"> <div> <div> Title: <span data-win-bind="innerText:title"></span> </div> <div> Director: <span data-win-bind="innerText:director"></span> </div> </div> </div> The Details Template control displays the movie title and director.   Handling the selectionchanged Event The ListView control can raise two types of events: the iteminvoked and selectionchanged events. The iteminvoked event is raised when you click on a ListView item. The selectionchanged event is raised when one or more ListView items are selected. When you set the tapBehavior property of the ListView control to the value “directSelect” then tapping or clicking a list item raised both the iteminvoked and selectionchanged event. Tapping a list item causes the item to be selected and the item appears with a checkmark. In our code, we handle the selectionchanged event to update the movie details Template when you select a new movie. Here’s the code from the default.js file used to handle the selectionchanged event: var movieList = document.getElementById("movieList"); var detailsTemplate = document.getElementById("detailsTemplate"); var movieDetails = document.getElementById("movieDetails"); // Setup selectionchanged handler movieList.winControl.addEventListener("selectionchanged", function (evt) { if (movieList.winControl.selection.count() > 0) { movieList.winControl.selection.getItems().then(function (items) { // Clear the template container movieDetails.innerHTML = ""; // Render the template detailsTemplate.winControl.render(items[0].data, movieDetails); }); } }); The code above sets up an event handler (listener) for the selectionchanged event. The event handler first verifies that an item has been selected in the ListView (selection.count() > 0). Next, the details for the movie are rendered using the movie details Template (we created this Template in the previous section). The Complete Code For the sake of completeness, I’ve included the complete code for the master/detail view below. I’ve included both the default.html, default.js, and movies.js files. Here is the final code for the default.html file: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewMasterDetail</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewMasterDetail references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script type="text/javascript" src="js/movies.js"></script> <style type="text/css"> body { font-size: xx-large; } .movie { padding: 5px; } #masterDetail { display: -ms-box; } #movieList { width: 300px; margin: 20px; } #movieDetails { margin: 20px; } </style> </head> <body> <!-- Templates --> <div id="masterItemTemplate" data-win-control="WinJS.Binding.Template"> <div class="movie"> <span data-win-bind="innerText:title"></span> </div> </div> <div id="detailsTemplate" data-win-control="WinJS.Binding.Template"> <div> <div> Title: <span data-win-bind="innerText:title"></span> </div> <div> Director: <span data-win-bind="innerText:director"></span> </div> </div> </div> <!-- Master/Detail --> <div id="masterDetail"> <!-- Master --> <div id="movieList" data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource: ListViewDemos.movies.dataSource, itemTemplate: select('#masterItemTemplate'), tapBehavior: 'directSelect', selectionMode: 'single', layout: { type: WinJS.UI.ListLayout } }"> </div> <!-- Detail --> <div id="movieDetails"></div> </div> </body> </html> Here is the default.js file: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { WinJS.UI.processAll(); var movieList = document.getElementById("movieList"); var detailsTemplate = document.getElementById("detailsTemplate"); var movieDetails = document.getElementById("movieDetails"); // Setup selectionchanged handler movieList.winControl.addEventListener("selectionchanged", function (evt) { if (movieList.winControl.selection.count() > 0) { movieList.winControl.selection.getItems().then(function (items) { // Clear the template container movieDetails.innerHTML = ""; // Render the template detailsTemplate.winControl.render(items[0].data, movieDetails); }); } }); } }; app.start(); })();   Here is the movies.js file: (function () { "use strict"; var movies = new WinJS.Binding.List([ { title: "Star Wars", director: "Lucas"}, { title: "Shrek", director: "Adamson" }, { title: "Star Trek", director: "Abrams" }, { title: "Spiderman", director: "Raimi" }, { title: "Memento", director: "Nolan" }, { title: "Minority Report", director: "Spielberg" } ]); // Expose the data source WinJS.Namespace.define("ListViewDemos", { movies: movies }); })();   Summary The purpose of this blog entry was to describe how to create a simple master/detail view by taking advantage of the WinJS ListView control. We handled the selectionchanged event of the ListView control to display movie details when you select a movie in the ListView.

    Read the article

  • SonicAgile 2.0 with a Real-Time Backlog and Kanban

    - by Stephen.Walther
    I’m excited to announce the launch of SonicAgile 2.0 which is a free Agile Project Management tool.  You can start using it right now (for free) by visiting the following address: http://sonicagile.com/ What’s special about SonicAgile?  SonicAgile supports a real-time backlog and kanban. When you make changes to the backlog or kanban then those changes appear on every browser in real-time. For example, if multiple people open the Kanban in their browser, and you move a card on the backlog from the To Do column to the Done column then the card moves in every browser in real-time. This makes SonicAgile a great tool to use with distributed teams. SonicAgile has all of the features that you need in an Agile Project Management tool including: Real-time Backlog – Prioritize all of your stories using drag-and-drop. Real-time Kanban – Move stories from To Do, In Progress, to Done Burndown Charts – Track the progress of your team as your work burns down over time. Iterations – Group work into iterations (sprints). Tasks – Break long stories into tasks. Acceptance Criteria – Create a checklist of requirements for a story to be done. Agile Estimation – Estimate the amount of work required to complete a story using Points, Shirt Sizes, or Coffee Cup sizes. Time-Tracking – Track how long it takes to complete each story and task. Roadmap – Do release planning by creating epics and organizing the epics into releases. Discussions – Discuss each story or epic by email. Watch the following video for a quick 3 minute introduction: http://sonicagile.com/ Read the following guide for a more in-depth overview of the features included in SonicAgile: http://sonicagile.com/guide-agile-project-management-using-sonicagile/ I’d love to hear your feedback!  Let me know what you think by posting a comment.

    Read the article

  • ASP.NET Connections Spring 2012 Talks and Code

    - by Stephen.Walther
    Thank you everyone who attended my ASP.NET Connections talks last week in Las Vegas. I’ve attached the slides and code for the three talks that I delivered:   Using jQuery to interact with the Server through Ajax – In this talk, I discuss the different ways to communicate information between browser and server using Ajax. I explain the difference between the different types of Ajax calls that you can make with jQuery. I also discuss the differences between the JavaScriptSerializer, the DataContractJsonSerializer, and the JSON.NET serializer.   ASP.NET Validation In-Depth – In this talk, I distinguish between View Model Validation and Domain Model Validation. I demonstrate how you can use the validation attributes (including the new .NET 4.5 validation attributes), the jQuery Validation library, and the HTML5 input validation attributes to perform View Model Validation. I then demonstrate how you can use the IValidatableObject interface with the Entity Framework to perform Domain Model Validation.   Using the MVVM Pattern with JavaScript Views – In this talk, I discuss how you can create single page applications (SPA) by taking advantage of the open-source KnockoutJS library and the ASP.NET Web API.   Be warned that the sample code is contained in Visual Studio 11 Beta projects. If you don’t have this version of Visual Studio, then you will need to open the code samples in Notepad. Also, I apologize for getting the code for these talks posted so slowly. I’ve been down with a nasty case of the flu for the past week and haven’t been able to get to a computer.

    Read the article

  • Ajax Control Toolkit May 2012 Release

    - by Stephen.Walther
    I’m happy to announce the May 2012 release of the Ajax Control Toolkit. This newest release of the Ajax Control Toolkit includes a new file upload control which displays file upload progress. We’ve also added several significant enhancements to the existing HtmlEditorExtender control such as support for uploading images and Source View. You can download and start using the newest version of the Ajax Control Toolkit by entering the following command in the Library Package Manager console in Visual Studio: Install-Package AjaxControlToolkit Alternatively, you can download the latest version of the Ajax Control Toolkit from CodePlex: http://AjaxControlToolkit.CodePlex.com The New Ajax File Upload Control The most requested new feature for the Ajax Control Toolkit (according to the CodePlex Issue Tracker) has been support for file upload with progress. We worked hard over the last few months to create an entirely new file upload control which displays upload progress. Here is a sample which illustrates how you can use the new AjaxFileUpload control: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="01_FileUpload.aspx.cs" Inherits="WebApplication1._01_FileUpload" %> <html> <head runat="server"> <title>Simple File Upload</title> </head> <body> <form id="form1" runat="server"> <div> <ajaxToolkit:ToolkitScriptManager runat="server" /> <ajaxToolkit:AjaxFileUpload id="ajaxUpload1" OnUploadComplete="ajaxUpload1_OnUploadComplete" runat="server" /> </div> </form> </body> </html> The page above includes a ToolkitScriptManager control. This control is required to use any of the controls in the Ajax Control Toolkit because this control is responsible for loading all of the scripts required by a control. The page also contains an AjaxFileUpload control. The UploadComplete event is handled in the code-behind for the page: namespace WebApplication1 { public partial class _01_FileUpload : System.Web.UI.Page { protected void ajaxUpload1_OnUploadComplete(object sender, AjaxControlToolkit.AjaxFileUploadEventArgs e) { // Generate file path string filePath = "~/Images/" + e.FileName; // Save upload file to the file system ajaxUpload1.SaveAs(MapPath(filePath)); } } } The UploadComplete handler saves each uploaded file by calling the AjaxFileUpload control’s SaveAs() method with a full file path. Here’s a video which illustrates the process of uploading a file: Warning: in order to write to the Images folder on a production IIS server, you need Write permissions on the Images folder. You need to provide permissions for the IIS Application Pool account to write to the Images folder. To learn more, see: http://learn.iis.net/page.aspx/624/application-pool-identities/ Showing File Upload Progress The new AjaxFileUpload control takes advantage of HTML5 upload progress events (described in the XMLHttpRequest Level 2 standard). This standard is supported by Firefox 8+, Chrome 16+, Safari 5+, and Internet Explorer 10+. In other words, the standard is supported by the most recent versions of all browsers except for Internet Explorer which will support the standard with the release of Internet Explorer 10. The AjaxFileUpload control works with all browsers, even browsers which do not support the new XMLHttpRequest Level 2 standard. If you use the AjaxFileUpload control with a downlevel browser – such as Internet Explorer 9 — then you get a simple throbber image during a file upload instead of a progress indicator. Here’s how you specify a throbber image when declaring the AjaxFileUpload control: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="02_FileUpload.aspx.cs" Inherits="WebApplication1._02_FileUpload" %> <html> <head id="Head1" runat="server"> <title>File Upload with Throbber</title> </head> <body> <form id="form1" runat="server"> <div> <ajaxToolkit:ToolkitScriptManager ID="ToolkitScriptManager1" runat="server" /> <ajaxToolkit:AjaxFileUpload id="ajaxUpload1" OnUploadComplete="ajaxUpload1_OnUploadComplete" ThrobberID="MyThrobber" runat="server" /> <asp:Image id="MyThrobber" ImageUrl="ajax-loader.gif" Style="display:None" runat="server" /> </div> </form> </body> </html> Notice that the page above includes an image with the Id MyThrobber. This image is displayed while files are being uploaded. I use the website http://AjaxLoad.info to generate animated busy wait images. Drag-And-Drop File Upload If you are using an uplevel browser then you can drag-and-drop the files which you want to upload onto the AjaxFileUpload control. The following video illustrates how drag-and-drop works: Remember that drag-and-drop will not work on Internet Explorer 9 or older. Accepting Multiple Files By default, the AjaxFileUpload control enables you to upload multiple files at a time. When you open the file dialog, use the CTRL or SHIFT key to select multiple files. If you want to restrict the number of files that can be uploaded then use the MaximumNumberOfFiles property like this: <ajaxToolkit:AjaxFileUpload id="ajaxUpload1" OnUploadComplete="ajaxUpload1_OnUploadComplete" ThrobberID="throbber" MaximumNumberOfFiles="1" runat="server" /> In the code above, the maximum number of files which can be uploaded is restricted to a single file. Restricting Uploaded File Types You might want to allow only certain types of files to be uploaded. For example, you might want to accept only image uploads. In that case, you can use the AllowedFileTypes property to provide a list of allowed file types like this: <ajaxToolkit:AjaxFileUpload id="ajaxUpload1" OnUploadComplete="ajaxUpload1_OnUploadComplete" ThrobberID="throbber" AllowedFileTypes="jpg,jpeg,gif,png" runat="server" /> The code above prevents any files except jpeg, gif, and png files from being uploaded. Enhancements to the HTMLEditorExtender Over the past months, we spent a considerable amount of time making bug fixes and feature enhancements to the existing HtmlEditorExtender control. I want to focus on two of the most significant enhancements that we made to the control: support for Source View and support for uploading images. Adding Source View Support to the HtmlEditorExtender When you click the Source View tag, the HtmlEditorExtender changes modes and displays the HTML source of the contents contained in the TextBox being extended. You can use Source View to make fine-grain changes to HTML before submitting the HTML to the server. For reasons of backwards compatibility, the Source View tab is disabled by default. To enable Source View, you need to declare your HtmlEditorExtender with the DisplaySourceTab property like this: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="05_SourceView.aspx.cs" Inherits="WebApplication1._05_SourceView" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html> <head id="Head1" runat="server"> <title>HtmlEditorExtender with Source View</title> </head> <body> <form id="form1" runat="server"> <div> <ajaxToolkit:ToolkitScriptManager ID="ToolkitScriptManager1" runat="server" /> <asp:TextBox id="txtComments" TextMode="MultiLine" Columns="60" Rows="10" Runat="server" /> <ajaxToolkit:HtmlEditorExtender id="HEE1" TargetControlID="txtComments" DisplaySourceTab="true" runat="server" /> </div> </form> </body> </html> The page above includes a ToolkitScriptManager, TextBox, and HtmlEditorExtender control. The HtmlEditorExtender extends the TextBox so that it supports rich text editing. Notice that the HtmlEditorExtender includes a DisplaySourceTab property. This property causes a button to appear at the bottom of the HtmlEditorExtender which enables you to switch to Source View: Note: when using the HtmlEditorExtender, we recommend that you set the DOCTYPE for the document. Otherwise, you can encounter weird formatting issues. Accepting Image Uploads We also enhanced the HtmlEditorExtender to support image uploads (another very highly requested feature at CodePlex). The following video illustrates the experience of adding an image to the editor: Once again, for backwards compatibility reasons, support for image uploads is disabled by default. Here’s how you can declare the HtmlEditorExtender so that it supports image uploads: <ajaxToolkit:HtmlEditorExtender id="MyHtmlEditorExtender" TargetControlID="txtComments" OnImageUploadComplete="MyHtmlEditorExtender_ImageUploadComplete" DisplaySourceTab="true" runat="server" > <Toolbar> <ajaxToolkit:Bold /> <ajaxToolkit:Italic /> <ajaxToolkit:Underline /> <ajaxToolkit:InsertImage /> </Toolbar> </ajaxToolkit:HtmlEditorExtender> There are two things that you should notice about the code above. First, notice that an InsertImage toolbar button is added to the HtmlEditorExtender toolbar. This HtmlEditorExtender will render toolbar buttons for bold, italic, underline, and insert image. Second, notice that the HtmlEditorExtender includes an event handler for the ImageUploadComplete event. The code for this event handler is below: using System.Web.UI; using AjaxControlToolkit; namespace WebApplication1 { public partial class _06_ImageUpload : System.Web.UI.Page { protected void MyHtmlEditorExtender_ImageUploadComplete(object sender, AjaxFileUploadEventArgs e) { // Generate file path string filePath = "~/Images/" + e.FileName; // Save uploaded file to the file system var ajaxFileUpload = (AjaxFileUpload)sender; ajaxFileUpload.SaveAs(MapPath(filePath)); // Update client with saved image path e.PostedUrl = Page.ResolveUrl(filePath); } } } Within the ImageUploadComplete event handler, you need to do two things: 1) Save the uploaded image (for example, to the file system, a database, or Azure storage) 2) Provide the URL to the saved image so the image can be displayed within the HtmlEditorExtender In the code above, the uploaded image is saved to the ~/Images folder. The path of the saved image is returned to the client by setting the AjaxFileUploadEventArgs PostedUrl property. Not surprisingly, under the covers, the HtmlEditorExtender uses the AjaxFileUpload. You can get a direct reference to the AjaxFileUpload control used by an HtmlEditorExtender by using the following code: void Page_Load() { var ajaxFileUpload = MyHtmlEditorExtender.AjaxFileUpload; ajaxFileUpload.AllowedFileTypes = "jpg,jpeg"; } The code above illustrates how you can restrict the types of images that can be uploaded to the HtmlEditorExtender. This code prevents anything but jpeg images from being uploaded. Summary This was the most difficult release of the Ajax Control Toolkit to date. We iterated through several designs for the AjaxFileUpload control – with each iteration, the goal was to make the AjaxFileUpload control easier for developers to use. My hope is that we were able to create a control which Web Forms developers will find very intuitive. I want to thank the developers on the Superexpert.com team for their hard work on this release.

    Read the article

< Previous Page | 4 5 6 7 8 9 10  | Next Page >