Search Results

Search found 2028 results on 82 pages for 'constant m'.

Page 80/82 | < Previous Page | 76 77 78 79 80 81 82  | Next Page >

  • Using C# to detect whether a filename character is considered international

    - by Morten Mertner
    I've written a small console application (source below) to locate and optionally rename files containing international characters, as they are a source of constant pain with most source control systems (some background on this below). The code I'm using has a simple dictionary with characters to look for and replace (and nukes every other character that uses more than one byte of storage), but it feels very hackish. What's the right way to (a) find out whether a character is international? and (b) what the best ASCII substitution character would be? Let me provide some background information on why this is needed. It so happens that the danish Å character has two different encodings in UTF-8, both representing the same symbol. These are known as NFC and NFD encodings. Windows and Linux will create NFC encoding by default but respect whatever encoding it is given. Mac will convert all names (when saving to a HFS+ partition) to NFD and therefore returns a different byte stream for the name of a file created on Windows. This effectively breaks Subversion, Git and lots of other utilities that don't care to properly handle this scenario. I'm currently evaluating Mercurial, which turns out to be even worse at handling international characters.. being fairly tired of these problems, either source control or the international character would have to go, and so here we are. My current implementation: public class Checker { private Dictionary<char, string> internationals = new Dictionary<char, string>(); private List<char> keep = new List<char>(); private List<char> seen = new List<char>(); public Checker() { internationals.Add( 'æ', "ae" ); internationals.Add( 'ø', "oe" ); internationals.Add( 'å', "aa" ); internationals.Add( 'Æ', "Ae" ); internationals.Add( 'Ø', "Oe" ); internationals.Add( 'Å', "Aa" ); internationals.Add( 'ö', "o" ); internationals.Add( 'ü', "u" ); internationals.Add( 'ä', "a" ); internationals.Add( 'é', "e" ); internationals.Add( 'è', "e" ); internationals.Add( 'ê', "e" ); internationals.Add( '¦', "" ); internationals.Add( 'Ã', "" ); internationals.Add( '©', "" ); internationals.Add( ' ', "" ); internationals.Add( '§', "" ); internationals.Add( '¡', "" ); internationals.Add( '³', "" ); internationals.Add( '­', "" ); internationals.Add( 'º', "" ); internationals.Add( '«', "-" ); internationals.Add( '»', "-" ); internationals.Add( '´', "'" ); internationals.Add( '`', "'" ); internationals.Add( '"', "'" ); internationals.Add( Encoding.UTF8.GetString( new byte[] { 226, 128, 147 } )[ 0 ], "-" ); internationals.Add( Encoding.UTF8.GetString( new byte[] { 226, 128, 148 } )[ 0 ], "-" ); internationals.Add( Encoding.UTF8.GetString( new byte[] { 226, 128, 153 } )[ 0 ], "'" ); internationals.Add( Encoding.UTF8.GetString( new byte[] { 226, 128, 166 } )[ 0 ], "." ); keep.Add( '-' ); keep.Add( '=' ); keep.Add( '\'' ); keep.Add( '.' ); } public bool IsInternationalCharacter( char c ) { var s = c.ToString(); byte[] bytes = Encoding.UTF8.GetBytes( s ); if( bytes.Length > 1 && ! internationals.ContainsKey( c ) && ! seen.Contains( c ) ) { Console.WriteLine( "X '{0}' ({1})", c, string.Join( ",", bytes ) ); seen.Add( c ); if( ! keep.Contains( c ) ) { internationals[ c ] = ""; } } return internationals.ContainsKey( c ); } public bool HasInternationalCharactersInName( string name, out string safeName ) { StringBuilder sb = new StringBuilder(); Array.ForEach( name.ToCharArray(), c => sb.Append( IsInternationalCharacter( c ) ? internationals[ c ] : c.ToString() ) ); int length = sb.Length; sb.Replace( " ", " " ); while( sb.Length != length ) { sb.Replace( " ", " " ); } safeName = sb.ToString().Trim(); string namePart = Path.GetFileNameWithoutExtension( safeName ); if( namePart.EndsWith( "." ) ) safeName = namePart.Substring( 0, namePart.Length - 1 ) + Path.GetExtension( safeName ); return name != safeName; } } And this would be invoked like this: FileInfo file = new File( "Århus.txt" ); string safeName; if( checker.HasInternationalCharactersInName( file.Name, out safeName ) ) { // rename file }

    Read the article

  • XSLT: moving a grouping html elements into section levels

    - by Jeff
    Hello there, I'm trying to write an XSLT that organizes an HTML file into different section levels depending on the header level. Here is my input: <html> <head> <title></title> </head> <body> <h1>HEADER 1 CONTENT</h1> <p>Level 1 para</p> <p>Level 1 para</p> <p>Level 1 para</p> <p>Level 1 para</p> <h2>Header 2 CONTENT</h2> <p>Level 2 para</p> <p>Level 2 para</p> <p>Level 2 para</p> <p>Level 2 para</p> </body> </html> I'm working with a fairly simple structure at the moment so this pattern will be constant for the time-being. I need an output like this... <document> <section level="1"> <header1>Header 1 CONTENT</header1> <p>Level 1 para</p> <p>Level 1 para</p> <p>Level 1 para</p> <p>Level 1 para</p> <section level="2"> <header2>Header 2 CONTENT</header2> <p>Level 2 para</p> <p>Level 2 para</p> <p>Level 2 para</p> <p>Level 2 para</p> </section> </section> </document> I had been working with this example: Stackoverflow Answer However, I cannot get it to do exactly what I need. I'm using Saxon 9 to run the xslt within Oxygen for dev. I'll be using a cmd/bat file in production. Still Saxon 9. I'd like to handle up to 4 nested section levels if possible. Any help is much appreciated! I need to append onto this as I've encountered another stipulation. I probably should have thought of this before. I'm encountering the following code sample <html> <head> <title></title> </head> <body> <p>Level 1 para</p> <p>Level 1 para</p> <p>Level 1 para</p> <p>Level 1 para</p> <h1>Header 2 CONTENT</h1> <p>Level 2 para</p> <p>Level 2 para</p> <p>Level 2 para</p> <p>Level 2 para</p> </body> </html> As you can see, the <p> is a child of <body> while in my first snippet, <p> was always a child of a header level. My desired result is the same as above except that when I encounter <p> as a child of <body>, it should be wrapped in <section level="1">. <document> <section level="1"> <p>Level 1 para</p> <p>Level 1 para</p> <p>Level 1 para</p> <p>Level 1 para</p> </section> <section level="1"> <header1>Header 2 CONTENT</header1> <p>Level 2 para</p> <p>Level 2 para</p> <p>Level 2 para</p> <p>Level 2 para</p> </section> </document>

    Read the article

  • Trying to draw textured triangles on device fails, but the emulator works. Why?

    - by Dinedal
    I have a series of OpenGL-ES calls that properly render a triangle and texture it with alpha blending on the emulator (2.0.1). When I fire up the same code on an actual device (Droid 2.0.1), all I get are white squares. This suggests to me that the textures aren't loading, but I can't figure out why they aren't loading. All of my textures are 32-bit PNGs with alpha channels, under res/raw so they aren't optimized per the sdk docs. Here's how I am loading my textures: private void loadGLTexture(GL10 gl, Context context, int reasource_id, int texture_id) { //Get the texture from the Android resource directory Bitmap bitmap = BitmapFactory.decodeResource(context.getResources(), reasource_id, sBitmapOptions); //Generate one texture pointer... gl.glGenTextures(1, textures, texture_id); //...and bind it to our array gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[texture_id]); //Create Nearest Filtered Texture gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MIN_FILTER, GL10.GL_NEAREST); gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_MAG_FILTER, GL10.GL_LINEAR); //Different possible texture parameters, e.g. GL10.GL_CLAMP_TO_EDGE gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_S, GL10.GL_REPEAT); gl.glTexParameterf(GL10.GL_TEXTURE_2D, GL10.GL_TEXTURE_WRAP_T, GL10.GL_REPEAT); //Use the Android GLUtils to specify a two-dimensional texture image from our bitmap GLUtils.texImage2D(GL10.GL_TEXTURE_2D, 0, bitmap, 0); //Clean up bitmap.recycle(); } Here's how I am rendering the texture: //Clear gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT); //Enable vertex buffer gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glEnableClientState(GL10.GL_TEXTURE_COORD_ARRAY); gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer); gl.glTexCoordPointer(2, GL10.GL_FLOAT, 0, textureBuffer); //Push transformation matrix gl.glPushMatrix(); //Transformation matrices gl.glTranslatef(x, y, 0.0f); gl.glScalef(scalefactor, scalefactor, 0.0f); gl.glColor4f(1.0f,1.0f,1.0f,1.0f); //Bind the texture gl.glBindTexture(GL10.GL_TEXTURE_2D, textures[textureid]); //Draw the vertices as triangles gl.glDrawElements(GL10.GL_TRIANGLES, indices.length, GL10.GL_UNSIGNED_BYTE, indexBuffer); //Pop the matrix back to where we left it gl.glPopMatrix(); //Disable the client state before leaving gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); gl.glDisableClientState(GL10.GL_TEXTURE_COORD_ARRAY); And here are the options I have enabled: gl.glShadeModel(GL10.GL_SMOOTH); //Enable Smooth Shading gl.glEnable(GL10.GL_DEPTH_TEST); //Enables Depth Testing gl.glDepthFunc(GL10.GL_LEQUAL); //The Type Of Depth Testing To Do gl.glEnable(GL10.GL_TEXTURE_2D); gl.glEnable(GL10.GL_BLEND); gl.glBlendFunc(GL10.GL_SRC_ALPHA,GL10.GL_ONE_MINUS_SRC_ALPHA); Edit: I just tried supplying a BitmapOptions to the BitmapFactory.decodeResource() call, but this doesn't seem to fix the issue, despite manually setting the same preferredconfig, density, and targetdensity. Edit2: As requested, here is a screenshot of the emulator working. The underlaying triangles are shown with a circle texture rendered onto it, the transparency is working because you can see the black background. Here is a shot of what the droid does with the exact same code on it: Edit3: Here are my BitmapOptions, updated the call above with how I am now calling the BitmapFactory, still the same results as below: sBitmapOptions.inPreferredConfig = Bitmap.Config.RGB_565; sBitmapOptions.inDensity = 160; sBitmapOptions.inTargetDensity = 160; sBitmapOptions.inScreenDensity = 160; sBitmapOptions.inDither = false; sBitmapOptions.inSampleSize = 1; sBitmapOptions.inScaled = false; Here are my vertices, texture coords, and indices: /** The initial vertex definition */ private static final float vertices[] = { -1.0f, -1.0f, 0.0f, 1.0f, -1.0f, 0.0f, -1.0f, 1.0f, 0.0f, 1.0f, 1.0f, 0.0f }; /** The initial texture coordinates (u, v) */ private static final float texture[] = { //Mapping coordinates for the vertices 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 1.0f, 0.0f }; /** The initial indices definition */ private static final byte indices[] = { //Faces definition 0,1,3, 0,3,2 }; Is there anyway to dump the contents of the texture once it's been loaded into OpenGL ES? Maybe I can compare the emulator's loaded texture with the actual device's loaded texture? I did try with a different texture (the default android icon) and again, it works fine for the emulator but fails to render on the actual phone. Edit4: Tried switching around when I do texture loading. No luck. Tried using a constant offset of 0 to glGenTextures, no change. Is there something that I'm using that the emulator supports that the actual phone does not? Edit5: Per Ryan below, I resized my texture from 200x200 to 256x256, and the issue was NOT resolved. Edit: As requested, added the calls to glVertexPointer and glTexCoordPointer above. Also, here is the initialization of vertexBuffer, textureBuffer, and indexBuffer: ByteBuffer byteBuf = ByteBuffer.allocateDirect(vertices.length * 4); byteBuf.order(ByteOrder.nativeOrder()); vertexBuffer = byteBuf.asFloatBuffer(); vertexBuffer.put(vertices); vertexBuffer.position(0); byteBuf = ByteBuffer.allocateDirect(texture.length * 4); byteBuf.order(ByteOrder.nativeOrder()); textureBuffer = byteBuf.asFloatBuffer(); textureBuffer.put(texture); textureBuffer.position(0); indexBuffer = ByteBuffer.allocateDirect(indices.length); indexBuffer.put(indices); indexBuffer.position(0); loadGLTextures(gl, this.context);

    Read the article

  • SOA Suite 11g Native Format Builder Complex Format Example

    - by bob.webster
    This rather long posting details the steps required to process a grouping of fixed length records using Format Builder.   If it’s 10 pm and you’re feeling beat you might want to leave this until tomorrow.  But if it’s 10 pm and you need to get a Format Builder Complex template done, read on… The goal is to process individual orders from a file using the 11g File Adapter and Format Builder Sample Data =========== 001Square Widget            0245.98 102Triagular Widget         1120.00 403Circular Widget           0099.45 ORD8898302/01/2011 301Hexagon Widget         1150.98 ORD6735502/01/2011 The records are fixed length records representing a number of logical Order records. Each order record consists of a number of item records starting with a 3 digit number, followed by a single Summary Record which starts with the constant ORD. How can this file be processed so that the first poll returns the first order? 001Square Widget            0245.98 102Triagular Widget         1120.00 403Circular Widget           0099.45 ORD8898302/01/2011 And the second poll returns the second order? 301Hexagon Widget           1150.98 ORD6735502/01/2011 Note: if you need more than one order per poll, that’s also possible, see the “Multiple Messages” field in the “File Adapter Step 6 of 9” snapshot further down.   To follow along with this example you will need - Studio Edition Version 11.1.1.4.0    with the   - SOA Extension for JDeveloper 11.1.1.4.0 installed Both can be downloaded from here:  http://www.oracle.com/technetwork/middleware/soasuite/downloads/index.html You will not need a running WebLogic Server domain to complete the steps and Format Builder tests in this article.     Start with a SOA Composite containing a File Adapter The Format Builder is part of the File Adapter so start by creating a new SOA Project and Composite. Here is a quick summary for those not familiar with these steps - Start JDeveloper - From the Main Menu choose File->New - In the New Gallery window that opens Expand the “General” category and Select the Applications node.   Then choose SOA Application from the Items section on the right.  Finally press the OK button. - In Step 1 of the “Create SOA Application wizard” that appears enter an Application Name and an Directory of your     choice,   then press the Next button. - In Step 2 of the “Create SOA Application wizard”, press the Next button leaving all entries as defaulted. - In Step 3 of the “Create SOA Application wizard”, Enter a composite name of your choice and Press the Finish   Button These steps result in a new Application and SOA Project. The SOA Project contains a composite.xml file which is opened and shown below. For our example we have not defined a Mediator or a BPEL process to minimize the steps, but one or the other would eventually be needed to use the File Adapter we are about to create. Drag and drop the File Adapter icon from the Component Pallette onto either the LEFT side of the diagram under “Exposed Services” or the right side under “External References”.  (See the Green Circle in the image below).  Placing the adapter on the left side would indicate the file being processed is inbound to the composite, if the adapter is placed on the right side then the data is outbound to a file.     Note that the same Format Builder definition can be used in both directions.  For example we could use the format with a File Adapter on the left side of the composite to parse fixed data into XML, modify the data in our Composite or BPEL process and then use the same Format Builder definition with a File adapter on the right side of the composite to write the data back out in the same fixed data format When the File Adapter is dropped on the Composite the File Adapter Wizard Appears. Skip Past the first page, Step 1 of 9 by pressing the Next button. In Step 2 enter a service name of your choice as shown below, then press Next   When the Native Format Builder appears, skip the welcome page by pressing next. Also press the Next button to accept the settings on Step 3 of 9 On Step 4, select Read File and press the Next button as shown below.   On Step 5 enter a directory that will contain a file with the input data, then  Press the Next button as shown below. In step 6, enter *.txt or another file format to select input files from the input directory mentioned in step 5. ALSO check the “Files contain Multiple Messages” checkbox and set the “Publish Messages in Batches of” field to 1.  The value can be set higher to increase the number of logical order group records returned on each poll of the file adapter.  In other words, it determines the number of Orders that will be sent to each instance of a Mediator or Composite processing using the File Adapter.   Skip Step 7 by pressing the Next button In Step 8 press the Gear Icon on the right side to load the Native Format Builder.       Native Format Builder  appears Before diving into the format, here is an overview of the process. Approach - Bottom up Assuming an Order is a grouping of item records and a summary record…. - Define a separate  Complex Type for each Record Type found in the group.    (One for itemRecord and one for summaryRecord) - Define a Complex Type to contain the Group of Record types defined above   (LogicalOrderRecord) - Define a top level element to represent an order.  (order)   The order element will be of type LogicalOrderRecord   Defining the Format In Step 1 select   “Create new”  and  “Complex Type” and “Next”   In Step two browse to and select a file containing the test data shown at the start of this article. A link is provided at the end of this article to download a file containing the test data. Press the Next button     In Step 3 Complex types must be define for each type of input record. Select the Root-Element and Click on the Add Complex Type icon This creates a new empty complex type definition shown below. The fastest way to create the definition is to highlight the first line of the Sample File data and drag the line onto the  <new_complex_type> Format Builder introspects the data and provides a grid to define additional fields. Change the “Complex Type Name” to  “itemRecord” Then click on the ruler to indicate the position of fixed columns.  Drag the red triangle icons to the exact columns if necessary. Double click on an existing red triangle to remove an unwanted entry. In the case below fields are define in columns 0-3, 4-28, 29-eol When the field definitions are correct, press the “Generate Fields” button. Field entries named C1, C2 and C3 will be created as shown below. Click on the field names and rename them from C1->itemNum, C2->itemDesc and C3->itemCost  When all the fields are correctly defined press OK to save the complex type.        Next, the process is repeated to define a Complex Type for the SummaryRecord. Select the Root-Element in the schema tree and press the new complex type icon Then highlight and drag the Summary Record from the sample data onto the <new_complex_type>   Change the complex type name to “summaryRecord” Mark the fixed fields for Order Number and Order Date. Press the Generate Fields button and rename C1 and C2 to itemNum and orderDate respectively.   The last complex type to be defined is a type to hold the group of items and the summary record. Select the Root-Element in the schema tree and click the new complex type icon Select the “<new_complex_type>” entry and click the pencil icon   On the Complex Type Details page change the name and type of each input field. Change line 1 to be named item and set the Type  to “itemRecord” Change line 2 to be named summary and set the Type to “summaryRecord” We also need to indicate that itemRecords repeat in the input file. Click the pencil icon at the right side of the item line. On the Edit Details page change the “Max Occurs” entry from 1 to UNBOUNDED. We also need to indicate how to identify an itemRecord.  Since each item record has “.” in column 32 we can use this fact to differentiate an item record from a summary record. Change the “Look Ahead” field to value 32 and enter a period in the “Look For” field Press the OK button to save entry.     Finally, its time to create a top level element to represent an order. Select the “Root-Element” in the schema tree and press the New element icon Click on the <new_element> and press the pencil icon.   Set the Element Name to “order” and change the Data Type to “logicalOrderRecord” Press the OK button to save the element definition.   The final definition should match the screenshot below. Press the Next Button to view the definition source.     Press the Test Button to test the definition   Press the Green Triangle Icon to run the test.   And we are presented with an unwelcome error. The error states that the processor ran out of data while working through the definition. The processor was unable to differentiate between itemRecords and summaryRecords and therefore treated the entire file as a list of itemRecords.  At end of file, the “summary” portion of the logicalOrderRecord remained unprocessed but mandatory.   This root cause of this error is the loss of our “lookAhead” definition used to identify itemRecords. This appears to be a bug in the  Native Format Builder 11.1.1.4.0 Luckily, a simple workaround exists. Press the Cancel button and return to the “Step 4 of 4” Window. Manually add    nxsd:lookAhead="32" nxsd:lookFor="."   attributes after the maxOccurs attribute of the item element. as shown in the highlighted text below.   When the lookAhead and lookFor attributes have been added Press the Test button and on the Test page press the Green Triangle. The test is now successful, the first order in the file is returned by the File Adapter.     Below is a complete listing of the Result XML from the right column of the screen above   Try running it The downloaded input test file and completed schema file can be used for testing without following all the Native Format Builder steps in this example. Use the following link to download a file containing the sample data. Download Sample Input Data This is the best approach rather than cutting and pasting the input data at the top of the article.  Since the data is fixed length it’s very important to watch out for trailing spaces in the data and to ensure an eol character at the end of every line. The download file is correctly formatted. The final schema definition can be downloaded at the following link Download Completed Schema Definition   - Save the inputData.txt file to a known location like the xsd folder in your project. - Save the inputData_6.xsd file to the xsd folder in your project. - At step 1 in the Native Format Builder wizard  (as shown above) check the “Edit existing” radio button,    then browse and select the inputData_6.xsd file - At step 2 of the Format Builder configuration Wizard (as shown above) supply the path and filename for    the inputData.txt file. - You can then proceed to the test page and run a test. - Remember the wizard bug will drop the lookAhead and lookFor attributes,  you will need to manually add   nxsd:lookAhead="32" nxsd:lookFor="."    after the maxOccurs attribute of the item element in the   LogicalOrderRecord Complex Type.  (as shown above)   Good Luck with your Format Project

    Read the article

  • Making WCF Output a single WSDL file for interop purposes.

    By default, when WCF emits a WSDL definition for your services, it can often contain many links to others related schemas that need to be imported. For the most part, this is fine. WCF clients understand this type of schema without issue, and it conforms to the requisite standards as far as WSDL definitions go. However, some non Microsoft stacks will only work with a single WSDL file and require that all definitions for the service(s) (port types, messages, operation etc) are contained within that single file. In other words, no external imports are supported. Some Java clients (to my working knowledge) have this limitation. This obviously presents a problem when trying to create services exposed for consumption and interop by these clients. Note: You can download the full source code for this sample from here To illustrate this point, lets say we have a simple service that looks like: Service Contract public interface IService1 { [OperationContract] [FaultContract(typeof(DataFault))] string GetData(DataModel1 model); [OperationContract] [FaultContract(typeof(DataFault))] string GetMoreData(DataModel2 model); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Service Implementation/Behaviour public class Service1 : IService1 { public string GetData(DataModel1 model) { return string.Format("Some Field was: {0} and another field was {1}", model.SomeField,model.AnotherField); } public string GetMoreData(DataModel2 model) { return string.Format("Name: {0}, age: {1}", model.Name, model.Age); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Configuration File <system.serviceModel> <services> <service name="SingleWSDL_WcfService.Service1" behaviorConfiguration="SingleWSDL_WcfService.Service1Behavior"> <!-- ...std/default data omitted for brevity..... --> <endpoint address ="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" > ....... </services> <behaviors> <serviceBehaviors> <behavior name="SingleWSDL_WcfService.Service1Behavior"> ........ </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } When WCF is asked to produce a WSDL for this service, it will produce a file that looks something like this (note: some sections omitted for brevity): <?xml version="1.0" encoding="utf-8" ?> - <wsdl:definitions name="Service1" targetNamespace="http://tempuri.org/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...... namespace definitions omitted for brevity + <wsp:Policy wsu:Id="WSHttpBinding_IService1_policy"> ... multiple policy items omitted for brevity </wsp:Policy> - <wsdl:types> - <xsd:schema targetNamespace="http://tempuri.org/Imports"> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd0" namespace="http://tempuri.org/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd3" namespace="Http://SingleWSDL/Fault" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd1" namespace="http://schemas.microsoft.com/2003/10/Serialization/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd2" namespace="http://SingleWSDL/Model1" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd4" namespace="http://SingleWSDL/Model2" /> </xsd:schema> </wsdl:types> + <wsdl:message name="IService1_GetData_InputMessage"> .... </wsdl:message> - <wsdl:operation name="GetData"> ..... </wsdl:operation> - <wsdl:service name="Service1"> ....... </wsdl:service> </wsdl:definitions> The above snippet from the WSDL shows the external links and references that are generated by WCF for a relatively simple service. Note the xsd:import statements that reference external XSD definitions which are also generated by WCF. In order to get WCF to produce a single WSDL file, we first need to follow some good practices when it comes to WCF service definitions. Step 1: Define a namespace for your service contract. [ServiceContract(Namespace="http://SingleWSDL/Service1")] public interface IService1 { ...... } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Normally you would not use a literal string and may instead define a constant to use in your own application for the namespace. When this is applied and we generate the WSDL, we get the following statement inserted into the document: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl=wsdl0" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } All the previous imports have gone. If we follow this link, we will see that the XSD imports are now in this external WSDL file. Not really any benefit for our purposes. Step 2: Define a namespace for your service behaviour [ServiceBehavior(Namespace = "http://SingleWSDL/Service1")] public class Service1 : IService1 { ...... } As you can see, the namespace of the service behaviour should be the same as the service contract interface to which it implements. Failure to do these tasks will cause WCF to emit its default http://tempuri.org namespace all over the place and cause WCF to still generate import statements. This is also true if the namespace of the contract and behaviour differ. If you define one and not the other, defaults kick in, and youll find extra imports generated. While each of the previous 2 steps wont cause any less import statements to be generated, you will notice that namespace definitions within the WSDL have identical, well defined names. Step 3: Define a binding namespace In the configuration file, modify the endpoint configuration line item to iunclude a bindingNamespace attribute which is the same as that defined on the service behaviour and service contract <endpoint address="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" bindingNamespace="http://SingleWSDL/Service1"> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } However, this does not completely solve the issue. What this will do is remove the WSDL import statements like this one: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } from the generated WSDL. Finally. the magic. Step 4: Use a custom endpoint behaviour to read in external imports and include in the main WSDL output. In order to force WCF to output a single WSDL with all the required definitions, we need to define a custom WSDL Export extension that can be applied to any endpoints. This requires implementing the IWsdlExportExtension and IEndpointBehavior interfaces and then reading in any imported schemas, and adding that output to the main, flattened WSDL to be output. Sounds like fun right..? Hmmm well maybe not. This step sounds a little hairy, but its actually quite easy thanks to some kind individuals who have already done this for us. As far as I know, there are 2 available implementations that we can easily use to perform the import and WSDL flattening.  WCFExtras which is on codeplex and FlatWsdl by Thinktecture. Both implementations actually do exactly the same thing with the imports and provide an endpoint behaviour, however FlatWsdl does a little more work for us by providing a ServiceHostFactory that we can use which automatically attaches the requisite behaviour to our endpoints for us. To use this in an IIS hosted service, we can modify the .SVC file to specify this ne factory to use like so: <%@ ServiceHost Language="C#" Debug="true" Service="SingleWSDL_WcfService.Service1" Factory="Thinktecture.ServiceModel.Extensions.Description.FlatWsdlServiceHostFactory" %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Within a service application or another form of executable such as a console app, we can simply create an instance of the custom service host and open it as we normally would as shown here: FlatWsdlServiceHost host = new FlatWsdlServiceHost(typeof(Service1)); host.Open(); And we are done. WCF will now generate one single WSDL file that contains all he WSDL imports and data/XSD imports. You can download the full source code for this sample from here Hope this has helped you. Note: Please note that I have not extensively tested this in a number of different scenarios so no guarantees there.Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Making WCF Output a single WSDL file for interop purposes.

    - by Glav
    By default, when WCF emits a WSDL definition for your services, it can often contain many links to others related schemas that need to be imported. For the most part, this is fine. WCF clients understand this type of schema without issue, and it conforms to the requisite standards as far as WSDL definitions go. However, some non Microsoft stacks will only work with a single WSDL file and require that all definitions for the service(s) (port types, messages, operation etc…) are contained within that single file. In other words, no external imports are supported. Some Java clients (to my working knowledge) have this limitation. This obviously presents a problem when trying to create services exposed for consumption and interop by these clients. Note: You can download the full source code for this sample from here To illustrate this point, lets say we have a simple service that looks like: Service Contract public interface IService1 { [OperationContract] [FaultContract(typeof(DataFault))] string GetData(DataModel1 model); [OperationContract] [FaultContract(typeof(DataFault))] string GetMoreData(DataModel2 model); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Service Implementation/Behaviour public class Service1 : IService1 { public string GetData(DataModel1 model) { return string.Format("Some Field was: {0} and another field was {1}", model.SomeField,model.AnotherField); } public string GetMoreData(DataModel2 model) { return string.Format("Name: {0}, age: {1}", model.Name, model.Age); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Configuration File <system.serviceModel> <services> <service name="SingleWSDL_WcfService.Service1" behaviorConfiguration="SingleWSDL_WcfService.Service1Behavior"> <!-- ...std/default data omitted for brevity..... --> <endpoint address ="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" > ....... </services> <behaviors> <serviceBehaviors> <behavior name="SingleWSDL_WcfService.Service1Behavior"> ........ </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } When WCF is asked to produce a WSDL for this service, it will produce a file that looks something like this (note: some sections omitted for brevity): <?xml version="1.0" encoding="utf-8" ?> - <wsdl:definitions name="Service1" targetNamespace="http://tempuri.org/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...... namespace definitions omitted for brevity + &lt;wsp:Policy wsu:Id="WSHttpBinding_IService1_policy"> ... multiple policy items omitted for brevity </wsp:Policy> - <wsdl:types> - <xsd:schema targetNamespace="http://tempuri.org/Imports"> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd0" namespace="http://tempuri.org/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd3" namespace="Http://SingleWSDL/Fault" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd1" namespace="http://schemas.microsoft.com/2003/10/Serialization/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd2" namespace="http://SingleWSDL/Model1" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd4" namespace="http://SingleWSDL/Model2" /> </xsd:schema> </wsdl:types> + <wsdl:message name="IService1_GetData_InputMessage"> .... </wsdl:message> - <wsdl:operation name="GetData"> ..... </wsdl:operation> - <wsdl:service name="Service1"> ....... </wsdl:service> </wsdl:definitions> The above snippet from the WSDL shows the external links and references that are generated by WCF for a relatively simple service. Note the xsd:import statements that reference external XSD definitions which are also generated by WCF. In order to get WCF to produce a single WSDL file, we first need to follow some good practices when it comes to WCF service definitions. Step 1: Define a namespace for your service contract. [ServiceContract(Namespace="http://SingleWSDL/Service1")] public interface IService1 { ...... } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Normally you would not use a literal string and may instead define a constant to use in your own application for the namespace. When this is applied and we generate the WSDL, we get the following statement inserted into the document: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl=wsdl0" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } All the previous imports have gone. If we follow this link, we will see that the XSD imports are now in this external WSDL file. Not really any benefit for our purposes. Step 2: Define a namespace for your service behaviour [ServiceBehavior(Namespace = "http://SingleWSDL/Service1")] public class Service1 : IService1 { ...... } As you can see, the namespace of the service behaviour should be the same as the service contract interface to which it implements. Failure to do these tasks will cause WCF to emit its default http://tempuri.org namespace all over the place and cause WCF to still generate import statements. This is also true if the namespace of the contract and behaviour differ. If you define one and not the other, defaults kick in, and you’ll find extra imports generated. While each of the previous 2 steps wont cause any less import statements to be generated, you will notice that namespace definitions within the WSDL have identical, well defined names. Step 3: Define a binding namespace In the configuration file, modify the endpoint configuration line item to iunclude a bindingNamespace attribute which is the same as that defined on the service behaviour and service contract <endpoint address="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" bindingNamespace="http://SingleWSDL/Service1"> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } However, this does not completely solve the issue. What this will do is remove the WSDL import statements like this one: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } from the generated WSDL. Finally…. the magic…. Step 4: Use a custom endpoint behaviour to read in external imports and include in the main WSDL output. In order to force WCF to output a single WSDL with all the required definitions, we need to define a custom WSDL Export extension that can be applied to any endpoints. This requires implementing the IWsdlExportExtension and IEndpointBehavior interfaces and then reading in any imported schemas, and adding that output to the main, flattened WSDL to be output. Sounds like fun right…..? Hmmm well maybe not. This step sounds a little hairy, but its actually quite easy thanks to some kind individuals who have already done this for us. As far as I know, there are 2 available implementations that we can easily use to perform the import and “WSDL flattening”.  WCFExtras which is on codeplex and FlatWsdl by Thinktecture. Both implementations actually do exactly the same thing with the imports and provide an endpoint behaviour, however FlatWsdl does a little more work for us by providing a ServiceHostFactory that we can use which automatically attaches the requisite behaviour to our endpoints for us. To use this in an IIS hosted service, we can modify the .SVC file to specify this ne factory to use like so: <%@ ServiceHost Language="C#" Debug="true" Service="SingleWSDL_WcfService.Service1" Factory="Thinktecture.ServiceModel.Extensions.Description.FlatWsdlServiceHostFactory" %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Within a service application or another form of executable such as a console app, we can simply create an instance of the custom service host and open it as we normally would as shown here: FlatWsdlServiceHost host = new FlatWsdlServiceHost(typeof(Service1)); host.Open(); And we are done. WCF will now generate one single WSDL file that contains all he WSDL imports and data/XSD imports. You can download the full source code for this sample from here Hope this has helped you. Note: Please note that I have not extensively tested this in a number of different scenarios so no guarantees there.

    Read the article

  • Creating a dynamic proxy generator – Part 1 – Creating the Assembly builder, Module builder and cach

    - by SeanMcAlinden
    I’ve recently started a project with a few mates to learn the ins and outs of Dependency Injection, AOP and a number of other pretty crucial patterns of development as we’ve all been using these patterns for a while but have relied totally on third part solutions to do the magic. We thought it would be interesting to really get into the details by rolling our own IoC container and hopefully learn a lot on the way, and you never know, we might even create an excellent framework. The open source project is called Rapid IoC and is hosted at http://rapidioc.codeplex.com/ One of the most interesting tasks for me is creating the dynamic proxy generator for enabling Aspect Orientated Programming (AOP). In this series of articles, I’m going to track each step I take for creating the dynamic proxy generator and I’ll try my best to explain what everything means - mainly as I’ll be using Reflection.Emit to emit a fair amount of intermediate language code (IL) to create the proxy types at runtime which can be a little taxing to read. It’s worth noting that building the proxy is without a doubt going to be slightly painful so I imagine there will be plenty of areas I’ll need to change along the way. Anyway lets get started…   Part 1 - Creating the Assembly builder, Module builder and caching mechanism Part 1 is going to be a really nice simple start, I’m just going to start by creating the assembly, module and type caches. The reason we need to create caches for the assembly, module and types is simply to save the overhead of recreating proxy types that have already been generated, this will be one of the important steps to ensure that the framework is fast… kind of important as we’re calling the IoC container ‘Rapid’ – will be a little bit embarrassing if we manage to create the slowest framework. The Assembly builder The assembly builder is what is used to create an assembly at runtime, we’re going to have two overloads, one will be for the actual use of the proxy generator, the other will be mainly for testing purposes as it will also save the assembly so we can use Reflector to examine the code that has been created. Here’s the code: DynamicAssemblyBuilder using System; using System.Reflection; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Assembly {     /// <summary>     /// Class for creating an assembly builder.     /// </summary>     internal static class DynamicAssemblyBuilder     {         #region Create           /// <summary>         /// Creates an assembly builder.         /// </summary>         /// <param name="assemblyName">Name of the assembly.</param>         public static AssemblyBuilder Create(string assemblyName)         {             AssemblyName name = new AssemblyName(assemblyName);               AssemblyBuilder assembly = AppDomain.CurrentDomain.DefineDynamicAssembly(                     name, AssemblyBuilderAccess.Run);               DynamicAssemblyCache.Add(assembly);               return assembly;         }           /// <summary>         /// Creates an assembly builder and saves the assembly to the passed in location.         /// </summary>         /// <param name="assemblyName">Name of the assembly.</param>         /// <param name="filePath">The file path.</param>         public static AssemblyBuilder Create(string assemblyName, string filePath)         {             AssemblyName name = new AssemblyName(assemblyName);               AssemblyBuilder assembly = AppDomain.CurrentDomain.DefineDynamicAssembly(                     name, AssemblyBuilderAccess.RunAndSave, filePath);               DynamicAssemblyCache.Add(assembly);               return assembly;         }           #endregion     } }   So hopefully the above class is fairly explanatory, an AssemblyName is created using the passed in string for the actual name of the assembly. An AssemblyBuilder is then constructed with the current AppDomain and depending on the overload used, it is either just run in the current context or it is set up ready for saving. It is then added to the cache.   DynamicAssemblyCache using System.Reflection.Emit; using Rapid.DynamicProxy.Exceptions; using Rapid.DynamicProxy.Resources.Exceptions;   namespace Rapid.DynamicProxy.Assembly {     /// <summary>     /// Cache for storing the dynamic assembly builder.     /// </summary>     internal static class DynamicAssemblyCache     {         #region Declarations           private static object syncRoot = new object();         internal static AssemblyBuilder Cache = null;           #endregion           #region Adds a dynamic assembly to the cache.           /// <summary>         /// Adds a dynamic assembly builder to the cache.         /// </summary>         /// <param name="assemblyBuilder">The assembly builder.</param>         public static void Add(AssemblyBuilder assemblyBuilder)         {             lock (syncRoot)             {                 Cache = assemblyBuilder;             }         }           #endregion           #region Gets the cached assembly                  /// <summary>         /// Gets the cached assembly builder.         /// </summary>         /// <returns></returns>         public static AssemblyBuilder Get         {             get             {                 lock (syncRoot)                 {                     if (Cache != null)                     {                         return Cache;                     }                 }                   throw new RapidDynamicProxyAssertionException(AssertionResources.NoAssemblyInCache);             }         }           #endregion     } } The cache is simply a static property that will store the AssemblyBuilder (I know it’s a little weird that I’ve made it public, this is for testing purposes, I know that’s a bad excuse but hey…) There are two methods for using the cache – Add and Get, these just provide thread safe access to the cache.   The Module Builder The module builder is required as the create proxy classes will need to live inside a module within the assembly. Here’s the code: DynamicModuleBuilder using System.Reflection.Emit; using Rapid.DynamicProxy.Assembly; namespace Rapid.DynamicProxy.Module {     /// <summary>     /// Class for creating a module builder.     /// </summary>     internal static class DynamicModuleBuilder     {         /// <summary>         /// Creates a module builder using the cached assembly.         /// </summary>         public static ModuleBuilder Create()         {             string assemblyName = DynamicAssemblyCache.Get.GetName().Name;               ModuleBuilder moduleBuilder = DynamicAssemblyCache.Get.DefineDynamicModule                 (assemblyName, string.Format("{0}.dll", assemblyName));               DynamicModuleCache.Add(moduleBuilder);               return moduleBuilder;         }     } } As you can see, the module builder is created on the assembly that lives in the DynamicAssemblyCache, the module is given the assembly name and also a string representing the filename if the assembly is to be saved. It is then added to the DynamicModuleCache. DynamicModuleCache using System.Reflection.Emit; using Rapid.DynamicProxy.Exceptions; using Rapid.DynamicProxy.Resources.Exceptions; namespace Rapid.DynamicProxy.Module {     /// <summary>     /// Class for storing the module builder.     /// </summary>     internal static class DynamicModuleCache     {         #region Declarations           private static object syncRoot = new object();         internal static ModuleBuilder Cache = null;           #endregion           #region Add           /// <summary>         /// Adds a dynamic module builder to the cache.         /// </summary>         /// <param name="moduleBuilder">The module builder.</param>         public static void Add(ModuleBuilder moduleBuilder)         {             lock (syncRoot)             {                 Cache = moduleBuilder;             }         }           #endregion           #region Get           /// <summary>         /// Gets the cached module builder.         /// </summary>         /// <returns></returns>         public static ModuleBuilder Get         {             get             {                 lock (syncRoot)                 {                     if (Cache != null)                     {                         return Cache;                     }                 }                   throw new RapidDynamicProxyAssertionException(AssertionResources.NoModuleInCache);             }         }           #endregion     } }   The DynamicModuleCache is very similar to the assembly cache, it is simply a statically stored module with thread safe Add and Get methods.   The DynamicTypeCache To end off this post, I’m going to create the cache for storing the generated proxy classes. I’ve spent a fair amount of time thinking about the type of collection I should use to store the types and have finally decided that for the time being I’m going to use a generic dictionary. This may change when I can actually performance test the proxy generator but the time being I think it makes good sense in theory, mainly as it pretty much maintains it’s performance with varying numbers of items – almost constant (0)1. Plus I won’t ever need to loop through the items which is not the dictionaries strong point. Here’s the code as it currently stands: DynamicTypeCache using System; using System.Collections.Generic; using System.Security.Cryptography; using System.Text; namespace Rapid.DynamicProxy.Types {     /// <summary>     /// Cache for storing proxy types.     /// </summary>     internal static class DynamicTypeCache     {         #region Declarations           static object syncRoot = new object();         public static Dictionary<string, Type> Cache = new Dictionary<string, Type>();           #endregion           /// <summary>         /// Adds a proxy to the type cache.         /// </summary>         /// <param name="type">The type.</param>         /// <param name="proxy">The proxy.</param>         public static void AddProxyForType(Type type, Type proxy)         {             lock (syncRoot)             {                 Cache.Add(GetHashCode(type.AssemblyQualifiedName), proxy);             }         }           /// <summary>         /// Tries the type of the get proxy for.         /// </summary>         /// <param name="type">The type.</param>         /// <returns></returns>         public static Type TryGetProxyForType(Type type)         {             lock (syncRoot)             {                 Type proxyType;                 Cache.TryGetValue(GetHashCode(type.AssemblyQualifiedName), out proxyType);                 return proxyType;             }         }           #region Private Methods           private static string GetHashCode(string fullName)         {             SHA1CryptoServiceProvider provider = new SHA1CryptoServiceProvider();             Byte[] buffer = Encoding.UTF8.GetBytes(fullName);             Byte[] hash = provider.ComputeHash(buffer, 0, buffer.Length);             return Convert.ToBase64String(hash);         }           #endregion     } } As you can see, there are two public methods, one for adding to the cache and one for getting from the cache. Hopefully they should be clear enough, the Get is a TryGet as I do not want the dictionary to throw an exception if a proxy doesn’t exist within the cache. Other than that I’ve decided to create a key using the SHA1CryptoServiceProvider, this may change but my initial though is the SHA1 algorithm is pretty fast to put together using the provider and it is also very unlikely to have any hashing collisions. (there are some maths behind how unlikely this is – here’s the wiki if you’re interested http://en.wikipedia.org/wiki/SHA_hash_functions)   Anyway, that’s the end of part 1 – although I haven’t started any of the fun stuff (by fun I mean hairpulling, teeth grating Relfection.Emit style fun), I’ve got the basis of the DynamicProxy in place so all we have to worry about now is creating the types, interceptor classes, method invocation information classes and finally a really nice fluent interface that will abstract all of the hard-core craziness away and leave us with a lightning fast, easy to use AOP framework. Hope you find the series interesting. All of the source code can be viewed and/or downloaded at our codeplex site - http://rapidioc.codeplex.com/ Kind Regards, Sean.

    Read the article

  • Metro, Authentication, and the ASP.NET Web API

    - by Stephen.Walther
    Imagine that you want to create a Metro style app written with JavaScript and you want to communicate with a remote web service. For example, you are creating a movie app which retrieves a list of movies from a movies service. In this situation, how do you authenticate your Metro app and the Metro user so not just anyone can call the movies service? How can you identify the user making the request so you can return user specific data from the service? The Windows Live SDK supports a feature named Single Sign-On. When a user logs into a Windows 8 machine using their Live ID, you can authenticate the user’s identity automatically. Even better, when the Metro app performs a call to a remote web service, you can pass an authentication token to the remote service and prevent unauthorized access to the service. The documentation for Single Sign-On is located here: http://msdn.microsoft.com/en-us/library/live/hh826544.aspx In this blog entry, I describe the steps that you need to follow to use Single Sign-On with a (very) simple movie app. We build a Metro app which communicates with a web service created using the ASP.NET Web API. Creating the Visual Studio Solution Let’s start by creating a Visual Studio solution which contains two projects: a Windows Metro style Blank App project and an ASP.NET MVC 4 Web Application project. Name the Metro app MovieApp and the ASP.NET MVC application MovieApp.Services. When you create the ASP.NET MVC application, select the Web API template: After you create the two projects, your Visual Studio Solution Explorer window should look like this: Configuring the Live SDK You need to get your hands on the Live SDK and register your Metro app. You can download the latest version of the SDK (version 5.2) from the following address: http://www.microsoft.com/en-us/download/details.aspx?id=29938 After you download the Live SDK, you need to visit the following website to register your Metro app: https://manage.dev.live.com/build Don’t let the title of the website — Windows Push Notifications & Live Connect – confuse you, this is the right place. Follow the instructions at the website to register your Metro app. Don’t forget to follow the instructions in Step 3 for updating the information in your Metro app’s manifest. After you register, your client secret is displayed. Record this client secret because you will need it later (we use it with the web service): You need to configure one more thing. You must enter your Redirect Domain by visiting the following website: https://manage.dev.live.com/Applications/Index Click on your application name, click Edit Settings, click the API Settings tab, and enter a value for the Redirect Domain field. You can enter any domain that you please just as long as the domain has not already been taken: For the Redirect Domain, I entered http://superexpertmovieapp.com. Create the Metro MovieApp Next, we need to create the MovieApp. The MovieApp will: 1. Use Single Sign-On to log the current user into Live 2. Call the MoviesService web service 3. Display the results in a ListView control Because we use the Live SDK in the MovieApp, we need to add a reference to it. Right-click your References folder in the Solution Explorer window and add the reference: Here’s the HTML page for the Metro App: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title>MovieApp</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.1.0.RC/css/ui-dark.css" rel="stylesheet" /> <script src="//Microsoft.WinJS.1.0.RC/js/base.js"></script> <script src="//Microsoft.WinJS.1.0.RC/js/ui.js"></script> <!-- Live SDK --> <script type="text/javascript" src="/LiveSDKHTML/js/wl.js"></script> <!-- WebServices references --> <link href="/css/default.css" rel="stylesheet" /> <script src="/js/default.js"></script> </head> <body> <div id="tmplMovie" data-win-control="WinJS.Binding.Template"> <div class="movieItem"> <span data-win-bind="innerText:title"></span> <br /><span data-win-bind="innerText:director"></span> </div> </div> <div id="lvMovies" data-win-control="WinJS.UI.ListView" data-win-options="{ itemTemplate: select('#tmplMovie') }"> </div> </body> </html> The HTML page above contains a Template and ListView control. These controls are used to display the movies when the movies are returned from the movies service. Notice that the page includes a reference to the Live script that we registered earlier: <!-- Live SDK --> <script type="text/javascript" src="/LiveSDKHTML/js/wl.js"></script> The JavaScript code looks like this: (function () { "use strict"; var REDIRECT_DOMAIN = "http://superexpertmovieapp.com"; var WEBSERVICE_URL = "http://localhost:49743/api/movies"; function init() { WinJS.UI.processAll().done(function () { // Get element and control references var lvMovies = document.getElementById("lvMovies").winControl; // Login to Windows Live var scopes = ["wl.signin"]; WL.init({ scope: scopes, redirect_uri: REDIRECT_DOMAIN }); WL.login().then( function(response) { // Get the authentication token var authenticationToken = response.session.authentication_token; // Call the web service var options = { url: WEBSERVICE_URL, headers: { authenticationToken: authenticationToken } }; WinJS.xhr(options).done( function (xhr) { var movies = JSON.parse(xhr.response); var listMovies = new WinJS.Binding.List(movies); lvMovies.itemDataSource = listMovies.dataSource; }, function (xhr) { console.log(xhr.statusText); } ); }, function(response) { throw WinJS.ErrorFromName("Failed to login!"); } ); }); } document.addEventListener("DOMContentLoaded", init); })(); There are two constants which you need to set to get the code above to work: REDIRECT_DOMAIN and WEBSERVICE_URL. The REDIRECT_DOMAIN is the domain that you entered when registering your app with Live. The WEBSERVICE_URL is the path to your web service. You can get the correct value for WEBSERVICE_URL by opening the Project Properties for the MovieApp.Services project, clicking the Web tab, and getting the correct URL. The port number is randomly generated. In my code, I used the URL  “http://localhost:49743/api/movies”. Assuming that the user is logged into Windows 8 with a Live account, when the user runs the MovieApp, the user is logged into Live automatically. The user is logged in with the following code: // Login to Windows Live var scopes = ["wl.signin"]; WL.init({ scope: scopes, redirect_uri: REDIRECT_DOMAIN }); WL.login().then(function(response) { // Do something }); The scopes setting determines what the user has permission to do. For example, access the user’s SkyDrive or access the user’s calendar or contacts. The available scopes are listed here: http://msdn.microsoft.com/en-us/library/live/hh243646.aspx In our case, we only need the wl.signin scope which enables Single Sign-On. After the user signs in, you can retrieve the user’s Live authentication token. The authentication token is passed to the movies service to authenticate the user. Creating the Movies Service The Movies Service is implemented as an API controller in an ASP.NET MVC 4 Web API project. Here’s what the MoviesController looks like: using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using JWTSample; using MovieApp.Services.Models; namespace MovieApp.Services.Controllers { public class MoviesController : ApiController { const string CLIENT_SECRET = "NtxjF2wu7JeY1unvVN-lb0hoeWOMUFoR"; // GET api/values public HttpResponseMessage Get() { // Authenticate // Get authenticationToken var authenticationToken = Request.Headers.GetValues("authenticationToken").FirstOrDefault(); if (authenticationToken == null) { return new HttpResponseMessage(HttpStatusCode.Unauthorized); } // Validate token var d = new Dictionary<int, string>(); d.Add(0, CLIENT_SECRET); try { var myJWT = new JsonWebToken(authenticationToken, d); } catch { return new HttpResponseMessage(HttpStatusCode.Unauthorized); } // Return results return Request.CreateResponse( HttpStatusCode.OK, new List<Movie> { new Movie {Title="Star Wars", Director="Lucas"}, new Movie {Title="King Kong", Director="Jackson"}, new Movie {Title="Memento", Director="Nolan"} } ); } } } Because the Metro app performs an HTTP GET request, the MovieController Get() action is invoked. This action returns a set of three movies when, and only when, the authentication token is validated. The Movie class looks like this: using Newtonsoft.Json; namespace MovieApp.Services.Models { public class Movie { [JsonProperty(PropertyName="title")] public string Title { get; set; } [JsonProperty(PropertyName="director")] public string Director { get; set; } } } Notice that the Movie class uses the JsonProperty attribute to change Title to title and Director to director to make JavaScript developers happy. The Get() method validates the authentication token before returning the movies to the Metro app. To get authentication to work, you need to provide the client secret which you created at the Live management site. If you forgot to write down the secret, you can get it again here: https://manage.dev.live.com/Applications/Index The client secret is assigned to a constant at the top of the MoviesController class. The MoviesController class uses a helper class named JsonWebToken to validate the authentication token. This class was created by the Windows Live team. You can get the source code for the JsonWebToken class from the following GitHub repository: https://github.com/liveservices/LiveSDK/blob/master/Samples/Asp.net/AuthenticationTokenSample/JsonWebToken.cs You need to add an additional reference to your MVC project to use the JsonWebToken class: System.Runtime.Serialization. You can use the JsonWebToken class to get a unique and validated user ID like this: var user = myJWT.Claims.UserId; If you need to store user specific information then you can use the UserId property to uniquely identify the user making the web service call. Running the MovieApp When you first run the Metro MovieApp, you get a screen which asks whether the app should have permission to use Single Sign-On. This screen never appears again after you give permission once. Actually, when I first ran the app, I get the following error: According to the error, the app is blocked because “We detected some suspicious activity with your Online Id account. To help protect you, we’ve temporarily blocked your account.” This appears to be a bug in the current preview release of the Live SDK and there is more information about this bug here: http://social.msdn.microsoft.com/Forums/en-US/messengerconnect/thread/866c495f-2127-429d-ab07-842ef84f16ae/ If you click continue, and continue running the app, the error message does not appear again.  Summary The goal of this blog entry was to describe how you can validate Metro apps and Metro users when performing a call to a remote web service. First, I explained how you can create a Metro app which takes advantage of Single Sign-On to authenticate the current user against Live automatically. You learned how to register your Metro app with Live and how to include an authentication token in an Ajax call. Next, I explained how you can validate the authentication token – retrieved from the request header – in a web service. I discussed how you can use the JsonWebToken class to validate the authentication token and retrieve the unique user ID.

    Read the article

  • Enterprise Process Maps: A Process Picture worth a Million Words

    - by raul.goycoolea
    p { margin-bottom: 0.08in; }h1 { margin-top: 0.33in; margin-bottom: 0in; color: rgb(54, 95, 145); page-break-inside: avoid; }h1.western { font-family: "Cambria",serif; font-size: 14pt; }h1.cjk { font-family: "DejaVu Sans"; font-size: 14pt; }h1.ctl { font-size: 14pt; } Getting Started with Business Transformations A well-known proverb states that "A picture is worth a thousand words." In relation to Business Process Management (BPM), a credible analyst might have a few questions. What if the picture was taken from some particular angle, like directly overhead? What if it was taken from only an inch away or a mile away? What if the photographer did not focus the camera correctly? Does the value of the picture depend on who is looking at it? Enterprise Process Maps are analogous in this sense of relative value. Every BPM project (holistic BPM kick-off, enterprise system implementation, Service-oriented Architecture, business process transformation, corporate performance management, etc.) should be begin with a clear understanding of the business environment, from the biggest picture representations down to the lowest level required or desired for the particular project type, scope and objectives. The Enterprise Process Map serves as an entry point for the process architecture and is defined: the single highest level of process mapping for an organization. It is constructed and evaluated during the Strategy Phase of the Business Process Management Lifecycle. (see Figure 1) Fig. 1: Business Process Management Lifecycle Many organizations view such maps as visual abstractions, constructed for the single purpose of process categorization. This, in turn, results in a lesser focus on the inherent intricacies of the Enterprise Process view, which are explored in the course of this paper. With the main focus of a large scale process documentation effort usually underlying an ERP or other system implementation, it is common for the work to be driven by the desire to "get to the details," and to the type of modeling that will derive near-term tangible results. For instance, a project in American Pharmaceutical Company X is driven by the Director of IT. With 120+ systems in place, and a lack of standardized processes across the United States, he and the VP of IT have decided to embark on a long-term ERP implementation. At the forethought of both are questions, such as: How does my application architecture map to the business? What are each application's functionalities, and where do the business processes utilize them? Where can we retire legacy systems? Well-developed BPM methodologies prescribe numerous model types to capture such information and allow for thorough analysis in these areas. Process to application maps, Event Driven Process Chains, etc. provide this level of detail and facilitate the completion of such project-specific questions. These models and such analysis are appropriately carried out at a relatively low level of process detail. (see figure 2) Fig. 2: The Level Concept, Generic Process HierarchySome of the questions remaining are ones of documentation longevity, the continuation of BPM practice in the organization, process governance and ownership, process transparency and clarity in business process objectives and strategy. The Level Concept in Brief Figure 2 shows a generic, four-level process hierarchy depicting the breakdown of a "Process Area" into progressively more detailed process classifications. The number of levels and the names of these levels are flexible, and can be fit to the standards of the organization's chosen terminology or any other chosen reference model that makes logical sense for both short and long term process description. It is at Level 1 (in this case the Process Area level), that the Enterprise Process Map is created. This map and its contained objects become the foundation for a top-down approach to subsequent mapping, object relationship development, and analysis of the organization's processes and its supporting infrastructure. Additionally, this picture serves as a communication device, at an executive level, describing the design of the business in its service to a customer. It seems, then, imperative that the process development effort, and this map, start off on the right foot. Figuring out just what that right foot is, however, is critical and trend-setting in an evolving organization. Key Considerations Enterprise Process Maps are usually not as living and breathing as other process maps. Just as it would be an extremely difficult task to change the foundation of the Sears Tower or a city plan for the entire city of Chicago, the Enterprise Process view of an organization usually remains unchanged once developed (unless, of course, an organization is at a stage where it is capable of true, high-level process innovation). Regardless, the Enterprise Process map is a key first step, and one that must be taken in a precise way. What makes this groundwork solid depends on not only the materials used to construct it (process areas), but also the layout plan and knowledge base of what will be built (the entire process architecture). It seems reasonable that care and consideration are required to create this critical high level map... but what are the important factors? Does the process modeler need to worry about how many process areas there are? About who is looking at it? Should he only use the color pink because it's his boss' favorite color? Interestingly, and perhaps surprisingly, these are all valid considerations that may just require a bit of structure. Below are Three Key Factors to consider when building an Enterprise Process Map: Company Strategic Focus Process Categorization: Customer is Core End-to-end versus Functional Processes Company Strategic Focus As mentioned above, the Enterprise Process Map is created during the Strategy Phase of the Business Process Management Lifecycle. From Oracle Business Process Management methodology for business transformation, it is apparent that business processes exist for the purpose of achieving the strategic objectives of an organization. In a prescribed, top-down approach to process development, it must be ensured that each process fulfills its objectives, and in an aggregated manner, drives fulfillment of the strategic objectives of the company, whether for particular business segments or in a broader sense. This is a crucial point, as the strategic messages of the company must therefore resound in its process maps, in particular one that spans the processes of the complete business: the Enterprise Process Map. One simple example from Company X is shown below (see figure 3). Fig. 3: Company X Enterprise Process Map In reviewing Company X's Enterprise Process Map, one can immediately begin to understand the general strategic mindset of the organization. It shows that Company X is focused on its customers, defining 10 of its process areas belonging to customer-focused categories. Additionally, the organization views these end-customer-oriented process areas as part of customer-fulfilling value chains, while support process areas do not provide as much contiguous value. However, by including both support and strategic process categorizations, it becomes apparent that all processes are considered vital to the success of the customer-oriented focus processes. Below is an example from Company Y (see figure 4). Fig. 4: Company Y Enterprise Process Map Company Y, although also a customer-oriented company, sends a differently focused message with its depiction of the Enterprise Process Map. Along the top of the map is the company's product tree, overarching the process areas, which when executed deliver the products themselves. This indicates one strategic objective of excellence in product quality. Additionally, the view represents a less linear value chain, with strong overlaps of the various process areas. Marketing and quality management are seen as a key support processes, as they span the process lifecycle. Often, companies may incorporate graphics, logos and symbols representing customers and suppliers, and other objects to truly send the strategic message to the business. Other times, Enterprise Process Maps may show high level of responsibility to organizational units, or the application types that support the process areas. It is possible that hundreds of formats and focuses can be applied to an Enterprise Process Map. What is of vital importance, however, is which formats and focuses are chosen to truly represent the direction of the company, and serve as a driver for focusing the business on the strategic objectives set forth in that right. Process Categorization: Customer is Core In the previous two examples, processes were grouped using differing categories and techniques. Company X showed one support and three customer process categorizations using encompassing chevron objects; Customer Y achieved a less distinct categorization using a gradual color scheme. Either way, and in general, modeling of the process areas becomes even more valuable and easily understood within the context of business categorization, be it strategic or otherwise. But how one categorizes their processes is typically more complex than simply choosing object shapes and colors. Previously, it was stated that the ideal is a prescribed top-down approach to developing processes, to make certain linkages all the way back up to corporate strategy. But what about external influences? What forces push and pull corporate strategy? Industry maturity, product lifecycle, market profitability, competition, etc. can all drive the critical success factors of a particular business segment, or the company as a whole, in addition to previous corporate strategy. This may seem to be turning into a discussion of theory, but that is far from the case. In fact, in years of recent study and evolution of the way businesses operate, cross-industry and across the globe, one invariable has surfaced with such strength to make it undeniable in the game plan of any strategy fit for survival. That constant is the customer. Many of a company's critical success factors, in any business segment, relate to the customer: customer retention, satisfaction, loyalty, etc. Businesses serve customers, and so do a business's processes, mapped or unmapped. The most effective way to categorize processes is in a manner that visualizes convergence to what is core for a company. It is the value chain, beginning with the customer in mind, and ending with the fulfillment of that customer, that becomes the core or the centerpiece of the Enterprise Process Map. (See figure 5) Fig. 5: Company Z Enterprise Process Map Company Z has what may be viewed as several different perspectives or "cuts" baked into their Enterprise Process Map. It has divided its processes into three main categories (top, middle, and bottom) of Management Processes, the Core Value Chain and Supporting Processes. The Core category begins with Corporate Marketing (which contains the activities of beginning to engage customers) and ends with Customer Service Management. Within the value chain, this company has divided into the focus areas of their two primary business lines, Foods and Beverages. Does this mean that areas, such as Strategy, Information Management or Project Management are not as important as those in the Core category? No! In some cases, though, depending on the organization's understanding of high-level BPM concepts, use of category names, such as "Core," "Management" or "Support," can be a touchy subject. What is important to understand, is that no matter the nomenclature chosen, the Core processes are those that drive directly to customer value, Support processes are those which make the Core processes possible to execute, and Management Processes are those which steer and influence the Core. Some common terms for these three basic categorizations are Core, Customer Fulfillment, Customer Relationship Management, Governing, Controlling, Enabling, Support, etc. End-to-end versus Functional Processes Every high and low level of process: function, task, activity, process/work step (whatever an organization calls it), should add value to the flow of business in an organization. Suppose that within the process "Deliver package," there is a documented task titled "Stop for ice cream." It doesn't take a process expert to deduce the room for improvement. Though stopping for ice cream may create gain for the one person performing it, it likely benefits neither the organization nor, more importantly, the customer. In most cases, "Stop for ice cream" wouldn't make it past the first pass of To-Be process development. What would make the cut, however, would be a flow of tasks that, each having their own value add, build up to greater and greater levels of process objective. In this case, those tasks would combine to achieve a status of "package delivered." Figure 3 shows a simple example: Just as the package can only be delivered (outcome of the process) without first being retrieved, loaded, and the travel destination reached (outcomes of the process steps), some higher level of process "Play Practical Joke" (e.g., main process or process area) cannot be completed until a package is delivered. It seems that isolated or functionally separated processes, such as "Deliver Package" (shown in Figure 6), are necessary, but are always part of a bigger value chain. Each of these individual processes must be analyzed within the context of that value chain in order to ensure successful end-to-end process performance. For example, this company's "Create Joke Package" process could be operating flawlessly and efficiently, but if a joke is never developed, it cannot be created, so the end-to-end process breaks. Fig. 6: End to End Process Construction That being recognized, it is clear that processes must be viewed as end-to-end, customer-to-customer, and in the context of company strategy. But as can also be seen from the previous example, these vital end-to-end processes cannot be built without the functionally oriented building blocks. Without one, the other cannot be had, or at least not in a complete and organized fashion. As it turns out, but not discussed in depth here, the process modeling effort, BPM organizational development, and comprehensive coverage cannot be fully realized without a semi-functional, process-oriented approach. Then, an Enterprise Process Map should be concerned with both views, the building blocks, and access points to the business-critical end-to-end processes, which they construct. Without the functional building blocks, all streams of work needed for any business transformation would be lost mess of process disorganization. End-to-end views are essential for utilization in optimization in context, understanding customer impacts, base-lining all project phases and aligning objectives. Including both views on an Enterprise Process Map allows management to understand the functional orientation of the company's processes, while still providing access to end-to-end processes, which are most valuable to them. (See figures 7 and 8). Fig. 7: Simplified Enterprise Process Map with end-to-end Access Point The above examples show two unique ways to achieve a successful Enterprise Process Map. The first example is a simple map that shows a high level set of process areas and a separate section with the end-to-end processes of concern for the organization. This particular map is filtered to show just one vital end-to-end process for a project-specific focus. Fig. 8: Detailed Enterprise Process Map showing connected Functional Processes The second example shows a more complex arrangement and categorization of functional processes (the names of each process area has been removed). The end-to-end perspective is achieved at this level through the connections (interfaces at lower levels) between these functional process areas. An important point to note is that the organization of these two views of the Enterprise Process Map is dependent, in large part, on the orientation of its audience, and the complexity of the landscape at the highest level. If both are not apparent, the Enterprise Process Map is missing an opportunity to serve as a holistic, high-level view. Conclusion In the world of BPM, and specifically regarding Enterprise Process Maps, a picture can be worth as many words as the thought and effort that is put into it. Enterprise Process Maps alone cannot change an organization, but they serve more purposes than initially meet the eye, and therefore must be designed in a way that enables a BPM mindset, business process understanding and business transformation efforts. Every Enterprise Process Map will and should be different when looking across organizations. Its design will be driven by company strategy, a level of customer focus, and functional versus end-to-end orientations. This high-level description of the considerations of the Enterprise Process Maps is not a prescriptive "how to" guide. However, a company attempting to create one may not have the practical BPM experience to truly explore its options or impacts to the coming work of business process transformation. The biggest takeaway is that process modeling, at all levels, is a science and an art, and art is open to interpretation. It is critical that the modeler of the highest level of process mapping be a cognoscente of the message he is delivering and the factors at hand. Without sufficient focus on the design of the Enterprise Process Map, an entire BPM effort may suffer. For additional information please check: Oracle Business Process Management.

    Read the article

  • 64-bit Archives Needed

    - by user9154181
    A little over a year ago, we received a question from someone who was trying to build software on Solaris. He was getting errors from the ar command when creating an archive. At that time, the ar command on Solaris was a 32-bit command. There was more than 2GB of data, and the ar command was hitting the file size limit for a 32-bit process that doesn't use the largefile APIs. Even in 2011, 2GB is a very large amount of code, so we had not heard this one before. Most of our toolchain was extended to handle 64-bit sized data back in the 1990's, but archives were not changed, presumably because there was no perceived need for it. Since then of course, programs have continued to get larger, and in 2010, the time had finally come to investigate the issue and find a way to provide for larger archives. As part of that process, I had to do a deep dive into the archive format, and also do some Unix archeology. I'm going to record what I learned here, to document what Solaris does, and in the hope that it might help someone else trying to solve the same problem for their platform. Archive Format Details Archives are hardly cutting edge technology. They are still used of course, but their basic form hasn't changed in decades. Other than to fix a bug, which is rare, we don't tend to touch that code much. The archive file format is described in /usr/include/ar.h, and I won't repeat the details here. Instead, here is a rough overview of the archive file format, implemented by System V Release 4 (SVR4) Unix systems such as Solaris: Every archive starts with a "magic number". This is a sequence of 8 characters: "!<arch>\n". The magic number is followed by 1 or more members. A member starts with a fixed header, defined by the ar_hdr structure in/usr/include/ar.h. Immediately following the header comes the data for the member. Members must be padded at the end with newline characters so that they have even length. The requirement to pad members to an even length is a dead giveaway as to the age of the archive format. It tells you that this format dates from the 1970's, and more specifically from the era of 16-bit systems such as the PDP-11 that Unix was originally developed on. A 32-bit system would have required 4 bytes, and 64-bit systems such as we use today would probably have required 8 bytes. 2 byte alignment is a poor choice for ELF object archive members. 32-bit objects require 4 byte alignment, and 64-bit objects require 64-bit alignment. The link-editor uses mmap() to process archives, and if the members have the wrong alignment, we have to slide (copy) them to the correct alignment before we can access the ELF data structures inside. The archive format requires 2 byte padding, but it doesn't prohibit more. The Solaris ar command takes advantage of this, and pads ELF object members to 8 byte boundaries. Anything else is padded to 2 as required by the format. The archive header (ar_hdr) represents all numeric values using an ASCII text representation rather than as binary integers. This means that an archive that contains only text members can be viewed using tools such as cat, more, or a text editor. The original designers of this format clearly thought that archives would be used for many file types, and not just for objects. Things didn't turn out that way of course — nearly all archives contain relocatable objects for a single operating system and machine, and are used primarily as input to the link-editor (ld). Archives can have special members that are created by the ar command rather than being supplied by the user. These special members are all distinguished by having a name that starts with the slash (/) character. This is an unambiguous marker that says that the user could not have supplied it. The reason for this is that regular archive members are given the plain name of the file that was inserted to create them, and any path components are stripped off. Slash is the delimiter character used by Unix to separate path components, and as such cannot occur within a plain file name. The ar command hides the special members from you when you list the contents of an archive, so most users don't know that they exist. There are only two possible special members: A symbol table that maps ELF symbols to the object archive member that provides it, and a string table used to hold member names that exceed 15 characters. The '/' convention for tagging special members provides room for adding more such members should the need arise. As I will discuss below, we took advantage of this fact to add an alternate 64-bit symbol table special member which is used in archives that are larger than 4GB. When an archive contains ELF object members, the ar command builds a special archive member known as the symbol table that maps all ELF symbols in the object to the archive member that provides it. The link-editor uses this symbol table to determine which symbols are provided by the objects in that archive. If an archive has a symbol table, it will always be the first member in the archive, immediately following the magic number. Unlike member headers, symbol tables do use binary integers to represent offsets. These integers are always stored in big-endian format, even on a little endian host such as x86. The archive header (ar_hdr) provides 15 characters for representing the member name. If any member has a name that is longer than this, then the real name is written into a special archive member called the string table, and the member's name field instead contains a slash (/) character followed by a decimal representation of the offset of the real name within the string table. The string table is required to precede all normal archive members, so it will be the second member if the archive contains a symbol table, and the first member otherwise. The archive format is not designed to make finding a given member easy. Such operations move through the archive from front to back examining each member in turn, and run in O(n) time. This would be bad if archives were commonly used in that manner, but in general, they are not. Typically, the ar command is used to build an new archive from scratch, inserting all the objects in one operation, and then the link-editor accesses the members in the archive in constant time by using the offsets provided by the symbol table. Both of these operations are reasonably efficient. However, listing the contents of a large archive with the ar command can be rather slow. Factors That Limit Solaris Archive Size As is often the case, there was more than one limiting factor preventing Solaris archives from growing beyond the 32-bit limits of 2GB (32-bit signed) and 4GB (32-bit unsigned). These limits are listed in the order they are hit as archive size grows, so the earlier ones mask those that follow. The original Solaris archive file format can handle sizes up to 4GB without issue. However, the ar command was delivered as a 32-bit executable that did not use the largefile APIs. As such, the ar command itself could not create a file larger than 2GB. One can solve this by building ar with the largefile APIs which would allow it to reach 4GB, but a simpler and better answer is to deliver a 64-bit ar, which has the ability to scale well past 4GB. Symbol table offsets are stored as 32-bit big-endian binary integers, which limits the maximum archive size to 4GB. To get around this limit requires a different symbol table format, or an extension mechanism to the current one, similar in nature to the way member names longer than 15 characters are handled in member headers. The size field in the archive member header (ar_hdr) is an ASCII string capable of representing a 32-bit unsigned value. This places a 4GB size limit on the size of any individual member in an archive. In considering format extensions to get past these limits, it is important to remember that very few archives will require the ability to scale past 4GB for many years. The old format, while no beauty, continues to be sufficient for its purpose. This argues for a backward compatible fix that allows newer versions of Solaris to produce archives that are compatible with older versions of the system unless the size of the archive exceeds 4GB. Archive Format Differences Among Unix Variants While considering how to extend Solaris archives to scale to 64-bits, I wanted to know how similar archives from other Unix systems are to those produced by Solaris, and whether they had already solved the 64-bit issue. I've successfully moved archives between different Unix systems before with good luck, so I knew that there was some commonality. If it turned out that there was already a viable defacto standard for 64-bit archives, it would obviously be better to adopt that rather than invent something new. The archive file format is not formally standardized. However, the ar command and archive format were part of the original Unix from Bell Labs. Other systems started with that format, extending it in various often incompatible ways, but usually with the same common shared core. Most of these systems use the same magic number to identify their archives, despite the fact that their archives are not always fully compatible with each other. It is often true that archives can be copied between different Unix variants, and if the member names are short enough, the ar command from one system can often read archives produced on another. In practice, it is rare to find an archive containing anything other than objects for a single operating system and machine type. Such an archive is only of use on the type of system that created it, and is only used on that system. This is probably why cross platform compatibility of archives between Unix variants has never been an issue. Otherwise, the use of the same magic number in archives with incompatible formats would be a problem. I was able to find information for a number of Unix variants, described below. These can be divided roughly into three tribes, SVR4 Unix, BSD Unix, and IBM AIX. Solaris is a SVR4 Unix, and its archives are completely compatible with those from the other members of that group (GNU/Linux, HP-UX, and SGI IRIX). AIX AIX is an exception to rule that Unix archive formats are all based on the original Bell labs Unix format. It appears that AIX supports 2 formats (small and big), both of which differ in fundamental ways from other Unix systems: These formats use a different magic number than the standard one used by Solaris and other Unix variants. They include support for removing archive members from a file without reallocating the file, marking dead areas as unused, and reusing them when new archive items are inserted. They have a special table of contents member (File Member Header) which lets you find out everything that's in the archive without having to actually traverse the entire file. Their symbol table members are quite similar to those from other systems though. Their member headers are doubly linked, containing offsets to both the previous and next members. Of the Unix systems described here, AIX has the only format I saw that will have reasonable insert/delete performance for really large archives. Everyone else has O(n) performance, and are going to be slow to use with large archives. BSD BSD has gone through 4 versions of archive format, which are described in their manpage. They use the same member header as SVR4, but their symbol table format is different, and their scheme for long member names puts the name directly after the member header rather than into a string table. GNU/Linux The GNU toolchain uses the SVR4 format, and is compatible with Solaris. HP-UX HP-UX seems to follow the SVR4 model, and is compatible with Solaris. IRIX IRIX has 32 and 64-bit archives. The 32-bit format is the standard SVR4 format, and is compatible with Solaris. The 64-bit format is the same, except that the symbol table uses 64-bit integers. IRIX assumes that an archive contains objects of a single ELFCLASS/MACHINE, and any archive containing ELFCLASS64 objects receives a 64-bit symbol table. Although they only use it for 64-bit objects, nothing in the archive format limits it to ELFCLASS64. It would be perfectly valid to produce a 64-bit symbol table in an archive containing 32-bit objects, text files, or anything else. Tru64 Unix (Digital/Compaq/HP) Tru64 Unix uses a format much like ours, but their symbol table is a hash table, making specific symbol lookup much faster. The Solaris link-editor uses archives by examining the entire symbol table looking for unsatisfied symbols for the link, and not by looking up individual symbols, so there would be no benefit to Solaris from such a hash table. The Tru64 ld must use a different approach in which the hash table pays off for them. Widening the existing SVR4 archive symbol tables rather than inventing something new is the simplest path forward. There is ample precedent for this approach in the ELF world. When ELF was extended to support 64-bit objects, the approach was largely to take the existing data structures, and define 64-bit versions of them. We called the old set ELF32, and the new set ELF64. My guess is that there was no need to widen the archive format at that time, but had there been, it seems obvious that this is how it would have been done. The Implementation of 64-bit Solaris Archives As mentioned earlier, there was no desire to improve the fundamental nature of archives. They have always had O(n) insert/delete behavior, and for the most part it hasn't mattered. AIX made efforts to improve this, but those efforts did not find widespread adoption. For the purposes of link-editing, which is essentially the only thing that archives are used for, the existing format is adequate, and issues of backward compatibility trump the desire to do something technically better. Widening the existing symbol table format to 64-bits is therefore the obvious way to proceed. For Solaris 11, I implemented that, and I also updated the ar command so that a 64-bit version is run by default. This eliminates the 2 most significant limits to archive size, leaving only the limit on an individual archive member. We only generate a 64-bit symbol table if the archive exceeds 4GB, or when the new -S option to the ar command is used. This maximizes backward compatibility, as an archive produced by Solaris 11 is highly likely to be less than 4GB in size, and will therefore employ the same format understood by older versions of the system. The main reason for the existence of the -S option is to allow us to test the 64-bit format without having to construct huge archives to do so. I don't believe it will find much use outside of that. Other than the new ability to create and use extremely large archives, this change is largely invisible to the end user. When reading an archive, the ar command will transparently accept either form of symbol table. Similarly, the ELF library (libelf) has been updated to understand either format. Users of libelf (such as the link-editor ld) do not need to be modified to use the new format, because these changes are encapsulated behind the existing functions provided by libelf. As mentioned above, this work did not lift the limit on the maximum size of an individual archive member. That limit remains fixed at 4GB for now. This is not because we think objects will never get that large, for the history of computing says otherwise. Rather, this is based on an estimation that single relocatable objects of that size will not appear for a decade or two. A lot can change in that time, and it is better not to overengineer things by writing code that will sit and rot for years without being used. It is not too soon however to have a plan for that eventuality. When the time comes when this limit needs to be lifted, I believe that there is a simple solution that is consistent with the existing format. The archive member header size field is an ASCII string, like the name, and as such, the overflow scheme used for long names can also be used to handle the size. The size string would be placed into the archive string table, and its offset in the string table would then be written into the archive header size field using the same format "/ddd" used for overflowed names.

    Read the article

  • C#/.NET Little Wonders: The Useful But Overlooked Sets

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  Today we will be looking at two set implementations in the System.Collections.Generic namespace: HashSet<T> and SortedSet<T>.  Even though most people think of sets as mathematical constructs, they are actually very useful classes that can be used to help make your application more performant if used appropriately. A Background From Math In mathematical terms, a set is an unordered collection of unique items.  In other words, the set {2,3,5} is identical to the set {3,5,2}.  In addition, the set {2, 2, 4, 1} would be invalid because it would have a duplicate item (2).  In addition, you can perform set arithmetic on sets such as: Intersections: The intersection of two sets is the collection of elements common to both.  Example: The intersection of {1,2,5} and {2,4,9} is the set {2}. Unions: The union of two sets is the collection of unique items present in either or both set.  Example: The union of {1,2,5} and {2,4,9} is {1,2,4,5,9}. Differences: The difference of two sets is the removal of all items from the first set that are common between the sets.  Example: The difference of {1,2,5} and {2,4,9} is {1,5}. Supersets: One set is a superset of a second set if it contains all elements that are in the second set. Example: The set {1,2,5} is a superset of {1,5}. Subsets: One set is a subset of a second set if all the elements of that set are contained in the first set. Example: The set {1,5} is a subset of {1,2,5}. If We’re Not Doing Math, Why Do We Care? Now, you may be thinking: why bother with the set classes in C# if you have no need for mathematical set manipulation?  The answer is simple: they are extremely efficient ways to determine ownership in a collection. For example, let’s say you are designing an order system that tracks the price of a particular equity, and once it reaches a certain point will trigger an order.  Now, since there’s tens of thousands of equities on the markets, you don’t want to track market data for every ticker as that would be a waste of time and processing power for symbols you don’t have orders for.  Thus, we just want to subscribe to the stock symbol for an equity order only if it is a symbol we are not already subscribed to. Every time a new order comes in, we will check the list of subscriptions to see if the new order’s stock symbol is in that list.  If it is, great, we already have that market data feed!  If not, then and only then should we subscribe to the feed for that symbol. So far so good, we have a collection of symbols and we want to see if a symbol is present in that collection and if not, add it.  This really is the essence of set processing, but for the sake of comparison, let’s say you do a list instead: 1: // class that handles are order processing service 2: public sealed class OrderProcessor 3: { 4: // contains list of all symbols we are currently subscribed to 5: private readonly List<string> _subscriptions = new List<string>(); 6:  7: ... 8: } Now whenever you are adding a new order, it would look something like: 1: public PlaceOrderResponse PlaceOrder(Order newOrder) 2: { 3: // do some validation, of course... 4:  5: // check to see if already subscribed, if not add a subscription 6: if (!_subscriptions.Contains(newOrder.Symbol)) 7: { 8: // add the symbol to the list 9: _subscriptions.Add(newOrder.Symbol); 10: 11: // do whatever magic is needed to start a subscription for the symbol 12: } 13:  14: // place the order logic! 15: } What’s wrong with this?  In short: performance!  Finding an item inside a List<T> is a linear - O(n) – operation, which is not a very performant way to find if an item exists in a collection. (I used to teach algorithms and data structures in my spare time at a local university, and when you began talking about big-O notation you could immediately begin to see eyes glossing over as if it was pure, useless theory that would not apply in the real world, but I did and still do believe it is something worth understanding well to make the best choices in computer science). Let’s think about this: a linear operation means that as the number of items increases, the time that it takes to perform the operation tends to increase in a linear fashion.  Put crudely, this means if you double the collection size, you might expect the operation to take something like the order of twice as long.  Linear operations tend to be bad for performance because they mean that to perform some operation on a collection, you must potentially “visit” every item in the collection.  Consider finding an item in a List<T>: if you want to see if the list has an item, you must potentially check every item in the list before you find it or determine it’s not found. Now, we could of course sort our list and then perform a binary search on it, but sorting is typically a linear-logarithmic complexity – O(n * log n) - and could involve temporary storage.  So performing a sort after each add would probably add more time.  As an alternative, we could use a SortedList<TKey, TValue> which sorts the list on every Add(), but this has a similar level of complexity to move the items and also requires a key and value, and in our case the key is the value. This is why sets tend to be the best choice for this type of processing: they don’t rely on separate keys and values for ordering – so they save space – and they typically don’t care about ordering – so they tend to be extremely performant.  The .NET BCL (Base Class Library) has had the HashSet<T> since .NET 3.5, but at that time it did not implement the ISet<T> interface.  As of .NET 4.0, HashSet<T> implements ISet<T> and a new set, the SortedSet<T> was added that gives you a set with ordering. HashSet<T> – For Unordered Storage of Sets When used right, HashSet<T> is a beautiful collection, you can think of it as a simplified Dictionary<T,T>.  That is, a Dictionary where the TKey and TValue refer to the same object.  This is really an oversimplification, but logically it makes sense.  I’ve actually seen people code a Dictionary<T,T> where they store the same thing in the key and the value, and that’s just inefficient because of the extra storage to hold both the key and the value. As it’s name implies, the HashSet<T> uses a hashing algorithm to find the items in the set, which means it does take up some additional space, but it has lightning fast lookups!  Compare the times below between HashSet<T> and List<T>: Operation HashSet<T> List<T> Add() O(1) O(1) at end O(n) in middle Remove() O(1) O(n) Contains() O(1) O(n)   Now, these times are amortized and represent the typical case.  In the very worst case, the operations could be linear if they involve a resizing of the collection – but this is true for both the List and HashSet so that’s a less of an issue when comparing the two. The key thing to note is that in the general case, HashSet is constant time for adds, removes, and contains!  This means that no matter how large the collection is, it takes roughly the exact same amount of time to find an item or determine if it’s not in the collection.  Compare this to the List where almost any add or remove must rearrange potentially all the elements!  And to find an item in the list (if unsorted) you must search every item in the List. So as you can see, if you want to create an unordered collection and have very fast lookup and manipulation, the HashSet is a great collection. And since HashSet<T> implements ICollection<T> and IEnumerable<T>, it supports nearly all the same basic operations as the List<T> and can use the System.Linq extension methods as well. All we have to do to switch from a List<T> to a HashSet<T>  is change our declaration.  Since List and HashSet support many of the same members, chances are we won’t need to change much else. 1: public sealed class OrderProcessor 2: { 3: private readonly HashSet<string> _subscriptions = new HashSet<string>(); 4:  5: // ... 6:  7: public PlaceOrderResponse PlaceOrder(Order newOrder) 8: { 9: // do some validation, of course... 10: 11: // check to see if already subscribed, if not add a subscription 12: if (!_subscriptions.Contains(newOrder.Symbol)) 13: { 14: // add the symbol to the list 15: _subscriptions.Add(newOrder.Symbol); 16: 17: // do whatever magic is needed to start a subscription for the symbol 18: } 19: 20: // place the order logic! 21: } 22:  23: // ... 24: } 25: Notice, we didn’t change any code other than the declaration for _subscriptions to be a HashSet<T>.  Thus, we can pick up the performance improvements in this case with minimal code changes. SortedSet<T> – Ordered Storage of Sets Just like HashSet<T> is logically similar to Dictionary<T,T>, the SortedSet<T> is logically similar to the SortedDictionary<T,T>. The SortedSet can be used when you want to do set operations on a collection, but you want to maintain that collection in sorted order.  Now, this is not necessarily mathematically relevant, but if your collection needs do include order, this is the set to use. So the SortedSet seems to be implemented as a binary tree (possibly a red-black tree) internally.  Since binary trees are dynamic structures and non-contiguous (unlike List and SortedList) this means that inserts and deletes do not involve rearranging elements, or changing the linking of the nodes.  There is some overhead in keeping the nodes in order, but it is much smaller than a contiguous storage collection like a List<T>.  Let’s compare the three: Operation HashSet<T> SortedSet<T> List<T> Add() O(1) O(log n) O(1) at end O(n) in middle Remove() O(1) O(log n) O(n) Contains() O(1) O(log n) O(n)   The MSDN documentation seems to indicate that operations on SortedSet are O(1), but this seems to be inconsistent with its implementation and seems to be a documentation error.  There’s actually a separate MSDN document (here) on SortedSet that indicates that it is, in fact, logarithmic in complexity.  Let’s put it in layman’s terms: logarithmic means you can double the collection size and typically you only add a single extra “visit” to an item in the collection.  Take that in contrast to List<T>’s linear operation where if you double the size of the collection you double the “visits” to items in the collection.  This is very good performance!  It’s still not as performant as HashSet<T> where it always just visits one item (amortized), but for the addition of sorting this is a good thing. Consider the following table, now this is just illustrative data of the relative complexities, but it’s enough to get the point: Collection Size O(1) Visits O(log n) Visits O(n) Visits 1 1 1 1 10 1 4 10 100 1 7 100 1000 1 10 1000   Notice that the logarithmic – O(log n) – visit count goes up very slowly compare to the linear – O(n) – visit count.  This is because since the list is sorted, it can do one check in the middle of the list, determine which half of the collection the data is in, and discard the other half (binary search).  So, if you need your set to be sorted, you can use the SortedSet<T> just like the HashSet<T> and gain sorting for a small performance hit, but it’s still faster than a List<T>. Unique Set Operations Now, if you do want to perform more set-like operations, both implementations of ISet<T> support the following, which play back towards the mathematical set operations described before: IntersectWith() – Performs the set intersection of two sets.  Modifies the current set so that it only contains elements also in the second set. UnionWith() – Performs a set union of two sets.  Modifies the current set so it contains all elements present both in the current set and the second set. ExceptWith() – Performs a set difference of two sets.  Modifies the current set so that it removes all elements present in the second set. IsSupersetOf() – Checks if the current set is a superset of the second set. IsSubsetOf() – Checks if the current set is a subset of the second set. For more information on the set operations themselves, see the MSDN description of ISet<T> (here). What Sets Don’t Do Don’t get me wrong, sets are not silver bullets.  You don’t really want to use a set when you want separate key to value lookups, that’s what the IDictionary implementations are best for. Also sets don’t store temporal add-order.  That is, if you are adding items to the end of a list all the time, your list is ordered in terms of when items were added to it.  This is something the sets don’t do naturally (though you could use a SortedSet with an IComparer with a DateTime but that’s overkill) but List<T> can. Also, List<T> allows indexing which is a blazingly fast way to iterate through items in the collection.  Iterating over all the items in a List<T> is generally much, much faster than iterating over a set. Summary Sets are an excellent tool for maintaining a lookup table where the item is both the key and the value.  In addition, if you have need for the mathematical set operations, the C# sets support those as well.  The HashSet<T> is the set of choice if you want the fastest possible lookups but don’t care about order.  In contrast the SortedSet<T> will give you a sorted collection at a slight reduction in performance.   Technorati Tags: C#,.Net,Little Wonders,BlackRabbitCoder,ISet,HashSet,SortedSet

    Read the article

  • CodePlex Daily Summary for Friday, September 21, 2012

    CodePlex Daily Summary for Friday, September 21, 2012Popular ReleasesWPF Application Framework (WAF): WPF Application Framework (WAF) 2.5.0.8: Version: 2.5.0.8 (Milestone 8): This release contains the source code of the WPF Application Framework (WAF) and the sample applications. Requirements .NET Framework 4.0 (The package contains a solution file for Visual Studio 2010) The unit test projects require Visual Studio 2010 Professional Changelog Legend: [B] Breaking change; [O] Marked member as obsolete WAF: Mark the class DataModel as serializable. InfoMan: Minor improvements. InfoMan: Add unit tests for all modules. Othe...LogicCircuit: LogicCircuit 2.12.9.20: Logic Circuit - is educational software for designing and simulating logic circuits. Intuitive graphical user interface, allows you to create unrestricted circuit hierarchy with multi bit buses, debug circuits behavior with oscilloscope, and navigate running circuits hierarchy. Changes of this versionToolbars on text note dialog are more flexible now. You can select font face, size, color, and background of text you are typing. RAM now can be initialized to one of the following: random va...$linq - A Javascript LINQ library: Version 1.1: Version 1.1 Implemented batch, equiZip, zipLongest, prepend, pad, padWith, toJQuery, pipe, singleOrFallback, indexOf, indexOfElement, lastIndexOf, lastIndexOfElement, scan, prescan, and aggregate operators.Huo Chess: Huo Chess 0.95: The Huo Chess 0.95 version has an improved chessboard analysis function so as to be able to see which squares are the dangerous squares in the chessboard. This allows the computer to understand better when it is threatened. Two editions are included: Huo Chess 0.95 Console Application (57 KB in size) Huo Chess 0.95 Windows Application with GUI (119 KB in size) See http://harmoniaphilosophica.wordpress.com/2011/09/28/how-to-develop-a-chess-program-for-2jszrulazj6wq-23/ for the infamous How...SiteMap Editor for Microsoft Dynamics CRM 2011: SiteMap Editor (1.1.2020.421): New features: Disable a specific part of SiteMap to keep the data without displaying them in the CRM application. It simply comments XML part of the sitemap (thanks to rboyers for this feature request) Right click an item and click on "Disable" to disable it Items disabled are greyed and a suffix "- disabled" is added Right click an item and click on "Enable" to enable it Refresh list of web resources in the web resources pickerAJAX Control Toolkit: September 2012 Release: AJAX Control Toolkit Release Notes - September 2012 Release Version 60919September 2012 release of the AJAX Control Toolkit. AJAX Control Toolkit .NET 4.5 – AJAX Control Toolkit for .NET 4.5 and sample site (Recommended). AJAX Control Toolkit .NET 4 – AJAX Control Toolkit for .NET 4 and sample site (Recommended). AJAX Control Toolkit .NET 3.5 – AJAX Control Toolkit for .NET 3.5 and sample site (Recommended). Notes: - The current version of the AJAX Control Toolkit is not compatible with ...Lib.Web.Mvc & Yet another developer blog: Lib.Web.Mvc 6.1.0: Lib.Web.Mvc is a library which contains some helper classes for ASP.NET MVC such as strongly typed jqGrid helper, XSL transformation HtmlHelper/ActionResult, FileResult with range request support, custom attributes and more. Release contains: Lib.Web.Mvc.dll with xml documentation file Standalone documentation in chm file and change log Library source code Sample application for strongly typed jqGrid helper is available here. Sample application for XSL transformation HtmlHelper/ActionRe...Sense/Net CMS - Enterprise Content Management: SenseNet 6.1.2 Community Edition: Sense/Net 6.1.2 Community EditionMain new featuresOur current release brings a lot of bugfixes, including the resolution of js/css editing cache issues, xlsx file handling from Office, expense claim demo workspace fixes and much more. Besides fixes 6.1.2 introduces workflow start options and other minor features like a reusable Reject client button for approval scenarios and resource editor enhancements. We have also fixed an issue with our install package to bring you a flawless installation...WinRT XAML Toolkit: WinRT XAML Toolkit - 1.2.3: WinRT XAML Toolkit based on the Windows 8 RTM SDK. Download the latest source from the SOURCE CODE page. For compiled version use NuGet. You can add it to your project in Visual Studio by going to View/Other Windows/Package Manager Console and entering: PM> Install-Package winrtxamltoolkit Features AsyncUI extensions Controls and control extensions Converters Debugging helpers Imaging IO helpers VisualTree helpers Samples Recent changes NOTE: Namespace changes DebugConsol...Python Tools for Visual Studio: 1.5 RC: PTVS 1.5RC Available! We’re pleased to announce the release of Python Tools for Visual Studio 1.5 RC. Python Tools for Visual Studio (PTVS) is an open-source plug-in for Visual Studio which supports programming with the Python language. PTVS supports a broad range of features including CPython/IronPython, Edit/Intellisense/Debug/Profile, Cloud, HPC, IPython, etc. support. The primary new feature for the 1.5 release is Django including Azure support! The http://www.djangoproject.com is a pop...Launchbar: Lanchbar 4.0.0: First public release.AssaultCube Reloaded: 2.5.4 -: Linux has Ubuntu 11.10 32-bit precompiled binaries and Ubuntu 10.10 64-bit precompiled binaries, but you can compile your own as it also contains the source. If you are using Mac or other operating systems, please wait while we try to package for those OSes. Try to compile it. If it fails, download a virtual machine. The server pack is ready for both Windows and Linux, but you might need to compile your own for Linux (source included) Changelog: New logo Improved airstrike! Reset nukes...Extended WPF Toolkit: Extended WPF Toolkit - 1.7.0: Want an easier way to install the Extended WPF Toolkit?The Extended WPF Toolkit is available on Nuget. What's new in the 1.7.0 Release?New controls Zoombox Pie New features / bug fixes PropertyGrid.ShowTitle property added to allow showing/hiding the PropertyGrid title. Modifications to the PropertyGrid.EditorDefinitions collection will now automatically be applied to the PropertyGrid. Modifications to the PropertyGrid.PropertyDefinitions collection will now be reflected automaticaly...JayData - The cross-platform HTML5 data-management library for JavaScript: JayData 1.2: JayData is a unified data access library for JavaScript to CRUD + Query data from different sources like OData, MongoDB, WebSQL, SqLite, Facebook or YQL. The library can be integrated with Knockout.js or Sencha Touch 2 and can be used on Node.js as well. See it in action in this 6 minutes video Sencha Touch 2 example app using JayData: Netflix browser. What's new in JayData 1.2 For detailed release notes check the release notes. JayData core: all async operations now support promises JayDa...????????API for .Net SDK: SDK for .Net ??? Release 4: 2012?9?17??? ?????,???????????????。 ?????Release 3??????,???????,???,??? ??????????????????SDK,????????。 ??,??????? That's all.VidCoder: 1.4.0 Beta: First Beta release! Catches up to HandBrake nightlies with SVN 4937. Added PGS (Blu-ray) subtitle support. Additional framerates available: 30, 50, 59.94, 60 Additional sample rates available: 8, 11.025, 12 and 16 kHz Additional higher bitrates available for audio. Same as Source Constant Framerate available. Added Apple TV 3 preset. Added new Bob deinterlacing option. Introduced process isolation for encodes. Now if HandBrake crashes, VidCoder will keep running and continue pro...DNN Metro7 style Skin package: Metro7 style Skin for DotNetNuke 06.02.01: Stabilization release fixed this issues: Links not worked on FF, Chrome and Safari Modified packaging with own manifest file for install and source package. Moved the user Image on the Login to the left side. Moved h2 font-size to 24px. Note : This release Comes w/o source package about we still work an a solution. Who Needs the Visual Studio source files please go to source and download it from there. Known 16 CSS issues that related to the skin.css. All others are DNN default o...Visual Studio Icon Patcher: Version 1.5.1: This fixes a bug in the 1.5 release where it would crash when no language packs were installed for VS2010.VFPX: Desktop Alerts 1.0.2: This update for the Desktop Alerts contains changes to behavior for setting custom sounds for alerts. I have removed ALERTWAV.TXT from the project, and also removed DA_DEFAULTSOUND from the VFPALERT.H file. The AlertManager class and Alert class both have a "default" cSound of ADDBS(JUSTPATH(_VFP.ServerName))+"alert.wav" --- so, as long as you distribute a sound file with the file name "alert.wav" along with the EXE, that file will be used. You can set your own sound file globally by setti...MCEBuddy 2.x: MCEBuddy 2.2.15: Changelog for 2.2.15 (32bit and 64bit) 1. Added support for %originalfilepath% to get the source file full path. Used for custom commands only. 2. Added support for better parsing of Media Portal XML files to extract ShowName and Episode Name and download additional details from TVDB (like Season No, Episode No etc). 3. Added support for TVDB seriesID in metadata 4. Added support for eMail non blocking UI testNew ProjectsAppDevPoint: Cross-platform development tool for native applications without rewriting the business logic code but maintaining the speed and appearance of the OS.Author-it Plugin Hello World: A simple plug-in to help developers understand how to create a plug-in for Author-it. Build SharePoint Applications with Windows 8: Create a SharePoint Lists reader for Windows Store apps using C#/VB and XAML via WCFCatwitter - a WinRT example with Twitter and Catel: WinRT example of Catel in combination with Twitter.Community xPress MDS: Community xPress MDS is intended to serve as a reference Master Data Management implementation and learning tool for those interested in MDS & DQS.ControlDesktop: My LoveDITA to Author-it Plugin: This project is an Author-it plug-in that allows you to import several files types into Author-it, including DITA. EasyPrint: Straight forward class used to print text documents in Embarcadero's C++ Builder. Wraps the TPrinter object to allow a programmer to print pages of text.Ffmpeg converter: This is a tool that monitors folders and that converts then to the desired format. Feel free to contributeHCIProject: HCI tantárgy házi feladata, mozimusor alkalmazás.Keyboard capture of F1 and F2 (and others) in Compact Framework: How to capture F1 and F2 in Compact Framework on Windows Embedded Handheld 6.5.3MCSave: Automatically "reload" to a previous point your Minecraft game. Lose all your diamonds to that conveniently place pool of lava? Not anymore.Microsoft Dynamics CRM 2011 Event Binder: Bind form events for CRM 2011 entities without drilling into a CRM form entity. An easier way to manage CRM jJavascript events.Mini Author-it Exporter: This is a minimal console application written in .NET/C# that exports a topic from Author-it, displays it, then closes. Mini Author-it Importer: A minimal importer for the Author-it system.MyMediaStore: Sistema para registro de mídias de acervo no computador. Versão atual: 1.0.2 - RTM. Nesta versão: Registro de vídeos. Visualização de vídeos. NAV Metro: Dynamics NAV 2013 Metro App framework.netcloud: dfdfPlanar Mechanism Kinematic Simulator (PMKS): PMKS returns quick and accurate results for the position, velocity, and acceleration of rigid bodies connected as planar mechanisms.Project Austin: Austin is a digital note-taking app for Windows 8.robintools: nothing is doingSalud Ocupacional: salud ocupacionalText-Based Calculator: Text-based calculator that accepts a string of input and performs mathematical operations on the numeric values represented by the data in the string. Tôi di h?i l?: This project only have Vietnamese version and follow function from I Paid a Bribe.comtuXXdo: This is extended from Orchard blog engine.Xiaoweiyu toolkit: toolsXiaoweiyu website: just a test

    Read the article

  • CodePlex Daily Summary for Sunday, September 23, 2012

    CodePlex Daily Summary for Sunday, September 23, 2012Popular ReleasesPlayer Framework by Microsoft: Player Framework for Windows 8 (Preview 6): IMPORTANT: List of breaking changes from preview 5 Added separate samples download with .vsix dependencies instead of source dependencies Support for FreeWheel SmartXML ad responses Support for Smooth Streaming SDK DownloaderPlugins Support for VMAP and TTML polling for live scenarios Support for custom smooth streaming byte stream and scheme handlers Support for new play time and position tracking plugin Added IsLiveChanged event Added AdaptivePlugin.MaxBitrate property Add...WPF Application Framework (WAF): WPF Application Framework (WAF) 2.5.0.8: Version: 2.5.0.8 (Milestone 8): This release contains the source code of the WPF Application Framework (WAF) and the sample applications. Requirements .NET Framework 4.0 (The package contains a solution file for Visual Studio 2010) The unit test projects require Visual Studio 2010 Professional Changelog Legend: [B] Breaking change; [O] Marked member as obsolete WAF: Mark the class DataModel as serializable. InfoMan: Minor improvements. InfoMan: Add unit tests for all modules. Othe...LogicCircuit: LogicCircuit 2.12.9.20: Logic Circuit - is educational software for designing and simulating logic circuits. Intuitive graphical user interface, allows you to create unrestricted circuit hierarchy with multi bit buses, debug circuits behavior with oscilloscope, and navigate running circuits hierarchy. Changes of this versionToolbars on text note dialog are more flexible now. You can select font face, size, color, and background of text you are typing. RAM now can be initialized to one of the following: random va...Huo Chess: Huo Chess 0.95: The Huo Chess 0.95 version has an improved chessboard analysis function so as to be able to see which squares are the dangerous squares in the chessboard. This allows the computer to understand better when it is threatened. Two editions are included: Huo Chess 0.95 Console Application (57 KB in size) Huo Chess 0.95 Windows Application with GUI (119 KB in size) See http://harmoniaphilosophica.wordpress.com/2011/09/28/how-to-develop-a-chess-program-for-2jszrulazj6wq-23/ for the infamous How...SiteMap Editor for Microsoft Dynamics CRM 2011: SiteMap Editor (1.1.2020.421): New features: Disable a specific part of SiteMap to keep the data without displaying them in the CRM application. It simply comments XML part of the sitemap (thanks to rboyers for this feature request) Right click an item and click on "Disable" to disable it Items disabled are greyed and a suffix "- disabled" is added Right click an item and click on "Enable" to enable it Refresh list of web resources in the web resources pickerAJAX Control Toolkit: September 2012 Release: AJAX Control Toolkit Release Notes - September 2012 Release Version 60919September 2012 release of the AJAX Control Toolkit. AJAX Control Toolkit .NET 4.5 – AJAX Control Toolkit for .NET 4.5 and sample site (Recommended). AJAX Control Toolkit .NET 4 – AJAX Control Toolkit for .NET 4 and sample site (Recommended). AJAX Control Toolkit .NET 3.5 – AJAX Control Toolkit for .NET 3.5 and sample site (Recommended). Notes: - The current version of the AJAX Control Toolkit is not compatible with ...Sense/Net CMS - Enterprise Content Management: SenseNet 6.1.2 Community Edition: Sense/Net 6.1.2 Community EditionMain new featuresOur current release brings a lot of bugfixes, including the resolution of js/css editing cache issues, xlsx file handling from Office, expense claim demo workspace fixes and much more. Besides fixes 6.1.2 introduces workflow start options and other minor features like a reusable Reject client button for approval scenarios and resource editor enhancements. We have also fixed an issue with our install package to bring you a flawless installation...WinRT XAML Toolkit: WinRT XAML Toolkit - 1.2.3: WinRT XAML Toolkit based on the Windows 8 RTM SDK. Download the latest source from the SOURCE CODE page. For compiled version use NuGet. You can add it to your project in Visual Studio by going to View/Other Windows/Package Manager Console and entering: PM> Install-Package winrtxamltoolkit Features AsyncUI extensions Controls and control extensions Converters Debugging helpers Imaging IO helpers VisualTree helpers Samples Recent changes NOTE: Namespace changes DebugConsol...Python Tools for Visual Studio: 1.5 RC: PTVS 1.5RC Available! We’re pleased to announce the release of Python Tools for Visual Studio 1.5 RC. Python Tools for Visual Studio (PTVS) is an open-source plug-in for Visual Studio which supports programming with the Python language. PTVS supports a broad range of features including CPython/IronPython, Edit/Intellisense/Debug/Profile, Cloud, HPC, IPython, etc. support. The primary new feature for the 1.5 release is Django including Azure support! The http://www.djangoproject.com is a pop...Launchbar: Lanchbar 4.0.0: This application requires .NET 4.5 which you can find here: www.microsoft.com/visualstudio/downloadsAssaultCube Reloaded: 2.5.4 -: Linux has Ubuntu 11.10 32-bit precompiled binaries and Ubuntu 10.10 64-bit precompiled binaries, but you can compile your own as it also contains the source. If you are using Mac or other operating systems, please wait while we try to package for those OSes. Try to compile it. If it fails, download a virtual machine. The server pack is ready for both Windows and Linux, but you might need to compile your own for Linux (source included) Changelog: New logo Improved airstrike! Reset nukes...Extended WPF Toolkit: Extended WPF Toolkit - 1.7.0: Want an easier way to install the Extended WPF Toolkit?The Extended WPF Toolkit is available on Nuget. What's new in the 1.7.0 Release?New controls Zoombox Pie New features / bug fixes PropertyGrid.ShowTitle property added to allow showing/hiding the PropertyGrid title. Modifications to the PropertyGrid.EditorDefinitions collection will now automatically be applied to the PropertyGrid. Modifications to the PropertyGrid.PropertyDefinitions collection will now be reflected automaticaly...JayData - The cross-platform HTML5 data-management library for JavaScript: JayData 1.2: JayData is a unified data access library for JavaScript to CRUD + Query data from different sources like OData, MongoDB, WebSQL, SqLite, Facebook or YQL. The library can be integrated with Knockout.js or Sencha Touch 2 and can be used on Node.js as well. See it in action in this 6 minutes video Sencha Touch 2 example app using JayData: Netflix browser. What's new in JayData 1.2 For detailed release notes check the release notes. JayData core: all async operations now support promises JayDa...LiteBlog (MVC): LiteBlog 1.32: Features added Tree View in Archive widget Upgraded from ASP.NET MVC 3 to MVC 4 Refactored most popular code Added ATOM feed Minor changes to styles????????API for .Net SDK: SDK for .Net ??? Release 4: 2012?9?17??? ?????,???????????????。 ?????Release 3??????,???????,???,??? ??????????????????SDK,????????。 ??,??????? That's all.VidCoder: 1.4.0 Beta: First Beta release! Catches up to HandBrake nightlies with SVN 4937. Added PGS (Blu-ray) subtitle support. Additional framerates available: 30, 50, 59.94, 60 Additional sample rates available: 8, 11.025, 12 and 16 kHz Additional higher bitrates available for audio. Same as Source Constant Framerate available. Added Apple TV 3 preset. Added new Bob deinterlacing option. Introduced process isolation for encodes. Now if HandBrake crashes, VidCoder will keep running and continue pro...DNN Metro7 style Skin package: Metro7 style Skin for DotNetNuke 06.02.01: Stabilization release fixed this issues: Links not worked on FF, Chrome and Safari Modified packaging with own manifest file for install and source package. Moved the user Image on the Login to the left side. Moved h2 font-size to 24px. Note : This release Comes w/o source package about we still work an a solution. Who Needs the Visual Studio source files please go to source and download it from there. Known 16 CSS issues that related to the skin.css. All others are DNN default o...Online Image Editor: Online Image Editor: Features: In this tool, you can edit or adapt your Photo or Image Online in your browser. After uploading, you can adjust your photo by increasing/decreasing Brightness and Contrast. Several filters and effects are available to enhance your photo: Sepia, Sepia and Negative Effect. You can also add Text to your photos and you can choose from any number of common font types. You can adjust text position and color..NET Plugin Manager: 1.0.2012.0917: Provides complete functionality for tiered plugin loading, unloading, and plugin collection management. The Plugin abstract class defines the most primitive plugin requirements and logic. The PluginHost abstract class is a Plugin that loads other plugins. The PluginManager manages the filtering, loading and unloading of plugins. Plugins can be loaded using file path, directory path (with or without recursive directory look-up), and interface type filtering. A Plugin will only be instantia...Free DotNetNuke MultiFunction Skin: MultiFunction Free DotNetNuke Skin v01.02.00: Version 1.2.0 includes the following fixes Removed the clearfix class and is now using dnnClear that ships with DotNetNuke Includes a popupSkin.ascx that is used for the iframe inside the DNN 6 modal windows. Removed control panel DIV tag from all skins as it isn't used in DNN6. Removed left/right borders from the paneOutline class in DNN so that the LAYOUT mode displays without wrapping Had a fix in place for SubMenu CSS when you have a long sub menu Compiled against v6.2.1, requir...New Projects360gu: This project is only used to team build. Alarm Clock: This is a simple free open source MIT licensed alarm clock for Windows. It is less than a hundred lines of code. Written in Visual Studio C# 2010 EE.BlackIce: BlackIce project integrates the MVVM pattern with the MVC pattern providing a set of components that allow you to create a web application from scratch quickly.Casablanca Geodatabase Server: A sample prototype using the Casablanca SDK and the FileGDB API for accessing local geodatabases as GIS service.edx: edexFergo SimpleDXF: A simple DXF library to read layer and entities from DXF files. Easy to use and enough for those who only need the geometry data from the DXF file.Grupa 1 - projekt 1: KoniecIntelligent Bug Tracker System: Intelligent Bug Tracker System a new way to catch bugsKV Player: KV Player has been coded and developed solely by me using Windows Presentation Foundation 4.0. It has been coded in C# 4.0 and the UI has been designed in XAML.MarginCalc: Margin calculator for Windows 8 Metro.MiniProfilerWebFormsEnabler: Sets up MiniProfiler along with a URL you can call to enable/disable the MiniProfiler for your session. Secure File Encrypter: Secure file encrypter is a simple project allowing any user to encrypt or decrypt files on the go! You can use this to basically hide files from anyone!Simple Telnet Client Library: ??????c#?、???telnet?????。suidtool - Batch Matroska Segment UID Reader/Editor: A simple tool/frontend to the mkvtoolnix package to read and/or edit segment UIDs of Matroska files.test project kigod: summary hereUltra Subtitles: This project is registered and implemented as the capstone project for the team members in FPT University.US Elections App for WP7: Source code for the US Elections App (http://www.uselectionsapp.com) for Windows Phone 7. It uses the AgFx, TweetSharp, Northern Lights libsVisual Studio Shell Context Menu: Shell context menu extension for Visual Studio 2010 & 2012.

    Read the article

  • CodePlex Daily Summary for Saturday, September 22, 2012

    CodePlex Daily Summary for Saturday, September 22, 2012Popular ReleasesWPF Application Framework (WAF): WPF Application Framework (WAF) 2.5.0.8: Version: 2.5.0.8 (Milestone 8): This release contains the source code of the WPF Application Framework (WAF) and the sample applications. Requirements .NET Framework 4.0 (The package contains a solution file for Visual Studio 2010) The unit test projects require Visual Studio 2010 Professional Changelog Legend: [B] Breaking change; [O] Marked member as obsolete WAF: Mark the class DataModel as serializable. InfoMan: Minor improvements. InfoMan: Add unit tests for all modules. Othe...LogicCircuit: LogicCircuit 2.12.9.20: Logic Circuit - is educational software for designing and simulating logic circuits. Intuitive graphical user interface, allows you to create unrestricted circuit hierarchy with multi bit buses, debug circuits behavior with oscilloscope, and navigate running circuits hierarchy. Changes of this versionToolbars on text note dialog are more flexible now. You can select font face, size, color, and background of text you are typing. RAM now can be initialized to one of the following: random va...$linq - A Javascript LINQ library: Version 1.1: Version 1.1 Implemented batch, equiZip, zipLongest, prepend, pad, padWith, toJQuery, pipe, singleOrFallback, indexOf, indexOfElement, lastIndexOf, lastIndexOfElement, scan, prescan, and aggregate operators.Huo Chess: Huo Chess 0.95: The Huo Chess 0.95 version has an improved chessboard analysis function so as to be able to see which squares are the dangerous squares in the chessboard. This allows the computer to understand better when it is threatened. Two editions are included: Huo Chess 0.95 Console Application (57 KB in size) Huo Chess 0.95 Windows Application with GUI (119 KB in size) See http://harmoniaphilosophica.wordpress.com/2011/09/28/how-to-develop-a-chess-program-for-2jszrulazj6wq-23/ for the infamous How...Symphony Framework: Symphony Framework v2.0.0.2: Symphony Framework version 2.0.0.2. General note: If you install Symphony Framework 2.0.0.2 you must also install CodeGen 4.1.10 because a number of templates now utilise new features added to the tool. Added the user token PROJECTNAMESPACE to the “Symphony_Content.tpl” template to ensure that we can correctly reference the collection classes of the selection lists. Also added the ability to create object references to fields defined as having selection windows assigned. This enhancement ...Community xPress MDS: Initial MDS and DQS Models: Initial MDS & DQS ModelsSiteMap Editor for Microsoft Dynamics CRM 2011: SiteMap Editor (1.1.2020.421): New features: Disable a specific part of SiteMap to keep the data without displaying them in the CRM application. It simply comments XML part of the sitemap (thanks to rboyers for this feature request) Right click an item and click on "Disable" to disable it Items disabled are greyed and a suffix "- disabled" is added Right click an item and click on "Enable" to enable it Refresh list of web resources in the web resources pickerAJAX Control Toolkit: September 2012 Release: AJAX Control Toolkit Release Notes - September 2012 Release Version 60919September 2012 release of the AJAX Control Toolkit. AJAX Control Toolkit .NET 4.5 – AJAX Control Toolkit for .NET 4.5 and sample site (Recommended). AJAX Control Toolkit .NET 4 – AJAX Control Toolkit for .NET 4 and sample site (Recommended). AJAX Control Toolkit .NET 3.5 – AJAX Control Toolkit for .NET 3.5 and sample site (Recommended). Notes: - The current version of the AJAX Control Toolkit is not compatible with ...Lib.Web.Mvc & Yet another developer blog: Lib.Web.Mvc 6.1.0: Lib.Web.Mvc is a library which contains some helper classes for ASP.NET MVC such as strongly typed jqGrid helper, XSL transformation HtmlHelper/ActionResult, FileResult with range request support, custom attributes and more. Release contains: Lib.Web.Mvc.dll with xml documentation file Standalone documentation in chm file and change log Library source code Sample application for strongly typed jqGrid helper is available here. Sample application for XSL transformation HtmlHelper/ActionRe...Sense/Net CMS - Enterprise Content Management: SenseNet 6.1.2 Community Edition: Sense/Net 6.1.2 Community EditionMain new featuresOur current release brings a lot of bugfixes, including the resolution of js/css editing cache issues, xlsx file handling from Office, expense claim demo workspace fixes and much more. Besides fixes 6.1.2 introduces workflow start options and other minor features like a reusable Reject client button for approval scenarios and resource editor enhancements. We have also fixed an issue with our install package to bring you a flawless installation...WinRT XAML Toolkit: WinRT XAML Toolkit - 1.2.3: WinRT XAML Toolkit based on the Windows 8 RTM SDK. Download the latest source from the SOURCE CODE page. For compiled version use NuGet. You can add it to your project in Visual Studio by going to View/Other Windows/Package Manager Console and entering: PM> Install-Package winrtxamltoolkit Features AsyncUI extensions Controls and control extensions Converters Debugging helpers Imaging IO helpers VisualTree helpers Samples Recent changes NOTE: Namespace changes DebugConsol...Python Tools for Visual Studio: 1.5 RC: PTVS 1.5RC Available! We’re pleased to announce the release of Python Tools for Visual Studio 1.5 RC. Python Tools for Visual Studio (PTVS) is an open-source plug-in for Visual Studio which supports programming with the Python language. PTVS supports a broad range of features including CPython/IronPython, Edit/Intellisense/Debug/Profile, Cloud, HPC, IPython, etc. support. The primary new feature for the 1.5 release is Django including Azure support! The http://www.djangoproject.com is a pop...Launchbar: Lanchbar 4.0.0: This application requires .NET 4.5 which you can find here: www.microsoft.com/visualstudio/downloadsAssaultCube Reloaded: 2.5.4 -: Linux has Ubuntu 11.10 32-bit precompiled binaries and Ubuntu 10.10 64-bit precompiled binaries, but you can compile your own as it also contains the source. If you are using Mac or other operating systems, please wait while we try to package for those OSes. Try to compile it. If it fails, download a virtual machine. The server pack is ready for both Windows and Linux, but you might need to compile your own for Linux (source included) Changelog: New logo Improved airstrike! Reset nukes...Extended WPF Toolkit: Extended WPF Toolkit - 1.7.0: Want an easier way to install the Extended WPF Toolkit?The Extended WPF Toolkit is available on Nuget. What's new in the 1.7.0 Release?New controls Zoombox Pie New features / bug fixes PropertyGrid.ShowTitle property added to allow showing/hiding the PropertyGrid title. Modifications to the PropertyGrid.EditorDefinitions collection will now automatically be applied to the PropertyGrid. Modifications to the PropertyGrid.PropertyDefinitions collection will now be reflected automaticaly...JayData - The cross-platform HTML5 data-management library for JavaScript: JayData 1.2: JayData is a unified data access library for JavaScript to CRUD + Query data from different sources like OData, MongoDB, WebSQL, SqLite, Facebook or YQL. The library can be integrated with Knockout.js or Sencha Touch 2 and can be used on Node.js as well. See it in action in this 6 minutes video Sencha Touch 2 example app using JayData: Netflix browser. What's new in JayData 1.2 For detailed release notes check the release notes. JayData core: all async operations now support promises JayDa...????????API for .Net SDK: SDK for .Net ??? Release 4: 2012?9?17??? ?????,???????????????。 ?????Release 3??????,???????,???,??? ??????????????????SDK,????????。 ??,??????? That's all.VidCoder: 1.4.0 Beta: First Beta release! Catches up to HandBrake nightlies with SVN 4937. Added PGS (Blu-ray) subtitle support. Additional framerates available: 30, 50, 59.94, 60 Additional sample rates available: 8, 11.025, 12 and 16 kHz Additional higher bitrates available for audio. Same as Source Constant Framerate available. Added Apple TV 3 preset. Added new Bob deinterlacing option. Introduced process isolation for encodes. Now if HandBrake crashes, VidCoder will keep running and continue pro...DNN Metro7 style Skin package: Metro7 style Skin for DotNetNuke 06.02.01: Stabilization release fixed this issues: Links not worked on FF, Chrome and Safari Modified packaging with own manifest file for install and source package. Moved the user Image on the Login to the left side. Moved h2 font-size to 24px. Note : This release Comes w/o source package about we still work an a solution. Who Needs the Visual Studio source files please go to source and download it from there. Known 16 CSS issues that related to the skin.css. All others are DNN default o...Visual Studio Icon Patcher: Version 1.5.1: This fixes a bug in the 1.5 release where it would crash when no language packs were installed for VS2010.New ProjectsCodePlexDeployment: Please ignore, this project is for testing out some features of the WAWS deployment integrationDotNetNuke Social Dashboard: The DotNetNuke Social Dashboard gives DotNetNuke Administrators and insight into the social statistics of their site.EESTEC LC Trieste: .Event Log Mailer: Mails events from Windows' system Event Log which matches rules in configuration. Runs as Windows service and has super simple configurationflx4432: Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam facilisis condimentum nulla. Duis sed quam vitae nunc semper facilisis a eget leo.lanWOLf: Send wake-on-lan packets across subnets by utilizing powered-on machines on each subnet.Micro-Apps Framework: Micro-Apps is a revolutionary piece of software that allows you to have multiple programs running from 1 file under the same process!NJ: NJ Language Learning Helper type Config() = // Just Code Example member x.GetAll() = seq{ yield {Name="Admin" Dictionary = OtfPG: To generate reproducible complex passwords from simple pass phrases, allowing the user to 'remember; a simple phrase, rather that a complex password, without evProject92104: as ppProject92105: ppaProject92107: papaPython intellisense Enhancer: For the python code, the intellisense box will show after you input a character, just like c#.QR Code Reader (By Screen Capture): Reads the QR Codes displayed in webpages. (You need to capture the code area) Displays the code information.scenariov1706jabbr: helloSharePoint 2013 REST Test Web Part: A simple web part (placed in a farm solution) that helps SharePoint developers to test every HTTP call to the new REST interface of SharePoint 2013.SharePoint Resources Updater (2010 /2013): Project for SharePoint 2010/2013 IT pro's and dev's to adress App_GlobalResources difficulties when developping SharePoint solutions(or maintaining large farms)Word CustomXML data services: Services to add,change and read metadata embedded into a Word document. Metadata are stored in a custom XML file into the Word document. ??????: ge ren xiang mu

    Read the article

  • TFS API Change WorkItem CreatedDate And ChangedDate To Historic Dates

    - by Tarun Arora
    There may be times when you need to modify the value of the fields “System.CreatedDate” and “System.ChangedDate” on a work item. Richard Hundhausen has a great blog with ample of reason why or why not you should need to set the values of these fields to historic dates. In this blog post I’ll show you, Create a PBI WorkItem linked to a Task work item by pre-setting the value of the field ‘System.ChangedDate’ to a historic date Change the value of the field ‘System.Created’ to a historic date Simulate the historic burn down of a task type work item in a sprint Explain the impact of updating values of the fields CreatedDate and ChangedDate on the Sprint burn down chart Rules of Play      1. You need to be a member of the Project Collection Service Accounts              2. You need to use ‘WorkItemStoreFlags.BypassRules’ when you instantiate the WorkItemStore service // Instanciate Work Item Store with the ByPassRules flag _wis = new WorkItemStore(_tfs, WorkItemStoreFlags.BypassRules);      3. You cannot set the ChangedDate         - Less than the changed date of previous revision         - Greater than current date Walkthrough The walkthrough contains 5 parts 00 – Required References 01 – Connect to TFS Programmatically 02 – Create a Work Item Programmatically 03 – Set the values of fields ‘System.ChangedDate’ and ‘System.CreatedDate’ to historic dates 04 – Results of our experiment Lets get started………………………………………………… 00 – Required References Microsoft.TeamFoundation.dll Microsoft.TeamFoundation.Client.dll Microsoft.TeamFoundation.Common.dll Microsoft.TeamFoundation.WorkItemTracking.Client.dll 01 – Connect to TFS Programmatically I have a in depth blog post on how to connect to TFS programmatically in case you are interested. However, the code snippet below will enable you to connect to TFS using the Team Project Picker. // Services I need access to globally private static TfsTeamProjectCollection _tfs; private static ProjectInfo _selectedTeamProject; private static WorkItemStore _wis; // Connect to TFS Using Team Project Picker public static bool ConnectToTfs() { var isSelected = false; // The user is allowed to select only one project var tfsPp = new TeamProjectPicker(TeamProjectPickerMode.SingleProject, false); tfsPp.ShowDialog(); // The TFS project collection _tfs = tfsPp.SelectedTeamProjectCollection; if (tfsPp.SelectedProjects.Any()) { // The selected Team Project _selectedTeamProject = tfsPp.SelectedProjects[0]; isSelected = true; } return isSelected; } 02 – Create a Work Item Programmatically In the below code snippet I have create a Product Backlog Item and a Task type work item and then link them together as parent and child. Note – You will have to set the ChangedDate to a historic date when you created the work item. Remember, If you try and set the ChangedDate to a value earlier than last assigned you will receive the following exception… TF26212: Team Foundation Server could not save your changes. There may be problems with the work item type definition. Try again or contact your Team Foundation Server administrator. If you notice below I have added a few seconds each time I have modified the ‘ChangedDate’ just to avoid running into the exception listed above. // Create Linked Work Items and return Ids private static List<int> CreateWorkItemsProgrammatically() { // Instantiate Work Item Store with the ByPassRules flag _wis = new WorkItemStore(_tfs, WorkItemStoreFlags.BypassRules); // List of work items to return var listOfWorkItems = new List<int>(); // Create a new Product Backlog Item var p = new WorkItem(_wis.Projects[_selectedTeamProject.Name].WorkItemTypes["Product Backlog Item"]); p.Title = "This is a new PBI"; p.Description = "Description"; p.IterationPath = string.Format("{0}\\Release 1\\Sprint 1", _selectedTeamProject.Name); p.AreaPath = _selectedTeamProject.Name; p["Effort"] = 10; // Just double checking that ByPassRules is set to true if (_wis.BypassRules) { p.Fields["System.ChangedDate"].Value = Convert.ToDateTime("2012-01-01"); } if (p.Validate().Count == 0) { p.Save(); listOfWorkItems.Add(p.Id); } else { Console.WriteLine(">> Following exception(s) encountered during work item save: "); foreach (var e in p.Validate()) { Console.WriteLine(" - '{0}' ", e); } } var t = new WorkItem(_wis.Projects[_selectedTeamProject.Name].WorkItemTypes["Task"]); t.Title = "This is a task"; t.Description = "Task Description"; t.IterationPath = string.Format("{0}\\Release 1\\Sprint 1", _selectedTeamProject.Name); t.AreaPath = _selectedTeamProject.Name; t["Remaining Work"] = 10; if (_wis.BypassRules) { t.Fields["System.ChangedDate"].Value = Convert.ToDateTime("2012-01-01"); } if (t.Validate().Count == 0) { t.Save(); listOfWorkItems.Add(t.Id); } else { Console.WriteLine(">> Following exception(s) encountered during work item save: "); foreach (var e in t.Validate()) { Console.WriteLine(" - '{0}' ", e); } } var linkTypEnd = _wis.WorkItemLinkTypes.LinkTypeEnds["Child"]; p.Links.Add(new WorkItemLink(linkTypEnd, t.Id) {ChangedDate = Convert.ToDateTime("2012-01-01").AddSeconds(20)}); if (_wis.BypassRules) { p.Fields["System.ChangedDate"].Value = Convert.ToDateTime("2012-01-01").AddSeconds(20); } if (p.Validate().Count == 0) { p.Save(); } else { Console.WriteLine(">> Following exception(s) encountered during work item save: "); foreach (var e in p.Validate()) { Console.WriteLine(" - '{0}' ", e); } } return listOfWorkItems; } 03 – Set the value of “Created Date” and Change the value of “Changed Date” to Historic Dates The CreatedDate can only be changed after a work item has been created. If you try and set the CreatedDate to a historic date at the time of creation of a work item, it will not work. // Lets do a work item effort burn down simulation by updating the ChangedDate & CreatedDate to historic Values private static void WorkItemChangeSimulation(IEnumerable<int> listOfWorkItems) { foreach (var id in listOfWorkItems) { var wi = _wis.GetWorkItem(id); switch (wi.Type.Name) { case "ProductBacklogItem": if (wi.State.ToLower() == "new") wi.State = "Approved"; // Advance the changed date by few seconds wi.Fields["System.ChangedDate"].Value = Convert.ToDateTime(wi.Fields["System.ChangedDate"].Value).AddSeconds(10); // Set the CreatedDate to Changed Date wi.Fields["System.CreatedDate"].Value = Convert.ToDateTime(wi.Fields["System.ChangedDate"].Value).AddSeconds(10); wi.Save(); break; case "Task": // Advance the changed date by few seconds wi.Fields["System.ChangedDate"].Value = Convert.ToDateTime(wi.Fields["System.ChangedDate"].Value).AddSeconds(10); // Set the CreatedDate to Changed date wi.Fields["System.CreatedDate"].Value = Convert.ToDateTime(wi.Fields["System.ChangedDate"].Value).AddSeconds(10); wi.Save(); break; } } // A mock sprint start date var sprintStart = DateTime.Today.AddDays(-5); // A mock sprint end date var sprintEnd = DateTime.Today.AddDays(5); // What is the total Sprint duration var totalSprintDuration = (sprintEnd - sprintStart).Days; // How much of the sprint have we already covered var noOfDaysIntoSprint = (DateTime.Today - sprintStart).Days; // Get the effort assigned to our tasks var totalEffortRemaining = QueryTaskTotalEfforRemaining(listOfWorkItems); // Defining how much effort to burn every day decimal dailyBurnRate = totalEffortRemaining / totalSprintDuration < 1 ? 1 : totalEffortRemaining / totalSprintDuration; // we have just created one task var totalNoOfTasks = 1; var simulation = sprintStart; var currentDate = DateTime.Today.Date; // Carry on till effort has been burned down from sprint start to today while (simulation.Date != currentDate.Date) { var dailyBurnRate1 = dailyBurnRate; // A fixed amount needs to be burned down each day while (dailyBurnRate1 > 0) { // burn down bit by bit from all unfinished task type work items foreach (var id in listOfWorkItems) { var wi = _wis.GetWorkItem(id); var isDirty = false; // Set the status to in progress if (wi.State.ToLower() == "to do") { wi.State = "In Progress"; isDirty = true; } // Ensure that there is enough effort remaining in tasks to burn down the daily burn rate if (QueryTaskTotalEfforRemaining(listOfWorkItems) > dailyBurnRate1) { // If there is less than 1 unit of effort left in the task, burn it all if (Convert.ToDecimal(wi["Remaining Work"]) <= 1) { wi["Remaining Work"] = 0; dailyBurnRate1 = dailyBurnRate1 - Convert.ToDecimal(wi["Remaining Work"]); isDirty = true; } else { // How much to burn from each task? var toBurn = (dailyBurnRate / totalNoOfTasks) < 1 ? 1 : (dailyBurnRate / totalNoOfTasks); // Check that the task has enough effort to allow burnForTask effort if (Convert.ToDecimal(wi["Remaining Work"]) >= toBurn) { wi["Remaining Work"] = Convert.ToDecimal(wi["Remaining Work"]) - toBurn; dailyBurnRate1 = dailyBurnRate1 - toBurn; isDirty = true; } else { wi["Remaining Work"] = 0; dailyBurnRate1 = dailyBurnRate1 - Convert.ToDecimal(wi["Remaining Work"]); isDirty = true; } } } else { dailyBurnRate1 = 0; } if (isDirty) { if (Convert.ToDateTime(wi.Fields["System.ChangedDate"].Value).Date == simulation.Date) { wi.Fields["System.ChangedDate"].Value = Convert.ToDateTime(wi.Fields["System.ChangedDate"].Value).AddSeconds(20); } else { wi.Fields["System.ChangedDate"].Value = simulation.AddSeconds(20); } wi.Save(); } } } // Increase date by 1 to perform daily burn down by day simulation = Convert.ToDateTime(simulation).AddDays(1); } } // Get the Total effort remaining in the current sprint private static decimal QueryTaskTotalEfforRemaining(List<int> listOfWorkItems) { var unfinishedWorkInCurrentSprint = _wis.GetQueryDefinition( new Guid(QueryAndGuid.FirstOrDefault(c => c.Key == "Unfinished Work").Value)); var parameters = new Dictionary<string, object> { { "project", _selectedTeamProject.Name } }; var q = new Query(_wis, unfinishedWorkInCurrentSprint.QueryText, parameters); var results = q.RunLinkQuery(); var wis = new List<WorkItem>(); foreach (var result in results) { var _wi = _wis.GetWorkItem(result.TargetId); if (_wi.Type.Name == "Task" && listOfWorkItems.Contains(_wi.Id)) wis.Add(_wi); } return wis.Sum(r => Convert.ToDecimal(r["Remaining Work"])); }   04 – The Results If you are still reading, the results are beautiful! Image 1 – Create work item with Changed Date pre-set to historic date Image 2 – Set the CreatedDate to historic date (Same as the ChangedDate) Image 3 – Simulate of effort burn down on a task via the TFS API   Image 4 – The history of changes on the Task. So, essentially this task has burned 1 hour per day Sprint Burn Down Chart – What’s not possible? The Sprint burn down chart is calculated from the System.AuthorizedDate and not the System.ChangedDate/System.CreatedDate. So, though you can change the System.ChangedDate and System.CreatedDate to historic dates you will not be able to synthesize the sprint burn down chart. Image 1 – By changing the Created Date and Changed Date to ‘18/Oct/2012’ you would have expected the burn down to have been impacted, but it won’t be, because the sprint burn down chart uses the value of field ‘System.AuthorizedDate’ to calculate the unfinished work points. The AsOf queries that are used to calculate the unfinished work points use the value of the field ‘System.AuthorizedDate’. Image 2 – Using the above code I burned down 1 hour effort per day over 5 days from the task work item, I would have expected the sprint burn down to show a constant burn down, instead the burn down shows the effort exhausted on the 24th itself. Simply because the burn down is calculated using the ‘System.AuthorizedDate’. Now you would ask… “Can I change the value of the field System.AuthorizedDate to a historic date” Unfortunately that’s not possible! You will run into the exception ValidationException –  “TF26194: The value for field ‘Authorized Date’ cannot be changed.” Conclusion - You need to be a member of the Project Collection Service account group in order to set the fields ‘System.ChangedDate’ and ‘System.CreatedDate’ to historic dates - You need to instantiate the WorkItemStore using the flag ByPassValidation - The System.ChangedDate needs to be set to a historic date at the time of work item creation. You cannot reset the ChangedDate to a date earlier than the existing ChangedDate and you cannot reset the ChangedDate to a date greater than the current date time. - The System.CreatedDate can only be reset after a work item has been created. You cannot set the CreatedDate at the time of work item creation. The CreatedDate cannot be greater than the current date. You can however reset the CreatedDate to a date earlier than the existing value. - You will not be able to synthesize the Sprint burn down chart by changing the value of System.ChangedDate and System.CreatedDate to historic dates, since the burn down chart uses AsOf queries to calculate the unfinished work points which internally uses the System.AuthorizedDate and NOT the System.ChangedDate & System.CreatedDate - System.AuthorizedDate cannot be set to a historic date using the TFS API Read other posts on using the TFS API here… Enjoy!

    Read the article

  • CodePlex Daily Summary for Thursday, September 20, 2012

    CodePlex Daily Summary for Thursday, September 20, 2012Popular ReleasesSiteMap Editor for Microsoft Dynamics CRM 2011: SiteMap Editor (1.1.2020.421): New features: Disable a specific part of SiteMap to keep the data without displaying them in the CRM application. It simply comments XML part of the sitemap (thanks to rboyers for this feature request) Right click an item and click on "Disable" to disable it Items disabled are greyed and a suffix "- disabled" is added Right click an item and click on "Enable" to enable it Refresh list of web resources in the web resources pickerWPF Animated GIF: WPF Animated GIF 1.2.1: Bug fixes 1275: fixed rendering issues when DisposalMethod = 2 or 3AJAX Control Toolkit: September 2012 Release: AJAX Control Toolkit Release Notes - September 2012 Release Version 60919September 2012 release of the AJAX Control Toolkit. AJAX Control Toolkit .NET 4.5 – AJAX Control Toolkit for .NET 4.5 and sample site (Recommended). AJAX Control Toolkit .NET 4 – AJAX Control Toolkit for .NET 4 and sample site (Recommended). AJAX Control Toolkit .NET 3.5 – AJAX Control Toolkit for .NET 3.5 and sample site (Recommended). Notes: - The current version of the AJAX Control Toolkit is not compatible with ...Lib.Web.Mvc & Yet another developer blog: Lib.Web.Mvc 6.1.0: Lib.Web.Mvc is a library which contains some helper classes for ASP.NET MVC such as strongly typed jqGrid helper, XSL transformation HtmlHelper/ActionResult, FileResult with range request support, custom attributes and more. Release contains: Lib.Web.Mvc.dll with xml documentation file Standalone documentation in chm file and change log Library source code Sample application for strongly typed jqGrid helper is available here. Sample application for XSL transformation HtmlHelper/ActionRe...Sense/Net CMS - Enterprise Content Management: SenseNet 6.1.2 Community Edition: Sense/Net 6.1.2 Community EditionMain new featuresOur current release brings a lot of bugfixes, including the resolution of js/css editing cache issues, xlsx file handling from Office, expense claim demo workspace fixes and much more. Besides fixes 6.1.2 introduces workflow start options and other minor features like a reusable Reject client button for approval scenarios and resource editor enhancements. We have also fixed an issue with our install package to bring you a flawless installation...WinRT XAML Toolkit: WinRT XAML Toolkit - 1.2.3: WinRT XAML Toolkit based on the Windows 8 RTM SDK. Download the latest source from the SOURCE CODE page. For compiled version use NuGet. You can add it to your project in Visual Studio by going to View/Other Windows/Package Manager Console and entering: PM> Install-Package winrtxamltoolkit Features AsyncUI extensions Controls and control extensions Converters Debugging helpers Imaging IO helpers VisualTree helpers Samples Recent changes NOTE: Namespace changes DebugConsol...Python Tools for Visual Studio: 1.5 RC: PTVS 1.5RC Available! We’re pleased to announce the release of Python Tools for Visual Studio 1.5 RC. Python Tools for Visual Studio (PTVS) is an open-source plug-in for Visual Studio which supports programming with the Python language. PTVS supports a broad range of features including CPython/IronPython, Edit/Intellisense/Debug/Profile, Cloud, HPC, IPython, etc. support. The primary new feature for the 1.5 release is Django including Azure support! The http://www.djangoproject.com is a pop...Launchbar: Lanchbar 4.0.0: First public release.AssaultCube Reloaded: 2.5.4 -: Linux has Ubuntu 11.10 32-bit precompiled binaries and Ubuntu 10.10 64-bit precompiled binaries, but you can compile your own as it also contains the source. If you are using Mac or other operating systems, please wait while we try to package for those OSes. Try to compile it. If it fails, download a virtual machine. The server pack is ready for both Windows and Linux, but you might need to compile your own for Linux (source included) Changelog: New logo Improved airstrike! Reset nukes...Extended WPF Toolkit: Extended WPF Toolkit - 1.7.0: Want an easier way to install the Extended WPF Toolkit?The Extended WPF Toolkit is available on Nuget. What's new in the 1.7.0 Release?New controls Zoombox Pie New features / bug fixes PropertyGrid.ShowTitle property added to allow showing/hiding the PropertyGrid title. Modifications to the PropertyGrid.EditorDefinitions collection will now automatically be applied to the PropertyGrid. Modifications to the PropertyGrid.PropertyDefinitions collection will now be reflected automaticaly...JayData - The cross-platform HTML5 data-management library for JavaScript: JayData 1.2: JayData is a unified data access library for JavaScript to CRUD + Query data from different sources like OData, MongoDB, WebSQL, SqLite, Facebook or YQL. The library can be integrated with Knockout.js or Sencha Touch 2 and can be used on Node.js as well. See it in action in this 6 minutes video Sencha Touch 2 example app using JayData: Netflix browser. What's new in JayData 1.2 For detailed release notes check the release notes. JayData core: all async operations now support promises JayDa...????????API for .Net SDK: SDK for .Net ??? Release 4: 2012?9?17??? ?????,???????????????。 ?????Release 3??????,???????,???,??? ??????????????????SDK,????????。 ??,??????? That's all.VidCoder: 1.4.0 Beta: First Beta release! Catches up to HandBrake nightlies with SVN 4937. Added PGS (Blu-ray) subtitle support. Additional framerates available: 30, 50, 59.94, 60 Additional sample rates available: 8, 11.025, 12 and 16 kHz Additional higher bitrates available for audio. Same as Source Constant Framerate available. Added Apple TV 3 preset. Added new Bob deinterlacing option. Introduced process isolation for encodes. Now if HandBrake crashes, VidCoder will keep running and continue pro...DNN Metro7 style Skin package: Metro7 style Skin for DotNetNuke 06.02.01: Stabilization release fixed this issues: Links not worked on FF, Chrome and Safari Modified packaging with own manifest file for install and source package. Moved the user Image on the Login to the left side. Moved h2 font-size to 24px. Note : This release Comes w/o source package about we still work an a solution. Who Needs the Visual Studio source files please go to source and download it from there. Known 16 CSS issues that related to the skin.css. All others are DNN default o...Visual Studio Icon Patcher: Version 1.5.1: This fixes a bug in the 1.5 release where it would crash when no language packs were installed for VS2010.VFPX: Desktop Alerts 1.0.2: This update for the Desktop Alerts contains changes to behavior for setting custom sounds for alerts. I have removed ALERTWAV.TXT from the project, and also removed DA_DEFAULTSOUND from the VFPALERT.H file. The AlertManager class and Alert class both have a "default" cSound of ADDBS(JUSTPATH(_VFP.ServerName))+"alert.wav" --- so, as long as you distribute a sound file with the file name "alert.wav" along with the EXE, that file will be used. You can set your own sound file globally by setti...MCEBuddy 2.x: MCEBuddy 2.2.15: Changelog for 2.2.15 (32bit and 64bit) 1. Added support for %originalfilepath% to get the source file full path. Used for custom commands only. 2. Added support for better parsing of Media Portal XML files to extract ShowName and Episode Name and download additional details from TVDB (like Season No, Episode No etc). 3. Added support for TVDB seriesID in metadata 4. Added support for eMail non blocking UI testEmmaClient - Liveresults for Orienteering: EmmaClient 2012-09-13: Minor release with a small fix for producing OS2012 results (and status of runners in the forest)Multiple Image choice custom field type: MultipleImageUpload V1.0: This is the Custom field type which allows the users to choose image as a choice field. This custom field type is SharePoint 2010, install the WSP thru powershell or Stsadm tool and enjoy the functionality...MDS Administration: Version 1.1.3: Fixed Rename issueNew Projects3dxia: bug3dxiaBitbucket Issue Tracker: A simple issue-tracking Windows client for your projects hosted on bitbucket.org.C++ thread-safe logging: Visual Studio C++ log library project: add to your project for thread-safe logging capabilities.Caddies GeoNote: The work started from making a vision for a neighbourhood communication platform, and ended up in creating the version 1.0 of a mobile application – GeoNotes – CodePlexGitHookForAzure: TestCommerce Server Pipeline Log Analyzer: This tool read and analyze pipeline logs under one selected folder. It applies to Microsoft Commerce Server 2002, 2007, 2009 and 2009 R2 Pipeline logs.Contrib.Mod.ResetPassword: Send reset link as a shapeContrib.Taxonomies.ViewExtension: Orchard module that adds a filter box to the taxonomies selector.EasierRdp: This is a remote desktop session management tool which provides an easy way to maintain multiple users and servers' connectionEconomic news grabber: WCF service for get news from rss, news sites and etc. WPF client for presentation this data for end users.Eticaret Sitesi: eee ticFacebook Graph API SDK Helper Class Library: Facebook C# Graph API SDK Helper Class Under developmentfxch01v14: helloKarned 2: Karned est un carnet de pêche informatique. Ce logiciel permet de noter vos prises de pêche à des fins d'analyse, ou simplement pour le souvenir...lixotrash: SandBox and POCs collections, not interesting hereLoggerLib: The project is a "Tracing Library" developed in a Borland C++ enviroment. Il progetto consiste in una libreria di tracciamento, sviluppata in ambiente Borland.LyncTalker: A simple tray application which will speak incoming Lync instant messages.MicroFrameWork: MicroFrameWorkNuzzle: 2.6.5 Dofus EmulatorPDF Merge: PDF Merge is a simple user-friendly application that allows you to merge multiple PDF documents including scanned / imported documents and images into 1 PDF.Pipeline: A library of several lightweight pipeline implementations ("pipes and filters" pattern).Prime Calculator: PrimeCalculator factorizes a number or a math expression into its prime factors or if prime display its prime type [Unit, Prime, Additive, Pure].Racing: not ready yetRuntime DataSet/DataTable viewer: This component basically allows you to inspect the contents of any Data Set or a Data Table at runtime without breaking into the debugger again and again.Service billing: Student group work for the College of West Anglia UCWA. Snake!: A Snake game written in C#SoccerBot: this is just a test projectSQL Server Trace File Import Utility: Command-line utility to import trace files into a data warehouse type structure. Currently it only handles Login events.testscenairo7onv14: helloToQueryString: Serialize any object in C# to a query string with the .ToQueryString() extension method. Supports primitives, strings, arrays and collections.tyajz: tyajz projectWindows Azure Table Storage: you can find all the details in my blog: hhaggan.wordpress.com and if you do have any question or inquiries feel free to contact me at hhaggan@hotmail.comwtcms: wtcms

    Read the article

  • Using Durandal to Create Single Page Apps

    - by Stephen.Walther
    A few days ago, I gave a talk on building Single Page Apps on the Microsoft Stack. In that talk, I recommended that people use Knockout, Sammy, and RequireJS to build their presentation layer and use the ASP.NET Web API to expose data from their server. After I gave the talk, several people contacted me and suggested that I investigate a new open-source JavaScript library named Durandal. Durandal stitches together Knockout, Sammy, and RequireJS to make it easier to use these technologies together. In this blog entry, I want to provide a brief walkthrough of using Durandal to create a simple Single Page App. I am going to demonstrate how you can create a simple Movies App which contains (virtual) pages for viewing a list of movies, adding new movies, and viewing movie details. The goal of this blog entry is to give you a sense of what it is like to build apps with Durandal. Installing Durandal First things first. How do you get Durandal? The GitHub project for Durandal is located here: https://github.com/BlueSpire/Durandal The Wiki — located at the GitHub project — contains all of the current documentation for Durandal. Currently, the documentation is a little sparse, but it is enough to get you started. Instead of downloading the Durandal source from GitHub, a better option for getting started with Durandal is to install one of the Durandal NuGet packages. I built the Movies App described in this blog entry by first creating a new ASP.NET MVC 4 Web Application with the Basic Template. Next, I executed the following command from the Package Manager Console: Install-Package Durandal.StarterKit As you can see from the screenshot of the Package Manager Console above, the Durandal Starter Kit package has several dependencies including: · jQuery · Knockout · Sammy · Twitter Bootstrap The Durandal Starter Kit package includes a sample Durandal application. You can get to the Starter Kit app by navigating to the Durandal controller. Unfortunately, when I first tried to run the Starter Kit app, I got an error because the Starter Kit is hard-coded to use a particular version of jQuery which is already out of date. You can fix this issue by modifying the App_Start\DurandalBundleConfig.cs file so it is jQuery version agnostic like this: bundles.Add( new ScriptBundle("~/scripts/vendor") .Include("~/Scripts/jquery-{version}.js") .Include("~/Scripts/knockout-{version}.js") .Include("~/Scripts/sammy-{version}.js") // .Include("~/Scripts/jquery-1.9.0.min.js") // .Include("~/Scripts/knockout-2.2.1.js") // .Include("~/Scripts/sammy-0.7.4.min.js") .Include("~/Scripts/bootstrap.min.js") ); The recommendation is that you create a Durandal app in a folder off your project root named App. The App folder in the Starter Kit contains the following subfolders and files: · durandal – This folder contains the actual durandal JavaScript library. · viewmodels – This folder contains all of your application’s view models. · views – This folder contains all of your application’s views. · main.js — This file contains all of the JavaScript startup code for your app including the client-side routing configuration. · main-built.js – This file contains an optimized version of your application. You need to build this file by using the RequireJS optimizer (unfortunately, before you can run the optimizer, you must first install NodeJS). For the purpose of this blog entry, I wanted to start from scratch when building the Movies app, so I deleted all of these files and folders except for the durandal folder which contains the durandal library. Creating the ASP.NET MVC Controller and View A Durandal app is built using a single server-side ASP.NET MVC controller and ASP.NET MVC view. A Durandal app is a Single Page App. When you navigate between pages, you are not navigating to new pages on the server. Instead, you are loading new virtual pages into the one-and-only-one server-side view. For the Movies app, I created the following ASP.NET MVC Home controller: public class HomeController : Controller { public ActionResult Index() { return View(); } } There is nothing special about the Home controller – it is as basic as it gets. Next, I created the following server-side ASP.NET view. This is the one-and-only server-side view used by the Movies app: @{ Layout = null; } <!DOCTYPE html> <html> <head> <title>Index</title> </head> <body> <div id="applicationHost"> Loading app.... </div> @Scripts.Render("~/scripts/vendor") <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> </body> </html> Notice that I set the Layout property for the view to the value null. If you neglect to do this, then the default ASP.NET MVC layout will be applied to the view and you will get the <!DOCTYPE> and opening and closing <html> tags twice. Next, notice that the view contains a DIV element with the Id applicationHost. This marks the area where virtual pages are loaded. When you navigate from page to page in a Durandal app, HTML page fragments are retrieved from the server and stuck in the applicationHost DIV element. Inside the applicationHost element, you can place any content which you want to display when a Durandal app is starting up. For example, you can create a fancy splash screen. I opted for simply displaying the text “Loading app…”: Next, notice the view above includes a call to the Scripts.Render() helper. This helper renders out all of the JavaScript files required by the Durandal library such as jQuery and Knockout. Remember to fix the App_Start\DurandalBundleConfig.cs as described above or Durandal will attempt to load an old version of jQuery and throw a JavaScript exception and stop working. Your application JavaScript code is not included in the scripts rendered by the Scripts.Render helper. Your application code is loaded dynamically by RequireJS with the help of the following SCRIPT element located at the bottom of the view: <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> The data-main attribute on the SCRIPT element causes RequireJS to load your /app/main.js JavaScript file to kick-off your Durandal app. Creating the Durandal Main.js File The Durandal Main.js JavaScript file, located in your App folder, contains all of the code required to configure the behavior of Durandal. Here’s what the Main.js file looks like in the case of the Movies app: require.config({ paths: { 'text': 'durandal/amd/text' } }); define(function (require) { var app = require('durandal/app'), viewLocator = require('durandal/viewLocator'), system = require('durandal/system'), router = require('durandal/plugins/router'); //>>excludeStart("build", true); system.debug(true); //>>excludeEnd("build"); app.start().then(function () { //Replace 'viewmodels' in the moduleId with 'views' to locate the view. //Look for partial views in a 'views' folder in the root. viewLocator.useConvention(); //configure routing router.useConvention(); router.mapNav("movies/show"); router.mapNav("movies/add"); router.mapNav("movies/details/:id"); app.adaptToDevice(); //Show the app by setting the root view model for our application with a transition. app.setRoot('viewmodels/shell', 'entrance'); }); }); There are three important things to notice about the main.js file above. First, notice that it contains a section which enables debugging which looks like this: //>>excludeStart(“build”, true); system.debug(true); //>>excludeEnd(“build”); This code enables debugging for your Durandal app which is very useful when things go wrong. When you call system.debug(true), Durandal writes out debugging information to your browser JavaScript console. For example, you can use the debugging information to diagnose issues with your client-side routes: (The funny looking //> symbols around the system.debug() call are RequireJS optimizer pragmas). The main.js file is also the place where you configure your client-side routes. In the case of the Movies app, the main.js file is used to configure routes for three page: the movies show, add, and details pages. //configure routing router.useConvention(); router.mapNav("movies/show"); router.mapNav("movies/add"); router.mapNav("movies/details/:id");   The route for movie details includes a route parameter named id. Later, we will use the id parameter to lookup and display the details for the right movie. Finally, the main.js file above contains the following line of code: //Show the app by setting the root view model for our application with a transition. app.setRoot('viewmodels/shell', 'entrance'); This line of code causes Durandal to load up a JavaScript file named shell.js and an HTML fragment named shell.html. I’ll discuss the shell in the next section. Creating the Durandal Shell You can think of the Durandal shell as the layout or master page for a Durandal app. The shell is where you put all of the content which you want to remain constant as a user navigates from virtual page to virtual page. For example, the shell is a great place to put your website logo and navigation links. The Durandal shell is composed from two parts: a JavaScript file and an HTML file. Here’s what the HTML file looks like for the Movies app: <h1>Movies App</h1> <div class="container-fluid page-host"> <!--ko compose: { model: router.activeItem, //wiring the router afterCompose: router.afterCompose, //wiring the router transition:'entrance', //use the 'entrance' transition when switching views cacheViews:true //telling composition to keep views in the dom, and reuse them (only a good idea with singleton view models) }--><!--/ko--> </div> And here is what the JavaScript file looks like: define(function (require) { var router = require('durandal/plugins/router'); return { router: router, activate: function () { return router.activate('movies/show'); } }; }); The JavaScript file contains the view model for the shell. This view model returns the Durandal router so you can access the list of configured routes from your shell. Notice that the JavaScript file includes a function named activate(). This function loads the movies/show page as the first page in the Movies app. If you want to create a different default Durandal page, then pass the name of a different age to the router.activate() method. Creating the Movies Show Page Durandal pages are created out of a view model and a view. The view model contains all of the data and view logic required for the view. The view contains all of the HTML markup for rendering the view model. Let’s start with the movies show page. The movies show page displays a list of movies. The view model for the show page looks like this: define(function (require) { var moviesRepository = require("repositories/moviesRepository"); return { movies: ko.observable(), activate: function() { this.movies(moviesRepository.listMovies()); } }; }); You create a view model by defining a new RequireJS module (see http://requirejs.org). You create a RequireJS module by placing all of your JavaScript code into an anonymous function passed to the RequireJS define() method. A RequireJS module has two parts. You retrieve all of the modules which your module requires at the top of your module. The code above depends on another RequireJS module named repositories/moviesRepository. Next, you return the implementation of your module. The code above returns a JavaScript object which contains a property named movies and a method named activate. The activate() method is a magic method which Durandal calls whenever it activates your view model. Your view model is activated whenever you navigate to a page which uses it. In the code above, the activate() method is used to get the list of movies from the movies repository and assign the list to the view model movies property. The HTML for the movies show page looks like this: <table> <thead> <tr> <th>Title</th><th>Director</th> </tr> </thead> <tbody data-bind="foreach:movies"> <tr> <td data-bind="text:title"></td> <td data-bind="text:director"></td> <td><a data-bind="attr:{href:'#/movies/details/'+id}">Details</a></td> </tr> </tbody> </table> <a href="#/movies/add">Add Movie</a> Notice that this is an HTML fragment. This fragment will be stuffed into the page-host DIV element in the shell.html file which is stuffed, in turn, into the applicationHost DIV element in the server-side MVC view. The HTML markup above contains data-bind attributes used by Knockout to display the list of movies (To learn more about Knockout, visit http://knockoutjs.com). The list of movies from the view model is displayed in an HTML table. Notice that the page includes a link to a page for adding a new movie. The link uses the following URL which starts with a hash: #/movies/add. Because the link starts with a hash, clicking the link does not cause a request back to the server. Instead, you navigate to the movies/add page virtually. Creating the Movies Add Page The movies add page also consists of a view model and view. The add page enables you to add a new movie to the movie database. Here’s the view model for the add page: define(function (require) { var app = require('durandal/app'); var router = require('durandal/plugins/router'); var moviesRepository = require("repositories/moviesRepository"); return { movieToAdd: { title: ko.observable(), director: ko.observable() }, activate: function () { this.movieToAdd.title(""); this.movieToAdd.director(""); this._movieAdded = false; }, canDeactivate: function () { if (this._movieAdded == false) { return app.showMessage('Are you sure you want to leave this page?', 'Navigate', ['Yes', 'No']); } else { return true; } }, addMovie: function () { // Add movie to db moviesRepository.addMovie(ko.toJS(this.movieToAdd)); // flag new movie this._movieAdded = true; // return to list of movies router.navigateTo("#/movies/show"); } }; }); The view model contains one property named movieToAdd which is bound to the add movie form. The view model also has the following three methods: 1. activate() – This method is called by Durandal when you navigate to the add movie page. The activate() method resets the add movie form by clearing out the movie title and director properties. 2. canDeactivate() – This method is called by Durandal when you attempt to navigate away from the add movie page. If you return false then navigation is cancelled. 3. addMovie() – This method executes when the add movie form is submitted. This code adds the new movie to the movie repository. I really like the Durandal canDeactivate() method. In the code above, I use the canDeactivate() method to show a warning to a user if they navigate away from the add movie page – either by clicking the Cancel button or by hitting the browser back button – before submitting the add movie form: The view for the add movie page looks like this: <form data-bind="submit:addMovie"> <fieldset> <legend>Add Movie</legend> <div> <label> Title: <input data-bind="value:movieToAdd.title" required /> </label> </div> <div> <label> Director: <input data-bind="value:movieToAdd.director" required /> </label> </div> <div> <input type="submit" value="Add" /> <a href="#/movies/show">Cancel</a> </div> </fieldset> </form> I am using Knockout to bind the movieToAdd property from the view model to the INPUT elements of the HTML form. Notice that the FORM element includes a data-bind attribute which invokes the addMovie() method from the view model when the HTML form is submitted. Creating the Movies Details Page You navigate to the movies details Page by clicking the Details link which appears next to each movie in the movies show page: The Details links pass the movie ids to the details page: #/movies/details/0 #/movies/details/1 #/movies/details/2 Here’s what the view model for the movies details page looks like: define(function (require) { var router = require('durandal/plugins/router'); var moviesRepository = require("repositories/moviesRepository"); return { movieToShow: { title: ko.observable(), director: ko.observable() }, activate: function (context) { // Grab movie from repository var movie = moviesRepository.getMovie(context.id); // Add to view model this.movieToShow.title(movie.title); this.movieToShow.director(movie.director); } }; }); Notice that the view model activate() method accepts a parameter named context. You can take advantage of the context parameter to retrieve route parameters such as the movie Id. In the code above, the context.id property is used to retrieve the correct movie from the movie repository and the movie is assigned to a property named movieToShow exposed by the view model. The movie details view displays the movieToShow property by taking advantage of Knockout bindings: <div> <h2 data-bind="text:movieToShow.title"></h2> directed by <span data-bind="text:movieToShow.director"></span> </div> Summary The goal of this blog entry was to walkthrough building a simple Single Page App using Durandal and to get a feel for what it is like to use this library. I really like how Durandal stitches together Knockout, Sammy, and RequireJS and establishes patterns for using these libraries to build Single Page Apps. Having a standard pattern which developers on a team can use to build new pages is super valuable. Once you get the hang of it, using Durandal to create new virtual pages is dead simple. Just define a new route, view model, and view and you are done. I also appreciate the fact that Durandal did not attempt to re-invent the wheel and that Durandal leverages existing JavaScript libraries such as Knockout, RequireJS, and Sammy. These existing libraries are powerful libraries and I have already invested a considerable amount of time in learning how to use them. Durandal makes it easier to use these libraries together without losing any of their power. Durandal has some additional interesting features which I have not had a chance to play with yet. For example, you can use the RequireJS optimizer to combine and minify all of a Durandal app’s code. Also, Durandal supports a way to create custom widgets (client-side controls) by composing widgets from a controller and view. You can download the code for the Movies app by clicking the following link (this is a Visual Studio 2012 project): Durandal Movie App

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • A Taxonomy of Numerical Methods v1

    - by JoshReuben
    Numerical Analysis – When, What, (but not how) Once you understand the Math & know C++, Numerical Methods are basically blocks of iterative & conditional math code. I found the real trick was seeing the forest for the trees – knowing which method to use for which situation. Its pretty easy to get lost in the details – so I’ve tried to organize these methods in a way that I can quickly look this up. I’ve included links to detailed explanations and to C++ code examples. I’ve tried to classify Numerical methods in the following broad categories: Solving Systems of Linear Equations Solving Non-Linear Equations Iteratively Interpolation Curve Fitting Optimization Numerical Differentiation & Integration Solving ODEs Boundary Problems Solving EigenValue problems Enjoy – I did ! Solving Systems of Linear Equations Overview Solve sets of algebraic equations with x unknowns The set is commonly in matrix form Gauss-Jordan Elimination http://en.wikipedia.org/wiki/Gauss%E2%80%93Jordan_elimination C++: http://www.codekeep.net/snippets/623f1923-e03c-4636-8c92-c9dc7aa0d3c0.aspx Produces solution of the equations & the coefficient matrix Efficient, stable 2 steps: · Forward Elimination – matrix decomposition: reduce set to triangular form (0s below the diagonal) or row echelon form. If degenerate, then there is no solution · Backward Elimination –write the original matrix as the product of ints inverse matrix & its reduced row-echelon matrix à reduce set to row canonical form & use back-substitution to find the solution to the set Elementary ops for matrix decomposition: · Row multiplication · Row switching · Add multiples of rows to other rows Use pivoting to ensure rows are ordered for achieving triangular form LU Decomposition http://en.wikipedia.org/wiki/LU_decomposition C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-lu-decomposition-for-solving.html Represent the matrix as a product of lower & upper triangular matrices A modified version of GJ Elimination Advantage – can easily apply forward & backward elimination to solve triangular matrices Techniques: · Doolittle Method – sets the L matrix diagonal to unity · Crout Method - sets the U matrix diagonal to unity Note: both the L & U matrices share the same unity diagonal & can be stored compactly in the same matrix Gauss-Seidel Iteration http://en.wikipedia.org/wiki/Gauss%E2%80%93Seidel_method C++: http://www.nr.com/forum/showthread.php?t=722 Transform the linear set of equations into a single equation & then use numerical integration (as integration formulas have Sums, it is implemented iteratively). an optimization of Gauss-Jacobi: 1.5 times faster, requires 0.25 iterations to achieve the same tolerance Solving Non-Linear Equations Iteratively find roots of polynomials – there may be 0, 1 or n solutions for an n order polynomial use iterative techniques Iterative methods · used when there are no known analytical techniques · Requires set functions to be continuous & differentiable · Requires an initial seed value – choice is critical to convergence à conduct multiple runs with different starting points & then select best result · Systematic - iterate until diminishing returns, tolerance or max iteration conditions are met · bracketing techniques will always yield convergent solutions, non-bracketing methods may fail to converge Incremental method if a nonlinear function has opposite signs at 2 ends of a small interval x1 & x2, then there is likely to be a solution in their interval – solutions are detected by evaluating a function over interval steps, for a change in sign, adjusting the step size dynamically. Limitations – can miss closely spaced solutions in large intervals, cannot detect degenerate (coinciding) solutions, limited to functions that cross the x-axis, gives false positives for singularities Fixed point method http://en.wikipedia.org/wiki/Fixed-point_iteration C++: http://books.google.co.il/books?id=weYj75E_t6MC&pg=PA79&lpg=PA79&dq=fixed+point+method++c%2B%2B&source=bl&ots=LQ-5P_taoC&sig=lENUUIYBK53tZtTwNfHLy5PEWDk&hl=en&sa=X&ei=wezDUPW1J5DptQaMsIHQCw&redir_esc=y#v=onepage&q=fixed%20point%20method%20%20c%2B%2B&f=false Algebraically rearrange a solution to isolate a variable then apply incremental method Bisection method http://en.wikipedia.org/wiki/Bisection_method C++: http://numericalcomputing.wordpress.com/category/algorithms/ Bracketed - Select an initial interval, keep bisecting it ad midpoint into sub-intervals and then apply incremental method on smaller & smaller intervals – zoom in Adv: unaffected by function gradient à reliable Disadv: slow convergence False Position Method http://en.wikipedia.org/wiki/False_position_method C++: http://www.dreamincode.net/forums/topic/126100-bisection-and-false-position-methods/ Bracketed - Select an initial interval , & use the relative value of function at interval end points to select next sub-intervals (estimate how far between the end points the solution might be & subdivide based on this) Newton-Raphson method http://en.wikipedia.org/wiki/Newton's_method C++: http://www-users.cselabs.umn.edu/classes/Summer-2012/csci1113/index.php?page=./newt3 Also known as Newton's method Convenient, efficient Not bracketed – only a single initial guess is required to start iteration – requires an analytical expression for the first derivative of the function as input. Evaluates the function & its derivative at each step. Can be extended to the Newton MutiRoot method for solving multiple roots Can be easily applied to an of n-coupled set of non-linear equations – conduct a Taylor Series expansion of a function, dropping terms of order n, rewrite as a Jacobian matrix of PDs & convert to simultaneous linear equations !!! Secant Method http://en.wikipedia.org/wiki/Secant_method C++: http://forum.vcoderz.com/showthread.php?p=205230 Unlike N-R, can estimate first derivative from an initial interval (does not require root to be bracketed) instead of inputting it Since derivative is approximated, may converge slower. Is fast in practice as it does not have to evaluate the derivative at each step. Similar implementation to False Positive method Birge-Vieta Method http://mat.iitm.ac.in/home/sryedida/public_html/caimna/transcendental/polynomial%20methods/bv%20method.html C++: http://books.google.co.il/books?id=cL1boM2uyQwC&pg=SA3-PA51&lpg=SA3-PA51&dq=Birge-Vieta+Method+c%2B%2B&source=bl&ots=QZmnDTK3rC&sig=BPNcHHbpR_DKVoZXrLi4nVXD-gg&hl=en&sa=X&ei=R-_DUK2iNIjzsgbE5ID4Dg&redir_esc=y#v=onepage&q=Birge-Vieta%20Method%20c%2B%2B&f=false combines Horner's method of polynomial evaluation (transforming into lesser degree polynomials that are more computationally efficient to process) with Newton-Raphson to provide a computational speed-up Interpolation Overview Construct new data points for as close as possible fit within range of a discrete set of known points (that were obtained via sampling, experimentation) Use Taylor Series Expansion of a function f(x) around a specific value for x Linear Interpolation http://en.wikipedia.org/wiki/Linear_interpolation C++: http://www.hamaluik.com/?p=289 Straight line between 2 points à concatenate interpolants between each pair of data points Bilinear Interpolation http://en.wikipedia.org/wiki/Bilinear_interpolation C++: http://supercomputingblog.com/graphics/coding-bilinear-interpolation/2/ Extension of the linear function for interpolating functions of 2 variables – perform linear interpolation first in 1 direction, then in another. Used in image processing – e.g. texture mapping filter. Uses 4 vertices to interpolate a value within a unit cell. Lagrange Interpolation http://en.wikipedia.org/wiki/Lagrange_polynomial C++: http://www.codecogs.com/code/maths/approximation/interpolation/lagrange.php For polynomials Requires recomputation for all terms for each distinct x value – can only be applied for small number of nodes Numerically unstable Barycentric Interpolation http://epubs.siam.org/doi/pdf/10.1137/S0036144502417715 C++: http://www.gamedev.net/topic/621445-barycentric-coordinates-c-code-check/ Rearrange the terms in the equation of the Legrange interpolation by defining weight functions that are independent of the interpolated value of x Newton Divided Difference Interpolation http://en.wikipedia.org/wiki/Newton_polynomial C++: http://jee-appy.blogspot.co.il/2011/12/newton-divided-difference-interpolation.html Hermite Divided Differences: Interpolation polynomial approximation for a given set of data points in the NR form - divided differences are used to approximately calculate the various differences. For a given set of 3 data points , fit a quadratic interpolant through the data Bracketed functions allow Newton divided differences to be calculated recursively Difference table Cubic Spline Interpolation http://en.wikipedia.org/wiki/Spline_interpolation C++: https://www.marcusbannerman.co.uk/index.php/home/latestarticles/42-articles/96-cubic-spline-class.html Spline is a piecewise polynomial Provides smoothness – for interpolations with significantly varying data Use weighted coefficients to bend the function to be smooth & its 1st & 2nd derivatives are continuous through the edge points in the interval Curve Fitting A generalization of interpolating whereby given data points may contain noise à the curve does not necessarily pass through all the points Least Squares Fit http://en.wikipedia.org/wiki/Least_squares C++: http://www.ccas.ru/mmes/educat/lab04k/02/least-squares.c Residual – difference between observed value & expected value Model function is often chosen as a linear combination of the specified functions Determines: A) The model instance in which the sum of squared residuals has the least value B) param values for which model best fits data Straight Line Fit Linear correlation between independent variable and dependent variable Linear Regression http://en.wikipedia.org/wiki/Linear_regression C++: http://www.oocities.org/david_swaim/cpp/linregc.htm Special case of statistically exact extrapolation Leverage least squares Given a basis function, the sum of the residuals is determined and the corresponding gradient equation is expressed as a set of normal linear equations in matrix form that can be solved (e.g. using LU Decomposition) Can be weighted - Drop the assumption that all errors have the same significance –-> confidence of accuracy is different for each data point. Fit the function closer to points with higher weights Polynomial Fit - use a polynomial basis function Moving Average http://en.wikipedia.org/wiki/Moving_average C++: http://www.codeproject.com/Articles/17860/A-Simple-Moving-Average-Algorithm Used for smoothing (cancel fluctuations to highlight longer-term trends & cycles), time series data analysis, signal processing filters Replace each data point with average of neighbors. Can be simple (SMA), weighted (WMA), exponential (EMA). Lags behind latest data points – extra weight can be given to more recent data points. Weights can decrease arithmetically or exponentially according to distance from point. Parameters: smoothing factor, period, weight basis Optimization Overview Given function with multiple variables, find Min (or max by minimizing –f(x)) Iterative approach Efficient, but not necessarily reliable Conditions: noisy data, constraints, non-linear models Detection via sign of first derivative - Derivative of saddle points will be 0 Local minima Bisection method Similar method for finding a root for a non-linear equation Start with an interval that contains a minimum Golden Search method http://en.wikipedia.org/wiki/Golden_section_search C++: http://www.codecogs.com/code/maths/optimization/golden.php Bisect intervals according to golden ratio 0.618.. Achieves reduction by evaluating a single function instead of 2 Newton-Raphson Method Brent method http://en.wikipedia.org/wiki/Brent's_method C++: http://people.sc.fsu.edu/~jburkardt/cpp_src/brent/brent.cpp Based on quadratic or parabolic interpolation – if the function is smooth & parabolic near to the minimum, then a parabola fitted through any 3 points should approximate the minima – fails when the 3 points are collinear , in which case the denominator is 0 Simplex Method http://en.wikipedia.org/wiki/Simplex_algorithm C++: http://www.codeguru.com/cpp/article.php/c17505/Simplex-Optimization-Algorithm-and-Implemetation-in-C-Programming.htm Find the global minima of any multi-variable function Direct search – no derivatives required At each step it maintains a non-degenerative simplex – a convex hull of n+1 vertices. Obtains the minimum for a function with n variables by evaluating the function at n-1 points, iteratively replacing the point of worst result with the point of best result, shrinking the multidimensional simplex around the best point. Point replacement involves expanding & contracting the simplex near the worst value point to determine a better replacement point Oscillation can be avoided by choosing the 2nd worst result Restart if it gets stuck Parameters: contraction & expansion factors Simulated Annealing http://en.wikipedia.org/wiki/Simulated_annealing C++: http://code.google.com/p/cppsimulatedannealing/ Analogy to heating & cooling metal to strengthen its structure Stochastic method – apply random permutation search for global minima - Avoid entrapment in local minima via hill climbing Heating schedule - Annealing schedule params: temperature, iterations at each temp, temperature delta Cooling schedule – can be linear, step-wise or exponential Differential Evolution http://en.wikipedia.org/wiki/Differential_evolution C++: http://www.amichel.com/de/doc/html/ More advanced stochastic methods analogous to biological processes: Genetic algorithms, evolution strategies Parallel direct search method against multiple discrete or continuous variables Initial population of variable vectors chosen randomly – if weighted difference vector of 2 vectors yields a lower objective function value then it replaces the comparison vector Many params: #parents, #variables, step size, crossover constant etc Convergence is slow – many more function evaluations than simulated annealing Numerical Differentiation Overview 2 approaches to finite difference methods: · A) approximate function via polynomial interpolation then differentiate · B) Taylor series approximation – additionally provides error estimate Finite Difference methods http://en.wikipedia.org/wiki/Finite_difference_method C++: http://www.wpi.edu/Pubs/ETD/Available/etd-051807-164436/unrestricted/EAMPADU.pdf Find differences between high order derivative values - Approximate differential equations by finite differences at evenly spaced data points Based on forward & backward Taylor series expansion of f(x) about x plus or minus multiples of delta h. Forward / backward difference - the sums of the series contains even derivatives and the difference of the series contains odd derivatives – coupled equations that can be solved. Provide an approximation of the derivative within a O(h^2) accuracy There is also central difference & extended central difference which has a O(h^4) accuracy Richardson Extrapolation http://en.wikipedia.org/wiki/Richardson_extrapolation C++: http://mathscoding.blogspot.co.il/2012/02/introduction-richardson-extrapolation.html A sequence acceleration method applied to finite differences Fast convergence, high accuracy O(h^4) Derivatives via Interpolation Cannot apply Finite Difference method to discrete data points at uneven intervals – so need to approximate the derivative of f(x) using the derivative of the interpolant via 3 point Lagrange Interpolation Note: the higher the order of the derivative, the lower the approximation precision Numerical Integration Estimate finite & infinite integrals of functions More accurate procedure than numerical differentiation Use when it is not possible to obtain an integral of a function analytically or when the function is not given, only the data points are Newton Cotes Methods http://en.wikipedia.org/wiki/Newton%E2%80%93Cotes_formulas C++: http://www.siafoo.net/snippet/324 For equally spaced data points Computationally easy – based on local interpolation of n rectangular strip areas that is piecewise fitted to a polynomial to get the sum total area Evaluate the integrand at n+1 evenly spaced points – approximate definite integral by Sum Weights are derived from Lagrange Basis polynomials Leverage Trapezoidal Rule for default 2nd formulas, Simpson 1/3 Rule for substituting 3 point formulas, Simpson 3/8 Rule for 4 point formulas. For 4 point formulas use Bodes Rule. Higher orders obtain more accurate results Trapezoidal Rule uses simple area, Simpsons Rule replaces the integrand f(x) with a quadratic polynomial p(x) that uses the same values as f(x) for its end points, but adds a midpoint Romberg Integration http://en.wikipedia.org/wiki/Romberg's_method C++: http://code.google.com/p/romberg-integration/downloads/detail?name=romberg.cpp&can=2&q= Combines trapezoidal rule with Richardson Extrapolation Evaluates the integrand at equally spaced points The integrand must have continuous derivatives Each R(n,m) extrapolation uses a higher order integrand polynomial replacement rule (zeroth starts with trapezoidal) à a lower triangular matrix set of equation coefficients where the bottom right term has the most accurate approximation. The process continues until the difference between 2 successive diagonal terms becomes sufficiently small. Gaussian Quadrature http://en.wikipedia.org/wiki/Gaussian_quadrature C++: http://www.alglib.net/integration/gaussianquadratures.php Data points are chosen to yield best possible accuracy – requires fewer evaluations Ability to handle singularities, functions that are difficult to evaluate The integrand can include a weighting function determined by a set of orthogonal polynomials. Points & weights are selected so that the integrand yields the exact integral if f(x) is a polynomial of degree <= 2n+1 Techniques (basically different weighting functions): · Gauss-Legendre Integration w(x)=1 · Gauss-Laguerre Integration w(x)=e^-x · Gauss-Hermite Integration w(x)=e^-x^2 · Gauss-Chebyshev Integration w(x)= 1 / Sqrt(1-x^2) Solving ODEs Use when high order differential equations cannot be solved analytically Evaluated under boundary conditions RK for systems – a high order differential equation can always be transformed into a coupled first order system of equations Euler method http://en.wikipedia.org/wiki/Euler_method C++: http://rosettacode.org/wiki/Euler_method First order Runge–Kutta method. Simple recursive method – given an initial value, calculate derivative deltas. Unstable & not very accurate (O(h) error) – not used in practice A first-order method - the local error (truncation error per step) is proportional to the square of the step size, and the global error (error at a given time) is proportional to the step size In evolving solution between data points xn & xn+1, only evaluates derivatives at beginning of interval xn à asymmetric at boundaries Higher order Runge Kutta http://en.wikipedia.org/wiki/Runge%E2%80%93Kutta_methods C++: http://www.dreamincode.net/code/snippet1441.htm 2nd & 4th order RK - Introduces parameterized midpoints for more symmetric solutions à accuracy at higher computational cost Adaptive RK – RK-Fehlberg – estimate the truncation at each integration step & automatically adjust the step size to keep error within prescribed limits. At each step 2 approximations are compared – if in disagreement to a specific accuracy, the step size is reduced Boundary Value Problems Where solution of differential equations are located at 2 different values of the independent variable x à more difficult, because cannot just start at point of initial value – there may not be enough starting conditions available at the end points to produce a unique solution An n-order equation will require n boundary conditions – need to determine the missing n-1 conditions which cause the given conditions at the other boundary to be satisfied Shooting Method http://en.wikipedia.org/wiki/Shooting_method C++: http://ganeshtiwaridotcomdotnp.blogspot.co.il/2009/12/c-c-code-shooting-method-for-solving.html Iteratively guess the missing values for one end & integrate, then inspect the discrepancy with the boundary values of the other end to adjust the estimate Given the starting boundary values u1 & u2 which contain the root u, solve u given the false position method (solving the differential equation as an initial value problem via 4th order RK), then use u to solve the differential equations. Finite Difference Method For linear & non-linear systems Higher order derivatives require more computational steps – some combinations for boundary conditions may not work though Improve the accuracy by increasing the number of mesh points Solving EigenValue Problems An eigenvalue can substitute a matrix when doing matrix multiplication à convert matrix multiplication into a polynomial EigenValue For a given set of equations in matrix form, determine what are the solution eigenvalue & eigenvectors Similar Matrices - have same eigenvalues. Use orthogonal similarity transforms to reduce a matrix to diagonal form from which eigenvalue(s) & eigenvectors can be computed iteratively Jacobi method http://en.wikipedia.org/wiki/Jacobi_method C++: http://people.sc.fsu.edu/~jburkardt/classes/acs2_2008/openmp/jacobi/jacobi.html Robust but Computationally intense – use for small matrices < 10x10 Power Iteration http://en.wikipedia.org/wiki/Power_iteration For any given real symmetric matrix, generate the largest single eigenvalue & its eigenvectors Simplest method – does not compute matrix decomposition à suitable for large, sparse matrices Inverse Iteration Variation of power iteration method – generates the smallest eigenvalue from the inverse matrix Rayleigh Method http://en.wikipedia.org/wiki/Rayleigh's_method_of_dimensional_analysis Variation of power iteration method Rayleigh Quotient Method Variation of inverse iteration method Matrix Tri-diagonalization Method Use householder algorithm to reduce an NxN symmetric matrix to a tridiagonal real symmetric matrix vua N-2 orthogonal transforms     Whats Next Outside of Numerical Methods there are lots of different types of algorithms that I’ve learned over the decades: Data Mining – (I covered this briefly in a previous post: http://geekswithblogs.net/JoshReuben/archive/2007/12/31/ssas-dm-algorithms.aspx ) Search & Sort Routing Problem Solving Logical Theorem Proving Planning Probabilistic Reasoning Machine Learning Solvers (eg MIP) Bioinformatics (Sequence Alignment, Protein Folding) Quant Finance (I read Wilmott’s books – interesting) Sooner or later, I’ll cover the above topics as well.

    Read the article

  • Red Gate Coder interviews: Robin Hellen

    - by Michael Williamson
    Robin Hellen is a test engineer here at Red Gate, and is also the latest coder I’ve interviewed. We chatted about debugging code, the roles of software engineers and testers, and why Vala is currently his favourite programming language. How did you get started with programming?It started when I was about six. My dad’s a professional programmer, and he gave me and my sister one of his old computers and taught us a bit about programming. It was an old Amiga 500 with a variant of BASIC. I don’t think I ever successfully completed anything! It was just faffing around. I didn’t really get anywhere with it.But then presumably you did get somewhere with it at some point.At some point. The PC emerged as the dominant platform, and I learnt a bit of Visual Basic. I didn’t really do much, just a couple of quick hacky things. A bit of demo animation. Took me a long time to get anywhere with programming, really.When did you feel like you did start to get somewhere?I think it was when I started doing things for someone else, which was my sister’s final year of university project. She called up my dad two days before she was due to submit, saying “We need something to display a graph!”. Dad says, “I’m too busy, go talk to your brother”. So I hacked up this ugly piece of code, sent it off and they won a prize for that project. Apparently, the graph, the bit that I wrote, was the reason they won a prize! That was when I first felt that I’d actually done something that was worthwhile. That was my first real bit of code, and the ugliest code I’ve ever written. It’s basically an array of pre-drawn line elements that I shifted round the screen to draw a very spikey graph.When did you decide that programming might actually be something that you wanted to do as a career?It’s not really a decision I took, I always wanted to do something with computers. And I had to take a gap year for uni, so I was looking for twelve month internships. I applied to Red Gate, and they gave me a job as a tester. And that’s where I really started having to write code well. To a better standard that I had been up to that point.How did you find coming to Red Gate and working with other coders?I thought it was really nice. I learnt so much just from other people around. I think one of the things that’s really great is that people are just willing to help you learn. Instead of “Don’t you know that, you’re so stupid”, it’s “You can just do it this way”.If you could go back to the very start of that internship, is there something that you would tell yourself?Write shorter code. I have a tendency to write massive, many-thousand line files that I break out of right at the end. And then half-way through a project I’m doing something, I think “Where did I write that bit that does that thing?”, and it’s almost impossible to find. I wrote some horrendous code when I started. Just that principle, just keep things short. Even if looks a bit crazy to be jumping around all over the place all of the time, it’s actually a lot more understandable.And how do you hold yourself to that?Generally, if a function’s going off my screen, it’s probably too long. That’s what I tell myself, and within the team here we have code reviews, so the guys I’m with at the moment are pretty good at pulling me up on, “Doesn’t that look like it’s getting a bit long?”. It’s more just the subjective standard of readability than anything.So you’re an advocate of code review?Yes, definitely. Both to spot errors that you might have made, and to improve your knowledge. The person you’re reviewing will say “Oh, you could have done it that way”. That’s how we learn, by talking to others, and also just sharing knowledge of how your project works around the team, or even outside the team. Definitely a very firm advocate of code reviews.Do you think there’s more we could do with them?I don’t know. We’re struggling with how to add them as part of the process without it becoming too cumbersome. We’ve experimented with a few different ways, and we’ve not found anything that just works.To get more into the nitty gritty: how do you like to debug code?The first thing is to do it in my head. I’ll actually think what piece of code is likely to have caused that error, and take a quick look at it, just to see if there’s anything glaringly obvious there. The next thing I’ll probably do is throw in print statements, or throw some exceptions from various points, just to check: is it going through the code path I expect it to? A last resort is to actually debug code using a debugger.Why is the debugger the last resort?Probably because of the environments I learnt programming in. VB and early BASIC didn’t have much of a debugger, the only way to find out what your program was doing was to add print statements. Also, because a lot of the stuff I tend to work with is non-interactive, if it’s something that takes a long time to run, I can throw in the print statements, set a run off, go and do something else, and look at it again later, rather than trying to remember what happened at that point when I was debugging through it. So it also gives me the record of what happens. I hate just sitting there pressing F5, F5, continually. If you’re having to find out what your code is doing at each line, you’ve probably got a very wrong mental model of what your code’s doing, and you can find that out just as easily by inspecting a couple of values through the print statements.If I were on some codebase that you were also working on, what should I do to make it as easy as possible to understand?I’d say short and well-named methods. The one thing I like to do when I’m looking at code is to find out where a value comes from, and the more layers of indirection there are, particularly DI [dependency injection] frameworks, the harder it is to find out where something’s come from. I really hate that. I want to know if the value come from the user here or is a constant here, and if I can’t find that out, that makes code very hard to understand for me.As a tester, where do you think the split should lie between software engineers and testers?I think the split is less on areas of the code you write and more what you’re designing and creating. The developers put a structure on the code, while my major role is to say which tests we should have, whether we should test that, or it’s not worth testing that because it’s a tiny function in code that nobody’s ever actually going to see. So it’s not a split in the code, it’s a split in what you’re thinking about. Saying what code we should write, but alternatively what code we should take out.In your experience, do the software engineers tend to do much testing themselves?They tend to control the lowest layer of tests. And, depending on how the balance of people is in the team, they might write some of the higher levels of test. Or that might go to the testers. I’m the only tester on my team with three other developers, so they’ll be writing quite a lot of the actual test code, with input from me as to whether we should test that functionality, whereas on other teams, where it’s been more equal numbers, the testers have written pretty much all of the high level tests, just because that’s the best use of resource.If you could shuffle resources around however you liked, do you think that the developers should be writing those high-level tests?I think they should be writing them occasionally. It helps when they have an understanding of how testing code works and possibly what assumptions we’ve made in tests, and they can say “actually, it doesn’t work like that under the hood so you’ve missed this whole area”. It’s one of those agile things that everyone on the team should be at least comfortable doing the various jobs. So if the developers can write test code then I think that’s a very good thing.So you think testers should be able to write production code?Yes, although given most testers skills at coding, I wouldn’t advise it too much! I have written a few things, and I did make a few changes that have actually gone into our production code base. They’re not necessarily running every time but they are there. I think having that mix of skill sets is really useful. In some ways we’re using our own product to test itself, so being able to make those changes where it’s not working saves me a round-trip through the developers. It can be really annoying if the developers have no time to make a change, and I can’t touch the code.If the software engineers are consistently writing tests at all levels, what role do you think the role of a tester is?I think on a team like that, those distinctions aren’t quite so useful. There’ll be two cases. There’s either the case where the developers think they’ve written good tests, but you still need someone with a test engineer mind-set to go through the tests and validate that it’s a useful set, or the correct set for that code. Or they won’t actually be pure developers, they’ll have that mix of test ability in there.I think having slightly more distinct roles is useful. When it starts to blur, then you lose that view of the tests as a whole. The tester job is not to create tests, it’s to validate the quality of the product, and you don’t do that just by writing tests. There’s more things you’ve got to keep in your mind. And I think when you blur the roles, you start to lose that end of the tester.So because you’re working on those features, you lose that holistic view of the whole system?Yeah, and anyone who’s worked on the feature shouldn’t be testing it. You always need to have it tested it by someone who didn’t write it. Otherwise you’re a bit too close and you assume “yes, people will only use it that way”, but the tester will come along and go “how do people use this? How would our most idiotic user use this?”. I might not test that because it might be completely irrelevant. But it’s coming in and trying to have a different set of assumptions.Are you a believer that it should all be automated if possible?Not entirely. So an automated test is always better than a manual test for the long-term, but there’s still nothing that beats a human sitting in front of the application and thinking “What could I do at this point?”. The automated test is very good but they follow that strict path, and they never check anything off the path. The human tester will look at things that they weren’t expecting, whereas the automated test can only ever go “Is that value correct?” in many respects, and it won’t notice that on the other side of the screen you’re showing something completely wrong. And that value might have been checked independently, but you always find a few odd interactions when you’re going through something manually, and you always need to go through something manually to start with anyway, otherwise you won’t know where the important bits to write your automation are.When you’re doing that manual testing, do you think it’s important to do that across the entire product, or just the bits that you’ve touched recently?I think it’s important to do it mostly on the bits you’ve touched, but you can’t ignore the rest of the product. Unless you’re dealing with a very, very self-contained bit, you’re almost always encounter other bits of the product along the way. Most testers I know, even if they are looking at just one path, they’ll keep open and move around a bit anyway, just because they want to find something that’s broken. If we find that your path is right, we’ll go out and hunt something else.How do you think this fits into the idea of continuously deploying, so long as the tests pass?With deploying a website it’s a bit different because you can always pull it back. If you’re deploying an application to customers, when you’ve released it, it’s out there, you can’t pull it back. Someone’s going to keep it, no matter how hard you try there will be a few installations that stay around. So I’d always have at least a human element on that path. With websites, you could probably automate straight out, or at least straight out to an internal environment or a single server in a cloud of fifty that will serve some people. But I don’t think you should release to everyone just on automated tests passing.You’ve already mentioned using BASIC and C# — are there any other languages that you’ve used?I’ve used a few. That’s something that has changed more recently, I’ve become familiar with more languages. Before I started at Red Gate I learnt a bit of C. Then last year, I taught myself Python which I actually really enjoyed using. I’ve also come across another language called Vala, which is sort of a C#-like language. It’s basically a pre-processor for C, but it has very nice syntax. I think that’s currently my favourite language.Any particular reason for trying Vala?I have a completely Linux environment at home, and I’ve been looking for a nice language, and C# just doesn’t cut it because I won’t touch Mono. So, I was looking for something like C# but that was useable in an open source environment, and Vala’s what I found. C#’s got a few features that Vala doesn’t, and Vala’s got a few features where I think “It would be awesome if C# had that”.What are some of the features that it’s missing?Extension methods. And I think that’s the only one that really bugs me. I like to use them when I’m writing C# because it makes some things really easy, especially with libraries that you can’t touch the internals of. It doesn’t have method overloading, which is sometimes annoying.Where it does win over C#?Everything is non-nullable by default, you never have to check that something’s unexpectedly null.Also, Vala has code contracts. This is starting to come in C# 4, but the way it works in Vala is that you specify requirements in short phrases as part of your function signature and they stick to the signature, so that when you inherit it, it has exactly the same code contract as the base one, or when you inherit from an interface, you have to match the signature exactly. Just using those makes you think a bit more about how you’re writing your method, it’s not an afterthought when you’ve got contracts from base classes given to you, you can’t change it. Which I think is a lot nicer than the way C# handles it. When are those actually checked?They’re checked both at compile and run-time. The compile-time checking isn’t very strong yet, it’s quite a new feature in the compiler, and because it compiles down to C, you can write C code and interface with your methods, so you can bypass that compile-time check anyway. So there’s an extra runtime check, and if you violate one of the contracts at runtime, it’s game over for your program, there’s no exception to catch, it’s just goodbye!One thing I dislike about C# is the exceptions. You write a bit of code and fifty exceptions could come from any point in your ten lines, and you can’t mentally model how those exceptions are going to come out, and you can’t even predict them based on the functions you’re calling, because if you’ve accidentally got a derived class there instead of a base class, that can throw a completely different set of exceptions. So I’ve got no way of mentally modelling those, whereas in Vala they’re checked like Java, so you know only these exceptions can come out. You know in advance the error conditions.I think Raymond Chen on Old New Thing says “the only thing you know when you throw an exception is that you’re in an invalid state somewhere in your program, so just kill it and be done with it!”You said you’ve also learnt bits of Python. How did you find that compared to Vala and C#?Very different because of the dynamic typing. I’ve been writing a website for my own use. I’m quite into photography, so I take photos off my camera, post-process them, dump them in a file, and I get a webpage with all my thumbnails. So sort of like Picassa, but written by myself because I wanted something to learn Python with. There are some things that are really nice, I just found it really difficult to cope with the fact that I’m not quite sure what this object type that I’m passed is, I might not ever be sure, so it can randomly blow up on me. But once I train myself to ignore that and just say “well, I’m fairly sure it’s going to be something that looks like this, so I’ll use it like this”, then it’s quite nice.Any particular features that you’ve appreciated?I don’t like any particular feature, it’s just very straightforward to work with. It’s very quick to write something in, particularly as you don’t have to worry that you’ve changed something that affects a different part of the program. If you have, then that part blows up, but I can get this part working right now.If you were doing a big project, would you be willing to do it in Python rather than C# or Vala?I think I might be willing to try something bigger or long term with Python. We’re currently doing an ASP.NET MVC project on C#, and I don’t like the amount of reflection. There’s a lot of magic that pulls values out, and it’s all done under the scenes. It’s almost managed to put a dynamic type system on top of C#, which in many ways destroys the language to me, whereas if you’re already in a dynamic language, having things done dynamically is much more natural. In many ways, you get the worst of both worlds. I think for web projects, I would go with Python again, whereas for anything desktop, command-line or GUI-based, I’d probably go for C# or Vala, depending on what environment I’m in.It’s the fact that you can gain from the strong typing in ways that you can’t so much on the web app. Or, in a web app, you have to use dynamic typing at some point, or you have to write a hell of a lot of boilerplate, and I’d rather use the dynamic typing than write the boilerplate.What do you think separates great programmers from everyone else?Probably design choices. Choosing to write it a piece of code one way or another. For any given program you ask me to write, I could probably do it five thousand ways. A programmer who is capable will see four or five of them, and choose one of the better ones. The excellent programmer will see the largest proportion and manage to pick the best one very quickly without having to think too much about it. I think that’s probably what separates, is the speed at which they can see what’s the best path to write the program in. More Red Gater Coder interviews

    Read the article

  • Alert visualization recipe: Get out your blender, drop in some sp_send_dbmail, Google Charts API, add your favorite colors and sprinkle with html. Blend till it’s smooth and looks pretty enough to taste.

    - by Maria Zakourdaev
      I really like database monitoring. My email inbox have a constant flow of different types of alerts coming from our production servers with all kinds of information, sometimes more useful and sometimes less useful. Usually database alerts look really simple, it’s usually a plain text email saying “Prod1 Database data file on Server X is 80% used. You’d better grow it manually before some query triggers the AutoGrowth process”. Imagine you could have received email like the one below.  In addition to the alert description it could have also included the the database file growth chart over the past 6 months. Wouldn’t it give you much more information whether the data growth is natural or extreme? That’s truly what data visualization is for. Believe it or not, I have sent the graph below from SQL Server stored procedure without buying any additional data monitoring/visualization tool.   Would you like to visualize your database alerts like I do? Then like myself, you’d love the Google Charts. All you need to know is a little HTML and have a mail profile configured on your SQL Server instance regardless of the SQL Server version. First of all, I hope you know that the sp_send_dbmail procedure has a great parameter @body_format = ‘HTML’, which allows us to send rich and colorful messages instead of boring black and white ones. All that we need is to dynamically create HTML code. This is how, for instance, you can create a table and populate it with some data: DECLARE @html varchar(max) SET @html = '<html>' + '<H3><font id="Text" style='color: Green;'>Top Databases: </H3>' + '<table border="1" bordercolor="#3300FF" style='background-color:#DDF8CC' width='70%' cellpadding='3' cellspacing='3'>' + '<tr><font color="Green"><th>Database Name</th><th>Size</th><th>Physical Name</th></tr>' + CAST( (SELECT TOP 10                             td = name,'',                             td = size * 8/1024 ,'',                             td = physical_name              FROM sys.master_files               ORDER BY size DESC             FOR XML PATH ('tr'),TYPE ) AS VARCHAR(MAX)) + '</table>' EXEC msdb.dbo.sp_send_dbmail @recipients = '[email protected]', @subject ='Top databases', @body = @html, @body_format = 'HTML' This is the result:   If you want to add more visualization effects, you can use Google Charts Tools https://google-developers.appspot.com/chart/interactive/docs/index which is a free and rich library of data visualization charts, they’re also easy to populate and embed. There are two versions of the Google Charts Image based charts: https://google-developers.appspot.com/chart/image/docs/gallery/chart_gall This is an old version, it’s officially deprecated although it will be up for a next few years or so. I really enjoy using this one because it can be viewed within the email body. For mobile devices you need to change the “Load remote images” property in your email application configuration.           Charts based on JavaScript classes: https://google-developers.appspot.com/chart/interactive/docs/gallery This API is newer, with rich and highly interactive charts, and it’s much more easier to understand and configure. The only downside of it is that they cannot be viewed within the email body. Outlook, Gmail and many other email clients, as part of their security policy, do not run any JavaScript that’s placed within the email body. However, you can still enjoy this API by sending the report as an email attachment. Here is an example of the old version of Google Charts API, sending the same top databases report as in the previous example but instead of a simple table, this script is using a pie chart right from  the T-SQL code DECLARE @html  varchar(8000) DECLARE @Series  varchar(800),@Labels  varchar(8000),@Legend  varchar(8000);     SET @Series = ''; SET @Labels = ''; SET @Legend = ''; SELECT TOP 5 @Series = @Series + CAST(size * 8/1024 as varchar) + ',',                         @Labels = @Labels +CAST(size * 8/1024 as varchar) + 'MB'+'|',                         @Legend = @Legend + name + '|' FROM sys.master_files ORDER BY size DESC SELECT @Series = SUBSTRING(@Series,1,LEN(@Series)-1),         @Labels = SUBSTRING(@Labels,1,LEN(@Labels)-1),         @Legend = SUBSTRING(@Legend,1,LEN(@Legend)-1) SET @html =   '<H3><font color="Green"> '+@@ServerName+' top 5 databases : </H3>'+    '<br>'+    '<img src="http://chart.apis.google.com/chart?'+    'chf=bg,s,DDF8CC&'+    'cht=p&'+    'chs=400x200&'+    'chco=3072F3|7777CC|FF9900|FF0000|4A8C26&'+    'chd=t:'+@Series+'&'+    'chl='+@Labels+'&'+    'chma=0,0,0,0&'+    'chdl='+@Legend+'&'+    'chdlp=b"'+    'alt="'+@@ServerName+' top 5 databases" />'              EXEC msdb.dbo.sp_send_dbmail @recipients = '[email protected]',                             @subject = 'Top databases',                             @body = @html,                             @body_format = 'HTML' This is what you get. Isn’t it great? Chart parameters reference: chf     Gradient fill  bg - backgroud ; s- solid cht     chart type  ( p - pie) chs        chart size width/height chco    series colors chd        chart data string        1,2,3,2 chl        pir chart labels        a|b|c|d chma    chart margins chdl    chart legend            a|b|c|d chdlp    chart legend text        b - bottom of chart   Line graph implementation is also really easy and powerful DECLARE @html varchar(max) DECLARE @Series varchar(max) DECLARE @HourList varchar(max) SET @Series = ''; SET @HourList = ''; SELECT @HourList = @HourList + SUBSTRING(CONVERT(varchar(13),last_execution_time,121), 12,2)  + '|' ,              @Series = @Series + CAST( COUNT(1) as varchar) + ',' FROM sys.dm_exec_query_stats s     CROSS APPLY sys.dm_exec_sql_text(plan_handle) t WHERE last_execution_time > = getdate()-1 GROUP BY CONVERT(varchar(13),last_execution_time,121) ORDER BY CONVERT(varchar(13),last_execution_time,121) SET @Series = SUBSTRING(@Series,1,LEN(@Series)-1) SET @html = '<img src="http://chart.apis.google.com/chart?'+ 'chco=CA3D05,87CEEB&'+ 'chd=t:'+@Series+'&'+ 'chds=1,350&'+ 'chdl= Proc executions from cache&'+ 'chf=bg,s,1F1D1D|c,lg,0,363433,1.0,2E2B2A,0.0&'+ 'chg=25.0,25.0,3,2&'+ 'chls=3|3&'+ 'chm=d,CA3D05,0,-1,12,0|d,FFFFFF,0,-1,8,0|d,87CEEB,1,-1,12,0|d,FFFFFF,1,-1,8,0&'+ 'chs=600x450&'+ 'cht=lc&'+ 'chts=FFFFFF,14&'+ 'chtt=Executions for from' +(SELECT CONVERT(varchar(16),min(last_execution_time),121)          FROM sys.dm_exec_query_stats          WHERE last_execution_time > = getdate()-1) +' till '+ +(SELECT CONVERT(varchar(16),max(last_execution_time),121)     FROM sys.dm_exec_query_stats) + '&'+ 'chxp=1,50.0|4,50.0&'+ 'chxs=0,FFFFFF,12,0|1,FFFFFF,12,0|2,FFFFFF,12,0|3,FFFFFF,12,0|4,FFFFFF,14,0&'+ 'chxt=y,y,x,x,x&'+ 'chxl=0:|1|350|1:|N|2:|'+@HourList+'3:|Hour&'+ 'chma=55,120,0,0" alt="" />' EXEC msdb.dbo.sp_send_dbmail @recipients = '[email protected]', @subject ='Daily number of executions', @body = @html, @body_format = 'HTML' Chart parameters reference: chco    series colors chd        series data chds    scale format chdl    chart legend chf        background fills chg        grid line chls    line style chm        line fill chs        chart size cht        chart type chts    chart style chtt    chart title chxp    axis label positions chxs    axis label styles chxt    axis tick mark styles chxl    axis labels chma    chart margins If you don’t mind to get your charts as an email attachment, you can enjoy the Java based Google Charts which are even easier to configure, and have much more advanced graphics. In the example below, the sp_send_email procedure uses the parameter @query which will be executed at the time that sp_send_dbemail is executed and the HTML result of this execution will be attached to the email. DECLARE @html varchar(max),@query varchar(max) DECLARE @SeriesDBusers  varchar(800);     SET @SeriesDBusers = ''; SELECT @SeriesDBusers = @SeriesDBusers +  ' ["'+DB_NAME(r.database_id) +'", ' +cast(count(1) as varchar)+'],' FROM sys.dm_exec_requests r GROUP BY DB_NAME(database_id) ORDER BY count(1) desc; SET @SeriesDBusers = SUBSTRING(@SeriesDBusers,1,LEN(@SeriesDBusers)-1) SET @query = ' PRINT '' <html>   <head>     <script type="text/javascript" src="https://www.google.com/jsapi"></script>     <script type="text/javascript">       google.load("visualization", "1", {packages:["corechart"]});        google.setOnLoadCallback(drawChart);       function drawChart() {                      var data = google.visualization.arrayToDataTable([                        ["Database Name", "Active users"],                        '+@SeriesDBusers+'                      ]);                        var options = {                        title: "Active users",                        pieSliceText: "value"                      };                        var chart = new google.visualization.PieChart(document.getElementById("chart_div"));                      chart.draw(data, options);       };     </script>   </head>   <body>     <table>     <tr><td>         <div id="chart_div" style='width: 800px; height: 300px;'></div>         </td></tr>     </table>   </body> </html> ''' EXEC msdb.dbo.sp_send_dbmail    @recipients = '[email protected]',    @subject ='Active users',    @body = @html,    @body_format = 'HTML',    @query = @Query,     @attach_query_result_as_file = 1,     @query_attachment_filename = 'Results.htm' After opening the email attachment in the browser you are getting this kind of report: In fact, the above is not only for database alerts. It can be used for applicative reports if you need high levels of customization that you cannot achieve using standard methods like SSRS. If you need more information on how to customize the charts, you can try the following: Image Based Charts wizard https://google-developers.appspot.com/chart/image/docs/chart_wizard  Live Image Charts Playground https://google-developers.appspot.com/chart/image/docs/chart_playground Image Based Charts Parameters List https://google-developers.appspot.com/chart/image/docs/chart_params Java Script Charts Playground https://code.google.com/apis/ajax/playground/?type=visualization Use the above examples as a starting point for your procedures and I’d be more than happy to hear of your implementations of the above techniques. Yours, Maria

    Read the article

  • Towards Database Continuous Delivery – What Next after Continuous Integration? A Checklist

    - by Ben Rees
    .dbd-banner p{ font-size:0.75em; padding:0 0 10px; margin:0 } .dbd-banner p span{ color:#675C6D; } .dbd-banner p:last-child{ padding:0; } @media ALL and (max-width:640px){ .dbd-banner{ background:#f0f0f0; padding:5px; color:#333; margin-top: 5px; } } -- Database delivery patterns & practices STAGE 4 AUTOMATED DEPLOYMENT If you’ve been fortunate enough to get to the stage where you’ve implemented some sort of continuous integration process for your database updates, then hopefully you’re seeing the benefits of that investment – constant feedback on changes your devs are making, advanced warning of data loss (prior to the production release on Saturday night!), a nice suite of automated tests to check business logic, so you know it’s going to work when it goes live, and so on. But what next? What can you do to improve your delivery process further, moving towards a full continuous delivery process for your database? In this article I describe some of the issues you might need to tackle on the next stage of this journey, and how to plan to overcome those obstacles before they appear. Our Database Delivery Learning Program consists of four stages, really three – source controlling a database, running continuous integration processes, then how to set up automated deployment (the middle stage is split in two – basic and advanced continuous integration, making four stages in total). If you’ve managed to work through the first three of these stages – source control, basic, then advanced CI, then you should have a solid change management process set up where, every time one of your team checks in a change to your database (whether schema or static reference data), this change gets fully tested automatically by your CI server. But this is only part of the story. Great, we know that our updates work, that the upgrade process works, that the upgrade isn’t going to wipe our 4Tb of production data with a single DROP TABLE. But – how do you get this (fully tested) release live? Continuous delivery means being always ready to release your software at any point in time. There’s a significant gap between your latest version being tested, and it being easily releasable. Just a quick note on terminology – there’s a nice piece here from Atlassian on the difference between continuous integration, continuous delivery and continuous deployment. This piece also gives a nice description of the benefits of continuous delivery. These benefits have been summed up by Jez Humble at Thoughtworks as: “Continuous delivery is a set of principles and practices to reduce the cost, time, and risk of delivering incremental changes to users” There’s another really useful piece here on Simple-Talk about the need for continuous delivery and how it applies to the database written by Phil Factor – specifically the extra needs and complexities of implementing a full CD solution for the database (compared to just implementing CD for, say, a web app). So, hopefully you’re convinced of moving on the the next stage! The next step after CI is to get some sort of automated deployment (or “release management”) process set up. But what should I do next? What do I need to plan and think about for getting my automated database deployment process set up? Can’t I just install one of the many release management tools available and hey presto, I’m ready! If only it were that simple. Below I list some of the areas that it’s worth spending a little time on, where a little planning and prep could go a long way. It’s also worth pointing out, that this should really be an evolving process. Depending on your starting point of course, it can be a long journey from your current setup to a full continuous delivery pipeline. If you’ve got a CI mechanism in place, you’re certainly a long way down that path. Nevertheless, we’d recommend evolving your process incrementally. Pages 157 and 129-141 of the book on Continuous Delivery (by Jez Humble and Dave Farley) have some great guidance on building up a pipeline incrementally: http://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912 For now, in this post, we’ll look at the following areas for your checklist: You and Your Team Environments The Deployment Process Rollback and Recovery Development Practices You and Your Team It’s a cliché in the DevOps community that “It’s not all about processes and tools, really it’s all about a culture”. As stated in this DevOps report from Puppet Labs: “DevOps processes and tooling contribute to high performance, but these practices alone aren’t enough to achieve organizational success. The most common barriers to DevOps adoption are cultural: lack of manager or team buy-in, or the value of DevOps isn’t understood outside of a specific group”. Like most clichés, there’s truth in there – if you want to set up a database continuous delivery process, you need to get your boss, your department, your company (if relevant) onside. Why? Because it’s an investment with the benefits coming way down the line. But the benefits are huge – for HP, in the book A Practical Approach to Large-Scale Agile Development: How HP Transformed LaserJet FutureSmart Firmware, these are summarized as: -2008 to present: overall development costs reduced by 40% -Number of programs under development increased by 140% -Development costs per program down 78% -Firmware resources now driving innovation increased by a factor of 8 (from 5% working on new features to 40% But what does this mean? It means that, when moving to the next stage, to make that extra investment in automating your deployment process, it helps a lot if everyone is convinced that this is a good thing. That they understand the benefits of automated deployment and are willing to make the effort to transform to a new way of working. Incidentally, if you’re ever struggling to convince someone of the value I’d strongly recommend just buying them a copy of this book – a great read, and a very practical guide to how it can really work at a large org. I’ve spoken to many customers who have implemented database CI who describe their deployment process as “The point where automation breaks down. Up to that point, the CI process runs, untouched by human hand, but as soon as that’s finished we revert to manual.” This deployment process can involve, for example, a DBA manually comparing an environment (say, QA) to production, creating the upgrade scripts, reading through them, checking them against an Excel document emailed to him/her the night before, turning to page 29 in his/her notebook to double-check how replication is switched off and on for deployments, and so on and so on. Painful, error-prone and lengthy. But the point is, if this is something like your deployment process, telling your DBA “We’re changing everything you do and your toolset next week, to automate most of your role – that’s okay isn’t it?” isn’t likely to go down well. There’s some work here to bring him/her onside – to explain what you’re doing, why there will still be control of the deployment process and so on. Or of course, if you’re the DBA looking after this process, you have to do a similar job in reverse. You may have researched and worked out how you’d like to change your methodology to start automating your painful release process, but do the dev team know this? What if they have to start producing different artifacts for you? Will they be happy with this? Worth talking to them, to find out. As well as talking to your DBA/dev team, the other group to get involved before implementation is your manager. And possibly your manager’s manager too. As mentioned, unless there’s buy-in “from the top”, you’re going to hit problems when the implementation starts to get rocky (and what tool/process implementations don’t get rocky?!). You need to have support from someone senior in your organisation – someone you can turn to when you need help with a delayed implementation, lack of resources or lack of progress. Actions: Get your DBA involved (or whoever looks after live deployments) and discuss what you’re planning to do or, if you’re the DBA yourself, get the dev team up-to-speed with your plans, Get your boss involved too and make sure he/she is bought in to the investment. Environments Where are you going to deploy to? And really this question is – what environments do you want set up for your deployment pipeline? Assume everyone has “Production”, but do you have a QA environment? Dedicated development environments for each dev? Proper pre-production? I’ve seen every setup under the sun, and there is often a big difference between “What we want, to do continuous delivery properly” and “What we’re currently stuck with”. Some of these differences are: What we want What we’ve got Each developer with their own dedicated database environment A single shared “development” environment, used by everyone at once An Integration box used to test the integration of all check-ins via the CI process, along with a full suite of unit-tests running on that machine In fact if you have a CI process running, you’re likely to have some sort of integration server running (even if you don’t call it that!). Whether you have a full suite of unit tests running is a different question… Separate QA environment used explicitly for manual testing prior to release “We just test on the dev environments, or maybe pre-production” A proper pre-production (or “staging”) box that matches production as closely as possible Hopefully a pre-production box of some sort. But does it match production closely!? A production environment reproducible from source control A production box which has drifted significantly from anything in source control The big question is – how much time and effort are you going to invest in fixing these issues? In reality this just involves figuring out which new databases you’re going to create and where they’ll be hosted – VMs? Cloud-based? What about size/data issues – what data are you going to include on dev environments? Does it need to be masked to protect access to production data? And often the amount of work here really depends on whether you’re working on a new, greenfield project, or trying to update an existing, brownfield application. There’s a world if difference between starting from scratch with 4 or 5 clean environments (reproducible from source control of course!), and trying to re-purpose and tweak a set of existing databases, with all of their surrounding processes and quirks. But for a proper release management process, ideally you have: Dedicated development databases, An Integration server used for testing continuous integration and running unit tests. [NB: This is the point at which deployments are automatic, without human intervention. Each deployment after this point is a one-click (but human) action], QA – QA engineers use a one-click deployment process to automatically* deploy chosen releases to QA for testing, Pre-production. The environment you use to test the production release process, Production. * A note on the use of the word “automatic” – when carrying out automated deployments this does not mean that the deployment is happening without human intervention (i.e. that something is just deploying over and over again). It means that the process of carrying out the deployment is automatic in that it’s not a person manually running through a checklist or set of actions. The deployment still requires a single-click from a user. Actions: Get your environments set up and ready, Set access permissions appropriately, Make sure everyone understands what the environments will be used for (it’s not a “free-for-all” with all environments to be accessed, played with and changed by development). The Deployment Process As described earlier, most existing database deployment processes are pretty manual. The following is a description of a process we hear very often when we ask customers “How do your database changes get live? How does your manual process work?” Check pre-production matches production (use a schema compare tool, like SQL Compare). Sometimes done by taking a backup from production and restoring in to pre-prod, Again, use a schema compare tool to find the differences between the latest version of the database ready to go live (i.e. what the team have been developing). This generates a script, User (generally, the DBA), reviews the script. This often involves manually checking updates against a spreadsheet or similar, Run the script on pre-production, and check there are no errors (i.e. it upgrades pre-production to what you hoped), If all working, run the script on production.* * this assumes there’s no problem with production drifting away from pre-production in the interim time period (i.e. someone has hacked something in to the production box without going through the proper change management process). This difference could undermine the validity of your pre-production deployment test. Red Gate is currently working on a free tool to detect this problem – sign up here at www.sqllighthouse.com, if you’re interested in testing early versions. There are several variations on this process – some better, some much worse! How do you automate this? In particular, step 3 – surely you can’t automate a DBA checking through a script, that everything is in order!? The key point here is to plan what you want in your new deployment process. There are so many options. At one extreme, pure continuous deployment – whenever a dev checks something in to source control, the CI process runs (including extensive and thorough testing!), before the deployment process keys in and automatically deploys that change to the live box. Not for the faint hearted – and really not something we recommend. At the other extreme, you might be more comfortable with a semi-automated process – the pre-production/production matching process is automated (with an error thrown if these environments don’t match), followed by a manual intervention, allowing for script approval by the DBA. One he/she clicks “Okay, I’m happy for that to go live”, the latter stages automatically take the script through to live. And anything in between of course – and other variations. But we’d strongly recommended sitting down with a whiteboard and your team, and spending a couple of hours mapping out “What do we do now?”, “What do we actually want?”, “What will satisfy our needs for continuous delivery, but still maintaining some sort of continuous control over the process?” NB: Most of what we’re discussing here is about production deployments. It’s important to note that you will also need to map out a deployment process for earlier environments (for example QA). However, these are likely to be less onerous, and many customers opt for a much more automated process for these boxes. Actions: Sit down with your team and a whiteboard, and draw out the answers to the questions above for your production deployments – “What do we do now?”, “What do we actually want?”, “What will satisfy our needs for continuous delivery, but still maintaining some sort of continuous control over the process?” Repeat for earlier environments (QA and so on). Rollback and Recovery If only every deployment went according to plan! Unfortunately they don’t – and when things go wrong, you need a rollback or recovery plan for what you’re going to do in that situation. Once you move in to a more automated database deployment process, you’re far more likely to be deploying more frequently than before. No longer once every 6 months, maybe now once per week, or even daily. Hence the need for a quick rollback or recovery process becomes paramount, and should be planned for. NB: These are mainly scenarios for handling rollbacks after the transaction has been committed. If a failure is detected during the transaction, the whole transaction can just be rolled back, no problem. There are various options, which we’ll explore in subsequent articles, things like: Immediately restore from backup, Have a pre-tested rollback script (remembering that really this is a “roll-forward” script – there’s not really such a thing as a rollback script for a database!) Have fallback environments – for example, using a blue-green deployment pattern. Different options have pros and cons – some are easier to set up, some require more investment in infrastructure; and of course some work better than others (the key issue with using backups, is loss of the interim transaction data that has been added between the failed deployment and the restore). The best mechanism will be primarily dependent on how your application works and how much you need a cast-iron failsafe mechanism. Actions: Work out an appropriate rollback strategy based on how your application and business works, your appetite for investment and requirements for a completely failsafe process. Development Practices This is perhaps the more difficult area for people to tackle. The process by which you can deploy database updates is actually intrinsically linked with the patterns and practices used to develop that database and linked application. So you need to decide whether you want to implement some changes to the way your developers actually develop the database (particularly schema changes) to make the deployment process easier. A good example is the pattern “Branch by abstraction”. Explained nicely here, by Martin Fowler, this is a process that can be used to make significant database changes (e.g. splitting a table) in a step-wise manner so that you can always roll back, without data loss – by making incremental updates to the database backward compatible. Slides 103-108 of the following slidedeck, from Niek Bartholomeus explain the process: https://speakerdeck.com/niekbartho/orchestration-in-meatspace As these slides show, by making a significant schema change in multiple steps – where each step can be rolled back without any loss of new data – this affords the release team the opportunity to have zero-downtime deployments with considerably less stress (because if an increment goes wrong, they can roll back easily). There are plenty more great patterns that can be implemented – the book Refactoring Databases, by Scott Ambler and Pramod Sadalage is a great read, if this is a direction you want to go in: http://www.amazon.com/Refactoring-Databases-Evolutionary-paperback-Addison-Wesley/dp/0321774515 But the question is – how much of this investment are you willing to make? How often are you making significant schema changes that would require these best practices? Again, there’s a difference here between migrating old projects and starting afresh – with the latter it’s much easier to instigate best practice from the start. Actions: For your business, work out how far down the path you want to go, amending your database development patterns to “best practice”. It’s a trade-off between implementing quality processes, and the necessity to do so (depending on how often you make complex changes). Socialise these changes with your development group. No-one likes having “best practice” changes imposed on them, so good to introduce these ideas and the rationale behind them early.   Summary The next stages of implementing a continuous delivery pipeline for your database changes (once you have CI up and running) require a little pre-planning, if you want to get the most out of the work, and for the implementation to go smoothly. We’ve covered some of the checklist of areas to consider – mainly in the areas of “Getting the team ready for the changes that are coming” and “Planning our your pipeline, environments, patterns and practices for development”, though there will be more detail, depending on where you’re coming from – and where you want to get to. This article is part of our database delivery patterns & practices series on Simple Talk. Find more articles for version control, automated testing, continuous integration & deployment.

    Read the article

  • Ball bouncing at a certain angle and efficiency computations

    - by X Y
    I would like to make a pong game with a small twist (for now). Every time the ball bounces off one of the paddles i want it to be under a certain angle (between a min and a max). I simply can't wrap my head around how to actually do it (i have some thoughts and such but i simply cannot implement them properly - i feel i'm overcomplicating things). Here's an image with a small explanation . One other problem would be that the conditions for bouncing have to be different for every edge. For example, in the picture, on the two small horizontal edges i do not want a perfectly vertical bounce when in the middle of the edge but rather a constant angle (pi/4 maybe) in either direction depending on the collision point (before the middle of the edge, or after). All of my collisions are done with the Separating Axes Theorem (and seem to work fine). I'm looking for something efficient because i want to add a lot of things later on (maybe polygons with many edges and such). So i need to keep to a minimum the amount of checking done every frame. The collision algorithm begins testing whenever the bounding boxes of the paddle and the ball intersect. Is there something better to test for possible collisions every frame? (more efficient in the long run,with many more objects etc, not necessarily easy to code). I'm going to post the code for my game: Paddle Class public class Paddle : Microsoft.Xna.Framework.DrawableGameComponent { #region Private Members private SpriteBatch spriteBatch; private ContentManager contentManager; private bool keybEnabled; private bool isLeftPaddle; private Texture2D paddleSprite; private Vector2 paddlePosition; private float paddleSpeedY; private Vector2 paddleScale = new Vector2(1f, 1f); private const float DEFAULT_Y_SPEED = 150; private Vector2[] Normals2Edges; private Vector2[] Vertices = new Vector2[4]; private List<Vector2> lst = new List<Vector2>(); private Vector2 Edge; #endregion #region Properties public float Speed { get {return paddleSpeedY; } set { paddleSpeedY = value; } } public Vector2[] Normal2EdgesVector { get { NormalsToEdges(this.isLeftPaddle); return Normals2Edges; } } public Vector2[] VertexVector { get { return Vertices; } } public Vector2 Scale { get { return paddleScale; } set { paddleScale = value; NormalsToEdges(this.isLeftPaddle); } } public float X { get { return paddlePosition.X; } set { paddlePosition.X = value; } } public float Y { get { return paddlePosition.Y; } set { paddlePosition.Y = value; } } public float Width { get { return (Scale.X == 1f ? (float)paddleSprite.Width : paddleSprite.Width * Scale.X); } } public float Height { get { return ( Scale.Y==1f ? (float)paddleSprite.Height : paddleSprite.Height*Scale.Y ); } } public Texture2D GetSprite { get { return paddleSprite; } } public Rectangle Boundary { get { return new Rectangle((int)paddlePosition.X, (int)paddlePosition.Y, (int)this.Width, (int)this.Height); } } public bool KeyboardEnabled { get { return keybEnabled; } } #endregion private void NormalsToEdges(bool isLeftPaddle) { Normals2Edges = null; Edge = Vector2.Zero; lst.Clear(); for (int i = 0; i < Vertices.Length; i++) { Edge = Vertices[i + 1 == Vertices.Length ? 0 : i + 1] - Vertices[i]; if (Edge != Vector2.Zero) { Edge.Normalize(); //outer normal to edge !! (origin in top-left) lst.Add(new Vector2(Edge.Y, -Edge.X)); } } Normals2Edges = lst.ToArray(); } public float[] ProjectPaddle(Vector2 axis) { if (Vertices.Length == 0 || axis == Vector2.Zero) return (new float[2] { 0, 0 }); float min, max; min = Vector2.Dot(axis, Vertices[0]); max = min; for (int i = 1; i < Vertices.Length; i++) { float p = Vector2.Dot(axis, Vertices[i]); if (p < min) min = p; else if (p > max) max = p; } return (new float[2] { min, max }); } public Paddle(Game game, bool isLeftPaddle, bool enableKeyboard = true) : base(game) { contentManager = new ContentManager(game.Services); keybEnabled = enableKeyboard; this.isLeftPaddle = isLeftPaddle; } public void setPosition(Vector2 newPos) { X = newPos.X; Y = newPos.Y; } public override void Initialize() { base.Initialize(); this.Speed = DEFAULT_Y_SPEED; X = 0; Y = 0; NormalsToEdges(this.isLeftPaddle); } protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); paddleSprite = contentManager.Load<Texture2D>(@"Content\pongBar"); } public override void Update(GameTime gameTime) { //vertices array Vertices[0] = this.paddlePosition; Vertices[1] = this.paddlePosition + new Vector2(this.Width, 0); Vertices[2] = this.paddlePosition + new Vector2(this.Width, this.Height); Vertices[3] = this.paddlePosition + new Vector2(0, this.Height); // Move paddle, but don't allow movement off the screen if (KeyboardEnabled) { float moveDistance = Speed * (float)gameTime.ElapsedGameTime.TotalSeconds; KeyboardState newKeyState = Keyboard.GetState(); if (newKeyState.IsKeyDown(Keys.Down) && Y + paddleSprite.Height + moveDistance <= Game.GraphicsDevice.Viewport.Height) { Y += moveDistance; } else if (newKeyState.IsKeyDown(Keys.Up) && Y - moveDistance >= 0) { Y -= moveDistance; } } else { if (this.Y + this.Height > this.GraphicsDevice.Viewport.Height) { this.Y = this.Game.GraphicsDevice.Viewport.Height - this.Height - 1; } } base.Update(gameTime); } public override void Draw(GameTime gameTime) { spriteBatch.Begin(SpriteSortMode.Texture,null); spriteBatch.Draw(paddleSprite, paddlePosition, null, Color.White, 0f, Vector2.Zero, Scale, SpriteEffects.None, 0); spriteBatch.End(); base.Draw(gameTime); } } Ball Class public class Ball : Microsoft.Xna.Framework.DrawableGameComponent { #region Private Members private SpriteBatch spriteBatch; private ContentManager contentManager; private const float DEFAULT_SPEED = 50; private float speedIncrement = 0; private Vector2 ballScale = new Vector2(1f, 1f); private const float INCREASE_SPEED = 50; private Texture2D ballSprite; //initial texture private Vector2 ballPosition; //position private Vector2 centerOfBall; //center coords private Vector2 ballSpeed = new Vector2(DEFAULT_SPEED, DEFAULT_SPEED); //speed #endregion #region Properties public float DEFAULTSPEED { get { return DEFAULT_SPEED; } } public Vector2 ballCenter { get { return centerOfBall; } } public Vector2 Scale { get { return ballScale; } set { ballScale = value; } } public float SpeedX { get { return ballSpeed.X; } set { ballSpeed.X = value; } } public float SpeedY { get { return ballSpeed.Y; } set { ballSpeed.Y = value; } } public float X { get { return ballPosition.X; } set { ballPosition.X = value; } } public float Y { get { return ballPosition.Y; } set { ballPosition.Y = value; } } public Texture2D GetSprite { get { return ballSprite; } } public float Width { get { return (Scale.X == 1f ? (float)ballSprite.Width : ballSprite.Width * Scale.X); } } public float Height { get { return (Scale.Y == 1f ? (float)ballSprite.Height : ballSprite.Height * Scale.Y); } } public float SpeedIncreaseIncrement { get { return speedIncrement; } set { speedIncrement = value; } } public Rectangle Boundary { get { return new Rectangle((int)ballPosition.X, (int)ballPosition.Y, (int)this.Width, (int)this.Height); } } #endregion public Ball(Game game) : base(game) { contentManager = new ContentManager(game.Services); } public void Reset() { ballSpeed.X = DEFAULT_SPEED; ballSpeed.Y = DEFAULT_SPEED; ballPosition.X = Game.GraphicsDevice.Viewport.Width / 2 - ballSprite.Width / 2; ballPosition.Y = Game.GraphicsDevice.Viewport.Height / 2 - ballSprite.Height / 2; } public void SpeedUp() { if (ballSpeed.Y < 0) ballSpeed.Y -= (INCREASE_SPEED + speedIncrement); else ballSpeed.Y += (INCREASE_SPEED + speedIncrement); if (ballSpeed.X < 0) ballSpeed.X -= (INCREASE_SPEED + speedIncrement); else ballSpeed.X += (INCREASE_SPEED + speedIncrement); } public float[] ProjectBall(Vector2 axis) { if (axis == Vector2.Zero) return (new float[2] { 0, 0 }); float min, max; min = Vector2.Dot(axis, this.ballCenter) - this.Width/2; //center - radius max = min + this.Width; //center + radius return (new float[2] { min, max }); } public void ChangeHorzDirection() { ballSpeed.X *= -1; } public void ChangeVertDirection() { ballSpeed.Y *= -1; } public override void Initialize() { base.Initialize(); ballPosition.X = Game.GraphicsDevice.Viewport.Width / 2 - ballSprite.Width / 2; ballPosition.Y = Game.GraphicsDevice.Viewport.Height / 2 - ballSprite.Height / 2; } protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); ballSprite = contentManager.Load<Texture2D>(@"Content\ball"); } public override void Update(GameTime gameTime) { if (this.Y < 1 || this.Y > GraphicsDevice.Viewport.Height - this.Height - 1) this.ChangeVertDirection(); centerOfBall = new Vector2(ballPosition.X + this.Width / 2, ballPosition.Y + this.Height / 2); base.Update(gameTime); } public override void Draw(GameTime gameTime) { spriteBatch.Begin(); spriteBatch.Draw(ballSprite, ballPosition, null, Color.White, 0f, Vector2.Zero, Scale, SpriteEffects.None, 0); spriteBatch.End(); base.Draw(gameTime); } } Main game class public class gameStart : Microsoft.Xna.Framework.Game { GraphicsDeviceManager graphics; SpriteBatch spriteBatch; public gameStart() { graphics = new GraphicsDeviceManager(this); Content.RootDirectory = "Content"; this.Window.Title = "Pong game"; } protected override void Initialize() { ball = new Ball(this); paddleLeft = new Paddle(this,true,false); paddleRight = new Paddle(this,false,true); Components.Add(ball); Components.Add(paddleLeft); Components.Add(paddleRight); this.Window.AllowUserResizing = false; this.IsMouseVisible = true; this.IsFixedTimeStep = false; this.isColliding = false; base.Initialize(); } #region MyPrivateStuff private Ball ball; private Paddle paddleLeft, paddleRight; private int[] bit = { -1, 1 }; private Random rnd = new Random(); private int updates = 0; enum nrPaddle { None, Left, Right }; private nrPaddle PongBar = nrPaddle.None; private ArrayList Axes = new ArrayList(); private Vector2 MTV; //minimum translation vector private bool isColliding; private float overlap; //smallest distance after projections private Vector2 overlapAxis; //axis of overlap #endregion protected override void LoadContent() { spriteBatch = new SpriteBatch(GraphicsDevice); paddleLeft.setPosition(new Vector2(0, this.GraphicsDevice.Viewport.Height / 2 - paddleLeft.Height / 2)); paddleRight.setPosition(new Vector2(this.GraphicsDevice.Viewport.Width - paddleRight.Width, this.GraphicsDevice.Viewport.Height / 2 - paddleRight.Height / 2)); paddleLeft.Scale = new Vector2(1f, 2f); //scale left paddle } private bool ShapesIntersect(Paddle paddle, Ball ball) { overlap = 1000000f; //large value overlapAxis = Vector2.Zero; MTV = Vector2.Zero; foreach (Vector2 ax in Axes) { float[] pad = paddle.ProjectPaddle(ax); //pad0 = min, pad1 = max float[] circle = ball.ProjectBall(ax); //circle0 = min, circle1 = max if (pad[1] <= circle[0] || circle[1] <= pad[0]) { return false; } if (pad[1] - circle[0] < circle[1] - pad[0]) { if (Math.Abs(overlap) > Math.Abs(-pad[1] + circle[0])) { overlap = -pad[1] + circle[0]; overlapAxis = ax; } } else { if (Math.Abs(overlap) > Math.Abs(circle[1] - pad[0])) { overlap = circle[1] - pad[0]; overlapAxis = ax; } } } if (overlapAxis != Vector2.Zero) { MTV = overlapAxis * overlap; } return true; } protected override void Update(GameTime gameTime) { updates += 1; float ftime = 5 * (float)gameTime.ElapsedGameTime.TotalSeconds; if (updates == 1) { isColliding = false; int Xrnd = bit[Convert.ToInt32(rnd.Next(0, 2))]; int Yrnd = bit[Convert.ToInt32(rnd.Next(0, 2))]; ball.SpeedX = Xrnd * ball.SpeedX; ball.SpeedY = Yrnd * ball.SpeedY; ball.X += ftime * ball.SpeedX; ball.Y += ftime * ball.SpeedY; } else { updates = 100; ball.X += ftime * ball.SpeedX; ball.Y += ftime * ball.SpeedY; } //autorun :) paddleLeft.Y = ball.Y; //collision detection PongBar = nrPaddle.None; if (ball.Boundary.Intersects(paddleLeft.Boundary)) { PongBar = nrPaddle.Left; if (!isColliding) { Axes.Clear(); Axes.AddRange(paddleLeft.Normal2EdgesVector); //axis from nearest vertex to ball's center Axes.Add(FORMULAS.NormAxisFromCircle2ClosestVertex(paddleLeft.VertexVector, ball.ballCenter)); } } else if (ball.Boundary.Intersects(paddleRight.Boundary)) { PongBar = nrPaddle.Right; if (!isColliding) { Axes.Clear(); Axes.AddRange(paddleRight.Normal2EdgesVector); //axis from nearest vertex to ball's center Axes.Add(FORMULAS.NormAxisFromCircle2ClosestVertex(paddleRight.VertexVector, ball.ballCenter)); } } if (PongBar != nrPaddle.None && !isColliding) switch (PongBar) { case nrPaddle.Left: if (ShapesIntersect(paddleLeft, ball)) { isColliding = true; if (MTV != Vector2.Zero) ball.X += MTV.X; ball.Y += MTV.Y; ball.ChangeHorzDirection(); } break; case nrPaddle.Right: if (ShapesIntersect(paddleRight, ball)) { isColliding = true; if (MTV != Vector2.Zero) ball.X += MTV.X; ball.Y += MTV.Y; ball.ChangeHorzDirection(); } break; default: break; } if (!ShapesIntersect(paddleRight, ball) && !ShapesIntersect(paddleLeft, ball)) isColliding = false; ball.X += ftime * ball.SpeedX; ball.Y += ftime * ball.SpeedY; //check ball movement if (ball.X > paddleRight.X + paddleRight.Width + 2) { //IncreaseScore(Left); ball.Reset(); updates = 0; return; } else if (ball.X < paddleLeft.X - 2) { //IncreaseScore(Right); ball.Reset(); updates = 0; return; } base.Update(gameTime); } protected override void Draw(GameTime gameTime) { GraphicsDevice.Clear(Color.Aquamarine); spriteBatch.Begin(SpriteSortMode.BackToFront, BlendState.AlphaBlend); spriteBatch.End(); base.Draw(gameTime); } } And one method i've used: public static Vector2 NormAxisFromCircle2ClosestVertex(Vector2[] vertices, Vector2 circle) { Vector2 temp = Vector2.Zero; if (vertices.Length > 0) { float dist = (circle.X - vertices[0].X) * (circle.X - vertices[0].X) + (circle.Y - vertices[0].Y) * (circle.Y - vertices[0].Y); for (int i = 1; i < vertices.Length;i++) { if (dist > (circle.X - vertices[i].X) * (circle.X - vertices[i].X) + (circle.Y - vertices[i].Y) * (circle.Y - vertices[i].Y)) { temp = vertices[i]; //memorize the closest vertex dist = (circle.X - vertices[i].X) * (circle.X - vertices[i].X) + (circle.Y - vertices[i].Y) * (circle.Y - vertices[i].Y); } } temp = circle - temp; temp.Normalize(); } return temp; } Thanks in advance for any tips on the 4 issues. EDIT1: Something isn't working properly. The collision axis doesn't come out right and the interpolation also seems to have no effect. I've changed the code a bit: private bool ShapesIntersect(Paddle paddle, Ball ball) { overlap = 1000000f; //large value overlapAxis = Vector2.Zero; MTV = Vector2.Zero; foreach (Vector2 ax in Axes) { float[] pad = paddle.ProjectPaddle(ax); //pad0 = min, pad1 = max float[] circle = ball.ProjectBall(ax); //circle0 = min, circle1 = max if (pad[1] < circle[0] || circle[1] < pad[0]) { return false; } if (Math.Abs(pad[1] - circle[0]) < Math.Abs(circle[1] - pad[0])) { if (Math.Abs(overlap) > Math.Abs(-pad[1] + circle[0])) { overlap = -pad[1] + circle[0]; overlapAxis = ax * (-1); } //to get the proper axis } else { if (Math.Abs(overlap) > Math.Abs(circle[1] - pad[0])) { overlap = circle[1] - pad[0]; overlapAxis = ax; } } } if (overlapAxis != Vector2.Zero) { MTV = overlapAxis * Math.Abs(overlap); } return true; } And part of the Update method: if (ShapesIntersect(paddleRight, ball)) { isColliding = true; if (MTV != Vector2.Zero) { ball.X += MTV.X; ball.Y += MTV.Y; } //test if (overlapAxis.X == 0) //collision with horizontal edge { } else if (overlapAxis.Y == 0) //collision with vertical edge { float factor = Math.Abs(ball.ballCenter.Y - paddleRight.Y) / paddleRight.Height; if (factor > 1) factor = 1f; if (overlapAxis.X < 0) //left edge? ball.Speed = ball.DEFAULTSPEED * Vector2.Normalize(Vector2.Reflect(ball.Speed, (Vector2.Lerp(new Vector2(-1, -3), new Vector2(-1, 3), factor)))); else //right edge? ball.Speed = ball.DEFAULTSPEED * Vector2.Normalize(Vector2.Reflect(ball.Speed, (Vector2.Lerp(new Vector2(1, -3), new Vector2(1, 3), factor)))); } else //vertex collision??? { ball.Speed = -ball.Speed; } } What seems to happen is that "overlapAxis" doesn't always return the right one. So instead of (-1,0) i get the (1,0) (this happened even before i multiplied with -1 there). Sometimes there isn't even a collision registered even though the ball passes through the paddle... The interpolation also seems to have no effect as the angles barely change (or the overlapAxis is almost never (-1,0) or (1,0) but something like (0.9783473, 0.02743843)... ). What am i missing here? :(

    Read the article

  • Informed TDD &ndash; Kata &ldquo;To Roman Numerals&rdquo;

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/05/28/informed-tdd-ndash-kata-ldquoto-roman-numeralsrdquo.aspxIn a comment on my article on what I call Informed TDD (ITDD) reader gustav asked how this approach would apply to the kata “To Roman Numerals”. And whether ITDD wasn´t a violation of TDD´s principle of leaving out “advanced topics like mocks”. I like to respond with this article to his questions. There´s more to say than fits into a commentary. Mocks and TDD I don´t see in how far TDD is avoiding or opposed to mocks. TDD and mocks are orthogonal. TDD is about pocess, mocks are about structure and costs. Maybe by moving forward in tiny red+green+refactor steps less need arises for mocks. But then… if the functionality you need to implement requires “expensive” resource access you can´t avoid using mocks. Because you don´t want to constantly run all your tests against the real resource. True, in ITDD mocks seem to be in almost inflationary use. That´s not what you usually see in TDD demonstrations. However, there´s a reason for that as I tried to explain. I don´t use mocks as proxies for “expensive” resource. Rather they are stand-ins for functionality not yet implemented. They allow me to get a test green on a high level of abstraction. That way I can move forward in a top-down fashion. But if you think of mocks as “advanced” or if you don´t want to use a tool like JustMock, then you don´t need to use mocks. You just need to stand the sight of red tests for a little longer ;-) Let me show you what I mean by that by doing a kata. ITDD for “To Roman Numerals” gustav asked for the kata “To Roman Numerals”. I won´t explain the requirements again. You can find descriptions and TDD demonstrations all over the internet, like this one from Corey Haines. Now here is, how I would do this kata differently. 1. Analyse A demonstration of TDD should never skip the analysis phase. It should be made explicit. The requirements should be formalized and acceptance test cases should be compiled. “Formalization” in this case to me means describing the API of the required functionality. “[D]esign a program to work with Roman numerals” like written in this “requirement document” is not enough to start software development. Coding should only begin, if the interface between the “system under development” and its context is clear. If this interface is not readily recognizable from the requirements, it has to be developed first. Exploration of interface alternatives might be in order. It might be necessary to show several interface mock-ups to the customer – even if that´s you fellow developer. Designing the interface is a task of it´s own. It should not be mixed with implementing the required functionality behind the interface. Unfortunately, though, this happens quite often in TDD demonstrations. TDD is used to explore the API and implement it at the same time. To me that´s a violation of the Single Responsibility Principle (SRP) which not only should hold for software functional units but also for tasks or activities. In the case of this kata the API fortunately is obvious. Just one function is needed: string ToRoman(int arabic). And it lives in a class ArabicRomanConversions. Now what about acceptance test cases? There are hardly any stated in the kata descriptions. Roman numerals are explained, but no specific test cases from the point of view of a customer. So I just “invent” some acceptance test cases by picking roman numerals from a wikipedia article. They are supposed to be just “typical examples” without special meaning. Given the acceptance test cases I then try to develop an understanding of the problem domain. I´ll spare you that. The domain is trivial and is explain in almost all kata descriptions. How roman numerals are built is not difficult to understand. What´s more difficult, though, might be to find an efficient solution to convert into them automatically. 2. Solve The usual TDD demonstration skips a solution finding phase. Like the interface exploration it´s mixed in with the implementation. But I don´t think this is how it should be done. I even think this is not how it really works for the people demonstrating TDD. They´re simplifying their true software development process because they want to show a streamlined TDD process. I doubt this is helping anybody. Before you code you better have a plan what to code. This does not mean you have to do “Big Design Up-Front”. It just means: Have a clear picture of the logical solution in your head before you start to build a physical solution (code). Evidently such a solution can only be as good as your understanding of the problem. If that´s limited your solution will be limited, too. Fortunately, in the case of this kata your understanding does not need to be limited. Thus the logical solution does not need to be limited or preliminary or tentative. That does not mean you need to know every line of code in advance. It just means you know the rough structure of your implementation beforehand. Because it should mirror the process described by the logical or conceptual solution. Here´s my solution approach: The arabic “encoding” of numbers represents them as an ordered set of powers of 10. Each digit is a factor to multiply a power of ten with. The “encoding” 123 is the short form for a set like this: {1*10^2, 2*10^1, 3*10^0}. And the number is the sum of the set members. The roman “encoding” is different. There is no base (like 10 for arabic numbers), there are just digits of different value, and they have to be written in descending order. The “encoding” XVI is short for [10, 5, 1]. And the number is still the sum of the members of this list. The roman “encoding” thus is simpler than the arabic. Each “digit” can be taken at face value. No multiplication with a base required. But what about IV which looks like a contradiction to the above rule? It is not – if you accept roman “digits” not to be limited to be single characters only. Usually I, V, X, L, C, D, M are viewed as “digits”, and IV, IX etc. are viewed as nuisances preventing a simple solution. All looks different, though, once IV, IX etc. are taken as “digits”. Then MCMLIV is just a sum: M+CM+L+IV which is 1000+900+50+4. Whereas before it would have been understood as M-C+M+L-I+V – which is more difficult because here some “digits” get subtracted. Here´s the list of roman “digits” with their values: {1, I}, {4, IV}, {5, V}, {9, IX}, {10, X}, {40, XL}, {50, L}, {90, XC}, {100, C}, {400, CD}, {500, D}, {900, CM}, {1000, M} Since I take IV, IX etc. as “digits” translating an arabic number becomes trivial. I just need to find the values of the roman “digits” making up the number, e.g. 1954 is made up of 1000, 900, 50, and 4. I call those “digits” factors. If I move from the highest factor (M=1000) to the lowest (I=1) then translation is a two phase process: Find all the factors Translate the factors found Compile the roman representation Translation is just a look-up. Finding, though, needs some calculation: Find the highest remaining factor fitting in the value Remember and subtract it from the value Repeat with remaining value and remaining factors Please note: This is just an algorithm. It´s not code, even though it might be close. Being so close to code in my solution approach is due to the triviality of the problem. In more realistic examples the conceptual solution would be on a higher level of abstraction. With this solution in hand I finally can do what TDD advocates: find and prioritize test cases. As I can see from the small process description above, there are two aspects to test: Test the translation Test the compilation Test finding the factors Testing the translation primarily means to check if the map of factors and digits is comprehensive. That´s simple, even though it might be tedious. Testing the compilation is trivial. Testing factor finding, though, is a tad more complicated. I can think of several steps: First check, if an arabic number equal to a factor is processed correctly (e.g. 1000=M). Then check if an arabic number consisting of two consecutive factors (e.g. 1900=[M,CM]) is processed correctly. Then check, if a number consisting of the same factor twice is processed correctly (e.g. 2000=[M,M]). Finally check, if an arabic number consisting of non-consecutive factors (e.g. 1400=[M,CD]) is processed correctly. I feel I can start an implementation now. If something becomes more complicated than expected I can slow down and repeat this process. 3. Implement First I write a test for the acceptance test cases. It´s red because there´s no implementation even of the API. That´s in conformance with “TDD lore”, I´d say: Next I implement the API: The acceptance test now is formally correct, but still red of course. This will not change even now that I zoom in. Because my goal is not to most quickly satisfy these tests, but to implement my solution in a stepwise manner. That I do by “faking” it: I just “assume” three functions to represent the transformation process of my solution: My hypothesis is that those three functions in conjunction produce correct results on the API-level. I just have to implement them correctly. That´s what I´m trying now – one by one. I start with a simple “detail function”: Translate(). And I start with all the test cases in the obvious equivalence partition: As you can see I dare to test a private method. Yes. That´s a white box test. But as you´ll see it won´t make my tests brittle. It serves a purpose right here and now: it lets me focus on getting one aspect of my solution right. Here´s the implementation to satisfy the test: It´s as simple as possible. Right how TDD wants me to do it: KISS. Now for the second equivalence partition: translating multiple factors. (It´a pattern: if you need to do something repeatedly separate the tests for doing it once and doing it multiple times.) In this partition I just need a single test case, I guess. Stepping up from a single translation to multiple translations is no rocket science: Usually I would have implemented the final code right away. Splitting it in two steps is just for “educational purposes” here. How small your implementation steps are is a matter of your programming competency. Some “see” the final code right away before their mental eye – others need to work their way towards it. Having two tests I find more important. Now for the next low hanging fruit: compilation. It´s even simpler than translation. A single test is enough, I guess. And normally I would not even have bothered to write that one, because the implementation is so simple. I don´t need to test .NET framework functionality. But again: if it serves the educational purpose… Finally the most complicated part of the solution: finding the factors. There are several equivalence partitions. But still I decide to write just a single test, since the structure of the test data is the same for all partitions: Again, I´m faking the implementation first: I focus on just the first test case. No looping yet. Faking lets me stay on a high level of abstraction. I can write down the implementation of the solution without bothering myself with details of how to actually accomplish the feat. That´s left for a drill down with a test of the fake function: There are two main equivalence partitions, I guess: either the first factor is appropriate or some next. The implementation seems easy. Both test cases are green. (Of course this only works on the premise that there´s always a matching factor. Which is the case since the smallest factor is 1.) And the first of the equivalence partitions on the higher level also is satisfied: Great, I can move on. Now for more than a single factor: Interestingly not just one test becomes green now, but all of them. Great! You might say, then I must have done not the simplest thing possible. And I would reply: I don´t care. I did the most obvious thing. But I also find this loop very simple. Even simpler than a recursion of which I had thought briefly during the problem solving phase. And by the way: Also the acceptance tests went green: Mission accomplished. At least functionality wise. Now I´ve to tidy up things a bit. TDD calls for refactoring. Not uch refactoring is needed, because I wrote the code in top-down fashion. I faked it until I made it. I endured red tests on higher levels while lower levels weren´t perfected yet. But this way I saved myself from refactoring tediousness. At the end, though, some refactoring is required. But maybe in a different way than you would expect. That´s why I rather call it “cleanup”. First I remove duplication. There are two places where factors are defined: in Translate() and in Find_factors(). So I factor the map out into a class constant. Which leads to a small conversion in Find_factors(): And now for the big cleanup: I remove all tests of private methods. They are scaffolding tests to me. They only have temporary value. They are brittle. Only acceptance tests need to remain. However, I carry over the single “digit” tests from Translate() to the acceptance test. I find them valuable to keep, since the other acceptance tests only exercise a subset of all roman “digits”. This then is my final test class: And this is the final production code: Test coverage as reported by NCrunch is 100%: Reflexion Is this the smallest possible code base for this kata? Sure not. You´ll find more concise solutions on the internet. But LOC are of relatively little concern – as long as I can understand the code quickly. So called “elegant” code, however, often is not easy to understand. The same goes for KISS code – especially if left unrefactored, as it is often the case. That´s why I progressed from requirements to final code the way I did. I first understood and solved the problem on a conceptual level. Then I implemented it top down according to my design. I also could have implemented it bottom-up, since I knew some bottom of the solution. That´s the leaves of the functional decomposition tree. Where things became fuzzy, since the design did not cover any more details as with Find_factors(), I repeated the process in the small, so to speak: fake some top level, endure red high level tests, while first solving a simpler problem. Using scaffolding tests (to be thrown away at the end) brought two advantages: Encapsulation of the implementation details was not compromised. Naturally private methods could stay private. I did not need to make them internal or public just to be able to test them. I was able to write focused tests for small aspects of the solution. No need to test everything through the solution root, the API. The bottom line thus for me is: Informed TDD produces cleaner code in a systematic way. It conforms to core principles of programming: Single Responsibility Principle and/or Separation of Concerns. Distinct roles in development – being a researcher, being an engineer, being a craftsman – are represented as different phases. First find what, what there is. Then devise a solution. Then code the solution, manifest the solution in code. Writing tests first is a good practice. But it should not be taken dogmatic. And above all it should not be overloaded with purposes. And finally: moving from top to bottom through a design produces refactored code right away. Clean code thus almost is inevitable – and not left to a refactoring step at the end which is skipped often for different reasons.   PS: Yes, I have done this kata several times. But that has only an impact on the time needed for phases 1 and 2. I won´t skip them because of that. And there are no shortcuts during implementation because of that.

    Read the article

  • InternalsVisibleTo attribute and security vulnerability

    - by Sergey Litvinov
    I found one issue with InternalsVisibleTo attribute usage. The idea of InternalsVisibleTo attribute to allow some other assemblies to use internal classes\methods of this assembly. To make it work you need sign your assemblies. So, if other assemblies isn't specified in main assembly and if they have incorrect public key, then they can't use Internal members. But the issue in Reflection Emit type generation. For example, we have CorpLibrary1 assembly and it has such class: public class TestApi { internal virtual void DoSomething() { Console.WriteLine("Base DoSomething"); } public void DoApiTest() { // some internal logic // ... // call internal method DoSomething(); } } This assembly is marked with such attribute to allow another CorpLibrary2 to make inheritor for that TestAPI and override behaviour of DoSomething method. [assembly: InternalsVisibleTo("CorpLibrary2, PublicKey=0024000004800000940000000602000000240000525341310004000001000100434D9C5E1F9055BF7970B0C106AAA447271ECE0F8FC56F6AF3A906353F0B848A8346DC13C42A6530B4ED2E6CB8A1E56278E664E61C0D633A6F58643A7B8448CB0B15E31218FB8FE17F63906D3BF7E20B9D1A9F7B1C8CD11877C0AF079D454C21F24D5A85A8765395E5CC5252F0BE85CFEB65896EC69FCC75201E09795AAA07D0")] The issue is that I'm able to override this internal DoSomething method and break class logic. My steps to do it: Generate new assembly in runtime via AssemblyBuilder Get AssemblyName from CorpLibrary1 and copy PublikKey to new assembly Generate new assembly that will inherit TestApi class As PublicKey and name of generated assembly is the same as in InternalsVisibleTo, then we can generate new DoSomething method that will override internal method in TestAPI assembly Then we have another assembly that isn't related to this CorpLibrary1 and can't use internal members. We have such test code in it: class Program { static void Main(string[] args) { var builder = new FakeBuilder(InjectBadCode, "DoSomething", true); TestApi fakeType = builder.CreateFake(); fakeType.DoApiTest(); // it will display: // Inject bad code // Base DoSomething Console.ReadLine(); } public static void InjectBadCode() { Console.WriteLine("Inject bad code"); } } And this FakeBuilder class has such code: /// /// Builder that will generate inheritor for specified assembly and will overload specified internal virtual method /// /// Target type public class FakeBuilder { private readonly Action _callback; private readonly Type _targetType; private readonly string _targetMethodName; private readonly string _slotName; private readonly bool _callBaseMethod; public FakeBuilder(Action callback, string targetMethodName, bool callBaseMethod) { int randomId = new Random((int)DateTime.Now.Ticks).Next(); _slotName = string.Format("FakeSlot_{0}", randomId); _callback = callback; _targetType = typeof(TFakeType); _targetMethodName = targetMethodName; _callBaseMethod = callBaseMethod; } public TFakeType CreateFake() { // as CorpLibrary1 can't use code from unreferences assemblies, we need to store this Action somewhere. // And Thread is not bad place for that. It's not the best place as it won't work in multithread application, but it's just a sample LocalDataStoreSlot slot = Thread.AllocateNamedDataSlot(_slotName); Thread.SetData(slot, _callback); // then we generate new assembly with the same nameand public key as target assembly trusts by InternalsVisibleTo attribute var newTypeName = _targetType.Name + "Fake"; var targetAssembly = Assembly.GetAssembly(_targetType); AssemblyName an = new AssemblyName(); an.Name = GetFakeAssemblyName(targetAssembly); // copying public key to new generated assembly var assemblyName = targetAssembly.GetName(); an.SetPublicKey(assemblyName.GetPublicKey()); an.SetPublicKeyToken(assemblyName.GetPublicKeyToken()); AssemblyBuilder assemblyBuilder = Thread.GetDomain().DefineDynamicAssembly(an, AssemblyBuilderAccess.RunAndSave); ModuleBuilder moduleBuilder = assemblyBuilder.DefineDynamicModule(assemblyBuilder.GetName().Name, true); // create inheritor for specified type TypeBuilder typeBuilder = moduleBuilder.DefineType(newTypeName, TypeAttributes.Public | TypeAttributes.Class, _targetType); // LambdaExpression.CompileToMethod can be used only with static methods, so we need to create another method that will call our Inject method // we can do the same via ILGenerator, but expression trees are more easy to use MethodInfo methodInfo = CreateMethodInfo(moduleBuilder); MethodBuilder methodBuilder = typeBuilder.DefineMethod(_targetMethodName, MethodAttributes.Public | MethodAttributes.Virtual); ILGenerator ilGenerator = methodBuilder.GetILGenerator(); // call our static method that will call inject method ilGenerator.EmitCall(OpCodes.Call, methodInfo, null); // in case if we need, then we put call to base method if (_callBaseMethod) { var baseMethodInfo = _targetType.GetMethod(_targetMethodName, BindingFlags.NonPublic | BindingFlags.Instance); // place this to stack ilGenerator.Emit(OpCodes.Ldarg_0); // call the base method ilGenerator.EmitCall(OpCodes.Call, baseMethodInfo, new Type[0]); // return ilGenerator.Emit(OpCodes.Ret); } // generate type, create it and return to caller Type cheatType = typeBuilder.CreateType(); object type = Activator.CreateInstance(cheatType); return (TFakeType)type; } /// /// Get name of assembly from InternalsVisibleTo AssemblyName /// private static string GetFakeAssemblyName(Assembly assembly) { var internalsVisibleAttr = assembly.GetCustomAttributes(typeof(InternalsVisibleToAttribute), true).FirstOrDefault() as InternalsVisibleToAttribute; if (internalsVisibleAttr == null) { throw new InvalidOperationException("Assembly hasn't InternalVisibleTo attribute"); } var ind = internalsVisibleAttr.AssemblyName.IndexOf(","); var name = internalsVisibleAttr.AssemblyName.Substring(0, ind); return name; } /// /// Generate such code: /// ((Action)Thread.GetData(Thread.GetNamedDataSlot(_slotName))).Invoke(); /// private LambdaExpression MakeStaticExpressionMethod() { var allocateMethod = typeof(Thread).GetMethod("GetNamedDataSlot", BindingFlags.Static | BindingFlags.Public); var getDataMethod = typeof(Thread).GetMethod("GetData", BindingFlags.Static | BindingFlags.Public); var call = Expression.Call(allocateMethod, Expression.Constant(_slotName)); var getCall = Expression.Call(getDataMethod, call); var convCall = Expression.Convert(getCall, typeof(Action)); var invokExpr = Expression.Invoke(convCall); var lambda = Expression.Lambda(invokExpr); return lambda; } /// /// Generate static class with one static function that will execute Action from Thread NamedDataSlot /// private MethodInfo CreateMethodInfo(ModuleBuilder moduleBuilder) { var methodName = "_StaticTestMethod_" + _slotName; var className = "_StaticClass_" + _slotName; TypeBuilder typeBuilder = moduleBuilder.DefineType(className, TypeAttributes.Public | TypeAttributes.Class); MethodBuilder methodBuilder = typeBuilder.DefineMethod(methodName, MethodAttributes.Static | MethodAttributes.Public); LambdaExpression expression = MakeStaticExpressionMethod(); expression.CompileToMethod(methodBuilder); var type = typeBuilder.CreateType(); return type.GetMethod(methodName, BindingFlags.Static | BindingFlags.Public); } } remarks about sample: as we need to execute code from another assembly, CorpLibrary1 hasn't access to it, so we need to store this delegate somewhere. Just for testing I stored it in Thread NamedDataSlot. It won't work in multithreaded applications, but it's just a sample. I know that we use Reflection to get private\internal members of any class, but within reflection we can't override them. But this issue is allows anyone to override internal class\method if that assembly has InternalsVisibleTo attribute. I tested it on .Net 3.5\4 and it works for both of them. How does it possible to just copy PublicKey without private key and use it in runtime? The whole sample can be found there - https://github.com/sergey-litvinov/Tests_InternalsVisibleTo UPDATE1: That test code in Program and FakeBuilder classes hasn't access to key.sn file and that library isn't signed, so it hasn't public key at all. It just copying it from CorpLibrary1 by using Reflection.Emit

    Read the article

< Previous Page | 76 77 78 79 80 81 82  | Next Page >