Search Results

Search found 8557 results on 343 pages for 'infinite loop'.

Page 80/343 | < Previous Page | 76 77 78 79 80 81 82 83 84 85 86 87  | Next Page >

  • replaceAll() method using parameter from text file

    - by Herman Plani Ginting
    i have a collection of raw text in a table in database, i need to replace some words in this collection using a set of words. i put all the term to be replace and its substitutes in a text file as below min=admin lelet=lambat lemot=lambat nii=nih ntu=itu and so on. i have successfully initiate a variabel of File and Scanner to read the collection of the term and its substitutes. i loop all the dataset and save the raw text in a string in the same loop i loop all the term collection and save its row to a string name 'pattern', and split the pattern into two string named 'term' and 'replacer' in this loop i initiate a new string which its value is the string from the dataset modified by replaceAll(term,replacer) end loop for term collection then i insert the new string to another table in database end loop for dataset i do it manualy as below replaceAll("min","admin") and its works but its really something to code it manually for almost 2000 terms to be replace it. anyone ever face this kind of really something.. i really need a help now desperate :( package sentimenrepo; import javax.swing.*; import java.sql.*; import java.io.*; //import java.util.HashMap; import java.util.Scanner; //import java.util.Map; /** * * @author herman */ public class synonimReplaceV2 extends SwingWorker { protected Object doInBackground() throws Exception { new skripsisentimen.sentimenttwitter().setVisible(true); Integer row = 0; File synonimV2 = new File("synV2/catatan_kata_sinonim.txt"); String newTweet = ""; DB db = new DB(); Connection conn = db.dbConnect("jdbc:mysql://localhost:3306/tweet", "root", ""); try{ Statement select = conn.createStatement(); select.executeQuery("select * from synonimtweet"); ResultSet RS = select.getResultSet(); Scanner scSynV2 = new Scanner(synonimV2); while(RS.next()){ row++; String no = RS.getString("no"); String tweet = " "+ RS.getString("tweet"); String published = RS.getString("published"); String label = RS.getString("label"); clean2 cleanv2 = new clean2(); newTweet = cleanv2.cleanTweet(tweet); try{ Statement insert = conn.createStatement(); insert.executeUpdate("INSERT INTO synonimtweet_v2(no,tweet,published,label) values('" +no+"','"+newTweet+"','"+published+"','"+label+"')"); String current = skripsisentimen.sentimenttwitter.txtAreaResult.getText(); skripsisentimen.sentimenttwitter.txtAreaResult.setText(current+"\n"+row+"original : "+tweet+"\n"+newTweet+"\n______________________\n"); skripsisentimen.sentimenttwitter.lblStat.setText(row+" tweet read"); skripsisentimen.sentimenttwitter.txtAreaResult.setCaretPosition(skripsisentimen.sentimenttwitter.txtAreaResult.getText().length() - 1); }catch(Exception e){ skripsisentimen.sentimenttwitter.lblStat.setText(e.getMessage()); } skripsisentimen.sentimenttwitter.lblStat.setText(e.getMessage()); } }catch(Exception e){ skripsisentimen.sentimenttwitter.lblStat.setText(e.getMessage()); } return row; } class clean2{ public clean2(){} public String cleanTweet(String tweet){ File synonimV2 = new File("synV2/catatan_kata_sinonim.txt"); String pattern = ""; String term = ""; String replacer = ""; String newTweet=""; try{ Scanner scSynV2 = new Scanner(synonimV2); while(scSynV2.hasNext()){ pattern = scSynV2.next(); term = pattern.split("=")[0]; replacer = pattern.split("=")[1]; newTweet = tweet.replace(term, replacer); } }catch(Exception e){ e.printStackTrace(); } System.out.println(newTweet+"\n"+tweet); return newTweet; } } }

    Read the article

  • GLSL compile error when accessing an array with compile-time constant index

    - by Benlitz
    I have this shader that works well on my computer (using an ATI HD 5700). I have a loop iterating between two constant values, which is, afaik, acceptable in a glsl shader. I write stuff in two arrays in this loop. #define NB_POINT_LIGHT 2 ... varying vec3 vVertToLight[NB_POINT_LIGHT]; varying vec3 vVertToLightWS[NB_POINT_LIGHT]; ... void main() { ... for (int i = 0; i < NB_POINT_LIGHT; ++i) { if (bPointLightUse[i]) { vVertToLight[i] = ConvertToTangentSpace(ShPointLightData[i].Position - WorldPos.xyz); vVertToLightWS[i] = ShPointLightData[i].Position - WorldPos.xyz; } } ... } I tried my program on another computer equipped with an nVidia GTX 560 Ti, and it fails to compile my shader. I get the following errors (94 and 95 are the lines of the two affectations) when calling glLinkProgram: Vertex info ----------- 0(94) : error C5025: lvalue in assignment too complex 0(95) : error C5025: lvalue in assignment too complex I think my code is valid, I don't know if this comes from a compiler bug, a conversion of my shader to another format from the compiler (nvidia looks to convert it to CG), or if I just missed something. I already tried to remove the if (bPointLightUse[i]) statement and I still have the same error. However, if I just write this: vVertToLight[0] = ConvertToTangentSpace(ShPointLightData[0].Position - WorldPos.xyz); vVertToLightWS[0] = ShPointLightData[0].Position - WorldPos.xyz; vVertToLight[1] = ConvertToTangentSpace(ShPointLightData[1].Position - WorldPos.xyz); vVertToLightWS[1] = ShPointLightData[1].Position - WorldPos.xyz; Then I don't have the error anymore, but it's really unconvenient so I would prefer to keep something loop-based. Here is the more detailled config that works: Vendor: ATI Technologies Inc. Renderer: ATI Radeon HD 5700 Series Version: 4.1.10750 Compatibility Profile Context Shading Language version: 4.10 And here is the more detailed config that doesn't work (should also be compatibility profile, although not indicated): Vendor: NVIDIA Corporation Renderer: GeForce GTX 560 Ti/PCI/SSE2 Version: 4.1.0 Shading Language version: 4.10 NVIDIA via Cg compiler

    Read the article

  • Creating the concept of Time

    - by Jamie Dixon
    So I've reached the point in my exploration of gaming where I'd like to impliment the concept of time into my little demo I've been building. What are some common methodologies for creating the concept of time passing within a game? My thoughts so far: My game loop tendes to spend a fair bit of time sitting around waiting or user input so any time system will likely need to be run in a seperate thread. What I've currently done is create a BackgroundWorker passing in a method that contains a loop triggering every second. This is working fine and I can output information to the console from here etc. Inside this loop I have a DateTime object that is incrimented by 1 minute for every realtime second. (the game begins in the year 01/01/01) Is this a standard way of acheiving this result or are there more tried and tested methods? I'm also curious about how to go about performing time based actions (reducing player energy, moving entities around the game board, life/death etc). Thanks for any pointers or advice. I've searched around however I'm not familiar enough with the terms and so my searches are yeilding little result on this one.

    Read the article

  • Diagram that could explain a state machine's code?

    - by Incognito
    We have a lot of concepts in making diagrams like UML and flowcharting or just making up whatever boxes-and-arrows combination works at the time, but I'm looking at doing a visual diagram on something that's actually really complex. State machines like those that parse HTML or regular expressions tend to be very long and complicated bits of code. For example, this is the stateLoop for FireFox 9 beta. It's actually generated by another file, but this is the code that runs. How can I diagram something with the complexity of this in a way that explains flow of the code without taking it to a level where I draw every single line-of-code into it's own box on a flowchart? I don't want to draw "Invoke loop, then return" but I don't want to explain every last detail. What kind of graph is suitable to do this? Is there already something out there similar to this? Just an example of how to do this without going overboard in complexity or too-high-level is really what I want. If you don't feel like looking at the code, basically it's 70 different state flags that could occur, inside an infinite loop that exists to a label based on some conditions, each flag has it's own infinite loop that exists to a label somewhere, and each of those loops has checks for different types of chars, which then runs off into various other methods.

    Read the article

  • How to Handle frame rates and synchronizing screen repaints

    - by David Kroukamp
    I would first off say sorry if the title is worded incorrectly. Okay now let me give the scenario I'm creating a 2 player fighting game, An average battle will include a Map (moving/still) and 2 characters (which are rendered by redrawing a varying amount of sprites one after the other). Now at the moment I have a single game loop limiting me to a set number of frames per second (using Java): Timer timer = new Timer(0, new AbstractAction() { @Override public void actionPerformed(ActionEvent e) { long beginTime; //The time when the cycle begun long timeDiff; //The time it took for the cycle to execute int sleepTime; //ms to sleep (< 0 if we're behind) int fps = 1000 / 40; beginTime = System.nanoTime() / 1000000; //execute loop to update check collisions and draw gameLoop(); //Calculate how long did the cycle take timeDiff = System.nanoTime() / 1000000 - beginTime; //Calculate sleep time sleepTime = fps - (int) (timeDiff); if (sleepTime > 0) {//If sleepTime > 0 we're OK ((Timer)e.getSource()).setDelay(sleepTime); } } }); timer.start(); in gameLoop() characters are drawn to the screen ( a character holds an array of images which consists of their current sprites) every gameLoop() call will change the characters current sprite to the next and loop if the end is reached. But as you can imagine if a sprite is only 3 images in length than calling gameLoop() 40 times will cause the characters movement to be drawn 40/3=13 times. This causes a few minor anomilies in the sprited for some charcters So my question is how would I go about delivering a set amount of frames per second in when I have 2 characters on screen with varying amount of sprites?

    Read the article

  • What is the best practice for when to check if something needs to be done?

    - by changokun
    Let's say I have a function that does x. I pass it a variable, and if the variable is not null, it does some action. And I have an array of variables and I'm going to run this function on each one. Inside the function, it seems like a good practice is to check if the argument is null before proceeding. A null argument is not an error, it just causes an early return. I could loop through the array and pass each value to the function, and the function will work great. Is there any value to checking if the var is null and only calling the function if it is not null during the loop? This doubles up on the checking for null, but: Is there any gained value? Is there any gain on not calling a function? Any readability gain on the loop in the parent code? For the sake of my question, let's assume that checking for null will always be the case. I can see how checking for some object property might change over time, which makes the first check a bad idea. Pseudo code example: for(thing in array) { x(thing) } Versus: for(thing in array) { if(thing not null) x(thing) } If there are language-specific concerns, I'm a web developer working in PHP and JavaScript.

    Read the article

  • Any Practical Alternative to the Signals + Slots model for GUI Programming?

    - by IntermediateHacker
    The majority of GUI Toolkits nowadays use the Signals + Slots model. It was Qt and GTK+, if I am not wrong, who pioneered it. You know, the widgets or graphical objects (sometimes even ones that aren't displayed) send signals to the main-loop handler. The main-loop handler then calls the events, callbacks or slots assigned for that widget / graphical object. There are usually default (and in most cases virtual) event-handlers already provided by the toolkit for handling all pre-defined signals, therefore, unlike previous designs where the developer had to write the entire main-loop and handler for each and every message himself (think WINAPI), the developer only has to worry about the signals he needs to implement new functionality on. Now this design is being used in most modern toolkits as far as I know. There are Qt, GTK+, FLTK etc. There is Java Swing. C# even has a language feature for it ( events and delegates ), and Windows Forms has been developed on this design. In fact, over the last decade, this design for GUI programming has become a kind of an unwritten standard. Since it increases productivity and provides greater abstraction. However, my question is: Is there any alternative design, that is parallel or practical for modern GUI programming? i.e Is the Signals + Slots design, the only practical one in town? Is it feasible to do GUI Programming with any other design? Are any modern (preferably successful and popular) GUI toolkits built on an alternative design?

    Read the article

  • Ray Tracing concers: Efficient Data Structure and Photon Mapping

    - by Grieverheart
    I'm trying to build a simple ray tracer for specific target scenes. An example of such scene can be seen below. I'm concerned as to what accelerating data structure would be most efficient in this case since all objects are touching but on the other hand, the scene is uniform. The objects in my ray tracer are stored as a collection of triangles, thus I also have access to individual triangles. Also, when trying to find the bounding box of the scene, how should infinite planes be handled? Should one instead use the viewing frustum to calculate the bounding box? A few other questions I have are about photon mapping. I've read the original paper by Jensen and many more material. In the compact data structure for the photon they introduce, they store photon power as 4 chars, which from my understanding is 3 chars for color and 1 for flux. But I don't understand how 1 char is enough to store a flux of the order of 1/n, where n is the number of photons (I'm also a bit confused about flux vs power). The other question about photon mapping is, if it would be more efficient in my case to store photons per object (or even per Object's triangle) instead of using a balanced kd-tree. Also, same question about bounding box of the scene but for photon mapping. How should one find a bounding box from the pov of the light when infinite planes are involved?

    Read the article

  • Implementing the transport layer for a SIP UAC

    - by Jonathan Henson
    I have a somewhat simple, but specific, question about implementing the transport layer for a SIP UAC. Do I expect the response to a request on the same socket that I sent the request on, or do I let the UDP or TCP listener pick up the response and then route it to the correct transaction from there? The RFC does not seem to say anything on the matter. It seems that especially using UDP, which is connection-less, that I should just let the listeners pick up the response, but that seems sort of counter intuitive. Particularly, I have seen plenty of UAC implementations which do not depend on having a Listener in the transport layer. Also, most implementations I have looked at do not have the UAS receiving loop responding on the socket at all. This would tend to indicate that the client should not be expecting a reply on the socket that it sent the request on. For clarification: Suppose my transport layer consists of the following elements: TCPClient (Sends Requests for a UAC via TCP) UDPClient (Sends Requests for a UAC vid UDP) TCPSever (Loop receiving Requests and dispatching to transaction layer via TCP) UDPServer (Loop receiving Requests and dispatching to transaction layer via UDP) Obviously, the *Client sends my Requests. The question is, what receives the Response? The *Client waiting on a recv or recvfrom call on the socket it used to send the request, or the *Server? Conversely, the *Server receives my requests, What sends the Response? The *Client? doesn't this break the roles of each member a bit?

    Read the article

  • Designing rules to fight smallpox in Civ-style TBS games

    - by Williham Totland
    TL;DR: How do you design a ruleset for a Civ-style TBS game that prevents city smallpox from being a profitable or viable strategy? Long version: Civ-style games are pretty great. Bringing a civilization from cradle to grave is a great endeavor, and practicing diplomacy with hard-line human players is fun and challenging. In theory. In practice, however, many of these games has, especially in multiplayer, exactly one viable strategy: City smallpox, a.k.a. infinite city spread, a.k.a. covering all available space with 1-citizen cities, packed as tight as they will go. I suppose this could count as emergent gameplay, but still; it could hardly be considered to be in the spirit of the class of game. The Civilization series, of course, is stuck in their more or less fixed rule sets, established with Civilization. Yes, there have been major changes in some respects, but the rules pertaining to city building and maintenance have stayed pretty similar. So the question, then: If you build a ruleset for a TBS from the ground up; what rules should be in place to prevent Infinite City Sprawl from being a viable strategy? Or should ICS be a viable strategy?

    Read the article

  • How to parse JSON data from web more faster [closed]

    - by Kaidul Islam Sazal
    I have json inventory inventory.json on the server like this: [ { "body" : "SUV", "color" : { "ext" : "White diamond pearl", "int" : "Taupe" }, "id" : "276181", "make" : "Acura", "miles" : 35949, "model" : "RDX", "pic" : [ { "full" : "http://images1.dealercp.com/90961/000JNBD/001_0292.jpg" } ], "power" : { "drive" : "Front wheel drive", "eng" : "2.3L DOHC PGM-FI 16-VALVE", "trans" : "Automatic" }, "price" : { "net" : 29488 }, "stock" : "6942", "trim" : "AWD 4dr Tech Pkg SUV", "vin" : "5J8TB2H53BA000334", "year" : 2011 }, { "body" : "Sedan", "color" : { "ext" : "Premium white pearl", "int" : "Taupe" }, "id" : "275622", "make" : "Acura", "miles" : 40923, "model" : "TSX", "pic" : [ { "full" : "http://images1.dealercp.com/90961/000JMC6/001_1765.jpg" } ], "power" : { "drive" : "Front wheel drive", "eng" : "2.4L L4 MPI DOHC 16V", "trans" : "Automatic" }, "price" : { "net" : 22288 }, "stock" : "6945", "trim" : "4dr Sdn I4 Auto Sedan", "vin" : "JH4CU2F66AC011933", "year" : 2010 } ] here are two index, There are almost 5000 index like this. I parsed this json like this: var url = "inventory/inventory.json"; $.getJSON(url, function(data){ $.each(data, function(index, item){ //straight-forward loop if(item.year == 2012) { $('#desc').append(item.make + ' ' + item.model + ' ' + '<br/>' + item.price.net + '<br/>' + item.pic[0].full); } }); }); This is working fine.But the problem is that, this searching and fetching process is little bit slow as there are 5000 indexes already and it's increasing day by day. It seems that, it is a straight-forward loop to parse the data and a normal brute-force method. Now I want to know if there any time efiicient way to parse more faster.Any faster method to parse instead of straight-forward loop ?

    Read the article

  • Are long methods always bad?

    - by wobbily_col
    So looking around earlier I noticed some comments about long methods being bad practice. I am not sure I always agree that long methods are bad (and would like opinions from others). For example I have some Django views that do a bit of processing of the objects before sending them to the view, a long method being 350 lines of code. I have my code written so that it deals with the paramaters - sorting / filtering the queryset, then bit by bit does some processing on the objects my query has returned. So the processing is mainly conditional aggregation, that has complex enough rules it can't easily be done in the database, so I have some variables declared outside the main loop then get altered during the loop. varaible_1 = 0 variable_2 = 0 for object in queryset : if object.condition_condition_a and variable_2 > 0 : variable 1+= 1 ..... ... . more conditions to alter the variables return queryset, and context So according to the theory I should factor out all the code into smaller methods, so That I have the view method as being maximum one page long. However having worked on various code bases in the past, I sometimes find it makes the code less readable, when you need to constantly jump from one method to the next figuring out all the parts of it, while keeping the outermost method in your head. I find that having a long method that is well formatted, you can see the logic more easily, as it isn't getting hidden away in inner methods. I could factor out the code into smaller methods, but often there is is an inner loop being used for two or three things, so it would result in more complex code, or methods that don't do one thing but two or three (alternatively I could repeat inner loops for each task, but then there will be a performance hit). So is there a case that long methods are not always bad? Is there always a case for writing methods, when they will only be used in one place?

    Read the article

  • How to tell your boss that he's a bad programmer? [closed]

    - by Doe
    Possible Duplicate: How to tell your boss that his programming style is really bad? There was a question about the boss having a bad programming style (weird booleans, empty loops, etc.) Having a bad/weird style does not imply being a bad programmer, but my situation is different. My boss outputs some really nasty code for the project, on which we are working together (just two of us). Examples: functions that span over several screens (big screens - 1900 x 1200) Deeply nested Conditional and Loop statements (up to 10 levels!!) Too much static variables, singletons, and both (singleton class with all the methods and members also static) Sometimes the code committed to the version control system does not even compile! Copy-Paste code instead of separating it into an independent function. Fail all the deadlines. "This's [C#|Java|Python] it shouldn't be efficient, that's why we loop all over the haystack to find the needle." "This's C/C++, it's fast enough to loop all over the haystack to find the needle." There is much more to mention... But the worst is that I have to redo much of the stuff he does, my code, which I try to keep clean is often polluted with above-mentioned atrocities. He's reaching 30 soon, so all his skills are established, and I don't even know if it's possible to change something. I like the project, but sometimes I just want to quit...

    Read the article

  • Pick Up BioShock and Bioshock 2 for Price of a Big Mac Meal

    - by Jason Fitzpatrick
    Pre-ordering just opened on the third-installment of the highly-acclaimed horror-survival game series BioShock, BioShock Infinite. As part of the pre-order promotions, you can pick up a bundled copy of BioShock and BioShock 2 for a song. For the unfamiliar, BioShock is an atmospheric first-person-shooter backed up by an incredible storyline set in the underwater utopian-turned-dystopian city of Rapture. BioShock 2 continues the story in Rapture and the upcoming release (Febuary 2013) of BioShock Infinite takes place in the same game universe but fifty years before the events of the first two installments. If that seems like the kind of game you could dig into, Amazon has the Windows-platform version of BioShock and BioShock 2 bundled together for a scant $7.49–81% off the Steam and general retail price. The best part about the promotion is you can either download the games from Amazon or, for those of you that use Steam, you can simply plug the game product key into Steam. You can read more about the both the original two games and the upcoming release at the official BioShock site. BioShock Dual Pack [via Geeks Are Sexy] How Hackers Can Disguise Malicious Programs With Fake File Extensions Can Dust Actually Damage My Computer? What To Do If You Get a Virus on Your Computer

    Read the article

  • C++ - Conway's Game of Life & Stepping Backwards

    - by Gabe
    I was able to create a version Conway's Game of Life that either stepped forward each click, or just ran forward using a timer. (I'm doing this using Qt.) Now, I need to be able to save all previous game grids, so that I can step backwards by clicking a button. I'm trying to use a stack, and it seems like I'm pushing the old gridcells onto the stack correctly. But when I run it in QT, the grids don't change when I click BACK. I've tried different things for the last three hours, to no avail. Any ideas? gridwindow.cpp - My problem should be in here somewhere. Probably the handleBack() func. #include <iostream> #include "gridwindow.h" using namespace std; // Constructor for window. It constructs the three portions of the GUI and lays them out vertically. GridWindow::GridWindow(QWidget *parent,int rows,int cols) : QWidget(parent) { QHBoxLayout *header = setupHeader(); // Setup the title at the top. QGridLayout *grid = setupGrid(rows,cols); // Setup the grid of colored cells in the middle. QHBoxLayout *buttonRow = setupButtonRow(); // Setup the row of buttons across the bottom. QVBoxLayout *layout = new QVBoxLayout(); // Puts everything together. layout->addLayout(header); layout->addLayout(grid); layout->addLayout(buttonRow); setLayout(layout); } // Destructor. GridWindow::~GridWindow() { delete title; } // Builds header section of the GUI. QHBoxLayout* GridWindow::setupHeader() { QHBoxLayout *header = new QHBoxLayout(); // Creates horizontal box. header->setAlignment(Qt::AlignHCenter); this->title = new QLabel("CONWAY'S GAME OF LIFE",this); // Creates big, bold, centered label (title): "Conway's Game of Life." this->title->setAlignment(Qt::AlignHCenter); this->title->setFont(QFont("Arial", 32, QFont::Bold)); header->addWidget(this->title); // Adds widget to layout. return header; // Returns header to grid window. } // Builds the grid of cells. This method populates the grid's 2D array of GridCells with MxN cells. QGridLayout* GridWindow::setupGrid(int rows,int cols) { isRunning = false; QGridLayout *grid = new QGridLayout(); // Creates grid layout. grid->setHorizontalSpacing(0); // No empty spaces. Cells should be contiguous. grid->setVerticalSpacing(0); grid->setSpacing(0); grid->setAlignment(Qt::AlignHCenter); for(int i=0; i < rows; i++) //Each row is a vector of grid cells. { std::vector<GridCell*> row; // Creates new vector for current row. cells.push_back(row); for(int j=0; j < cols; j++) { GridCell *cell = new GridCell(); // Creates and adds new cell to row. cells.at(i).push_back(cell); grid->addWidget(cell,i,j); // Adds to cell to grid layout. Column expands vertically. grid->setColumnStretch(j,1); } grid->setRowStretch(i,1); // Sets row expansion horizontally. } return grid; // Returns grid. } // Builds footer section of the GUI. QHBoxLayout* GridWindow::setupButtonRow() { QHBoxLayout *buttonRow = new QHBoxLayout(); // Creates horizontal box for buttons. buttonRow->setAlignment(Qt::AlignHCenter); // Clear Button - Clears cell; sets them all to DEAD/white. QPushButton *clearButton = new QPushButton("CLEAR"); clearButton->setFixedSize(100,25); connect(clearButton, SIGNAL(clicked()), this, SLOT(handlePause())); // Pauses timer before clearing. connect(clearButton, SIGNAL(clicked()), this, SLOT(handleClear())); // Connects to clear function to make all cells DEAD/white. buttonRow->addWidget(clearButton); // Forward Button - Steps one step forward. QPushButton *forwardButton = new QPushButton("FORWARD"); forwardButton->setFixedSize(100,25); connect(forwardButton, SIGNAL(clicked()), this, SLOT(handleForward())); // Signals to handleForward function.. buttonRow->addWidget(forwardButton); // Back Button - Steps one step backward. QPushButton *backButton = new QPushButton("BACK"); backButton->setFixedSize(100,25); connect(backButton, SIGNAL(clicked()), this, SLOT(handleBack())); // Signals to handleBack funciton. buttonRow->addWidget(backButton); // Start Button - Starts game when user clicks. Or, resumes game after being paused. QPushButton *startButton = new QPushButton("START/RESUME"); startButton->setFixedSize(100,25); connect(startButton, SIGNAL(clicked()), this, SLOT(handlePause())); // Deletes current timer if there is one. Then restarts everything. connect(startButton, SIGNAL(clicked()), this, SLOT(handleStart())); // Signals to handleStart function. buttonRow->addWidget(startButton); // Pause Button - Pauses simulation of game. QPushButton *pauseButton = new QPushButton("PAUSE"); pauseButton->setFixedSize(100,25); connect(pauseButton, SIGNAL(clicked()), this, SLOT(handlePause())); // Signals to pause function which pauses timer. buttonRow->addWidget(pauseButton); // Quit Button - Exits program. QPushButton *quitButton = new QPushButton("EXIT"); quitButton->setFixedSize(100,25); connect(quitButton, SIGNAL(clicked()), qApp, SLOT(quit())); // Signals the quit slot which ends the program. buttonRow->addWidget(quitButton); return buttonRow; // Returns bottom of layout. } /* SLOT method for handling clicks on the "clear" button. Receives "clicked" signals on the "Clear" button and sets all cells to DEAD. */ void GridWindow::handleClear() { for(unsigned int row=0; row < cells.size(); row++) // Loops through current rows' cells. { for(unsigned int col=0; col < cells[row].size(); col++) // Loops through the rows'columns' cells. { GridCell *cell = cells[row][col]; // Grab the current cell & set its value to dead. cell->setType(DEAD); } } } /* SLOT method for handling clicks on the "start" button. Receives "clicked" signals on the "start" button and begins game simulation. */ void GridWindow::handleStart() { isRunning = true; // It is running. Sets isRunning to true. this->timer = new QTimer(this); // Creates new timer. connect(this->timer, SIGNAL(timeout()), this, SLOT(timerFired())); // Connect "timerFired" method class to the "timeout" signal fired by the timer. this->timer->start(500); // Timer to fire every 500 milliseconds. } /* SLOT method for handling clicks on the "pause" button. Receives "clicked" signals on the "pause" button and stops the game simulation. */ void GridWindow::handlePause() { if(isRunning) // If it is running... this->timer->stop(); // Stops the timer. isRunning = false; // Set to false. } void GridWindow::handleForward() { if(isRunning); // If it's running, do nothing. else timerFired(); // It not running, step forward one step. } void GridWindow::handleBack() { std::vector<std::vector<GridCell*> > cells2; if(isRunning); // If it's running, do nothing. else if(backStack.empty()) cout << "EMPTYYY" << endl; else { cells2 = backStack.peek(); for (unsigned int f = 0; f < cells.size(); f++) // Loop through cells' rows. { for (unsigned int g = 0; g < cells.at(f).size(); g++) // Loop through cells columns. { cells[f][g]->setType(cells2[f][g]->getType()); // Set cells[f][g]'s type to cells2[f][g]'s type. } } cout << "PRE=POP" << endl; backStack.pop(); cout << "OYYYY" << endl; } } // Accessor method - Gets the 2D vector of grid cells. std::vector<std::vector<GridCell*> >& GridWindow::getCells() { return this->cells; } /* TimerFired function: 1) 2D-Vector cells2 is declared. 2) cells2 is initliazed with loops/push_backs so that all its cells are DEAD. 3) We loop through cells, and count the number of LIVE neighbors next to a given cell. --> Depending on how many cells are living, we choose if the cell should be LIVE or DEAD in the next simulation, according to the rules. -----> We save the cell type in cell2 at the same indice (the same row and column cell in cells2). 4) After check all the cells (and save the next round values in cells 2), we set cells's gridcells equal to cells2 gridcells. --> This causes the cells to be redrawn with cells2 types (white or black). */ void GridWindow::timerFired() { backStack.push(cells); std::vector<std::vector<GridCell*> > cells2; // Holds new values for 2D vector. These are the next simulation round of cell types. for(unsigned int i = 0; i < cells.size(); i++) // Loop through the rows of cells2. (Same size as cells' rows.) { vector<GridCell*> row; // Creates Gridcell* vector to push_back into cells2. cells2.push_back(row); // Pushes back row vectors into cells2. for(unsigned int j = 0; j < cells[i].size(); j++) // Loop through the columns (the cells in each row). { GridCell *cell = new GridCell(); // Creates new GridCell. cell->setType(DEAD); // Sets cell type to DEAD/white. cells2.at(i).push_back(cell); // Pushes back the DEAD cell into cells2. } // This makes a gridwindow the same size as cells with all DEAD cells. } for (unsigned int m = 0; m < cells.size(); m++) // Loop through cells' rows. { for (unsigned int n = 0; n < cells.at(m).size(); n++) // Loop through cells' columns. { unsigned int neighbors = 0; // Counter for number of LIVE neighbors for a given cell. // We know check all different variations of cells[i][j] to count the number of living neighbors for each cell. // We check m > 0 and/or n > 0 to make sure we don't access negative indexes (ex: cells[-1][0].) // We check m < size to make sure we don't try to access rows out of the vector (ex: row 5, if only 4 rows). // We check n < row size to make sure we don't access column item out of the vector (ex: 10th item in a column of only 9 items). // If we find that the Type = 1 (it is LIVE), then we add 1 to the neighbor. // Else - we add nothing to the neighbor counter. // Neighbor is the number of LIVE cells next to the current cell. if(m > 0 && n > 0) { if (cells[m-1][n-1]->getType() == 1) neighbors += 1; } if(m > 0) { if (cells[m-1][n]->getType() == 1) neighbors += 1; if(n < (cells.at(m).size() - 1)) { if (cells[m-1][n+1]->getType() == 1) neighbors += 1; } } if(n > 0) { if (cells[m][n-1]->getType() == 1) neighbors += 1; if(m < (cells.size() - 1)) { if (cells[m+1][n-1]->getType() == 1) neighbors += 1; } } if(n < (cells.at(m).size() - 1)) { if (cells[m][n+1]->getType() == 1) neighbors += 1; } if(m < (cells.size() - 1)) { if (cells[m+1][n]->getType() == 1) neighbors += 1; } if(m < (cells.size() - 1) && n < (cells.at(m).size() - 1)) { if (cells[m+1][n+1]->getType() == 1) neighbors += 1; } // Done checking number of neighbors for cells[m][n] // Now we change cells2 if it should switch in the next simulation step. // cells2 holds the values of what cells should be on the next iteration of the game. // We can't change cells right now, or it would through off our other cell values. // Apply game rules to cells: Create new, updated grid with the roundtwo vector. // Note - LIVE is 1; DEAD is 0. if (cells[m][n]->getType() == 1 && neighbors < 2) // If cell is LIVE and has less than 2 LIVE neighbors -> Set to DEAD. cells2[m][n]->setType(DEAD); else if (cells[m][n]->getType() == 1 && neighbors > 3) // If cell is LIVE and has more than 3 LIVE neighbors -> Set to DEAD. cells2[m][n]->setType(DEAD); else if (cells[m][n]->getType() == 1 && (neighbors == 2 || neighbors == 3)) // If cell is LIVE and has 2 or 3 LIVE neighbors -> Set to LIVE. cells2[m][n]->setType(LIVE); else if (cells[m][n]->getType() == 0 && neighbors == 3) // If cell is DEAD and has 3 LIVE neighbors -> Set to LIVE. cells2[m][n]->setType(LIVE); } } // Now we've gone through all of cells, and saved the new values in cells2. // Now we loop through cells and set all the cells' types to those of cells2. for (unsigned int f = 0; f < cells.size(); f++) // Loop through cells' rows. { for (unsigned int g = 0; g < cells.at(f).size(); g++) // Loop through cells columns. { cells[f][g]->setType(cells2[f][g]->getType()); // Set cells[f][g]'s type to cells2[f][g]'s type. } } } stack.h - Here's my stack. #ifndef STACK_H_ #define STACK_H_ #include <iostream> #include "node.h" template <typename T> class Stack { private: Node<T>* top; int listSize; public: Stack(); int size() const; bool empty() const; void push(const T& value); void pop(); T& peek() const; }; template <typename T> Stack<T>::Stack() : top(NULL) { listSize = 0; } template <typename T> int Stack<T>::size() const { return listSize; } template <typename T> bool Stack<T>::empty() const { if(listSize == 0) return true; else return false; } template <typename T> void Stack<T>::push(const T& value) { Node<T>* newOne = new Node<T>(value); newOne->next = top; top = newOne; listSize++; } template <typename T> void Stack<T>::pop() { Node<T>* oldT = top; top = top->next; delete oldT; listSize--; } template <typename T> T& Stack<T>::peek() const { return top->data; // Returns data in top item. } #endif gridcell.cpp - Gridcell implementation #include <iostream> #include "gridcell.h" using namespace std; // Constructor: Creates a grid cell. GridCell::GridCell(QWidget *parent) : QFrame(parent) { this->type = DEAD; // Default: Cell is DEAD (white). setFrameStyle(QFrame::Box); // Set the frame style. This is what gives each box its black border. this->button = new QPushButton(this); //Creates button that fills entirety of each grid cell. this->button->setSizePolicy(QSizePolicy::Expanding,QSizePolicy::Expanding); // Expands button to fill space. this->button->setMinimumSize(19,19); //width,height // Min height and width of button. QHBoxLayout *layout = new QHBoxLayout(); //Creates a simple layout to hold our button and add the button to it. layout->addWidget(this->button); setLayout(layout); layout->setStretchFactor(this->button,1); // Lets the buttons expand all the way to the edges of the current frame with no space leftover layout->setContentsMargins(0,0,0,0); layout->setSpacing(0); connect(this->button,SIGNAL(clicked()),this,SLOT(handleClick())); // Connects clicked signal with handleClick slot. redrawCell(); // Calls function to redraw (set new type for) the cell. } // Basic destructor. GridCell::~GridCell() { delete this->button; } // Accessor for the cell type. CellType GridCell::getType() const { return(this->type); } // Mutator for the cell type. Also has the side effect of causing the cell to be redrawn on the GUI. void GridCell::setType(CellType type) { this->type = type; redrawCell(); // Sets type and redraws cell. } // Handler slot for button clicks. This method is called whenever the user clicks on this cell in the grid. void GridCell::handleClick() { // When clicked on... if(this->type == DEAD) // If type is DEAD (white), change to LIVE (black). type = LIVE; else type = DEAD; // If type is LIVE (black), change to DEAD (white). setType(type); // Sets new type (color). setType Calls redrawCell() to recolor. } // Method to check cell type and return the color of that type. Qt::GlobalColor GridCell::getColorForCellType() { switch(this->type) { default: case DEAD: return Qt::white; case LIVE: return Qt::black; } } // Helper method. Forces current cell to be redrawn on the GUI. Called whenever the setType method is invoked. void GridCell::redrawCell() { Qt::GlobalColor gc = getColorForCellType(); //Find out what color this cell should be. this->button->setPalette(QPalette(gc,gc)); //Force the button in the cell to be the proper color. this->button->setAutoFillBackground(true); this->button->setFlat(true); //Force QT to NOT draw the borders on the button } Thanks a lot. Let me know if you need anything else.

    Read the article

  • Checking if an int is prime more efficiently

    - by SipSop
    I recently was part of a small java programming competition at my school. My partner and I have just finished our first pure oop class and most of the questions were out of our league so we settled on this one (and I am paraphrasing somewhat): "given an input integer n return the next int that is prime and its reverse is also prime for example if n = 18 your program should print 31" because 31 and 13 are both prime. Your .class file would then have a test case of all the possible numbers from 1-2,000,000,000 passed to it and it had to return the correct answer within 10 seconds to be considered valid. We found a solution but with larger test cases it would take longer than 10 seconds. I am fairly certain there is a way to move the range of looping from n,..2,000,000,000 down as the likely hood of needing to loop that far when n is a low number is small, but either way we broke the loop when a number is prime under both conditions is found. At first we were looping from 2,..n no matter how large it was then i remembered the rule about only looping to the square root of n. Any suggestions on how to make my program more efficient? I have had no classes dealing with complexity analysis of algorithms. Here is our attempt. public class P3 { public static void main(String[] args){ long loop = 2000000000; long n = Integer.parseInt(args[0]); for(long i = n; i<loop; i++) { String s = i +""; String r = ""; for(int j = s.length()-1; j>=0; j--) r = r + s.charAt(j); if(prime(i) && prime(Long.parseLong(r))) { System.out.println(i); break; } } System.out.println("#"); } public static boolean prime(long p){ for(int i = 2; i<(int)Math.sqrt(p); i++) { if(p%i==0) return false; } return true; } } ps sorry if i did the formatting for code wrong this is my first time posting here. Also the output had to have a '#' after each line thats what the line after the loop is about Thanks for any help you guys offer!!!

    Read the article

  • Error in Print Function in Bubble Sort MIPS?

    - by m00nbeam360
    Sorry that this is such a long block of code, but do you see any obvious syntax errors in this? I feel like the problem is that the code isn't printing correctly since the sort and swap methods were from my textbook. Please help if you can! .data save: .word 1,2,4,2,5,6 size: .word 6 .text swap: sll $t1, $a1, 2 #shift bits by 2 add $t1, $a1, $t1 #set $t1 address to v[k] lw $t0, 0($t1) #load v[k] into t1 lw $t2, 4($t1) #load v[k+1] into t1 sw $t2, 0($t1) #swap addresses sw $t0, 4($t1) #swap addresses jr $ra #return sort: addi $sp, $sp, -20 #make enough room on the stack for five registers sw $ra, 16($sp) #save the return address on the stack sw $s3, 12($sp) #save $s3 on the stack sw $s2, 8($sp) #save Ss2 on the stack sw $s1, 4($sp) #save $s1 on the stack sw $s0, 0($sp) #save $s0 on the stack move $s2, $a0 #copy the parameter $a0 into $s2 (save $a0) move $s3, $a1 #copy the parameter $a1 into $s3 (save $a1) move $s0, $zero #start of for loop, i = 0 for1tst: slt $t0, $s0, $s3 #$t0 = 0 if $s0 S $s3 (i S n) beq $t0, $zero, exit1 #go to exit1 if $s0 S $s3 (i S n) addi $s1, $s0, -1 #j - i - 1 for2tst: slti $t0, $s1, 0 #$t0 = 1 if $s1 < 0 (j < 0) bne $t0, $zero, exit2 #$t0 = 1 if $s1 < 0 (j < 0) sll $t1, $s1, 2 #$t1 = j * 4 (shift by 2 bits) add $t2, $s2, $t1 #$t2 = v + (j*4) lw $t3, 0($t2) #$t3 = v[j] lw $t4, 4($t2) #$t4 = v[j+1] slt $t0, $t4, $t3 #$t0 = 0 if $t4 S $t3 beq $t0, $zero, exit2 #go to exit2 if $t4 S $t3 move $a0, $s2 #1st parameter of swap is v(old $a0) move $a1, $s1 #2nd parameter of swap is j jal swap #swap addi $s1, $s1, -1 j for2tst #jump to test of inner loop j print exit2: addi $s0, $s0, 1 #i = i + 1 j for1tst #jump to test of outer loop exit1: lw $s0, 0($sp) #restore $s0 from stack lw $s1, 4($sp) #resture $s1 from stack lw $s2, 8($sp) #restore $s2 from stack lw $s3, 12($sp) #restore $s3 from stack lw $ra, 16($sp) #restore $ra from stack addi $sp, $sp, 20 #restore stack pointer jr $ra #return to calling routine .data space:.asciiz " " # space to insert between numbers head: .asciiz "The sorted numbers are:\n" .text print:add $t0, $zero, $a0 # starting address of array add $t1, $zero, $a1 # initialize loop counter to array size la $a0, head # load address of print heading li $v0, 4 # specify Print String service syscall # print heading out: lw $a0, 0($t0) # load fibonacci number for syscall li $v0, 1 # specify Print Integer service syscall # print fibonacci number la $a0, space # load address of spacer for syscall li $v0, 4 # specify Print String service syscall # output string addi $t0, $t0, 4 # increment address addi $t1, $t1, -1 # decrement loop counter bgtz $t1, out # repeat if not finished jr $ra # return

    Read the article

  • node.js callback getting unexpected value for variable

    - by defrex
    I have a for loop, and inside it a variable is assigned with var. Also inside the loop a method is called which requires a callback. Inside the callback function I'm using the variable from the loop. I would expect that it's value, inside the callback function, would be the same as it was outside the callback during that iteration of the loop. However, it always seems to be the value from the last iteration of the loop. Am I misunderstanding scope in JavaScript, or is there something else wrong? The program in question here is a node.js app that will monitor a working directory for changes and restart the server when it finds one. I'll include all of the code for the curious, but the important bit is the parse_file_list function. var posix = require('posix'); var sys = require('sys'); var server; var child_js_file = process.ARGV[2]; var current_dir = __filename.split('/'); current_dir = current_dir.slice(0, current_dir.length-1).join('/'); var start_server = function(){ server = process.createChildProcess('node', [child_js_file]); server.addListener("output", function(data){sys.puts(data);}); }; var restart_server = function(){ sys.puts('change discovered, restarting server'); server.close(); start_server(); }; var parse_file_list = function(dir, files){ for (var i=0;i<files.length;i++){ var file = dir+'/'+files[i]; sys.puts('file assigned: '+file); posix.stat(file).addCallback(function(stats){ sys.puts('stats returned: '+file); if (stats.isDirectory()) posix.readdir(file).addCallback(function(files){ parse_file_list(file, files); }); else if (stats.isFile()) process.watchFile(file, restart_server); }); } }; posix.readdir(current_dir).addCallback(function(files){ parse_file_list(current_dir, files); }); start_server(); The output from this is: file assigned: /home/defrex/code/node/ejs.js file assigned: /home/defrex/code/node/templates file assigned: /home/defrex/code/node/web file assigned: /home/defrex/code/node/server.js file assigned: /home/defrex/code/node/settings.js file assigned: /home/defrex/code/node/apps file assigned: /home/defrex/code/node/dev_server.js file assigned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js stats returned: /home/defrex/code/node/main_urls.js For those from the future: node.devserver.js

    Read the article

  • Incorrect output on changing sequence of declarations

    - by max
    Writing C++ code to implement Sutherland-Hodgeman polygon clipping. This order of declaration of these 2 statements gives correct output, reverse does not. int numberOfVertices = 5; Point pointList[] = { {50,50}, {200,300}, {310,110}, {130,90}, {70,40} }; I am passing the polygon vertex set to clippers in order - LEFT, RIGHT, TOP, BOTTOM. The exact error which comes when the declarations are reversed is that the bottom clipper, produces an empty set of vertices so no polygon is displayed after clipping. Correct: Incorrent: Confirmed by outputting the number of vertices produced after each pass: Correct: Incorrect: What is the reason for this error? Code: #include <iostream> #include <GL/glut.h> #define MAXVERTICES 10 #define LEFT 0 #define RIGHT 1 #define TOP 2 #define BOTTOM 3 using namespace std; /* Clipping window */ struct Window { double xmin; double xmax; double ymin; double ymax; }; struct Point { double x; double y; }; /* If I interchange these two lines, the code doesn't work. */ /**************/ int numberOfVertices = 5; Point pointList[] = { {50,50}, {200,300}, {310,110}, {130,90}, {70,40} }; /**************/ const Window w = { 100, 400, 60, 200 }; /* Checks whether a point is inside or outside a window side */ int isInside(Point p, int side) { switch(side) { case LEFT: return p.x >= w.xmin; case RIGHT: return p.x <= w.xmax; case TOP: return p.y <= w.ymax; case BOTTOM: return p.y >= w.ymin; } } /* Calculates intersection of a segment and a window side */ Point intersection(Point p1, Point p2, int side) { Point temp; double slope, intercept; bool infinite; /* Find slope and intercept of segment, taking care of inf slope */ if(p2.x - p1.x != 0) { slope = (p2.y - p1.y) / (p2.x - p1.x); infinite = false; } else { infinite = true; } intercept = p1.y - p1.x * slope; /* Calculate intersections */ switch(side) { case LEFT: temp.x = w.xmin; temp.y = temp.x * slope + intercept; break; case RIGHT: temp.x = w.xmax; temp.y = temp.x * slope + intercept; break; case TOP: temp.y = w.ymax; temp.x = infinite ? p1.x : (temp.y - intercept) / slope; break; case BOTTOM: temp.y = w.ymin; temp.x = infinite ? p1.x : (temp.y - intercept) / slope; break; } return temp; } /* Clips polygon against a side, updating the point list (called once for each side) */ void clipAgainstSide(int sideToClip) { int i, j=0; Point s,p; Point outputList[MAXVERTICES]; /* Main algorithm */ s = pointList[numberOfVertices-1]; for(i=0 ; i<numberOfVertices ; i++) { p = pointList[i]; if(isInside(p, sideToClip)) { /* p inside */ if(!isInside(s, sideToClip)) { /* p inside, s outside */ outputList[j] = intersection(p, s, sideToClip); j++; } outputList[j] = p; j++; } else if(isInside(s, sideToClip)) { /* s inside, p outside */ outputList[j] = intersection(s, p, sideToClip); j++; } s = p; } /* Updating number of points and point list */ numberOfVertices = j; /* ERROR: In last call with BOTTOM argument, numberOfVertices becomes 0 */ /* all earlier 3 calls have correct output */ cout<<numberOfVertices<<endl; for(i=0 ; i<numberOfVertices ; i++) { pointList[i] = outputList[i]; } } void SutherlandHodgemanPolygonClip() { clipAgainstSide(LEFT); clipAgainstSide(RIGHT); clipAgainstSide(TOP); clipAgainstSide(BOTTOM); } void init() { glClearColor(1,1,1,0); glMatrixMode(GL_PROJECTION); gluOrtho2D(0,1000,0,500); } void display() { glClear(GL_COLOR_BUFFER_BIT); /* Displaying ORIGINAL box and polygon */ glColor3f(0,0,1); glBegin(GL_LINE_LOOP); glVertex2i(w.xmin, w.ymin); glVertex2i(w.xmin, w.ymax); glVertex2i(w.xmax, w.ymax); glVertex2i(w.xmax, w.ymin); glEnd(); glColor3f(1,0,0); glBegin(GL_LINE_LOOP); for(int i=0 ; i<numberOfVertices ; i++) { glVertex2i(pointList[i].x, pointList[i].y); } glEnd(); /* Clipping */ SutherlandHodgemanPolygonClip(); /* Displaying CLIPPED box and polygon, 500px right */ glColor3f(0,0,1); glBegin(GL_LINE_LOOP); glVertex2i(w.xmin+500, w.ymin); glVertex2i(w.xmin+500, w.ymax); glVertex2i(w.xmax+500, w.ymax); glVertex2i(w.xmax+500, w.ymin); glEnd(); glColor3f(1,0,0); glBegin(GL_LINE_LOOP); for(int i=0 ; i<numberOfVertices ; i++) { glVertex2i(pointList[i].x+500, pointList[i].y); } glEnd(); glFlush(); } int main(int argc, char** argv) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB); glutInitWindowSize(1000,500); glutCreateWindow("Sutherland-Hodgeman polygon clipping"); init(); glutDisplayFunc(display); glutMainLoop(); return 0; }

    Read the article

  • How does interpolation actually work to smooth out an object's movement?

    - by user22241
    I've asked a few similar questions over the past 8 months or so with no real joy, so I am going make the question more general. I have an Android game which is OpenGL ES 2.0. within it I have the following Game Loop: My loop works on a fixed time step principle (dt = 1 / ticksPerSecond) loops=0; while(System.currentTimeMillis() > nextGameTick && loops < maxFrameskip){ updateLogic(dt); nextGameTick+=skipTicks; timeCorrection += (1000d/ticksPerSecond) % 1; nextGameTick+=timeCorrection; timeCorrection %=1; loops++; } render(); My intergration works like this: sprite.posX+=sprite.xVel*dt; sprite.posXDrawAt=sprite.posX*width; Now, everything works pretty much as I would like. I can specify that I would like an object to move across a certain distance (screen width say) in 2.5 seconds and it will do just that. Also because of the frame skipping that I allow in my game loop, I can do this on pretty much any device and it will always take 2.5 seconds. Problem However, the problem is that when a render frame skips, the graphic stutter. It's extremely annoying. If I remove the ability to skip frames, then everything is smooth as you like, but will run at different speeds on different devices. So it's not an option. I'm still not sure why the frame skips, but I would like to point out that this is Nothing to do with poor performance, I've taken the code right back to 1 tiny sprite and no logic (apart from the logic required to move the sprite) and I still get skipped frames. And this is on a Google Nexus 10 tablet (and as mentioned above, I need frame skipping to keep the speed consistent across devices anyway). So, the only other option I have is to use interpolation (or extrapolation), I've read every article there is out there but none have really helped me to understand how it works and all of my attempted implementations have failed. Using one method I was able to get things moving smoothly but it was unworkable because it messed up my collision. I can foresee the same issue with any similar method because the interpolation is passed to (and acted upon within) the rendering method - at render time. So if Collision corrects position (character now standing right next to wall), then the renderer can alter it's position and draw it in the wall. So I'm really confused. People have said that you should never alter an object's position from within the rendering method, but all of the examples online show this. So I'm asking for a push in the right direction, please do not link to the popular game loop articles (deWitters, Fix your timestep, etc) as I've read these multiple times. I'm not asking anyone to write my code for me. Just explain please in simple terms how Interpolation actually works with some examples. I will then go and try to integrate any ideas into my code and will ask more specific questions if need-be further down the line. (I'm sure this is a problem many people struggle with).

    Read the article

  • Applications: The Mathematics of Movement, Part 3

    - by TechTwaddle
    Previously: Part 1, Part 2 As promised in the previous post, this post will cover two variations of the marble move program. The first one, Infinite Move, keeps the marble moving towards the click point, rebounding it off the screen edges and changing its direction when the user clicks again. The second version, Finite Move, is the same as first except that the marble does not move forever. It moves towards the click point, rebounds off the screen edges and slowly comes to rest. The amount of time that it moves depends on the distance between the click point and marble. Infinite Move This case is simple (actually both cases are simple). In this case all we need is the direction information which is exactly what the unit vector stores. So when the user clicks, you calculate the unit vector towards the click point and then keep updating the marbles position like crazy. And, of course, there is no stop condition. There’s a little more additional code in the bounds checking conditions. Whenever the marble goes off the screen boundaries, we need to reverse its direction.  Here is the code for mouse up event and UpdatePosition() method, //stores the unit vector double unitX = 0, unitY = 0; double speed = 6; //speed times the unit vector double incrX = 0, incrY = 0; private void Form1_MouseUp(object sender, MouseEventArgs e) {     double x = e.X - marble1.x;     double y = e.Y - marble1.y;     //calculate distance between click point and current marble position     double lenSqrd = x * x + y * y;     double len = Math.Sqrt(lenSqrd);     //unit vector along the same direction (from marble towards click point)     unitX = x / len;     unitY = y / len;     timer1.Enabled = true; } private void UpdatePosition() {     //amount by which to increment marble position     incrX = speed * unitX;     incrY = speed * unitY;     marble1.x += incrX;     marble1.y += incrY;     //check for bounds     if ((int)marble1.x < MinX + marbleWidth / 2)     {         marble1.x = MinX + marbleWidth / 2;         unitX *= -1;     }     else if ((int)marble1.x > (MaxX - marbleWidth / 2))     {         marble1.x = MaxX - marbleWidth / 2;         unitX *= -1;     }     if ((int)marble1.y < MinY + marbleHeight / 2)     {         marble1.y = MinY + marbleHeight / 2;         unitY *= -1;     }     else if ((int)marble1.y > (MaxY - marbleHeight / 2))     {         marble1.y = MaxY - marbleHeight / 2;         unitY *= -1;     } } So whenever the user clicks we calculate the unit vector along that direction and also the amount by which the marble position needs to be incremented. The speed in this case is fixed at 6. You can experiment with different values. And under bounds checking, whenever the marble position goes out of bounds along the x or y direction we reverse the direction of the unit vector along that direction. Here’s a video of it running;   Finite Move The code for finite move is almost exactly same as that of Infinite Move, except for the difference that the speed is not fixed and there is an end condition, so the marble comes to rest after a while. Code follows, //unit vector along the direction of click point double unitX = 0, unitY = 0; //speed of the marble double speed = 0; private void Form1_MouseUp(object sender, MouseEventArgs e) {     double x = 0, y = 0;     double lengthSqrd = 0, length = 0;     x = e.X - marble1.x;     y = e.Y - marble1.y;     lengthSqrd = x * x + y * y;     //length in pixels (between click point and current marble pos)     length = Math.Sqrt(lengthSqrd);     //unit vector along the same direction as vector(x, y)     unitX = x / length;     unitY = y / length;     speed = length / 12;     timer1.Enabled = true; } private void UpdatePosition() {     marble1.x += speed * unitX;     marble1.y += speed * unitY;     //check for bounds     if ((int)marble1.x < MinX + marbleWidth / 2)     {         marble1.x = MinX + marbleWidth / 2;         unitX *= -1;     }     else if ((int)marble1.x > (MaxX - marbleWidth / 2))     {         marble1.x = MaxX - marbleWidth / 2;         unitX *= -1;     }     if ((int)marble1.y < MinY + marbleHeight / 2)     {         marble1.y = MinY + marbleHeight / 2;         unitY *= -1;     }     else if ((int)marble1.y > (MaxY - marbleHeight / 2))     {         marble1.y = MaxY - marbleHeight / 2;         unitY *= -1;     }     //reduce speed by 3% in every loop     speed = speed * 0.97f;     if ((int)speed <= 0)     {         timer1.Enabled = false;     } } So the only difference is that the speed is calculated as a function of length when the mouse up event occurs. Again, this can be experimented with. Bounds checking is same as before. In the update and draw cycle, we reduce the speed by 3% in every cycle. Since speed is calculated as a function of length, speed = length/12, the amount of time it takes speed to reach zero is directly proportional to length. Note that the speed is in ‘pixels per 40ms’ because the timeout value of the timer is 40ms.  The readability can be improved by representing speed in ‘pixels per second’. This would require you to add some more calculations to the code, which I leave out as an exercise. Here’s a video of this second version,

    Read the article

  • Writing a method to 'transform' an immutable object: how should I approach this?

    - by Prog
    (While this question has to do with a concrete coding dilemma, it's mostly about what's the best way to design a function.) I'm writing a method that should take two Color objects, and gradually transform the first Color into the second one, creating an animation. The method will be in a utility class. My problem is that Color is an immutable object. That means that I can't do color.setRGB or color.setBlue inside a loop in the method. What I can do, is instantiate a new Color and return it from the method. But then I won't be able to gradually change the color. So I thought of three possible solutions: 1- The client code includes the method call inside a loop. For example: int duration = 1500; // duration of the animation in milliseconds int steps = 20; // how many 'cycles' the animation will take for(int i=0; i<steps; i++) color = transformColor(color, targetColor, duration, steps); And the method would look like this: Color transformColor(Color original, Color target, int duration, int steps){ int redDiff = target.getRed() - original.getRed(); int redAddition = redDiff / steps; int newRed = original.getRed() + redAddition; // same for green and blue .. Thread.sleep(duration / STEPS); // exception handling omitted return new Color(newRed, newGreen, newBlue); } The disadvantage of this approach is that the client code has to "do part of the method's job" and include a for loop. The method doesn't do it's work entirely on it's own, which I don't like. 2- Make a mutable Color subclass with methods such as setRed, and pass objects of this class into transformColor. Then it could look something like this: void transformColor(MutableColor original, Color target, int duration){ final int STEPS = 20; int redDiff = target.getRed() - original.getRed(); int redAddition = redDiff / steps; int newRed = original.getRed() + redAddition; // same for green and blue .. for(int i=0; i<STEPS; i++){ original.setRed(original.getRed() + redAddition); // same for green and blue .. Thread.sleep(duration / STEPS); // exception handling omitted } } Then the calling code would usually look something like this: // The method will usually transform colors of JComponents JComponent someComponent = ... ; // setting the Color in JComponent to be a MutableColor Color mutableColor = new MutableColor(someComponent.getForeground()); someComponent.setForeground(mutableColor); // later, transforming the Color in the JComponent transformColor((MutableColor)someComponent.getForeground(), new Color(200,100,150), 2000); The disadvantage is - the need to create a new class MutableColor, and also the need to do casting. 3- Pass into the method the actual mutable object that holds the color. Then the method could do object.setColor or similar every iteration of the loop. Two disadvantages: A- Not so elegant. Passing in the object that holds the color just to transform the color feels unnatural. B- While most of the time this method will be used to transform colors inside JComponent objects, other kinds of objects may have colors too. So the method would need to be overloaded to receive other types, or receive Objects and have instanceof checks inside.. Not optimal. Right now I think I like solution #2 the most, than solution #1 and solution #3 the least. However I'd like to hear your opinions and suggestions regarding this.

    Read the article

  • Iteration speed of int vs long

    - by jqno
    I have the following two programs: long startTime = System.currentTimeMillis(); for (int i = 0; i < N; i++); long endTime = System.currentTimeMillis(); System.out.println("Elapsed time: " + (endTime - startTime) + " msecs"); and long startTime = System.currentTimeMillis(); for (long i = 0; i < N; i++); long endTime = System.currentTimeMillis(); System.out.println("Elapsed time: " + (endTime - startTime) + " msecs"); Note: the only difference is the type of the loop variable (int and long). When I run this, the first program consistently prints between 0 and 16 msecs, regardless of the value of N. The second takes a lot longer. For N == Integer.MAX_VALUE, it runs in about 1800 msecs on my machine. The run time appears to be more or less linear in N. So why is this? I suppose the JIT-compiler optimizes the int loop to death. And for good reason, because obviously it doesn't do anything. But why doesn't it do so for the long loop as well? A colleague thought we might be measuring the JIT compiler doing its work in the long loop, but since the run time seems to be linear in N, this probably isn't the case.

    Read the article

  • using python 'with' statement with iterators?

    - by Stephen
    Hi, I'm using Python 2.5. I'm trying to use this 'with' statement. from __future__ import with_statement a = [] with open('exampletxt.txt','r') as f: while True: a.append(f.next().strip().split()) print a The contents of 'exampletxt.txt' are simple: a b In this case, I get the error: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/tmp/python-7036sVf.py", line 5, in <module> a.append(f.next().strip().split()) StopIteration And if I replace f.next() with f.read(), it seems to be caught in an infinite loop. I wonder if I have to write a decorator class that accepts the iterator object as an argument, and define an __exit__ method for it? I know it's more pythonic to use a for-loop for iterators, but I wanted to implement a while loop within a generator that's called by a for-loop... something like def g(f): while True: x = f.next() if test1(x): a = x elif test2(x): b = f.next() yield [a,x,b] a = [] with open(filename) as f: for x in g(f): a.append(x)

    Read the article

  • Optimizing mathematics on arrays of floats in Ada 95 with GNATC

    - by mat_geek
    Consider the bellow code. This code is supposed to be processing data at a fixed rate, in one second batches, It is part of an overal system and can't take up too much time. When running over 100 lots of 1 seconds worth of data the program takes 35 seconds; or 35%. How do I improce the code to get the processing time down to a minimum? The code will be running on an Intel Pentium-M which is a P3 with SSE2. package FF is new Ada.Numerics.Generic_Elementary_Functions(Float); N : constant Integer := 820; type A is array(1 .. N) of Float; type A3 is array(1 .. 3) of A; procedure F(state : in out A3; result : out A3; l : in A; r : in A) is s : Float; t : Float; begin for i in 1 .. N loop t := l(i) + r(i); t := t / 2.0; state(1)(i) := t; state(2)(i) := t * 0.25 + state(2)(i) * 0.75; state(3)(i) := t * 1.0 /64.0 + state(2)(i) * 63.0 /64.0; for r in 1 .. 3 loop s := state(r)(i); t := FF."**"(s, 6.0) + 14.0; if t > MAX then t := MAX; elsif t < MIN then t := MIN; end if; result(r)(i) := FF.Log(t, 2.0); end loop; end loop; end;

    Read the article

< Previous Page | 76 77 78 79 80 81 82 83 84 85 86 87  | Next Page >