Search Results

Search found 24391 results on 976 pages for 'static methods'.

Page 80/976 | < Previous Page | 76 77 78 79 80 81 82 83 84 85 86 87  | Next Page >

  • Refactoring two methods down to one

    - by bflemi3
    I have two methods that almost do the same thing. They get a List<XmlNode> based on state OR state and schoolType and then return a distinct, ordered IEnumerable<KeyValuePair<string,string>>. I know they can be refactored but I'm struggling to determine what type the parameter should be for the linq statement in the return of the method (the last line of each method). I thank you for your help in advance. private IEnumerable<KeyValuePair<string, string>> getAreaDropDownDataSource() { StateInfoXmlDocument stateInfoXmlDocument = new StateInfoXmlDocument(); string schoolTypeXmlPath = string.Format(STATE_AND_SCHOOL_TYPE_XML_PATH, StateOfInterest, ConnectionsLearningSchoolType); var schoolNodes = new List<XmlNode>(stateInfoXmlDocument.SelectNodes(schoolTypeXmlPath).Cast<XmlNode>()); return schoolNodes.Select(x => new KeyValuePair<string, string>(x.Attributes["idLocation"].Value, x.Value)).OrderBy(x => x.Key).Distinct(); } private IEnumerable<KeyValuePair<string, string>> getStateOfInterestDropDownDataSource() { StateInfoXmlDocument stateInfoXmlDocument = new StateInfoXmlDocument(); string schoolTypeXmlPath = string.Format(SCHOOL_TYPE_XML_PATH, ConnectionsLearningSchoolType); var schoolNodes = new List<XmlNode>(stateInfoXmlDocument.SelectNodes(schoolTypeXmlPath).Cast<XmlNode>()); return schoolNodes.Select(x => new KeyValuePair<string, string>(x.Attributes["stateCode"].Value, x.Attributes["stateName"].Value)).OrderBy(x => x.Key).Distinct(); }

    Read the article

  • [Scala] Using overloaded, typed methods on a collection

    - by stephanos
    I'm quite new to Scala and struggling with the following: I have database objects (type of BaseDoc) and value objects (type of BaseVO). Now there are multiple convert methods (all called 'convert') that take an instance of an object and convert it to the other type accordingly. For example: def convert(doc: ClickDoc): ClickVO = doc match { case null => null case _ => val result = new ClickVO result.x = doc.x result.y = doc.y result } Now I sometimes need to convert a list of objects. How would I do this - I tried: def convert[D <: MyBaseDoc, V <: BaseVO](docs: List[D]):List[V] = docs match { case List() => List() case xs => xs.map(doc => convert(doc)) } Which results in 'overloaded method value convert with alternatives ...'. I tried to add manifest information to it, but couldn't make it work. I couldn't even create one method for each because it'd say that they have the same parameter type after type erasure (List). Ideas welcome!

    Read the article

  • Problem with class methods in objective c

    - by Rajashekar
    Hi Guys i have a tableview controller like so, NSString *selectedindex; @interface ContactsController : UITableViewController { NSMutableArray *names; NSMutableArray *phonenumbers; NSMutableArray *contacts; DatabaseCRUD *sampledatabase; } +(NSString *) returnselectedindex; @end in the implementation file i have +(NSString *) returnselectedindex { return selectedindex; } when a row is selected in the tableview i put have the following code. selectedindex = [NSString stringWithFormat:@"%d", indexPath.row]; NSLog(@"selected row is %@",selectedindex); in a different class i am trying to access the selectedindex. like so selected = [ContactsController returnselectedindex]; NSLog(@"selected is %@",selected); it gives me a warning: 'ContactsController' may not respond to '+returnselectedindex' and crashes. i am not sure why. i have used class methods previously lot of times , and never had a problem. any help please. Thank You.

    Read the article

  • Handy ASP.NET MVC 2 Extension Methods &ndash; Where am I?

    - by Bobby Diaz
    Have you ever needed to detect what part of the application is currently being viewed?  This might be a bigger issue if you write a lot of shared/partial views or custom display or editor templates.  Another scenario, which is the one I encountered when I first started down this path, is when you have some type of menu and you’d like to be able to determine which item represents the current page so you can highlight it in some way.  A simple example is the menu that is created as part of the default ASP.NET MVC 2 Application template.   <div id="menucontainer">       <ul id="menu">         <li><%= Html.ActionLink("Home", "Index", "Home") %></li>         <li><%= Html.ActionLink("About", "About", "Home") %></li>     </ul>   </div>   The part that got me at first, however, was the following entry in the default style sheet (Site.css):   ul#menu li.selected a {     background-color: #fff;     color: #000; }   I assumed that the .selected class would automatically get applied to the active menu item.  After trying a few different things, including the MvcContrib MenuBuilder, I decided to write my own extension methods so I would have more control over the output.  First, I needed a way to determine what view the user has navigated to based on the requested URL and route configuration.  Now, I am sure there are many ways to do this, but this is what I came up with:   public static class RequestExtensions {     public static bool IsCurrentRoute(this RequestContext context, String areaName,         String controllerName, params String[] actionNames)     {         var routeData = context.RouteData;         var routeArea = routeData.DataTokens["area"] as String;         var current = false;           if ( ((String.IsNullOrEmpty(routeArea) && String.IsNullOrEmpty(areaName)) ||               (routeArea == areaName)) &&              ((String.IsNullOrEmpty(controllerName)) ||               (routeData.GetRequiredString("controller") == controllerName)) &&              ((actionNames == null) ||                actionNames.Contains(routeData.GetRequiredString("action"))) )         {             current = true;         }           return current;     }       // additional overloads omitted... }   With that in place, I was able to write several UrlHelper methods that check if the supplied values map to the current view.   public static class UrlExtensions {     public static bool IsCurrent(this UrlHelper urlHelper, String areaName,         String controllerName, params String[] actionNames)     {         return urlHelper.RequestContext.IsCurrentRoute(areaName, controllerName, actionNames);     }       public static string Selected(this UrlHelper urlHelper, String areaName,         String controllerName, params String[] actionNames)     {         return urlHelper.IsCurrent(areaName, controllerName, actionNames)             ? "selected" : String.Empty;     }       // additional overloads omitted... }   Now I can re-work the original menu to utilize these new methods.  Note: be sure to import the proper namespace so the extension methods become available inside your views!   <div id="menucontainer">       <ul id="menu">         <li class="<%= Url.Selected(null, "Home", "Index") %>">             <%= Html.ActionLink("Home", "Index", "Home")%></li>           <li class="<%= Url.Selected(null, "Home", "About") %>">             <%= Html.ActionLink("About", "About", "Home")%></li>     </ul>   </div>   If we take it one step further, we can clean up the markup even more.  Check out the Html.ActionMenuItem() extension method and the refined menu:   public static class HtmlExtensions {     public static MvcHtmlString ActionMenuItem(this HtmlHelper htmlHelper, String linkText,         String actionName, String controllerName)     {         var html = new StringBuilder("<li");           if ( htmlHelper.ViewContext.RequestContext                 .IsCurrentRoute(null, controllerName, actionName) )         {             html.Append(" class=\"selected\"");         }           html.Append(">")             .Append(htmlHelper.ActionLink(linkText, actionName, controllerName))             .Append("</li>");           return MvcHtmlString.Create(html.ToString());     }       // additional overloads omitted... }   <div id="menucontainer">       <ul id="menu">         <%= Html.ActionMenuItem("Home", "Index", "Home") %>         <%= Html.ActionMenuItem("About", "About", "Home") %>     </ul>   </div>   Which generates the following HTML:   <div id="menucontainer">       <ul id="menu">         <li class="selected"><a href="/">Home</a></li>         <li><a href="/Home/About">About</a></li>     </ul>   </div>     I have created a codepaste of these extension methods if you are interested in using them in your own projects.  Enjoy!

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • WatiN screenshot saver

    - by Brian Schroer
    In addition to my automated unit, system and integration tests for ASP.NET projects, I like to give my customers something pretty that they can look at and visually see that the web site is behaving properly. I use the Gallio test runner to produce a pretty HTML report, and WatiN (Web Application Testing In .NET) to test the UI and create screenshots. I have a couple of issues with WatiN’s “CaptureWebPageToFile” method, though: It blew up the first (and only) time I tried it, possibly because… It scrolls down to capture the entire web page (I tried it on a very long page), and I usually don’t need that Also, sometimes I don’t need a picture of the whole browser window - I just want a picture of the element that I'm testing (for example, proving that a button has the correct caption). I wrote a WatiN screenshot saver helper class with these methods: SaveBrowserWindowScreenshot(Watin.Core.IE ie)  / SaveBrowserWindowScreenshot(Watin.Core.Element element) saves a screenshot of the browser window SaveBrowserWindowScreenshotWithHighlight(Watin.Core.Element element) saves a screenshot of the browser window, with the specified element scrolled into view and highlighted SaveElementScreenshot(Watin.Core.Element element) saves a picture of only the specified element The element highlighting improves on the built-in WatiN method (which just gives the element a yellow background, and makes the element pretty much unreadable when you have a light foreground color) by adding the ability to specify a HighlightCssClassName that points to a style in your site’s stylesheet. This code is specifically for testing with Internet Explorer (‘cause that’s what I have to test with at work), but you’re welcome to take it and do with it what you want… using System; using System.Drawing; using System.Drawing.Imaging; using System.IO; using System.Reflection; using System.Runtime.InteropServices; using System.Text; using System.Threading; using SHDocVw; using WatiN.Core; using mshtml; namespace BrianSchroer.TestHelpers { public static class WatinScreenshotSaver { public static void SaveBrowserWindowScreenshotWithHighlight (Element element, string screenshotName) { HighlightElement(element, true); SaveBrowserWindowScreenshot(element, screenshotName); HighlightElement(element, false); } public static void SaveBrowserWindowScreenshotWithHighlight(Element element) { HighlightElement(element, true); SaveBrowserWindowScreenshot(element); HighlightElement(element, false); } public static void SaveBrowserWindowScreenshot(Element element, string screenshotName) { SaveScreenshot(GetIe(element), screenshotName, SaveBitmapForCallbackArgs); } public static void SaveBrowserWindowScreenshot(Element element) { SaveScreenshot(GetIe(element), null, SaveBitmapForCallbackArgs); } public static void SaveBrowserWindowScreenshot(IE ie, string screenshotName) { SaveScreenshot(ie, screenshotName, SaveBitmapForCallbackArgs); } public static void SaveBrowserWindowScreenshot(IE ie) { SaveScreenshot(ie, null, SaveBitmapForCallbackArgs); } public static void SaveElementScreenshot(Element element, string screenshotName) { // TODO: Figure out how to get browser window "chrome" size and not have to go to full screen: var iex = (InternetExplorerClass) GetIe(element).InternetExplorer; bool fullScreen = iex.FullScreen; if (!fullScreen) iex.FullScreen = true; ScrollIntoView(element); SaveScreenshot(GetIe(element), screenshotName, args => SaveElementBitmapForCallbackArgs(element, args)); iex.FullScreen = fullScreen; } public static void SaveElementScreenshot(Element element) { SaveElementScreenshot(element, null); } private static void SaveScreenshot(IE browser, string screenshotName, Action<ScreenshotCallbackArgs> screenshotCallback) { string fileName = string.Format("{0:000}{1}{2}.jpg", ++_screenshotCount, (string.IsNullOrEmpty(screenshotName)) ? "" : " ", screenshotName); string path = Path.Combine(ScreenshotDirectoryName, fileName); Console.WriteLine(); // Gallio HTML-encodes the following display, but I have a utility program to // remove the "HTML===" and "===HTML" and un-encode the rest to show images in the Gallio report: Console.WriteLine("HTML===<div><b>{0}:</br></b><img src=\"{1}\" /></div>===HTML", screenshotName, new Uri(path).AbsoluteUri); MakeBrowserWindowTopmost(browser); try { var args = new ScreenshotCallbackArgs { InternetExplorerClass = (InternetExplorerClass)browser.InternetExplorer, ScreenshotPath = path }; Thread.Sleep(100); screenshotCallback(args); } catch (Exception ex) { Console.WriteLine(ex.Message); } } public static void HighlightElement(Element element, bool doHighlight) { if (!element.Exists) return; if (string.IsNullOrEmpty(HighlightCssClassName)) { element.Highlight(doHighlight); return; } string jsRef = element.GetJavascriptElementReference(); if (string.IsNullOrEmpty(jsRef)) return; var sb = new StringBuilder("try { "); sb.AppendFormat(" {0}.scrollIntoView(false);", jsRef); string format = (doHighlight) ? "{0}.className += ' {1}'" : "{0}.className = {0}.className.replace(' {1}', '')"; sb.AppendFormat(" " + format + ";", jsRef, HighlightCssClassName); sb.Append("} catch(e) {}"); string script = sb.ToString(); GetIe(element).RunScript(script); } public static void ScrollIntoView(Element element) { string jsRef = element.GetJavascriptElementReference(); if (string.IsNullOrEmpty(jsRef)) return; var sb = new StringBuilder("try { "); sb.AppendFormat(" {0}.scrollIntoView(false);", jsRef); sb.Append("} catch(e) {}"); string script = sb.ToString(); GetIe(element).RunScript(script); } public static void MakeBrowserWindowTopmost(IE ie) { ie.BringToFront(); SetWindowPos(ie.hWnd, HWND_TOPMOST, 0, 0, 0, 0, TOPMOST_FLAGS); } public static string HighlightCssClassName { get; set; } private static int _screenshotCount; private static string _screenshotDirectoryName; public static string ScreenshotDirectoryName { get { if (_screenshotDirectoryName == null) { var asm = Assembly.GetAssembly(typeof(WatinScreenshotSaver)); var uri = new Uri(asm.CodeBase); var fileInfo = new FileInfo(uri.LocalPath); string directoryName = fileInfo.DirectoryName; _screenshotDirectoryName = Path.Combine( directoryName, string.Format("Screenshots_{0:yyyyMMddHHmm}", DateTime.Now)); Console.WriteLine("Screenshot folder: {0}", _screenshotDirectoryName); Directory.CreateDirectory(_screenshotDirectoryName); } return _screenshotDirectoryName; } set { _screenshotDirectoryName = value; _screenshotCount = 0; } } [DllImport("user32.dll")] [return: MarshalAs(UnmanagedType.Bool)] private static extern bool SetWindowPos(IntPtr hWnd, IntPtr hWndInsertAfter, int X, int Y, int cx, int cy, uint uFlags); private static readonly IntPtr HWND_TOPMOST = new IntPtr(-1); private const UInt32 SWP_NOSIZE = 0x0001; private const UInt32 SWP_NOMOVE = 0x0002; private const UInt32 TOPMOST_FLAGS = SWP_NOMOVE | SWP_NOSIZE; private static IE GetIe(Element element) { if (element == null) return null; var container = element.DomContainer; while (container as IE == null) container = container.DomContainer; return (IE)container; } private static void SaveBitmapForCallbackArgs(ScreenshotCallbackArgs args) { InternetExplorerClass iex = args.InternetExplorerClass; SaveBitmap(args.ScreenshotPath, iex.Left, iex.Top, iex.Width, iex.Height); } private static void SaveElementBitmapForCallbackArgs(Element element, ScreenshotCallbackArgs args) { InternetExplorerClass iex = args.InternetExplorerClass; Rectangle bounds = GetElementBounds(element); SaveBitmap(args.ScreenshotPath, iex.Left + bounds.Left, iex.Top + bounds.Top, bounds.Width, bounds.Height); } /// <summary> /// This method is used instead of element.NativeElement.GetElementBounds because that /// method has a bug (http://sourceforge.net/tracker/?func=detail&aid=2994660&group_id=167632&atid=843727). /// </summary> private static Rectangle GetElementBounds(Element element) { var ieElem = element.NativeElement as WatiN.Core.Native.InternetExplorer.IEElement; IHTMLElement elem = ieElem.AsHtmlElement; int left = elem.offsetLeft; int top = elem.offsetTop; for (IHTMLElement parent = elem.offsetParent; parent != null; parent = parent.offsetParent) { left += parent.offsetLeft; top += parent.offsetTop; } return new Rectangle(left, top, elem.offsetWidth, elem.offsetHeight); } private static void SaveBitmap(string path, int left, int top, int width, int height) { using (var bitmap = new Bitmap(width, height)) { using (Graphics g = Graphics.FromImage(bitmap)) { g.CopyFromScreen( new Point(left, top), Point.Empty, new Size(width, height) ); } bitmap.Save(path, ImageFormat.Jpeg); } } private class ScreenshotCallbackArgs { public InternetExplorerClass InternetExplorerClass { get; set; } public string ScreenshotPath { get; set; } } } }

    Read the article

  • cpptask ordering of static libraries in gcc command line

    - by AC
    How do I force cpptask to move the static libraries to the end on arg list issued to the compiler? Here is the clause I am using <cpptasks:cc description="appname" subsystem="console" objdir="obj" outfile="dist/app_test"> <compiler refid="testsslcc" /> <linkerarg value="-L${libdir}" /> <linkerarg value="-L/usr/local/devl/lib" /> <linkerarg value="-Wl,-rpath,../lib" /> <libset libs="unittest ${libs} dsg readline ncurses gcov" /> <fileset dir="test/obj" includes="main.o" /> <fileset dir="." includes="${TCFILES}" /> <fileset dir="../lib" includes="libboost_thread.a libboost_date_time.a" /> </cpptasks:cc> when this executes, libboost_thread.a libboost_date_time.a are first files in the argument list passed the compiler, gcc -ggdb -Wl,-export-dynamic -Wshadow -Wno-format-y2k ../../lib/libboost_date_time.a ../../lib/libboost_thread.a x.cpp ... which causes compiler error. By manually moving them to the end of the argument list, the application compiles without error. gcc -ggdb -Wl,-export-dynamic -Wshadow -Wno-format-y2k x.cpp ... ../../lib/libboost_date_time.a ../../lib/libboost_thread.a And yes I have tried changing the order in the xml, and that of course didn't work. For now I am using an exec task to call gcc with the files in the correct order but this of course is a hack.

    Read the article

  • can't figure out serving static images in django dev environment

    - by photographer
    I've read the article (and few others on the subject), but still can't figure out how to show an image unless a link to a file existing on a web-service is hard-coded into the html template. I've got in urls.py: ... (r'^galleries/(landscapes)/(?P<path>.jpg)$', 'django.views.static.serve', {'document_root': settings.MEDIA_URL}), ... where 'landscapes' is one of the albums I'm trying to show images from. (There are several more of them.) In views.py it calls the template with code like that: ... <li><img src=160.jpg alt='' title='' /></li> ... which resolves the image link in html into: http://127.0.0.1:8000/galleries/landscapes/160.jpg In settings.py I have: MEDIA_ROOT = 'C:/siteURL/galleries/' MEDIA_URL = 'http://some-good-URL/galleries/' In file system there is a file C:/siteURL/galleries/landscapes/160.jpg and I do have the same file at http://some-good-URL/galleries/landscapes/160.jpg No matter what I use in urls.py — MEDIA_ROOT or MEDIA_URL (with expectation to have either local images served or from the web-server) — I get following in the source code in the browser: <li><img src=160.jpg /></li> There is no image shown in the browser. What am I doing wrong?

    Read the article

  • nginx serving Django static media | 502 bad gateway

    - by MMRUser
    I'm trying to serve Django static media through nginx, Here's my nginx.conf server { listen 7777; listen localhost:7777; server_name example.com; location / { proxy_pass http://localhost:7777; proxy_redirect off; proxy_set_header Host $host; proxy_set_header X-Real-IP $remote_addr; proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; client_max_body_size 10m; client_body_buffer_size 128k; proxy_connect_timeout 90; proxy_send_timeout 90; proxy_read_timeout 90; proxy_buffer_size 4k; proxy_buffers 4 32k; proxy_busy_buffers_size 64k; proxy_temp_file_write_size 64k; } location /test-app-media/ { root /sites/mysite/staticmedia/; expires max; } } but give a 502 bad gateway error, the path to /sites/mysite/staticmedia/ is in the nginx root/ is that the problem.. Django running on Apache 2.2 + mod_wsgi nginx 0.7.65 Thanks..

    Read the article

  • ASP.Net MVC view unable to see HtmlHelper extension method

    - by larryq
    Hi everyone, We're going through an ASP.Net MVC book and are having trouble with using an extenstion method within our view. The Extension method looks like this: using System; using System.Runtime.CompilerServices; using System.Web.Mvc; namespace MvcBookApplication { public static class HtmlHelperExtensions { public static string JQueryGenerator(this HtmlHelper htmlHelper, string formName, object model); } } We use the extension method in our view like this: <%=Html.JQueryGenerator("createmessage", ViewData.Model)%> The problem is, that line of code says JQueryGenerator isn't a recognized method of HtmlHelper. I believe we've got the correct references set in the web project, but are there other things we can check? There's no using statement for views, is there?

    Read the article

  • Difference dynamic static 2d array c++

    - by snorlaks
    Hello, Im using opensource library called wxFreeChart to draw some XY charts. In example there is code which uses static array as a serie : double data1[][2] = { { 10, 20, }, { 13, 16, }, { 7, 30, }, { 15, 34, }, { 25, 4, }, }; dataset->AddSerie((double *) data1, WXSIZEOF(dynamicArray)); WXSIZEOF ismacro defined like: sizeof(array)/sizeof(array[0]) In this case everything works great but in my program Im using dynamic arrays (according to users input). I made a test and wrotecode like below: double **dynamicArray = NULL; dynamicArray = new double *[5] ; for( int i = 0 ; i < 5 ; i++ ) dynamicArray[i] = new double[2]; dynamicArray [0][0] = 10; dynamicArray [0][1] = 20; dynamicArray [1][0] = 13; dynamicArray [1][1] = 16; dynamicArray [2][0] = 7; dynamicArray [2][1] = 30; dynamicArray [3][0] = 15; dynamicArray [3][1] = 34; dynamicArray [4][0] = 25; dynamicArray [4][1] = 4; dataset->AddSerie((double *) *dynamicArray, WXSIZEOF(dynamicArray)); But it doesnt work correctly. I mean point arent drawn. I wonder if there is any possibility that I can "cheat" that method and give it dynamic array in way it understands it and will read data from correct place thanks for help

    Read the article

  • Need advice on OOP philosophy

    - by David Jenings
    I'm trying to get the wheels turning on a large project in C#. My previous experience is in Delphi, where by default every form was created at applicaton startup and form references where held in (gasp) global variables. So I'm trying to adapt my thinking to a 100% object oriented environment, and my head is spinning just a little. My app will have a large collection of classes Most of these classes will only really need one instance. So I was thinking: static classes. I'm not really sure why, but much of what I've read here says that if my class is going to hold a state, which I take to mean any property values at all, I should use a singleton structure instead. Okay. But there are people out there who for reasons that escape me, think that singletons are evil too. None of these classes is in danger of being used anywhere except in this program. So they could certainly work fine as regular objects (vs singletons or static classes) Then there's the issue of interaction between objects. I'm tempted to create a Global class full of public static properties referencing the single instances of many of these classes. I've also considered just making them properties (static or instance, not sure which) of the MainForm. Then I'd have each of my classes be aware of the MainForm as Owner. Then the various objects could refer to each other as Owner.Object1, Owner.Object2, etc. I fear I'm running out of electronic ink, or at least taxing the patience of anyone kind enough to have stuck with me this long. I hope I have clearly explained my state of utter confusion. I'm just looking for some advice on best practices in my situation. All input is welcome and appreciated. Thanks in advance, David Jennings

    Read the article

  • Implementing A Static NSOutlineView

    - by spamguy
    I'm having a hard time scraping together enough snippets of knowledge to implement an NSOutlineView with a static, never-changing structure defined in an NSArray. This link has been great, but it's not helping me grasp submenus. I'm thinking they're just nested NSArrays, but I have no clear idea. Let's say we have an NSArray inside an NSArray, defined as NSArray *subarray = [[NSArray alloc] initWithObjects:@"2.1", @"2.2", @"2.3", @"2.4", @"2.5", nil]; NSArray *ovStructure = [[NSArray alloc] initWithObjects:@"1", subarray, @"3", nil]; The text is defined in outlineView:objectValueForTableColumn:byItem:. - (id)outlineView:(NSOutlineView *)ov objectValueForTableColumn:(NSTableColumn *)tableColumn byItem:(id)ovItem { if ([[[tableColumn headerCell] stringValue] compare:@"Key"] == NSOrderedSame) { // Return the key for this item. First, get the parent array or dictionary. // If the parent is nil, then that must be root, so we'll get the root // dictionary. id parentObject = [ov parentForItem:ovItem] ? [ov parentForItem:ovItem] : ovStructure; if ([parentObject isKindOfClass:[NSArray class]]) { // Arrays don't have keys (usually), so we have to use a name // based on the index of the object. NSLog([NSString stringWithFormat:@"%@", ovItem]); //return [NSString stringWithFormat:@"Item %d", [parentObject indexOfObject:ovItem]]; return (NSString *) [ovStructure objectAtIndex:[ovStructure indexOfObject:ovItem]]; } } else { // Return the value for the key. If this is a string, just return that. if ([ovItem isKindOfClass:[NSString class]]) { return ovItem; } else if ([ovItem isKindOfClass:[NSDictionary class]]) { return [NSString stringWithFormat:@"%d items", [ovItem count]]; } else if ([ovItem isKindOfClass:[NSArray class]]) { return [NSString stringWithFormat:@"%d items", [ovItem count]]; } } return nil; } The result is '1', '(' (expandable), and '3'. NSLog shows the array starting with '(', hence the second item. Expanding it causes a crash due to going 'beyond bounds.' I tried using parentForItem: but couldn't figure out what to compare the result to. What am I missing?

    Read the article

  • Method binding to base method in external library can't handle new virtual methods "between"

    - by Berg
    Lets say I have a library, version 1.0.0, with the following contents: public class Class1 { public virtual void Test() { Console.WriteLine( "Library:Class1 - Test" ); Console.WriteLine( "" ); } } public class Class2 : Class1 { } and I reference this library in a console application with the following contents: class Program { static void Main( string[] args ) { var c3 = new Class3(); c3.Test(); Console.ReadKey(); } } public class Class3 : ClassLibrary1.Class2 { public override void Test() { Console.WriteLine("Console:Class3 - Test"); base.Test(); } } Running the program will output the following: Console:Class3 - Test Library:Class1 - Test If I build a new version of the library, version 2.0.0, looking like this: public class Class1 { public virtual void Test() { Console.WriteLine( "Library:Class1 - Test V2" ); Console.WriteLine( "" ); } } public class Class2 : Class1 { public override void Test() { Console.WriteLine("Library:Class2 - Test V2"); base.Test(); } } and copy this version to the bin folder containing my console program and run it, the results are: Console:Class3 - Test Library:Class1 - Test V2 I.e, the Class2.Test method is never executed, the base.Test call in Class3.Test seems to be bound to Class1.Test since Class2.Test didn't exist when the console program was compiled. This was very surprising to me and could be a big problem in situations where you deploy new versions of a library without recompiling applications. Does anyone else have experience with this? Are there any good solutions? This makes it tempting to add empty overrides that just calls base in case I need to add some code at that level in the future...

    Read the article

  • Writing a JMS Publisher without "public static void main"

    - by The Elite Gentleman
    Hi guys, Every example I've seen on the web, e.g. http://www.codeproject.com/KB/docview/jms_to_jms_bridge_activem.aspx, creates a publisher and subscriber with a public static void main method. I don't think that'll work for my web application. I'm learning JMS and I've setup Apache ActiveMQ to run on JBoss 5 and Tomcat 6 (with no glitches). I'm writing a messaging JMS service that needs to send email asynchronously. I've already written a JMS subscriber that receives the message (the class inherits MessageListener). My question is simple: How do I write a publisher that will so that my web applications can call it? Does it have to be published somewhere? My thought is to create a publisher with a no-attribute constructor (in there) and get the MessageQueue Factory, etc. from the JNDI pool (in the constructor). Is my idea correct? How do I subscribe my subscriber to the Queue Receiver? (So far, the subscriber has no constructor, and if I write a constructor, do I always subscribe myself to the Queue receiver?) Thanks for your help, sorry if my terminology is not up to scratch, there are too many java terminologies that I get lost sometimes (maybe a java GPS will do! :-) ) PS Is there a tutorial out there that explains how to write a "better" (better can mean anything, but in my case it's all about performance in high demand requests) JMS Publisher and Subscriber that I can run on Application Server such as JBoss or Glassfish? Don't forget that the JMS application will needs a "guarantee" uptime as many applications will use this.

    Read the article

  • Usage of static analysis tools - with Clear Case/Quest

    - by boyd4715
    We are in the process of defining our software development process and wanted to get some feed back from the group about this topic. Our team is spread out - US, Canada and India - and I would like to put into place some simple standard rules that all teams will apply to their code. We make use of Clear Case/Quest and RAD I have been looking at PMD, CPP, checkstyle and FindBugs as a start. My thought is to just put these into ANT and have the developers run these manually. I realize doing this you have to have some trust in that each developer will do this. The other thought is to add in some builders in to the IDE which would run a subset of the rules (keep the build process light) and then add another set (heavy) when they check in the code. Some other ideals is to make use of something like Cruse Control and have it set up to run these static analysis tools along with the unit test when ever Clear Case/Quest is idle. Wondering if others have done this and if it was successfully or can provide lessons learned.

    Read the article

  • How do I get around Inconsistant accessibilty error in C # ?

    - by xarzu
    How do I get around Inconsistant accessibilty error in C # ? I need to pass a pointer to a node in a linked list to a method. When I do, I get a "Compiler Error CS0051" Example The following sample generates CS0051: Copy Code // CS0051.cs public class A { // Try making B public since F is public // B is implicitly private here class B { } public static void F(B b) // CS0051 { } public static void Main() { } } That is a simple example. The actual program is a bit more complicated. I am actually using a node in a linked list to pass to the method LinkedListNode node The method uses recursion because the node is mart of a huge linked list structure of linked lists that outputs an xml file. Either I have to find a way to use recursion without using methods or I need to find a way to pass pointers nodes or actual nodes.

    Read the article

  • setting up 301 redirects: dynamic urls to static urls

    - by MS
    We are currently using a template-based website and are hoping to move to a site with static urls. Our domain will stay the same. I understand that using 301 redirects in a .htaccess file is the preferred method -- and the one that has the highest chance of preserving our google rankings. I am still new at all this and am having a hard time figuring out the proper way to code it all. Over a hundred of our pages are indexed. They all have a similar URL but with different pageIDs: http://www.realestate-bigbear.com/Nav.aspx/Page=%2fPageManager%2fDefault.aspx%2fPageID%3d2020765 Some link out to provided content, ex. /RealEstateNews/Default.aspx Then there are many that flow from the main featured listings page: /ListNow/Default.aspx Down to all the specific properties.. where the PropertyId changes /ListNow/Property.aspx?PropertyID=2048098 would a simple set of codes work... like the following.... redirect 301 /Nav.aspx/Page=%2fPageManager%2fDefault.aspx%2fPageID%3d2020765 www.realestate.bigbear.com/SearchBigBearMLS.htm or do I need to do something entirely different?

    Read the article

  • need a near 100% uptime third-party web-accesible hosting for static web resources

    - by Jared Henderson
    I hope this makes sense: my business sells a website template, we currently have about 10,000 users. For various reasons that are unimportant to this question, I try to keep the file size of the zipped template we give them as small as possible. Because of this, I have taken a bunch of images and a couple of static files used by the template and moved them to external hosting. They are referenced by absolute URL in the css and markup, instead of shipping all of those images and files with every template. So, basically 10,000+ and growing users are requesting images and files from a third-party host. I don't use my own webhosting for this because I still kind of use a medium-cheap shared hosting for my website, and if it goes down, 10,000+ users are potentially effected. Currently I'm having the template directly access files inside of an open-source google-code project that I created for just this purpose. But, that seems like a bastardization of what a google-code repository is for, and plus, google code (i've found out) often spews 502 bad gateway errors for hours at a time. So, anyway, my question is: where is the right kind of place to host these? Obviously I'm willing to pay. My main needs are speed and uptime, since the images and files are being requested from thousands of different websites every day. Is this something that I should use Amazon S3 for? I'm guessing there's some kind of service exactly for this kind of need, but I'm at a loss to figure out what it is.

    Read the article

  • PHP - "Fat Free Framework" Find Methods and Showing Results in Template

    - by user1672808
    Just started trying the "Fat Free Framework" I'm building a site using a MySQL DB with 265 fields, and 5000+ rows in the DB; I can load() a specific record easily, no problems. When using find(), afind(), and even "select()", template will show blank lines or lines with "filler" text, with the correct number of rows for the query results, but no text/data from the DB itself; Same problem whether using objects or simply arrays from result (afind() and find()). I've copied/pasted the code verbatim from examples and from documentation, with only the DB specific items changed. Still, no luck. CODE IN PHP FILE (function from CLASS): static function home() { $featured=new Axon('boats'); $F3::set('boatlist',$featured->afind('D_CustomerID=173')); F3::set('content',TEMPLATE_DIR .'/home.html'); echo Template::serve(TEMPLATE_DIR .'/layout.html'); } TEMPLATE home.html: <div class="span8"> <h3> Featured Boats </h3> <F3:repeat group="{{@boatlist}}" value="{{@boat}}"> <div style="margin-left: 2em" class="thumbnails"> <p> <a href="boat/{{@boat['D_BoatNum']}}">{{trim(@boat['D_Description'])}}</a> by {{@boat['D_CustomerID']}} </p> <p> {{@boat['D_Price']}} </p> </div> </F3:repeat> </div> The number of rows this produces coincides with the correct number of rows in the DB. However, the actual data from each field does not show. Any ideas?

    Read the article

  • Inheritance of closure objects and overriding of methods

    - by bobikk
    I need to extend a class, which is encapsulated in a closure. This base class is following: var PageController = (function(){ // private static variable var _current_view; return function(request, new_view) { ... // priveleged public function, which has access to the _current_view this.execute = function() { alert("PageController::execute"); } } })(); Inheritance is realised using the following function: function extend(subClass, superClass){ var F = function(){ }; F.prototype = superClass.prototype; subClass.prototype = new F(); subClass.prototype.constructor = subClass; subClass.superclass = superClass.prototype; StartController.cache = ''; if (superClass.prototype.constructor == Object.prototype.constructor) { superClass.prototype.constructor = superClass; } } I subclass the PageController: var StartController = function(request){ // calling the constructor of the super class StartController.superclass.constructor.call(this, request, 'start-view'); } // extending the objects extend(StartController, PageController); // overriding the PageController::execute StartController.prototype.execute = function() { alert('StartController::execute'); } Inheritance is working. I can call every PageController's method from StartController's instance. However, method overriding doesn't work: var startCont = new StartController(); startCont.execute(); alerts "PageController::execute". How should I override this method?

    Read the article

  • string extension method - Not available through WebMethod

    - by Peter Bridger
    I've written a simple extension method for a web project, it sits in a class file called StringExtensions.cs which contains the following code: using System; using System.Collections.Generic; using System.Linq; using System.Web; /// <summary> /// Useful extensions for string /// </summary> static class StringExtensions { /// <summary> /// Is string empty /// </summary> /// <param name="value"></param> /// <returns></returns> public static bool IsEmpty(this string value) { return value.Trim().Length == 0; } } I can access this extension method from all the classes I have within the App_Code directory. However I have a web page called JSON.aspx that contains a series of [WebMethods] - within these I cannot see the extension method - I must be missing something very obvious!

    Read the article

  • GlassFish docroot internationalization

    - by Mr.J4mes
    At the moment, I am using Apache web server to redirect all HTTP request to port 8080 to be served by GlassFish app server. Just like Apache, GlassFish has a docroot folder to store static pages. I've tried to googled for a while but I could not figure out whether there's a way to set up internationalization for GlassFish's docroot. I'd be very grateful if you could give me a hint or a link to some tutorial regarding this matter.

    Read the article

  • C# extension method doesn't seem to exist

    - by blahblah
    I can't seem to get the following extension method to be found in another class in the same namespace (MyProject.Util). using System.Collections.Specialized; namespace MyProject.Util { public static class Extensions { public static string Get( this NameValueCollection me, string key, string def ) { return me[key] ?? def; } } } As you can see it's basically another version of foo[bar] ?? baz, but I still don't understand why VS2008 fails to compile telling me that no version of Get takes two arguments. Any ideas?

    Read the article

< Previous Page | 76 77 78 79 80 81 82 83 84 85 86 87  | Next Page >