Search Results

Search found 3604 results on 145 pages for 'steve prior'.

Page 80/145 | < Previous Page | 76 77 78 79 80 81 82 83 84 85 86 87  | Next Page >

  • VS2012 Coded UI Test closes browser by default

    - by Tarun Arora
    *** Thanks to Steve St. Jean for asking this question and Shubhra Maji for answering this question on the ALM champs list *** 01 – Introduction The default behaviour of coded UI tests running in an Internet Explorer browser has changed between MTM 2010 and MTM 2012. When running a Coded UI test recorded in MTM 2012 or VS 2012 at the end of the test execution the instance of the browser is closed by default. 02 – Description Let’s take an example. As you can see the CloseDinnerNowWeb() method is commented out.  In VS 2010, upon running this test the browser would be left open after the test execution completes. In VS 2012 RTM the behaviour has changed. At the end of the test run, the IE window is closed even though there is no command from the test to do so. In the example below when the test runs, it opens 2 IE windows to the website. When the test run completes both the windows are closed, even though there is no command in the test to close the window. 03 – How to change the CUIT behaviour not to close the IE window after test execution? This change to this functionality in VS 2012 is by design. It is however possible to rollback the behaviour to how it originally was in VS 2010 i.e. the IE window will not close after the test execution unless otherwise commanded by the test to do so. To go back to the original functionality, set BrowserWindow.CloseOnPlaybackCleanup = false More details on the CloseOnPlaybackCleanup property can be found here http://msdn.microsoft.com/en-us/library/microsoft.visualstudio.testtools.uitesting.applicationundertest.closeonplaybackcleanup.aspx  HTH

    Read the article

  • Twitter Tuesday - Top 10 @ArchBeat Tweets - August 12-18, 2014

    - by Bob Rhubart-Oracle
    Man in gray hat: "You know, more than three thousand people follow @OTNArchBeat on Twitter. I wonder which tweets were the most popular over the last seven days." Man in brown hat: "Shut up! I think I see a UFO!" Man in gray hat: "That's OK. I'll just read this blog post." RT @java: "Programmers are creative people and typically delight in contriving clever ways to solve problems." -Casimir Saternos in @OracleJavaMag Aug 18, 2014 at 12:54 PM The Offer Still Stands: Produce your own episode of the OTN ArchBeat Podcast. Click for details. Aug 13, 2014 at 02:03 PM Binge-Ready! Watch the Top 10 OTN ArchBeat Videos featuring @stewartbryson @stenvesterli @gurcanorhan Aug 13, 2014 at 11:49 AM Oracle Announces First Java 9 Features | InfoQ Aug 18, 2014 at 12:20 PM Getting Started wit the #Coherence Memcached Adaptor | David Felcey Aug 18, 2014 at 10:19 AM #WebLogic Data Source Connection Labeling | Steve Felts Aug 14, 2014 at 10:03 AM How to introduce #DevOps into a moribund corporate culture | ZDNet Aug 15, 2014 at 11:23 AM Sample Chapter: Installing Oracle #WebLogic Server 12c and Using the Management Tools | Sam Alapati Aug 14, 2014 at 11:09 AM Building a Responsive #WebCenter Portal Application | @JayJayZheng Aug 12, 2014 at 11:04 AM #OEM12c Cloud Control authorization with Active Directory | Jeroen Gouma Aug 14, 2014 at 10:16 AM

    Read the article

  • Run Grunt task in Visual Studio Release Build with a bat file

    - by Aligned
    Originally posted on: http://geekswithblogs.net/Aligned/archive/2014/08/19/run-grunt-task-in-visual-studio-release-build-with-a.aspx 1. Add a BeforeBuild in your csproj file. Edit the xml with a text editor. <Target Name="BeforeBuild"> <Exec Condition="'$(Configuration)' == 'Release'" Command="script-optimize.bat" /> </Target> 2. Create the script-optimize.batREM "%~dp0" maps to the directory where this file exists cd %~dp0\..\YourProjectFolder call npm uninstall grunt call npm uninstall grunt call npm install --cache-min 604800 -g grunt-cli call npm install --cache-min 604800 grunt typescript requirejs copy less:compile less:mincompileThis grunt command will compile typescript, run the requireJs optimizer, complie and minimize less.3. Make it use the minified code when the Web.config compilation debug is set to false <!-- These CustomCollectFiles actions are used so that the Scripts-Release folder/files are included        when publishing even though they are not project references -->  <Target Name="CustomCollectFiles">    <ItemGroup>      <_CustomFiles Include="Scripts-Release\**\*" />  </ItemGroup>  </Target> That should be all you need to get a Grunt task to minify and combine JS (plus other tasks) in Visual Studio Release build with debug = false. This is a great video of Steve Sanderson talking about SPAs, npm, Knockout, Grunt, Gulp, ect. I highly recommend it.

    Read the article

  • How do i impress employers with my resume?

    - by acidzombie24
    I built a entire website from scratch in 10days which looks and feels professional with the site being unique. The site has features like logging in, sending activation emails, tag/content search (lucence.net), syntax highlighting (prettify) and a diff (one of the js diffs), markup for comments all on this site and autocomplete in a textbox (remember, 10days). I wrote i have 5+ years of C# experience (i could lie and say more but smart employers will know its only 8 years old and 1.1 is very different from what we use now). I had employers REPEATEDLY say they are looking for someone who has more C# experience... wtf. Maybe they don't read my CV, maybe they dont believe it or ignore me because i am not yet a graduate. I laughed when i first read Steve Yegge The Five Essential Phone Screen Questions as i knew all of that (although i still never used graph datastruct nor know much about it). I'm pretty sure competency wise i can do the job. I am also positive no one noticed i have markup, a diff, autocomplete nor email activation/forget password (i offer a test user account). So maybe my site/example work isnt impressive bc you dont realize what is in it. In short i dont think they read my CV or notice my site. How do i impress employers? PS: The problem is i dont get to the interview. I had one and ruined it by speaking too technical to the PM because i was nervous. The other 25+ jobs either didnt contact me or was kind enough to send a rejection email.

    Read the article

  • JavaOne 2012 in Review

    - by Janice J. Heiss
    Noted freelance writer Steve Meloan has a new article up on otn/java, titled, “JavaOne 2012 Review: Make the Future Java” in which he summarizes the happenings at JavaOne 2012. Along the way, he reminds us that if the future turns out to be anything like the past, Java will do fine: The repeated theme for this year's conference was ‘Make the Future Java,’ and according to recent stats, the groundwork is already firmly in place:    There are 9 million Java developers worldwide.    Three billion devices run Java.    Five billion Java Cards are in use.    One hundred percent of Blu-ray Disc players ship with Java.    Ninety-seven percent of enterprise desktops run Java.    Eighty-nine percent of PC desktops run Java.This year's content curriculum program was organized under seven technical tracks:    Core Java Platform    Development Tools and Techniques    Emerging Languages on the JVM    Enterprise Service Architectures and the Cloud    Java EE Web Profile and Platform Technologies    Java ME, Java Card, Embedded, and Devices    JavaFX and Rich User Experiences”Meloan artfully reminds us of how JavaOne makes learning fun. Have a look at the article here.

    Read the article

  • Live Webcast: Crystal Ball: Simulation of production uncertainty in unconventional reservoirs - November 29

    - by Melissa Centurio Lopes
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} In our webcast on 29 November, Oracle solution specialist Steve Hoye explains how you can effectively forecast EURs for unconventional reservoirs – supporting better investment decisions and reducing financial exposure and risk. Attend the webcast to find out how your Oil & Gas industry can: Use historical production data and data from other unconventional reservoirs to generate accurate production forecasts Conduct Monte Carlo simulations in minutes to model likely declines in production rates over time Accurately predict probable EURs to inform investment decisions Assess the site against key criteria, such as Value at Risk and Likelihood of Economic Success. Don't miss this opportunity to learn new techniques for mitigating financial risk across your unconventional reservoir projects. Register online today. "Oracle Crystal Ball is involved in every major investment decision that we make for wells." Hugh Williamson, Risk and Cost Advisor, Drilling and Completions, BP

    Read the article

  • When creating a GUI wizard, should all pages/tabs be of the same size? [closed]

    - by Job
    I understand that some libraries would force me to, but my question is general. If I have a set of buttons at the bottom: Back, Next, Cancel?, (other?), then should their location ever change? If the answer is no, then what do I do about pages with little content? Do I stretch things? Place them in the lone upper left corner? According to Steve Krug, it does not make sense to add anything to GUI that does not need to be there. I understand that there are different approaches to wizards - some have tabs, others do not. Some tabs are lined horizontally at the top; others - vertically on the left. Some do not show pages/tabs, and are simply sequences of dialogs. This is probably a must when the wizard is "non-linear", e.g. some earlier choices can result in branching. Either way the problem is the same - sacrifice on the consistency of the "big picture" (outline of the page/tab + location of buttons), or the consistency of details (some tabs might be somewhat packed; others having very little content). A third choice, I suppose is putting extra effort in the content in order to make sure that organizing the content such that it is more or less evenly distributed from page to page. However, this can be difficult to do (say, when the very first tab contains only a choice of three things, and then branches off from there; there are probably other examples), and hard to maintain this balance if any of the content changes later. Can you recommend a good approach? A link to a relevant good blog post or a chapter of a book is also welcome. Let me know if you have questions.

    Read the article

  • Why am I getting [mount error(22): Invalid argument] while trying to mount SMB network drive?

    - by Steve_
    Disclaimer: I am very new to Linux :) Anyway, onward: I have a fresh instance of Ubuntu Server (12.04.1 LTS) running on my network and I want to mount a network drive to the server so I can access the contents. The network drive is a SAMBA compatible drive running Darwin OS. If I run the following command: smbclient -L //192.168.0.2 -U myuser It prompts me for the password and then displays output similar to: Domain=[SERVER01] OS=[Darwin] Server=[@(#)PROGRAM:smbd PROJECT:smbx-105.4.0] Sharename Type Comment --------- ---- ------- Comp Staff's Public Folder Disk CompRaid03 Disk Dropbox Disk Groups Disk IPC$ IPC Public Disk Users Disk compstaff Disk However, when I try and mount the CompRaid03 share, using this command: sudo mount -t cifs //192.168.0.2/CompRaid03 /mnt/myshare -o username=myuser I get the same password prompt, but after putting the correct password in, I received this error: mount error(22): Invalid argument dmesg | tail returns: [23576.037373] CIFS VFS: cifs_mount failed w/return code = -22 I don't understand what is wrong with this command. I've managed to mount a share on my current (Windows 8) machine using basically the same command but with a different IP address and share name (obviously). I've spent a good few hours trying to solve this and got no where. Any help or pointers would be greatly appreciated. Thanks Steve EDIT As suggested I've also trued using "user=" instead of "username=": sudo mount -t cifs //192.168.0.2/CompRaid03 /mnt/svnrepo -o user=myuser This results in the same "Invalid argument" error.

    Read the article

  • GlassFish/Java EE Community Open Forum Tomorrow!

    - by reza_rahman
    Still have lingering questions on the goals and future of GlassFish? Want to know a little more about the upcoming GlassFish 4.0.1 release? Something on your mind about Java EE 8/GlassFish 5? You have a golden opportunity to pose your questions and speak your mind tomorrow! The good folks over at C2B2 have gone through a lot of time and effort to organize a very useful online event for the London GlassFish User Group - they are having me answer all your questions online, in real time, "face-to-face". Steve Millidge of C2B2 will be moderating the questions and joining the conversation. Did I mention the event was online, free and open to anyone? The event is tomorrow (May 30th), so make sure to register as soon as possible through the C2B2 website (the registration page has more details on the event). It will be held at 4:30 PM BST / 11:30 AM EST / 8:30 AM PST - you must register to participate. Hope to talk to you tomorrow?

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Force RAID to read "exiled" disk?

    - by user197015
    We have a RAID 6 array (Infortrend EonStor DS S16F) that recently had two disks fail. Immediately prior to replacing these two disks, a third, good, disk was accidentally ejected from the array. After reinserting this disk it is marked as "exiled" by the array's firmware, and so even after replacing the two failed disks with new ones the array refuses to rebuild the logical volume and remains inaccessible. Since the temporarily-ejected disk is still functional and nothing has been written to the array since it was ejected, it seems that it should theoretically be possible to recover all the data on the array, but how can we convince the array to use the data from the "exiled" disk? Thanks for any help or advice you can offer.

    Read the article

  • VMWare Server 2 Install is Failing w/ Error 25032: "failed to customize windows logon process"

    - by Justin Searls
    VMWare Server 2 install question here.* Straightforward question that would probably require a VMWare expert to pull apart, given that Google has been totally worthless on this. On a patched Windows XP machine, any attempt to install VMWare Server 2.0.1 results in failure, just prior to completion (progress bar is full but I can tell network adapter stuff hasn't been fired yet and most of the services haven't been instaled). The error: Error 25032. Failed to customize Windows logon process (). Please contact your administrator. Upon dismissing the error, you're treated to: Warning 25033. Failed to remove Windows logon customization (VMGINA.DLL). Please contact your administrator. Clicking "OK" rolls back your installation. Killing the installer and hoping that it somehow leaves a working install behind was also unproductive. *I hope install troubleshooting isn't outside the purview of serverfault, I'm typically an SO user.

    Read the article

  • How to fix Solr - Server is shutting down issue?

    - by Krunal
    I was having a running Solr 4.1 on Windows Server 2008 R2. The Solr is deployed on Tomcat. However, today it stops suddenly, and while accessing Solr it gives following error. HTTP Status 503 - Server is shutting down type Status report message Server is shutting down description The requested service is not currently available. On further looking into Logs, we got following: Log File: tomcat7-stderr.2013-05-09.txt May 09, 2013 8:00:40 PM org.apache.solr.core.CoreContainer finalize SEVERE: CoreContainer was not shutdown prior to finalize(), indicates a bug -- POSSIBLE RESOURCE LEAK!!! instance=2221663 Log File: catalina.2013-05-09.txt May 09, 2013 7:59:25 PM org.apache.solr.core.SolrResourceLoader <init> INFO: new SolrResourceLoader for directory: 'c:\solrdir\' May 09, 2013 7:59:29 PM org.apache.solr.common.SolrException log SEVERE: Exception during parsing file: null:org.xml.sax.SAXParseException; systemId: file:/c:/solr/solr.xml; lineNumber: 2; columnNumber: 6; The processing instruction target matching "[xX][mM][lL]" is not allowed. at com.sun.org.apache.xerces.internal.util.ErrorHandlerWrapper.createSAXParseException(Unknown Source) at com.sun.org.apache.xerces.internal.util.ErrorHandlerWrapper.fatalError(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLErrorReporter.reportError(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLErrorReporter.reportError(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLScanner.reportFatalError(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLScanner.scanPIData(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLDocumentFragmentScannerImpl.scanPIData(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLScanner.scanPI(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLDocumentScannerImpl$PrologDriver.next(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLDocumentScannerImpl.next(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLNSDocumentScannerImpl.next(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLDocumentFragmentScannerImpl.scanDocument(Unknown Source) at com.sun.org.apache.xerces.internal.parsers.XML11Configuration.parse(Unknown Source) at com.sun.org.apache.xerces.internal.parsers.XML11Configuration.parse(Unknown Source) at com.sun.org.apache.xerces.internal.parsers.XMLParser.parse(Unknown Source) at com.sun.org.apache.xerces.internal.parsers.DOMParser.parse(Unknown Source) at com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderImpl.parse(Unknown Source) at org.apache.solr.core.Config.<init>(Config.java:121) at org.apache.solr.core.CoreContainer.load(CoreContainer.java:428) at org.apache.solr.core.CoreContainer.load(CoreContainer.java:404) at org.apache.solr.core.CoreContainer$Initializer.initialize(CoreContainer.java:336) at org.apache.solr.servlet.SolrDispatchFilter.init(SolrDispatchFilter.java:98) at org.apache.catalina.core.ApplicationFilterConfig.initFilter(ApplicationFilterConfig.java:281) at org.apache.catalina.core.ApplicationFilterConfig.getFilter(ApplicationFilterConfig.java:262) at org.apache.catalina.core.ApplicationFilterConfig.<init>(ApplicationFilterConfig.java:107) at org.apache.catalina.core.StandardContext.filterStart(StandardContext.java:4656) at org.apache.catalina.core.StandardContext.startInternal(StandardContext.java:5309) at org.apache.catalina.util.LifecycleBase.start(LifecycleBase.java:150) at org.apache.catalina.core.ContainerBase.addChildInternal(ContainerBase.java:901) at org.apache.catalina.core.ContainerBase.addChild(ContainerBase.java:877) at org.apache.catalina.core.StandardHost.addChild(StandardHost.java:633) at org.apache.catalina.startup.HostConfig.deployWAR(HostConfig.java:977) at org.apache.catalina.startup.HostConfig$DeployWar.run(HostConfig.java:1655) at java.util.concurrent.Executors$RunnableAdapter.call(Unknown Source) at java.util.concurrent.FutureTask$Sync.innerRun(Unknown Source) at java.util.concurrent.FutureTask.run(Unknown Source) at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source) at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source) at java.lang.Thread.run(Unknown Source) May 09, 2013 7:59:29 PM org.apache.solr.servlet.SolrDispatchFilter init SEVERE: Could not start Solr. Check solr/home property and the logs May 09, 2013 7:59:29 PM org.apache.solr.common.SolrException log SEVERE: null:org.apache.solr.common.SolrException: at org.apache.solr.core.CoreContainer.load(CoreContainer.java:431) at org.apache.solr.core.CoreContainer.load(CoreContainer.java:404) at org.apache.solr.core.CoreContainer$Initializer.initialize(CoreContainer.java:336) at org.apache.solr.servlet.SolrDispatchFilter.init(SolrDispatchFilter.java:98) at org.apache.catalina.core.ApplicationFilterConfig.initFilter(ApplicationFilterConfig.java:281) at org.apache.catalina.core.ApplicationFilterConfig.getFilter(ApplicationFilterConfig.java:262) at org.apache.catalina.core.ApplicationFilterConfig.<init>(ApplicationFilterConfig.java:107) at org.apache.catalina.core.StandardContext.filterStart(StandardContext.java:4656) at org.apache.catalina.core.StandardContext.startInternal(StandardContext.java:5309) at org.apache.catalina.util.LifecycleBase.start(LifecycleBase.java:150) at org.apache.catalina.core.ContainerBase.addChildInternal(ContainerBase.java:901) at org.apache.catalina.core.ContainerBase.addChild(ContainerBase.java:877) at org.apache.catalina.core.StandardHost.addChild(StandardHost.java:633) at org.apache.catalina.startup.HostConfig.deployWAR(HostConfig.java:977) at org.apache.catalina.startup.HostConfig$DeployWar.run(HostConfig.java:1655) at java.util.concurrent.Executors$RunnableAdapter.call(Unknown Source) at java.util.concurrent.FutureTask$Sync.innerRun(Unknown Source) at java.util.concurrent.FutureTask.run(Unknown Source) at java.util.concurrent.ThreadPoolExecutor.runWorker(Unknown Source) at java.util.concurrent.ThreadPoolExecutor$Worker.run(Unknown Source) at java.lang.Thread.run(Unknown Source) Caused by: org.xml.sax.SAXParseException; systemId: file:/c:/solrdir/solr.xml; lineNumber: 2; columnNumber: 6; The processing instruction target matching "[xX][mM][lL]" is not allowed. at com.sun.org.apache.xerces.internal.util.ErrorHandlerWrapper.createSAXParseException(Unknown Source) at com.sun.org.apache.xerces.internal.util.ErrorHandlerWrapper.fatalError(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLErrorReporter.reportError(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLErrorReporter.reportError(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLScanner.reportFatalError(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLScanner.scanPIData(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLDocumentFragmentScannerImpl.scanPIData(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLScanner.scanPI(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLDocumentScannerImpl$PrologDriver.next(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLDocumentScannerImpl.next(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLNSDocumentScannerImpl.next(Unknown Source) at com.sun.org.apache.xerces.internal.impl.XMLDocumentFragmentScannerImpl.scanDocument(Unknown Source) at com.sun.org.apache.xerces.internal.parsers.XML11Configuration.parse(Unknown Source) at com.sun.org.apache.xerces.internal.parsers.XML11Configuration.parse(Unknown Source) at com.sun.org.apache.xerces.internal.parsers.XMLParser.parse(Unknown Source) at com.sun.org.apache.xerces.internal.parsers.DOMParser.parse(Unknown Source) at com.sun.org.apache.xerces.internal.jaxp.DocumentBuilderImpl.parse(Unknown Source) at org.apache.solr.core.Config.<init>(Config.java:121) at org.apache.solr.core.CoreContainer.load(CoreContainer.java:428) ... 20 more May 09, 2013 7:59:29 PM org.apache.solr.servlet.SolrDispatchFilter init INFO: SolrDispatchFilter.init() done May 09, 2013 7:59:29 PM org.apache.catalina.startup.HostConfig deployDirectory INFO: Deploying web application directory C:\Program Files (x86)\Apache Software Foundation\Tomcat 7.0\webapps\docs May 09, 2013 7:59:30 PM org.apache.catalina.startup.HostConfig deployDirectory INFO: Deploying web application directory C:\Program Files (x86)\Apache Software Foundation\Tomcat 7.0\webapps\manager May 09, 2013 7:59:30 PM org.apache.catalina.startup.HostConfig deployDirectory INFO: Deploying web application directory C:\Program Files (x86)\Apache Software Foundation\Tomcat 7.0\webapps\ROOT May 09, 2013 7:59:30 PM org.apache.coyote.AbstractProtocol start INFO: Starting ProtocolHandler ["http-bio-8983"] May 09, 2013 7:59:30 PM org.apache.coyote.AbstractProtocol start INFO: Starting ProtocolHandler ["ajp-bio-8009"] May 09, 2013 7:59:30 PM org.apache.catalina.startup.Catalina start INFO: Server startup in 9578 ms May 09, 2013 8:00:40 PM org.apache.solr.core.CoreContainer finalize SEVERE: CoreContainer was not shutdown prior to finalize(), indicates a bug -- POSSIBLE RESOURCE LEAK!!! instance=2221663 Any idea what could be wrong and how to fix?

    Read the article

  • Getting a VMnet0 error in VMWare workstation after updating host computer from Windows 8 to 8.1

    - by Andrew
    Yesterday, I updated my computer from Windows 8 to 8.1. I have VMWare Workstation 10 running Windows XP on this computer and prior to the update I had no issues connecting to my network. However, since updating, I haven't been able to connect to any network and I'm getting the following error: "The network bridge on device VMnet0 is not running. The firtual machine will not be able to communicate with the host or with other machines on your network. Failed to connect virtual device Ethernet0" I've checked all of my settings which currently have my network adapter set for a bridged connection and under device status "connected" is checked. Not really sure where to go from here, but after doing some research I have seen that others users have reported getting this error when updating the OS (any OS, not windows 8 specifically) of the host computer. Thanks in advance to anyone who can help.

    Read the article

  • Chroot with CentOS 5.3 + openssh 4.3p2

    - by Scud
    OS: CentOS 5.3, with openssh 4.3p2 Trying to set 'chroot' in ssh shell, but openssh version prior to 4.8 doesn't take below settings. yum update openssh open up to version 4.3 which is quite old. Doesn't CentOS support openssh 4.8 or up? If that's the case, how to set chroot with openssh 4.3? or is it better to just using FTP? My purpose is limit SFTP or FTP access to certain folder, not root folder. Thanks! Match group sftponly ChrootDirectory /home/%u X11Forwarding no AllowTcpForwarding no ForceCommand internal-sftp

    Read the article

  • Logfiles go blank after logrotate rotates them.

    - by Hilt86
    I have an ubuntu 8.04 LTS server that runs openvpn. The openvpn server writes to a standard logfile under /var/log and prior to a month ago logrotate would automatically rotate the files and compress them. The files are still being rotated however the new logfile (ovpn.log) is empty. Restarting the openvpn daemon fixes the issue (ie: openvpn writes status events to the file) but after about 10 days the file is rotated again openvpn can't write to the logfile again. This is also strange because logrotate is set to rotate every 6 months. Openvpn runs as nobody and the logfiles are owned by root and admin which is strange because it should either work at all times or not work at all if the permissions are the cause, unless openvpn runs as root temporarily and then drops down to nobody after initializing ?

    Read the article

  • ESXi 5 network performance is slow

    - by R D
    We just did a fresh install of ESXi 5 on a host that was running ESX 4 before. Nothing has changed hardware wise. After the upgrade network performance is much slower. Even copying a big file from one VM to another VM within same virtual switch is slower compared to other hosts that are running ESX 4. Network cards are auto-negotiating at 1Gbps as were on ESX 4 prior to upgrade. All settings are default and I haven't played with Advanced Settings at all. Before opening a case with vmware, wanted to know if I am missing something or if others have experienced similar issues and found a fix?

    Read the article

  • WSUS data store error

    - by Kalenus
    I have one upstream server and 17 downstream (configured as replicas). I'm getting this error in one of them and I'm stuck: "An error occurred with the server's data store". Details: SqlException: Timeout expired. The timeout period elapsed prior to completion of the operation or the server is not responding. at Microsoft.UpdateServices.DatabaseAccess.DBConnection.DrainObsoleteConnections(SqlException e) at Microsoft.UpdateServices.DatabaseAccess.DBConnection.ExecuteReader() at Microsoft.UpdateServices.Internal.DataAccess.HideUpdatesForReplicaSync(String xmlUpdateIds) at Microsoft.UpdateServices.ServerSync.CatalogSyncAgentCore.ProcessHiddenUpdates(Guid[] hiddenUpdates) at Microsoft.UpdateServices.ServerSync.CatalogSyncAgentCore.ReplicaSync() at Microsoft.UpdateServices.ServerSync.CatalogSyncAgentCore.ExecuteSyncProtocol(Boolean allowRedirect) I already tried using the cleanup wizard to no avail.

    Read the article

  • Changing privilege rights on Arch Linux for a particular program

    - by sherrellbc
    I am quite new to linux and have had issues surrounding every program that I install. Basically, anything that is placed outside of my home directory requires a sudo call prior to opening/executing. I cannot write to files, open usb devices, or run programs that exist outside of this directory (specifically, above this directory). I know this is a privilege problem, but I come here to ask how this can be permanently stopped. How can I configure things such that when programs are installed I do not have to manually find the executable and change its privilege requirements?

    Read the article

  • IIS Server on XP Machine with tweaked registry and services

    - by user420667
    I have been trying for some time now to setup a webapp on my XP machine at home. Prior to doing this, I had tweaked the registry settings, fiddled with disabling and enabling servies, without recording what I tweaked, which I imagining could be what's causing the problem. I don't want to "reboot" to factory settings, although I suppose that would be nice to know how to do as well. I am more interested in finding out what settings could have influenced the behavior, and who I could contact / what information I could send them that would aid in solving the problem. Thanks.

    Read the article

  • How many pHPShield loaders do I need to install

    - by Amit
    An application asks me to install an old pHPshield version but prior to that it asks that I delete all pHPshield loaders in the php extension_dir directory. Am planning to encode some of my own php files with the newer pHPSHIELD version (8+) so I need to also upload newer loaders, but am not sure if it's ok to have multiple pHPSHIELD loaders in the extension dir. Can someone please clarify this confusion? My server runs php 5.2.14 with phpSHIELD Loader Version 5.0.1 and an i386 structure on Centos. The pHPSHILED demo created me a bunch of folders containing the loaders(files that end with .lin extension. I assume the folder Linux_x86-32 is the correct one for my server structure and it contains files like ixed.5.0.1.lin . Can I upload these next to the existing one in the extension_dir directory? Thank you

    Read the article

  • ¿How to set maximum downloads or sockets or whatever, in Apache and or PHP?

    - by Petruza
    I made a PHP script, running from my localhost, that streams files from a remote server and serves them. I do this so I can rename the files prior to the browser shows the dialog to save them, through header( "filename:..." ) Anyway, although the remote server allows many simultaneous file downloads at good rates, when they stream through my local apache/php I can't get more than 6 at the same time. When I try to download the 7th, the save as dialog appears as soon as the sixth download has finished. I'm almost sure this is some limit imposed by php.ini or apache's httpd.ini, but don't have a clue about which one is it. do you?

    Read the article

  • What are the licensing differences between Windows 8 Professional x64 fqc-05955 and fqc-05956?

    - by Razvan Panda
    If I do a search for Windows 8 Professional x64 in my country, the only version I can find is having the code fqc-05955 and is labeled OEM. If I perform same search on amazon.com, the only version I can find is having the code fqc-05956 and is labeled System Builder. There's not much information about licensing of Windows 8 that I could find. According to this article when using System Builder it can be transferred from one computer to another. What are the differences in licensing between those 2? Is fqc-05955 transferable from one hardware to another like System Builder is? Can I install fqc-05955 on a computer I already own that has no prior windows licensing? I am asking this, since many stores that sell fqc-05955 say it can only be bough with a computer. Thanks for your help!

    Read the article

  • cisco 6500 crash enabling netflow

    - by bleomycin
    Hello everyone, i have a cisco 6503 running IOS 12.2(33)sxi5 and i'm trying to enable netflow. Following the instructions here http://www.manageengine.com/products/netflow/help/cisco-netflow/cisco-ios-netflow.html enabling for interface vlan 3, shortly after ip flow-export version 5 console outputs: CPU_MONITOR-6-NOT_HEARD: CPU monitor messages have not been heard for 30 seconds crashlog here: http://pastebin.com/Niv2H8xD it then writes a crash log and reloads the router. Has anyone else experienced anything like this before? Here is my running config prior to adding the options in the above link: http://pastebin.com/AgNb1ahG Thank you for any help!

    Read the article

  • Does the Windows "Sources" folder need copied to C: like the "i386" folder did?

    - by James Watt
    On all flavors of Windows prior to Windows Vista, the Windows install CD contained a folder called i386. After installing Windows, this folder is suppose to be copied to the C: drive. Once the folder has been copied, if user is ever installing a program or windows updates that require the Windows install CD, it will retrieve the files from the hard drive INSTEAD of prompting for the Windows CD. On new versions of Windows, including Windows Vista, Windows 7, Server 2008 and Server 2008 R2, the i386 folder has been renamed to "sources". Should this folder be copied to the hard drive? Or do the new versions of Windows work differently (i.e. by installing all features on the hard drive to eliminate the need for ever prompting the user to insert their disc.) It does not hurt to copy the sources folder, so I have been doing it. But if I could eliminate time wasted it would make installations faster which helps my customers' bottom line.

    Read the article

< Previous Page | 76 77 78 79 80 81 82 83 84 85 86 87  | Next Page >