Search Results

Search found 5259 results on 211 pages for 'interrupt handling'.

Page 81/211 | < Previous Page | 77 78 79 80 81 82 83 84 85 86 87 88  | Next Page >

  • ODI 11g – Faster Files

    - by David Allan
    Deep in the trenches of ODI development I raised my head above the parapet to read a few odds and ends and then think why don’t they know this? Such as this article here – in the past customers (see forum) were told to use a staging route which has a big overhead for large files. This KM is an example of the great extensibility capabilities of ODI, its quite simple, just a new KM that; improves the out of the box experience – just build the mapping and the appropriate KM is used improves out of the box performance for file to file data movement. This improvement for out of the box handling for File to File data integration cases (from the 11.1.1.5.2 companion CD and on) dramatically speeds up the file integration handling. In the past I had seem some consultants write perl versions of the file to file integration case, now Oracle ships this KM to fill the gap. You can find the documentation for the IKM here. The KM uses pure java to perform the integration, using java.io classes to read and write the file in a pipe – it uses java threading in order to super-charge the file processing, and can process several source files at once when the datastore's resource name contains a wildcard. This is a big step for regular file processing on the way to super-charging big data files using Hadoop – the KM works with the lightweight agent and regular filesystems. So in my design below transforming a bunch of files, by default the IKM File to File (Java) knowledge module was assigned. I pointed the KM at my JDK (since the KM generates and compiles java), and I also increased the thread count to 2, to take advantage of my 2 processors. For my illustration I transformed (can also filter if desired) and moved about 1.3Gb with 2 threads in 140 seconds (with a single thread it took 220 seconds) - by no means was this on any super computer by the way. The great thing here is that it worked well out of the box from the design to the execution without any funky configuration, plus, and a big plus it was much faster than before, So if you are doing any file to file transformations, check it out!

    Read the article

  • ODI 11g - Faster Files

    - by David Allan
    Deep in the trenches of ODI development I raised my head above the parapet to read a few odds and ends and then think why don’t they know this? Such as this article here – in the past customers (see forum) were told to use a staging route which has a big overhead for large files. This KM is an example of the great extensibility capabilities of ODI, its quite simple, just a new KM that; improves the out of the box experience – just build the mapping and the appropriate KM is used improves out of the box performance for file to file data movement. This improvement for out of the box handling for File to File data integration cases (from the 11.1.1.5.2 companion CD and on) dramatically speeds up the file integration handling. In the past I had seem some consultants write perl versions of the file to file integration case, now Oracle ships this KM to fill the gap. You can find the documentation for the IKM here. The KM uses pure java to perform the integration, using java.io classes to read and write the file in a pipe – it uses java threading in order to super-charge the file processing, and can process several source files at once when the datastore's resource name contains a wildcard. This is a big step for regular file processing on the way to super-charging big data files using Hadoop – the KM works with the lightweight agent and regular filesystems. So in my design below transforming a bunch of files, by default the IKM File to File (Java) knowledge module was assigned. I pointed the KM at my JDK (since the KM generates and compiles java), and I also increased the thread count to 2, to take advantage of my 2 processors. For my illustration I transformed (can also filter if desired) and moved about 1.3Gb with 2 threads in 140 seconds (with a single thread it took 220 seconds) - by no means was this on any super computer by the way. The great thing here is that it worked well out of the box from the design to the execution without any funky configuration, plus, and a big plus it was much faster than before, So if you are doing any file to file transformations, check it out!

    Read the article

  • Are there any real-world cases for C++ without exceptions?

    - by Martin
    In When to use C over C++, and C++ over C? there is a statement wrt. to code size / C++ exceptions: Jerry answers (among other points): (...) it tends to be more difficult to produce truly tiny executables with C++. For really small systems, you're rarely writing a lot of code anyway, and the extra (...) to which I asked why that would be, to which Jerry responded: the main thing is that C++ includes exception handling, which (at least usually) adds some minimum to the executable size. Most compilers will let you disable exception handling, but when you do the result isn't quite C++ anymore. (...) which I do not really doubt on a technical real world level. Therefore I'm interested (purely out of curiosity) to hear from real world examples where a project chose C++ as a language and then chose to disable exceptions. (Not just merely "not use" exceptions in user code, but disable them in the compiler, so that you can't throw or catch exceptions.) Why does a project chose to do so (still using C++ and not C, but no exceptions) - what are/were the (technical) reasons? Addendum: For those wishing to elaborate on their answers, it would be nice to detail how the implications of no-exceptions are handled: STL collections (vector, ...) do not work properly (allocation failure cannot be reported) new can't throw Constructors cannot fail

    Read the article

  • How to keep background requests in sequence

    - by Jason Lewis
    I'm faced with implementing interfaces for some rather archaic systems, for handling online deposits to stored value accounts (think campus card accounts for students). Here's my dilemma: stage 1 of the process involves passing the user off to a thrid-party site for the credit card transaction, like old-school PayPal. Step two involves using a proprietary protocol for communicating with a legacy system for conducting the actual deposit. Step two requires that each transaction have a unique sequence number, and that the requests' seqnums are in order. Since we're logging each transaction in Postgres, my first thought was to take a number from a sequence in the DB, guaranteeing uniqueness. But since we're dealing with web requests that might come in near-simultaneously, and since latency with the return from the off-ste payment processor is beyond our control, there's always the chance for a race condition in the order of requests passed back to the proprietary system, and if the seqnums are out of order, the request fails silently (brilliant, right?). I thought about enqueuing the requests in Redis and using Resque workers to process them (single worker, single process, so they are processed in order), but we need to be able to give the user feedback as to whether the transaction was processed successfully, so this seems less feasible to me. I've tried to make this application handle concurrency well (as much as possible for a Ruby on Rails app), but now we're in a situation where we have to interact with a system that is designed to be single process, single threaded, and sequential. If it at least gave an "out of order" error, I could just increment (or take the next value off the sequence), but it's designed to fail silently in the event of ANY error. We are handling timeouts in a way that blocks on I/O, but since the application uses multiple workers (Unicorn), that's no guarantee. Any ideas/suggestions would be appreciated.

    Read the article

  • Using HTML5 Today part 4&ndash;What happened to XHTML?

    - by Steve Albers
    This is the fourth entry in a series of descriptions & demos from the “Using HTML5 Today” user group presentation. For practical purposes, the original XHTML standard is a historical footnote, although XHTML transitional will probably live on forever in the default web page templates of old web page editors. The original XHTML spec was released in 2000, on the heels of the HTML 4.01 spec.  The plan was to move web development away from HTML to the more formal, rigorous approach that XHTML offered, but it was built on a principle that conflicts with the history and culture of the Internet: XHTML introduced the idea of Draconian Error Handling, which essentially means that invalid XML markup on a page will cause a page to stop rendering. There is a transitional mode offered in the original XHTML spec, but the goal was to move to D.E.H.  You can see the result by changing the doc type for a document to “application/xhtml+xml” - for my class example we change this setting in the web.config file: <staticContent> <remove fileExtension=".html" /> <mimeMap fileExtension=".html" mimeType="application/xhtml+xml" /> </staticContent> With the new strict syntax a simple error, in this case a duplicate </td> tag, can cause a critical page error: While XHTML became very popular in the ensuing decade, the Strict form of XHTML never achieved widespread use. Draconian Error Handling was one of the factors that led in time to the creation of the WHATWG, or Web Hypertext Application Technology Group.  WHATWG contributed to the eventually disbanding of the XHTML 2.0 working group and the W3C’s move to embrace the HTML5 standard. For developers who long for XML markup the W3C HTML5 standard includes an XHTML5 syntax. For the longer, more definitive look at what happened to XHTML and how HTML5 came to be check out the Dive Into HTML mirror site or Bruce Lawson’s “HTML5: Who, What, When Why” talk.

    Read the article

  • Example: Cross Cutting Concerns of an Application

    A little while ago I was given an opportunity to design and implement a new system that sent data via an HTTP Post method and then processed the results that were returned so that they could be inserted in to a database. My system had eight core concerns that it needed to fulfill. Eight Core Concerns Database Access Data Entities Worker Result Processing Process Flow Manager Email/Notification Error Handling Logging Of these eight, five were actually cross cutting concerns. 5 Cross Cutting Concerns Database Access Data Entities Email/Notification Error Handling Logging These five cross cutting concerns were determined after I created an aspect oriented model to help identity the system components that could be factored out into separate components.  These separated components would then be included in the system so that they could be used by various other components.  These five components allow all of the other components to access the database, store data, send notifications, handle errors, and log all system events.  Thus, these components are used to share unique aspects to the system via their implementation. The use of Aspect oriented architecture greatly helped me define what components I needed to create and what each of those components could do.  It also showed how all of the other aspects depended on each other so that each component did not have to re-implement code that was already created in the existing system.

    Read the article

  • Why using Fragments?

    - by ahmed_khan_89
    I have read the documentation and some other questions' threads about this topic and I don't really feel convinced; I don't see clearly the limits of use of this technique. Fragments are now seen as a Best Practice; every Activity should be basically a support for one or more Fragments and not call a layout directly. Fragments are created in order to: allow the Activity to use many fragments, to change between them, to reuse these units... == the Fragment is totally dependent to the Context of an activity , so if I need something generic that I can reuse and handle in many Activities, I can create my own custom layouts or Views ... I will not care about this additional Complexity Developing Layer that fragments would add. a better handling to different resolution == OK for tablets/phones in case of long process that we can show two (or more) fragments in the same Activity in Tablets, and one by one in phones. But why would I use fragments always ? handling callbacks to navigate between Fragments (i.e: if the user is Logged-in I show a fragment else I show another fragment). === Just try to see how many bugs facebook SDK Log-in have because of this, to understand that it is really (?) ... considering that an Android Application is based on Activities... Adding another life cycles in the Activity would be better to design an Application... I mean the modules, the scenarios, the data management and the connectivity would be better designed, in that way. === This is an answer of someone who's used to see the Android SDK and Android Framework with a Fragments vision. I don't think it's wrong, but I am not sure it will give good results... And it is really abstract... ==== Why would I complicate my life, coding more, in using them always? else, why is it a best practice if it's just a tool for some cases? what are these cases?

    Read the article

  • Massive Affiliate Shopping Platform. Is WordPress really suitable? [closed]

    - by SPI
    I am working on an online shopping platform that acquires it's data from various affiliate programs through XML files. I am talking hundreds and thousands of items per program here that change often if they go out of stock. My clients choice of CMS was WordPress. I am guessing he assumed the user friendly interface would make life easy for him. However, the fact that he hired me to parse the XML files, store data in the back-end and basically make everything work tells me he had very little clue about what he was getting himself into. My impression is that WordPress has a very specific way of handling data as it divides everything into categories/sub-categories in the back-end which is very counter intuitive to a business model where data exists in numbers of over hundreds and thousands of items and is further cross referenced by programs so that any change in the programs XML file can easily be reflected products page. Conclusion I have a very specific database model implemented for handling my clients needs. However, this model conflicts with how wordpress chooses to save data in the back-end natively. I am absolutely convinced WordPress is geared towards anything that might resemble a blog and definitely not THIS. I am thinking about asking my client to shift to a custom CMS. Before making my pitch though, I wanted to run this by the stack community. Thanks for the input in advance.

    Read the article

  • Node.js Adventure - When Node Flying in Wind

    - by Shaun
    In the first post of this series I mentioned some popular modules in the community, such as underscore, async, etc.. I also listed a module named “Wind (zh-CN)”, which is created by one of my friend, Jeff Zhao (zh-CN). Now I would like to use a separated post to introduce this module since I feel it brings a new async programming style in not only Node.js but JavaScript world. If you know or heard about the new feature in C# 5.0 called “async and await”, or you learnt F#, you will find the “Wind” brings the similar async programming experience in JavaScript. By using “Wind”, we can write async code that looks like the sync code. The callbacks, async stats and exceptions will be handled by “Wind” automatically and transparently.   What’s the Problem: Dense “Callback” Phobia Let’s firstly back to my second post in this series. As I mentioned in that post, when we wanted to read some records from SQL Server we need to open the database connection, and then execute the query. In Node.js all IO operation are designed as async callback pattern which means when the operation was done, it will invoke a function which was taken from the last parameter. For example the database connection opening code would be like this. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: } 8: }); And then if we need to query the database the code would be like this. It nested in the previous function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: } 14: }; 15: } 16: }); Assuming if we need to copy some data from this database to another then we need to open another connection and execute the command within the function under the query function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: target.open(targetConnectionString, function(error, t_conn) { 14: if(error) { 15: // connect failed 16: } 17: else { 18: t_conn.queryRaw(copy_command, function(error, results) { 19: if(error) { 20: // copy failed 21: } 22: else { 23: // and then, what do you want to do now... 24: } 25: }; 26: } 27: }; 28: } 29: }; 30: } 31: }); This is just an example. In the real project the logic would be more complicated. This means our application might be messed up and the business process will be fragged by many callback functions. I would like call this “Dense Callback Phobia”. This might be a challenge how to make code straightforward and easy to read, something like below. 1: try 2: { 3: // open source connection 4: var s_conn = sqlConnect(s_connectionString); 5: // retrieve data 6: var results = sqlExecuteCommand(s_conn, s_command); 7: 8: // open target connection 9: var t_conn = sqlConnect(t_connectionString); 10: // prepare the copy command 11: var t_command = getCopyCommand(results); 12: // execute the copy command 13: sqlExecuteCommand(s_conn, t_command); 14: } 15: catch (ex) 16: { 17: // error handling 18: }   What’s the Problem: Sync-styled Async Programming Similar as the previous problem, the callback-styled async programming model makes the upcoming operation as a part of the current operation, and mixed with the error handling code. So it’s very hard to understand what on earth this code will do. And since Node.js utilizes non-blocking IO mode, we cannot invoke those operations one by one, as they will be executed concurrently. For example, in this post when I tried to copy the records from Windows Azure SQL Database (a.k.a. WASD) to Windows Azure Table Storage, if I just insert the data into table storage one by one and then print the “Finished” message, I will see the message shown before the data had been copied. This is because all operations were executed at the same time. In order to make the copy operation and print operation executed synchronously I introduced a module named “async” and the code was changed as below. 1: async.forEach(results.rows, 2: function (row, callback) { 3: var resource = { 4: "PartitionKey": row[1], 5: "RowKey": row[0], 6: "Value": row[2] 7: }; 8: client.insertEntity(tableName, resource, function (error) { 9: if (error) { 10: callback(error); 11: } 12: else { 13: console.log("entity inserted."); 14: callback(null); 15: } 16: }); 17: }, 18: function (error) { 19: if (error) { 20: error["target"] = "insertEntity"; 21: res.send(500, error); 22: } 23: else { 24: console.log("all done."); 25: res.send(200, "Done!"); 26: } 27: }); It ensured that the “Finished” message will be printed when all table entities had been inserted. But it cannot promise that the records will be inserted in sequence. It might be another challenge to make the code looks like in sync-style? 1: try 2: { 3: forEach(row in rows) { 4: var entity = { /* ... */ }; 5: tableClient.insert(tableName, entity); 6: } 7:  8: console.log("Finished"); 9: } 10: catch (ex) { 11: console.log(ex); 12: }   How “Wind” Helps “Wind” is a JavaScript library which provides the control flow with plain JavaScript for asynchronous programming (and more) without additional pre-compiling steps. It’s available in NPM so that we can install it through “npm install wind”. Now let’s create a very simple Node.js application as the example. This application will take some website URLs from the command arguments and tried to retrieve the body length and print them in console. Then at the end print “Finish”. I’m going to use “request” module to make the HTTP call simple so I also need to install by the command “npm install request”. The code would be like this. 1: var request = require("request"); 2:  3: // get the urls from arguments, the first two arguments are `node.exe` and `fetch.js` 4: var args = process.argv.splice(2); 5:  6: // main function 7: var main = function() { 8: for(var i = 0; i < args.length; i++) { 9: // get the url 10: var url = args[i]; 11: // send the http request and try to get the response and body 12: request(url, function(error, response, body) { 13: if(!error && response.statusCode == 200) { 14: // log the url and the body length 15: console.log( 16: "%s: %d.", 17: response.request.uri.href, 18: body.length); 19: } 20: else { 21: // log error 22: console.log(error); 23: } 24: }); 25: } 26: 27: // finished 28: console.log("Finished"); 29: }; 30:  31: // execute the main function 32: main(); Let’s execute this application. (I made them in multi-lines for better reading.) 1: node fetch.js 2: "http://www.igt.com/us-en.aspx" 3: "http://www.igt.com/us-en/games.aspx" 4: "http://www.igt.com/us-en/cabinets.aspx" 5: "http://www.igt.com/us-en/systems.aspx" 6: "http://www.igt.com/us-en/interactive.aspx" 7: "http://www.igt.com/us-en/social-gaming.aspx" 8: "http://www.igt.com/support.aspx" Below is the output. As you can see the finish message was printed at the beginning, and the pages’ length retrieved in a different order than we specified. This is because in this code the request command, console logging command are executed asynchronously and concurrently. Now let’s introduce “Wind” to make them executed in order, which means it will request the websites one by one, and print the message at the end.   First of all we need to import the “Wind” package and make sure the there’s only one global variant named “Wind”, and ensure it’s “Wind” instead of “wind”. 1: var Wind = require("wind");   Next, we need to tell “Wind” which code will be executed asynchronously so that “Wind” can control the execution process. In this case the “request” operation executed asynchronously so we will create a “Task” by using a build-in helps function in “Wind” named Wind.Async.Task.create. 1: var requestBodyLengthAsync = function(url) { 2: return Wind.Async.Task.create(function(t) { 3: request(url, function(error, response, body) { 4: if(error || response.statusCode != 200) { 5: t.complete("failure", error); 6: } 7: else { 8: var data = 9: { 10: uri: response.request.uri.href, 11: length: body.length 12: }; 13: t.complete("success", data); 14: } 15: }); 16: }); 17: }; The code above created a “Task” from the original request calling code. In “Wind” a “Task” means an operation will be finished in some time in the future. A “Task” can be started by invoke its start() method, but no one knows when it actually will be finished. The Wind.Async.Task.create helped us to create a task. The only parameter is a function where we can put the actual operation in, and then notify the task object it’s finished successfully or failed by using the complete() method. In the code above I invoked the request method. If it retrieved the response successfully I set the status of this task as “success” with the URL and body length. If it failed I set this task as “failure” and pass the error out.   Next, we will change the main() function. In “Wind” if we want a function can be controlled by Wind we need to mark it as “async”. This should be done by using the code below. 1: var main = eval(Wind.compile("async", function() { 2: })); When the application is running, Wind will detect “eval(Wind.compile(“async”, function” and generate an anonymous code from the body of this original function. Then the application will run the anonymous code instead of the original one. In our example the main function will be like this. 1: var main = eval(Wind.compile("async", function() { 2: for(var i = 0; i < args.length; i++) { 3: try 4: { 5: var result = $await(requestBodyLengthAsync(args[i])); 6: console.log( 7: "%s: %d.", 8: result.uri, 9: result.length); 10: } 11: catch (ex) { 12: console.log(ex); 13: } 14: } 15: 16: console.log("Finished"); 17: })); As you can see, when I tried to request the URL I use a new command named “$await”. It tells Wind, the operation next to $await will be executed asynchronously, and the main thread should be paused until it finished (or failed). So in this case, my application will be pause when the first response was received, and then print its body length, then try the next one. At the end, print the finish message.   Finally, execute the main function. The full code would be like this. 1: var request = require("request"); 2: var Wind = require("wind"); 3:  4: var args = process.argv.splice(2); 5:  6: var requestBodyLengthAsync = function(url) { 7: return Wind.Async.Task.create(function(t) { 8: request(url, function(error, response, body) { 9: if(error || response.statusCode != 200) { 10: t.complete("failure", error); 11: } 12: else { 13: var data = 14: { 15: uri: response.request.uri.href, 16: length: body.length 17: }; 18: t.complete("success", data); 19: } 20: }); 21: }); 22: }; 23:  24: var main = eval(Wind.compile("async", function() { 25: for(var i = 0; i < args.length; i++) { 26: try 27: { 28: var result = $await(requestBodyLengthAsync(args[i])); 29: console.log( 30: "%s: %d.", 31: result.uri, 32: result.length); 33: } 34: catch (ex) { 35: console.log(ex); 36: } 37: } 38: 39: console.log("Finished"); 40: })); 41:  42: main().start();   Run our new application. At the beginning we will see the compiled and generated code by Wind. Then we can see the pages were requested one by one, and at the end the finish message was printed. Below is the code Wind generated for us. As you can see the original code, the output code were shown. 1: // Original: 2: function () { 3: for(var i = 0; i < args.length; i++) { 4: try 5: { 6: var result = $await(requestBodyLengthAsync(args[i])); 7: console.log( 8: "%s: %d.", 9: result.uri, 10: result.length); 11: } 12: catch (ex) { 13: console.log(ex); 14: } 15: } 16: 17: console.log("Finished"); 18: } 19:  20: // Compiled: 21: /* async << function () { */ (function () { 22: var _builder_$0 = Wind.builders["async"]; 23: return _builder_$0.Start(this, 24: _builder_$0.Combine( 25: _builder_$0.Delay(function () { 26: /* var i = 0; */ var i = 0; 27: /* for ( */ return _builder_$0.For(function () { 28: /* ; i < args.length */ return i < args.length; 29: }, function () { 30: /* ; i ++) { */ i ++; 31: }, 32: /* try { */ _builder_$0.Try( 33: _builder_$0.Delay(function () { 34: /* var result = $await(requestBodyLengthAsync(args[i])); */ return _builder_$0.Bind(requestBodyLengthAsync(args[i]), function (result) { 35: /* console.log("%s: %d.", result.uri, result.length); */ console.log("%s: %d.", result.uri, result.length); 36: return _builder_$0.Normal(); 37: }); 38: }), 39: /* } catch (ex) { */ function (ex) { 40: /* console.log(ex); */ console.log(ex); 41: return _builder_$0.Normal(); 42: /* } */ }, 43: null 44: ) 45: /* } */ ); 46: }), 47: _builder_$0.Delay(function () { 48: /* console.log("Finished"); */ console.log("Finished"); 49: return _builder_$0.Normal(); 50: }) 51: ) 52: ); 53: /* } */ })   How Wind Works Someone may raise a big concern when you find I utilized “eval” in my code. Someone may assume that Wind utilizes “eval” to execute some code dynamically while “eval” is very low performance. But I would say, Wind does NOT use “eval” to run the code. It only use “eval” as a flag to know which code should be compiled at runtime. When the code was firstly been executed, Wind will check and find “eval(Wind.compile(“async”, function”. So that it knows this function should be compiled. Then it utilized parse-js to analyze the inner JavaScript and generated the anonymous code in memory. Then it rewrite the original code so that when the application was running it will use the anonymous one instead of the original one. Since the code generation was done at the beginning of the application was started, in the future no matter how long our application runs and how many times the async function was invoked, it will use the generated code, no need to generate again. So there’s no significant performance hurt when using Wind.   Wind in My Previous Demo Let’s adopt Wind into one of my previous demonstration and to see how it helps us to make our code simple, straightforward and easy to read and understand. In this post when I implemented the functionality that copied the records from my WASD to table storage, the logic would be like this. 1, Open database connection. 2, Execute a query to select all records from the table. 3, Recreate the table in Windows Azure table storage. 4, Create entities from each of the records retrieved previously, and then insert them into table storage. 5, Finally, show message as the HTTP response. But as the image below, since there are so many callbacks and async operations, it’s very hard to understand my logic from the code. Now let’s use Wind to rewrite our code. First of all, of course, we need the Wind package. Then we need to include the package files into project and mark them as “Copy always”. Add the Wind package into the source code. Pay attention to the variant name, you must use “Wind” instead of “wind”. 1: var express = require("express"); 2: var async = require("async"); 3: var sql = require("node-sqlserver"); 4: var azure = require("azure"); 5: var Wind = require("wind"); Now we need to create some async functions by using Wind. All async functions should be wrapped so that it can be controlled by Wind which are open database, retrieve records, recreate table (delete and create) and insert entity in table. Below are these new functions. All of them are created by using Wind.Async.Task.create. 1: sql.openAsync = function (connectionString) { 2: return Wind.Async.Task.create(function (t) { 3: sql.open(connectionString, function (error, conn) { 4: if (error) { 5: t.complete("failure", error); 6: } 7: else { 8: t.complete("success", conn); 9: } 10: }); 11: }); 12: }; 13:  14: sql.queryAsync = function (conn, query) { 15: return Wind.Async.Task.create(function (t) { 16: conn.queryRaw(query, function (error, results) { 17: if (error) { 18: t.complete("failure", error); 19: } 20: else { 21: t.complete("success", results); 22: } 23: }); 24: }); 25: }; 26:  27: azure.recreateTableAsync = function (tableName) { 28: return Wind.Async.Task.create(function (t) { 29: client.deleteTable(tableName, function (error, successful, response) { 30: console.log("delete table finished"); 31: client.createTableIfNotExists(tableName, function (error, successful, response) { 32: console.log("create table finished"); 33: if (error) { 34: t.complete("failure", error); 35: } 36: else { 37: t.complete("success", null); 38: } 39: }); 40: }); 41: }); 42: }; 43:  44: azure.insertEntityAsync = function (tableName, entity) { 45: return Wind.Async.Task.create(function (t) { 46: client.insertEntity(tableName, entity, function (error, entity, response) { 47: if (error) { 48: t.complete("failure", error); 49: } 50: else { 51: t.complete("success", null); 52: } 53: }); 54: }); 55: }; Then in order to use these functions we will create a new function which contains all steps for data copying. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: } 4: catch (ex) { 5: console.log(ex); 6: res.send(500, "Internal error."); 7: } 8: })); Let’s execute steps one by one with the “$await” keyword introduced by Wind so that it will be invoked in sequence. First is to open the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: } 7: catch (ex) { 8: console.log(ex); 9: res.send(500, "Internal error."); 10: } 11: })); Then retrieve all records from the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: } 10: catch (ex) { 11: console.log(ex); 12: res.send(500, "Internal error."); 13: } 14: })); After recreated the table, we need to create the entities and insert them into table storage. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: } 24: } 25: catch (ex) { 26: console.log(ex); 27: res.send(500, "Internal error."); 28: } 29: })); Finally, send response back to the browser. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: // send response 24: console.log("all done"); 25: res.send(200, "All done!"); 26: } 27: } 28: catch (ex) { 29: console.log(ex); 30: res.send(500, "Internal error."); 31: } 32: })); If we compared with the previous code we will find now it became more readable and much easy to understand. It’s very easy to know what this function does even though without any comments. When user go to URL “/was/copyRecords” we will execute the function above. The code would be like this. 1: app.get("/was/copyRecords", function (req, res) { 2: copyRecords(req, res).start(); 3: }); And below is the logs printed in local compute emulator console. As we can see the functions executed one by one and then finally the response back to me browser.   Scaffold Functions in Wind Wind provides not only the async flow control and compile functions, but many scaffold methods as well. We can build our async code more easily by using them. I’m going to introduce some basic scaffold functions here. In the code above I created some functions which wrapped from the original async function such as open database, create table, etc.. All of them are very similar, created a task by using Wind.Async.Task.create, return error or result object through Task.complete function. In fact, Wind provides some functions for us to create task object from the original async functions. If the original async function only has a callback parameter, we can use Wind.Async.Binding.fromCallback method to get the task object directly. For example the code below returned the task object which wrapped the file exist check function. 1: var Wind = require("wind"); 2: var fs = require("fs"); 3:  4: fs.existsAsync = Wind.Async.Binding.fromCallback(fs.exists); In Node.js a very popular async function pattern is that, the first parameter in the callback function represent the error object, and the other parameters is the return values. In this case we can use another build-in function in Wind named Wind.Async.Binding.fromStandard. For example, the open database function can be created from the code below. 1: sql.openAsync = Wind.Async.Binding.fromStandard(sql.open); 2:  3: /* 4: sql.openAsync = function (connectionString) { 5: return Wind.Async.Task.create(function (t) { 6: sql.open(connectionString, function (error, conn) { 7: if (error) { 8: t.complete("failure", error); 9: } 10: else { 11: t.complete("success", conn); 12: } 13: }); 14: }); 15: }; 16: */ When I was testing the scaffold functions under Wind.Async.Binding I found for some functions, such as the Azure SDK insert entity function, cannot be processed correctly. So I personally suggest writing the wrapped method manually.   Another scaffold method in Wind is the parallel tasks coordination. In this example, the steps of open database, retrieve records and recreated table should be invoked one by one, but it can be executed in parallel when copying data from database to table storage. In Wind there’s a scaffold function named Task.whenAll which can be used here. Task.whenAll accepts a list of tasks and creates a new task. It will be returned only when all tasks had been completed, or any errors occurred. For example in the code below I used the Task.whenAll to make all copy operation executed at the same time. 1: var copyRecordsInParallel = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage in parallal 14: var tasks = new Array(results.rows.length); 15: for (var i = 0; i < results.rows.length; i++) { 16: var entity = { 17: "PartitionKey": results.rows[i][1], 18: "RowKey": results.rows[i][0], 19: "Value": results.rows[i][2] 20: }; 21: tasks[i] = azure.insertEntityAsync(tableName, entity); 22: } 23: $await(Wind.Async.Task.whenAll(tasks)); 24: // send response 25: console.log("all done"); 26: res.send(200, "All done!"); 27: } 28: } 29: catch (ex) { 30: console.log(ex); 31: res.send(500, "Internal error."); 32: } 33: })); 34:  35: app.get("/was/copyRecordsInParallel", function (req, res) { 36: copyRecordsInParallel(req, res).start(); 37: });   Besides the task creation and coordination, Wind supports the cancellation solution so that we can send the cancellation signal to the tasks. It also includes exception solution which means any exceptions will be reported to the caller function.   Summary In this post I introduced a Node.js module named Wind, which created by my friend Jeff Zhao. As you can see, different from other async library and framework, adopted the idea from F# and C#, Wind utilizes runtime code generation technology to make it more easily to write async, callback-based functions in a sync-style way. By using Wind there will be almost no callback, and the code will be very easy to understand. Currently Wind is still under developed and improved. There might be some problems but the author, Jeff, should be very happy and enthusiastic to learn your problems, feedback, suggestion and comments. You can contact Jeff by - Email: [email protected] - Group: https://groups.google.com/d/forum/windjs - GitHub: https://github.com/JeffreyZhao/wind/issues   Source code can be download here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Static IP on FEDORA12 from Virtualbox

    - by Krazy_Kaos
    I'm trying to get my FEDORA12 to have an STATIC IP - inside virtualbox - inside Ubuntu Let me rephrase that. I have an Ubuntu 9.04 system with vitualbox and a FEDORA12 vm there and I would like to put the fedora with an STATIC IP (amahi needs it), but I'm getting stuck... I'm using NAT (if that's any help) I tryid a few tutorials, but no go. I'm kind of new to the *nix world but I'm old school on M$ Edit: Screenshots UBUNTU 9.04 (host that has the vm) FEDORA (sory cant post pics... not enough rep) INFO: GUEST WITH STATIC: IFCONFIG: eth0 Link encap:Ethernet HWaddr 08:00:27:35:CC:DE inet addr:192.168.1.55 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::a00:27ff:fe35:ccde/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:7 errors:0 dropped:0 overruns:0 frame:0 TX packets:2764 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:574 (574.0 b) TX bytes:127121 (124.1 KiB) Interrupt:11 Base address:0xc020 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:1856 errors:0 dropped:0 overruns:0 frame:0 TX packets:1856 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:181587 (177.3 KiB) TX bytes:181587 (177.3 KiB) NETSTAT -NR: Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 192.168.2.1 0.0.0.0 255.255.255.255 UH 0 0 0 eth0 192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0 0.0.0.0 192.168.2.1 0.0.0.0 UG 0 0 GUEST WITH DHCP: IFCONFIG: eth0 Link encap:Ethernet HWaddr 08:00:27:35:CC:DE inet addr:10.0.2.15 Bcast:10.0.2.255 Mask:255.255.255.0 inet6 addr: fe80::a00:27ff:fe35:ccde/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:105 errors:0 dropped:0 overruns:0 frame:0 TX packets:2966 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:49787 (48.6 KiB) TX bytes:149969 (146.4 KiB) Interrupt:11 Base address:0xc020 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:1903 errors:0 dropped:0 overruns:0 frame:0 TX packets:1903 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:185931 (181.5 KiB) TX bytes:185931 (181.5 KiB) NETSTAT -NR: Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 10.0.2.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0 0.0.0.0 10.0.2.2 0.0.0.0 UG 0 0 0 PS.: I'm still trying to workout the sudoer file to be able to exec the iptables command

    Read the article

  • networking with ssh thru wireless

    - by nkvnkv
    I am using Ubuntu 12.04 64bit on my desktop and my laptop. Have install openssh client and server on both of them. My desktop is connected to ADSL2+ Router TD-8840 with wired connection and has 192.168.1.1 IP address. My laptop is connected to 150Mbps Wireless N Router TL-WR741ND with wireless connection and has 192.168.0.1 IP address. ADSL2+ Router TD-8840 and 150Mbps Wireless N Router TL-WR741ND are connected with a wired cable by useing blue port for on wlan on TL-WR741ND. ifconfig from desktop desktop:~$ ifconfig eth0 Link encap:Ethernet HWaddr 00:1d:92:37:1f:3d inet addr:192.168.1.101 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::21d:92ff:fe37:1f3d/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:57508 errors:0 dropped:0 overruns:0 frame:0 TX packets:44508 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:51547633 (51.5 MB) TX bytes:6371374 (6.3 MB) Interrupt:43 Base address:0x6000 eth1 Link encap:Ethernet HWaddr 00:23:cd:b1:ff:e4 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:22 Base address:0x8400 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:109 errors:0 dropped:0 overruns:0 frame:0 TX packets:109 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:12044 (12.0 KB) TX bytes:12044 (12.0 KB) ifconfig from laptop laptop:~$ ifconfig eth0 Link encap:Ethernet HWaddr 00:a0:d1:65:2a:42 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:334 errors:0 dropped:0 overruns:0 frame:0 TX packets:334 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:31244 (31.2 KB) TX bytes:31244 (31.2 KB) wlan0 Link encap:Ethernet HWaddr 00:19:d2:1b:19:81 inet addr:192.168.0.101 Bcast:192.168.0.255 Mask:255.255.255.0 inet6 addr: fe80::219:d2ff:fe1b:1981/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:1590 errors:0 dropped:0 overruns:0 frame:0 TX packets:1276 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:874763 (874.7 KB) TX bytes:315401 (315.4 KB) I can connect to desktop from laptop via ssh with no problem, internet connection on laptop and desktop is working fine, but when I want to connect to laptop from desktop via ssh in terminal I type ssh [email protected] and get ssh: connect to host 192.168.0.101 port 22: Connection timed out If anyone is able to point out whats wrong?

    Read the article

  • Can't detect wireless networks, running ubuntu 9.10 on eeepc 1000he

    - by David Brown
    Hi, I am running Ubuntu 9.10 on an ASUS eeepc 1000HE, and my wireless card, RaLink RT 2860, is failing to recognize any wireless networks. It was working fine this morning, until I accidentally hit Fn F2, disabling the wireless card. I hit Fn F2 again to reenable it, but it no longer will detect any wireless networks (and other computers in the household do recognize them). Any help at all will be greatly appreciated! I googled quite a bit and talked to a human about this but could not fix it. We tried dhclient ra0, which returned There is already a pid file /var/run/dhclient.pid with pid 2438 killed old client process, removed PID file Internet Systems Consortium DHCP Client V3.1.2 Copyright 2004-2008 Internet Systems Consortium. All rights reserved. For info, please visit http://www.isc.org/sw/dhcp/ Listening on LPF/ra0/00:25:d3:13:f4:20 Sending on LPF/ra0/00:25:d3:13:f4:20 Sending on Socket/fallback DHCPDISCOVER on ra0 to 255.255.255.255 port 67 interval 6 DHCPDISCOVER on ra0 to 255.255.255.255 port 67 interval 9 DHCPDISCOVER on ra0 to 255.255.255.255 port 67 interval 12 DHCPDISCOVER on ra0 to 255.255.255.255 port 67 interval 8 DHCPDISCOVER on ra0 to 255.255.255.255 port 67 interval 10 DHCPDISCOVER on ra0 to 255.255.255.255 port 67 interval 10 DHCPDISCOVER on ra0 to 255.255.255.255 port 67 interval 6 No DHCPOFFERS received. No working leases in persistent database - sleeping. Other data: iwconfig returns (other stuff here...) ra0 RT2860 Wireless ESSID:"" Nickname:"RT2860STA" Mode:Auto Frequency=2.412 GHz Bit Rate=1 Mb/s RTS thr:off Fragment thr:off Link Quality=10/100 Signal level:0 dBm Noise level:-87 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:0 Missed beacon:0 ifconfig returns (other stuff here...) ra0 Link encap:Ethernet HWaddr 00:25:d3:13:f4:20 inet6 addr: fe80::225:d3ff:fe13:f420/64 Scope:Link UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:583 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:19 ra0:avahi Link encap:Ethernet HWaddr 00:25:d3:13:f4:20 inet addr:169.254.7.117 Bcast:169.254.255.255 Mask:255.255.0.0 UP BROADCAST MULTICAST MTU:1500 Metric:1 Interrupt:19

    Read the article

  • Detect fails in setup script

    - by Lai Yu-Hsuan
    I wrote a setup script to install my prefered programs and settings after I got a new server. apt-get install git git clone http://[email protected] .vim ln -s .vimrc .vim/vimrc ... But if something wrong happens during setup, how can I interrupt the setup script, and log the error(s)? For example, if github server is down, it's obviously useless to create a symbolic link to non-existed vimrc. (or you have a better approach to initialize a server?)

    Read the article

  • Diagnostic high load sys cpu - low io

    - by incous
    A Linux server running Ubuntu 12.04 LTS with LAMP has a strange behaviour since last week: - cpu %sys higher than before, nearly equal %usr (before that, %sys just little compare with %usr) - IO reduce by half or 1/3 compare with the week before I try to diagnostic the process/cpu by some command (top/vmstat/mpstat/sar), and see that maybe it's a bit high on interrupt timer/resched. I don't know what that means, now open to any suggestion.

    Read the article

  • How to interpret the contents of /proc/bus/pci/devices ?

    - by vivekian2
    The first few fields of 'cat /proc/bus/pci/devices' are understandable. Field 1 - BusDevFunc Field 2 - Vendor Id + Device Id Field 3 - Interrupt Line Field 4 - BAR 0 and the rest of the BAR registers (0 - 5) after that. After the BAR registers are printed out, what are the other fields? Specifically, what PCI configuration space registers(offsets) are printed out?

    Read the article

  • Second network card configuration not working.

    - by Sebas
    I have 4 servers running Centos 5. All of them have two ethernet network cards. I have configured 192.168.1.x IP addresses on their eth0 card. They are all connected to the same switch using their eth0 card and they are all working. I have configured 10.72.11.x IP addresses on their eth1 card.They are all connected to the same switch - a different one from the switch used with eth0 card - using their eth1 card and they are NOT all working. Their configuration files is like: DEVICE=eth1 BOOTPROTO=static IPADDR=10.72.11.236 BROADCAST=10.72.11.191 NETMASK=255.255.255.192 NETWORK=10.72.11.128 HWADDR=84:2B:2B:55:4B:98 IPV6INIT=yes IPV6_AUTOCONF=yes ONBOOT=yes The interfase is starting and configured as I need. [root@sql1 network-scripts]# ifconfig eth0 Link encap:Ethernet HWaddr 84:2B:2B:55:4B:97 inet addr:192.168.1.105 Bcast:192.168.1.255 Mask:255.255.255.0 inet6 addr: fe80::862b:2bff:fe55:4b97/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:2981 errors:0 dropped:0 overruns:0 frame:0 TX packets:319 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:386809 (377.7 KiB) TX bytes:66134 (64.5 KiB) Interrupt:36 Memory:da000000-da012800 eth1 Link encap:Ethernet HWaddr 84:2B:2B:55:4B:98 inet addr:10.72.11.236 Bcast:10.72.11.191 Mask:255.255.255.192 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b) Interrupt:48 Memory:dc000000-dc012800 I also added a route-eth1 file that looks like: 10.0.0.0/8 via 10.72.11.254 Routing looks fine to me: [root@sql1 network-scripts]# netstat -rn Kernel IP routing table Destination Gateway Genmask Flags MSS Window irtt Iface 10.72.11.192 0.0.0.0 255.255.255.192 U 0 0 0 eth1 192.168.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0 169.254.0.0 0.0.0.0 255.255.0.0 U 0 0 0 eth1 10.0.0.0 10.72.11.254 255.0.0.0 UG 0 0 0 eth1 0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 eth0 But I cannot ping one server from the other. [root@sql1 network-scripts]# ping 10.72.11.235 PING 10.72.11.235 (10.72.11.235) 56(84) bytes of data. From 10.72.11.236 icmp_seq=1 Destination Host Unreachable From 10.72.11.236 icmp_seq=2 Destination Host Unreachable From 10.72.11.236 icmp_seq=3 Destination Host Unreachable From 10.72.11.236 icmp_seq=4 Destination Host Unreachable From 10.72.11.236 icmp_seq=5 Destination Host Unreachable From 10.72.11.236 icmp_seq=6 Destination Host Unreachable ^C --- 10.72.11.235 ping statistics --- 7 packets transmitted, 0 received, +6 errors, 100% packet loss, time 6033ms , pipe 3 What am I doing wrong?

    Read the article

  • A gigabit network interface is CPU-limited to 25MB/s. How can I maximize the throughput?

    - by netvope
    I have a Acer Aspire R1600-U910H with a nForce gigabit network adapter. The maximum TCP throughput of it is about 25MB/s, and apparently it is limited by the single core Intel Atom 230; when the maximum throughput is reached, the CPU usage is about 50%-60%, which corresponds to full utilization considering this is a Hyper-threading enabled CPU. The same problem occurs on both Windows XP and on Ubuntu 8.04. On Windows, I have installed the latest nForce chipset driver, disabled power saving features, and enabled checksum offload. On Linux, the default driver has checksum offload enabled. There is no Linux driver available on Nvidia's website. ethtool -k eth0 shows that checksum offload is enabled: Offload parameters for eth0: rx-checksumming: on tx-checksumming: on scatter-gather: on tcp segmentation offload: on udp fragmentation offload: off generic segmentation offload: off The following is the output of powertop when the network is idle: Wakeups-from-idle per second : 61.9 interval: 10.0s no ACPI power usage estimate available Top causes for wakeups: 90.9% (101.3) <interrupt> : eth0 4.5% ( 5.0) iftop : schedule_timeout (process_timeout) 1.8% ( 2.0) <kernel core> : clocksource_register (clocksource_watchdog) 0.9% ( 1.0) dhcdbd : schedule_timeout (process_timeout) 0.5% ( 0.6) <kernel core> : neigh_table_init_no_netlink (neigh_periodic_timer) And when the maximum throughput of about 25MB/s is reached: Wakeups-from-idle per second : 11175.5 interval: 10.0s no ACPI power usage estimate available Top causes for wakeups: 99.9% (22097.4) <interrupt> : eth0 0.0% ( 5.0) iftop : schedule_timeout (process_timeout) 0.0% ( 2.0) <kernel core> : clocksource_register (clocksource_watchdog) 0.0% ( 1.0) dhcdbd : schedule_timeout (process_timeout) 0.0% ( 0.6) <kernel core> : neigh_table_init_no_netlink (neigh_periodic_timer) Notice the 20000 interrupts per second. Could this be the cause for the high CPU usage and low throughput? If so, how can I improve the situation? As a reference, the other computers in the network can usually transfer at 50+MB/s without problems. A computer with a Core 2 CPU generates only 5000 interrupts per second when it's transferring at 110MB/s. The number of interrupts is about 20 times less than the Atom system (if interrupts scale linearly with throughput.) And a minor question: How can I find out what is the driver in use for eth0?

    Read the article

  • "Mail" command hangs and maillogs shows error

    - by harmony
    i tried linux command on my CentOS 5.x: mail -s "mysubject" [email protected] minutes takes, it dont finish, i do Ctrl+C, it says "(Interrupt -- one more to kill letter)" i tried command: mail No mail for root /var/log/maillog is empty /var/log/kloxo/maillog is full of messages: Oct 25 17:28:17 vps qmail: 1382736497.255902 delivery 1246425: deferral: Uh-oh:_.qmail_has_prog_delivery_but_has_x_bit_set._(#4.7.0)/ Oct 25 17:28:17 vps qmail: 1382736497.255915 status: local 1/10 remote 0/60 i checked all my .qmail files and none has execution permissions. Any idea please how to debug?

    Read the article

  • Parallelism in .NET – Part 13, Introducing the Task class

    - by Reed
    Once we’ve used a task-based decomposition to decompose a problem, we need a clean abstraction usable to implement the resulting decomposition.  Given that task decomposition is founded upon defining discrete tasks, .NET 4 has introduced a new API for dealing with task related issues, the aptly named Task class. The Task class is a wrapper for a delegate representing a single, discrete task within your decomposition.  We will go into various methods of construction for tasks later, but, when reduced to its fundamentals, an instance of a Task is nothing more than a wrapper around a delegate with some utility functionality added.  In order to fully understand the Task class within the new Task Parallel Library, it is important to realize that a task really is just a delegate – nothing more.  In particular, note that I never mentioned threading or parallelism in my description of a Task.  Although the Task class exists in the new System.Threading.Tasks namespace: Tasks are not directly related to threads or multithreading. Of course, Task instances will typically be used in our implementation of concurrency within an application, but the Task class itself does not provide the concurrency used.  The Task API supports using Tasks in an entirely single threaded, synchronous manner. Tasks are very much like standard delegates.  You can execute a task synchronously via Task.RunSynchronously(), or you can use Task.Start() to schedule a task to run, typically asynchronously.  This is very similar to using delegate.Invoke to execute a delegate synchronously, or using delegate.BeginInvoke to execute it asynchronously. The Task class adds some nice functionality on top of a standard delegate which improves usability in both synchronous and multithreaded environments. The first addition provided by Task is a means of handling cancellation via the new unified cancellation mechanism of .NET 4.  If the wrapped delegate within a Task raises an OperationCanceledException during it’s operation, which is typically generated via calling ThrowIfCancellationRequested on a CancellationToken, or if the CancellationToken used to construct a Task instance is flagged as canceled, the Task’s IsCanceled property will be set to true automatically.  This provides a clean way to determine whether a Task has been canceled, often without requiring specific exception handling. Tasks also provide a clean API which can be used for waiting on a task.  Although the Task class explicitly implements IAsyncResult, Tasks provide a nicer usage model than the traditional .NET Asynchronous Programming Model.  Instead of needing to track an IAsyncResult handle, you can just directly call Task.Wait() to block until a Task has completed.  Overloads exist for providing a timeout, a CancellationToken, or both to prevent waiting indefinitely.  In addition, the Task class provides static methods for waiting on multiple tasks – Task.WaitAll and Task.WaitAny, again with overloads providing time out options.  This provides a very simple, clean API for waiting on single or multiple tasks. Finally, Tasks provide a much nicer model for Exception handling.  If the delegate wrapped within a Task raises an exception, the exception will automatically get wrapped into an AggregateException and exposed via the Task.Exception property.  This exception is stored with the Task directly, and does not tear down the application.  Later, when Task.Wait() (or Task.WaitAll or Task.WaitAny) is called on this task, an AggregateException will be raised at that point if any of the tasks raised an exception.  For example, suppose we have the following code: Task taskOne = new Task( () => { throw new ApplicationException("Random Exception!"); }); Task taskTwo = new Task( () => { throw new ArgumentException("Different exception here"); }); // Start the tasks taskOne.Start(); taskTwo.Start(); try { Task.WaitAll(new[] { taskOne, taskTwo }); } catch (AggregateException e) { Console.WriteLine(e.InnerExceptions.Count); foreach (var inner in e.InnerExceptions) Console.WriteLine(inner.Message); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, our routine will print: 2 Different exception here Random Exception! Note that we had two separate tasks, each of which raised two distinctly different types of exceptions.  We can handle this cleanly, with very little code, in a much nicer manner than the Asynchronous Programming API.  We no longer need to handle TargetInvocationException or worry about implementing the Event-based Asynchronous Pattern properly by setting the AsyncCompletedEventArgs.Error property.  Instead, we just raise our exception as normal, and handle AggregateException in a single location in our calling code.

    Read the article

  • Book Review: Oracle ADF Real World Developer’s Guide

    - by Frank Nimphius
    Recently PACKT Publishing published "Oracle ADF Real World Developer’s Guide" by Jobinesh Purushothaman, a product manager in our team. Though already the sixth book dedicated to Oracle ADF, it has a lot of great information in it that none of the previous books covered, making it a safe buy even for those who own the other books published by Oracle Press (McGrwHill) and PACKT Publishing. More than the half of the "Oracle ADF Real World Developer’s Guide" book is dedicated to Oracle ADF Business Components in a depth and clarity that allows you to feel the expertise that Jobinesh gained in this area. If you enjoy Jobinesh blog (http://jobinesh.blogspot.co.uk/) about Oracle ADF, then, no matter what expert you are in Oracle ADF, this book makes you happy as it provides you with detail information you always wished to have. If you are new to Oracle ADF, then this book alone doesn't get you flying, but, if you have some Java background, accelerates your learning big, big, big times. Chapter 1 is an introduction to Oracle ADF and not only explains the layers but also how it compares to plain Java EE solutions (page 13). If you are new to Oracle JDeveloper and ADF, then at the end of this chapter you know how to start JDeveloper and begin your ADF development Chapter 2 starts with what Jobinesh really is good at: ADF Business Components. In this chapter you learn about the architecture ingredients of ADF Business Components: View Objects, View Links, Associations, Entities, Row Sets, Query Collections and Application Modules. This chapter also provides a introduction to ADFBC SDO services, as well as sequence diagrams for what happens when you execute queries or commit updates. Chapter 3 is dedicated to entity objects and  is one of many chapters in this book you will enjoy and never want to miss. Jobinesh explains the artifacts that make up an entity object, how to work with entities and resource bundles, and many advanced topics, including inheritance, change history tracking, custom properties, validation and cursor handling.  Chapter 4 - you guessed it - is all about View objects. Comparable to entities, you learn about the XM files and classes that make a view object, as well as how to define and work with queries. List-of-values, inheritance, polymorphism, bind variables and data filtering are interesting - and important topics that follow. Again the chapter provides helpful sequence diagrams for you to understand what happens internally within a view object. Chapter 5 focuses on advanced view object and entity object topics, like lifecycle callback methods and when you want to override them. This chapter is a good digest of Jobinesh's blog entries (which most ADF developers have in their bookmark list). Really worth reading ! Chapter 6 then is bout Application Modules. Beside of what application modules are, this chapter covers important topics like properties, passivation, activation, application module pooling, how and where to write custom logic. In addition you learn about the AM lifecycle and request sequence. Chapter 7 is about the ADF binding layer. If you are new to Oracle ADF and got lost in the more advanced ADF Business Components chapters, then this chapter is where you get back into the game. In very easy terms, Jobinesh explains what the ADF binding is, how it fits into the JSF request lifecycle and what are the metadata file involved. Chapter 8 then goes into building data bound web user interfaces. In this chapter you get the basics of JavaServer Faces (e.g. managed beans) and learn about the interaction between the JSF UI and the ADF binding layer. Later this chapter provides advanced solutions for working with tree components and list of values. Chapter 9 introduces bounded task flows and ADF controller. This is a chapter you want to read if you are new to ADF of have started. Experts don't find anything new here, which doesn't mean that it is not worth reading it (I for example, enjoyed the controller talk very much) Chapter 10 is an advanced coverage of bounded task flow and talks about contextual events  Chapter 11 is another highlight and explains error handling, trains, transactions and more. I can only recommend you read this chapter. I am aware of many documents that cover exception handling in Oracle ADF (and my Oracle Magazine article for January/February 2013 does the same), but none that covers it in such a great depth. Chapter 12 covers ADF best practices, which is a great round-up of all the tips provided in this book (without Jobinesh to repeat himself). Its all cool stuff that helps you with your ADF projects. In summary, "Oracle ADF Real World Developer’s Guide" by Jobinesh Purushothaman is a great book and addition for all Oracle ADF developers and those who want to become one. Frank

    Read the article

  • Delegates and Events in C#

    - by hakanbilge
    Events and their underlying mechanism "Delegates" are very powerful tools of a developer and Event Driven Programming is one of the main Programming Paradigms. Its wiki definition is "event-driven programming or event-based programming is a programming paradigm in which the flow of the program is determined by events?i.e., sensor outputs or user actions (mouse clicks, key presses) or messages from other programs or threads." That means, your program can go its own way sequentially and in the case of anything that requires attention is done (when an event fires) by somebody or something, you can response it by using that event's controller method (this mechanism is like interrupt driven programming in embedded systems). There are many real world scenarios for events, for example, ASP.NET uses events to catch a click on a button or in your app, controller has notice of a change in UI by handling events exposed by view (in MVC pattern). Delegates in C# C# delegates correspond to function pointers in  [read more....]

    Read the article

  • Three Ways to Access the Windows 8 Boot Options Menu

    - by Lori Kaufman
    The boot options have been consolidated in Windows 8 into a single menu, called the “boot options menu,” providing access to repair tools and options for changing Windows startup behavior, such as enabling debugging, booting into safe mode, and launching into a recovery environment. The days of pressing a function key or Esc to interrupt the boot process and get into the BIOS configuration (in UEFI enabled systems) are gone. There are three ways of accessing the new boot options menu in Windows 8 and we’ll show you how. 7 Ways To Free Up Hard Disk Space On Windows HTG Explains: How System Restore Works in Windows HTG Explains: How Antivirus Software Works

    Read the article

  • External display, windows are moving to external display

    - by hextler
    I use external display with lenovo w520, I am running it with following script xrandr --output LVDS1 --auto --primary --output VIRTUAL --mode 1920x1200 --left-of LVDS1 optirun screenclone -d :8 -x 1 xrandr --output VIRTUAL --off but I have number of problems. All windows are moving on external display If I interrupt this script I cannot run it second time without restarting xorg. yakuake is changing height and does not showing tabs. I cannot make external display primary, in that case I cannot see windows. yakuake is changing height and does not showing tabs. If you know how to solve thisw issues please let me know. Thanks in advance!

    Read the article

  • Installation of Ubuntu 12.04 LTS is Crashing from Live CD

    - by Daniel Evans
    Hardware: Dell Inspiron 1545 Steps are as follows: Insert Ubuntu 12.04 disc Boot computer Output is as follows error: unexpectedly disconnected from boot status daemon Generating locales... en_US.UTF-8... done Generation complete. ***MEMORY-ERROR***: glib-compile-schemas[569]: GSlice: assertion failed: aligned_memory == (gpointer) addr Aborted pwconv: failed to change the mode of /etc/passwd- to 0600 ***MEMORY-ERROR***: [996]: GSlice: assertion failed: aligned_memory == (gpointer) addr ***MEMORY-ERROR***: glib-compile-scehmas[1034]: GSlice: assertion failed: aligned_memory == gpointer) addr Aborted /usr/lib/python2.7/dist-packages/LanguageSelector/LocaleInfo.py:256: UserWarning: Failed to connect to socket /var/run/dbus/system_bus_socket: No such file or directory warnings.warn(msg.args[0].encode('UTF-8')) Using CD-ROM mount point /cdrom ... etc etc... End up at a prompt line ubuntu@ubuntu:~$ The computer's self tests have given the following three errors (so far): Error Code OFOO:O65D Msg DISK-DST Self-test read error SATA Disk S/N=.... Confidence Test Fail Error Code 0F00:1332 Msg: DISK- Block 418047942: Interrupt Request (IRQ) Error Code: 0142 HD0 self test unsuccessful Status 79

    Read the article

< Previous Page | 77 78 79 80 81 82 83 84 85 86 87 88  | Next Page >