Search Results

Search found 21436 results on 858 pages for 'draw order'.

Page 82/858 | < Previous Page | 78 79 80 81 82 83 84 85 86 87 88 89  | Next Page >

  • How i can fix the increasing order summation code?

    - by user2971559
    I want from the java to reads all numbers from the user as long as the number entered by user is bigger than the previous number. But i could write it for only positive numbers. How i can fix code below if all numbers included. If it is possible please write the solution for beginners because its my first year in computer science in college and I haven't learn a lot yet. import acm.program.*; public class IncreasingOrder extends ConsoleProgram { public void run() { int previousNumber = 0; int total = 0; int count = 0; while(true) { int n = readInt("Enter > "); if (n <= previousNumber) break; total += n; count++; previousNumber = n; } println("You have entered " + count + " numbers in increasing order."); println("Sum of these " + count + " numbers is " + total + "."); } }

    Read the article

  • How to: Avoid Inserting Related Entities?

    - by niaher
    I have this schema: I want to insert an Order with OrderItems into database, so I wrote this method: public void SaveOrder(Order order) { using (var repository = new StoreEntities()) { // Add order. repository.Orders.AddObject(order); // Add order items. foreach (OrderItem orderItem in order.OrderItems) { repository.OrderItems.AddObject(orderItem); } repository.SaveChanges(); } } Everything is inserted just fine, except that new Product records are inserted too, which is not what I want. What I want is to insert Order and its OrderItems, without going any further down the object graph. How can that be achieved? Any help is really appreciated, thank you.

    Read the article

  • For which substring of the string1 matches occurred with the string2.

    - by Harikrishna
    I want to know that in particular string1 for which substring of the string1 the string2 matches.Like String str1="Order Number Order Time Trade Number"; String str2="Order Tm"; string regex = Regex.Escape(str2.Replace(@"\ ", @"\s*"); bool isColumnNameMatched = Regex.IsMatch(str1, regex, RegexOptions.IgnoreCase); I am using regex because "Order Tm" will also matches "Order Time".It gives bool value that matches occurred or not. But if it str2 is in str1 then I want to know at which position in the str1 the str2 matches. Like str2="Order Tm" then something like that returns the string which is matched with str2 in the str1.Here str2="Order Tm" then it should return like in the str1,Order Time is the substring where matches is occurred.

    Read the article

  • Given a 2d array sorted in increasing order from left to right and top to bottom, what is the best w

    - by Phukab
    I was recently given this interview question and I'm curious what a good solution to it would be. Say I'm given a 2d array where all the numbers in the array are in increasing order from left to right and top to bottom. What is the best way to search and determine if a target number is in the array? Now, my first inclination is to utilize a binary search since my data is sorted. I can determine if a number is in a single row in O(log N) time. However, it is the 2 directions that throw me off. Another solution I could use, if I could be sure the matrix is n x n, is to start at the middle. If the middle value is less than my target, then I can be sure it is in the left square portion of the matrix from the middle. I then move diagnally and check again, reducing the size of the square that the target could potentially be in until I have honed in on the target number. Does anyone have any good ideas on solving this problem? Example array: Sorted left to right, top to bottom. 1 2 4 5 6 2 3 5 7 8 4 6 8 9 10 5 8 9 10 11

    Read the article

  • ASP.NET MVC vs. Jquery/AJAX (Where to draw the dividing line?)

    - by punkouter
    I am learning MVC and I understand the basics now. It is very good for CRUD pages and has built in HTTP methods to post/get edits/updates. That is nice. This is all very testable by just creating a new controller and testing it. But I was thinking about other web page scenerios when using MVC. What about a page that has 2 listboxes that you add/remove users with. (A button will move the user from one listbox to another) This would be done using Jquery/Javascript... But then what happens to testing? How do you test adding/removing users from a listbox like that example? It seems to me the more jquery you use the less testable the page becomes right? When you get beyond basic forms being filled out then you need to use something more than the standard MVC pages. What is the correct philosophy on this on when am I not understanding ?

    Read the article

  • How to draw multiple line text to uiimageview iphone?

    - by Hu?nh Phong
    I have UITextView for text, after user press DONE, I convert text to UIImageView and show it. It works with one line of text very good, and Screenshot 1 . But if user types two lines, or more: the result is still one line??? Screenshot 2 I want to display two or more lines in UIimageView Can anybody help me! Thank you very much! Here is my code: -(UIImage *)convertTextToImage : (ObjectText *) objT; { UIGraphicsBeginImageContext(CGSizeMake(([objT.content sizeWithFont:objT.font].width+10), ([objT.content sizeWithFont:objT.font].height+10))); [[objT getcolor] set]; [objT.content drawAtPoint:CGPointMake(5, 5) withFont:objT.font]; UIImage *result = UIGraphicsGetImageFromCurrentImageContext(); UIGraphicsEndImageContext(); return result; }

    Read the article

  • Are "strings.xml" string arrays always parsed/deserialized in the same order?

    - by PhilaPhan80
    Can I count on string arrays within the "strings.xml" resource file to be parsed/deserialized in the same order every time? If anyone can cite any documentation that clearly spells out this guarantee, I'd appreciate it. Or, at the very least, offer a significant amount of experience with this topic. Also, is this a best practice or am I missing a simpler solution? Note: This will be a small list, so I'm not looking to implement a more complicated database or custom XML solution unless I absolutely have to. <!--KEYS (ALWAYS CORRESPONDS TO LIST BELOW ??)--> <string-array name="keys"> <item>1</item> <item>2</item> <item>3</item> </string-array> <!--VALUES (ALWAYS CORRESPONDS TO LIST ABOVE ??)--> <string-array name="values"> <item>one</item> <item>two</item> <item>three</item> </string-array>

    Read the article

  • How to change source order of <div> in less steps/automatically?

    - by metal-gear-solid
    How can i do this task automate. i need to change source order of div, which has same id in above 100 pages. i created example This is default condition <div class="identification"> <div class="number">Number 1</div> </div> <div class="identification"> <div class="number">Number 2</div> </div> <div class="identification"> <div class="number">Number 3</div> </div> <div class="identification"> <div class="number">Number 4</div> </div> <div class="identification"> <div class="number">Number 5</div> </div> <div class="identification"> <div class="number">Number 6</div> </div> I need lik this <div class="identification"> <div class="number">Number 1</div> </div> <div class="identification"> <div class="number">Number 3</div> </div> <div class="identification"> <div class="number">Number 2</div> </div> <div class="identification"> <div class="number">Number 6</div> </div> <div class="identification"> <div class="number">Number 4</div> </div> <div class="identification"> <div class="number">Number 5</div> </div> Is the manual editing only option? I use dreamweaver.

    Read the article

  • How to automate org-refile for multiple todo

    - by lawlist
    I'm looking to automate org-refile so that it will find all of the matches and re-file them to a specific location (but not archive). I found a fully automated method of archiving multiple todo, and I am hopeful to find or create (with some help) something similar to this awesome function (but for a different heading / location other than archiving): https://github.com/tonyday567/jwiegley-dot-emacs/blob/master/dot-org.el (defun org-archive-done-tasks () (interactive) (save-excursion (goto-char (point-min)) (while (re-search-forward "\* \\(None\\|Someday\\) " nil t) (if (save-restriction (save-excursion (org-narrow-to-subtree) (search-forward ":LOGBOOK:" nil t))) (forward-line) (org-archive-subtree) (goto-char (line-beginning-position)))))) I also found this (written by aculich), which is a step in the right direction, but still requires repeating the function manually: http://stackoverflow.com/questions/7509463/how-to-move-a-subtree-to-another-subtree-in-org-mode-emacs ;; I also wanted a way for org-refile to refile easily to a subtree, so I wrote some code and generalized it so that it will set an arbitrary immediate target anywhere (not just in the same file). ;; Basic usage is to move somewhere in Tree B and type C-c C-x C-m to mark the target for refiling, then move to the entry in Tree A that you want to refile and type C-c C-w which will immediately refile into the target location you set in Tree B without prompting you, unless you called org-refile-immediate-target with a prefix arg C-u C-c C-x C-m. ;; Note that if you press C-c C-w in rapid succession to refile multiple entries it will preserve the order of your entries even if org-reverse-note-order is set to t, but you can turn it off to respect the setting of org-reverse-note-order with a double prefix arg C-u C-u C-c C-x C-m. (defvar org-refile-immediate nil "Refile immediately using `org-refile-immediate-target' instead of prompting.") (make-local-variable 'org-refile-immediate) (defvar org-refile-immediate-preserve-order t "If last command was also `org-refile' then preserve ordering.") (make-local-variable 'org-refile-immediate-preserve-order) (defvar org-refile-immediate-target nil) "Value uses the same format as an item in `org-refile-targets'." (make-local-variable 'org-refile-immediate-target) (defadvice org-refile (around org-immediate activate) (if (not org-refile-immediate) ad-do-it ;; if last command was `org-refile' then preserve ordering (let ((org-reverse-note-order (if (and org-refile-immediate-preserve-order (eq last-command 'org-refile)) nil org-reverse-note-order))) (ad-set-arg 2 (assoc org-refile-immediate-target (org-refile-get-targets))) (prog1 ad-do-it (setq this-command 'org-refile))))) (defadvice org-refile-cache-clear (after org-refile-history-clear activate) (setq org-refile-targets (default-value 'org-refile-targets)) (setq org-refile-immediate nil) (setq org-refile-immediate-target nil) (setq org-refile-history nil)) ;;;###autoload (defun org-refile-immediate-target (&optional arg) "Set current entry as `org-refile' target. Non-nil turns off `org-refile-immediate', otherwise `org-refile' will immediately refile without prompting for target using most recent entry in `org-refile-targets' that matches `org-refile-immediate-target' as the default." (interactive "P") (if (equal arg '(16)) (progn (setq org-refile-immediate-preserve-order (not org-refile-immediate-preserve-order)) (message "Order preserving is turned: %s" (if org-refile-immediate-preserve-order "on" "off"))) (setq org-refile-immediate (unless arg t)) (make-local-variable 'org-refile-targets) (let* ((components (org-heading-components)) (level (first components)) (heading (nth 4 components)) (string (substring-no-properties heading))) (add-to-list 'org-refile-targets (append (list (buffer-file-name)) (cons :regexp (format "^%s %s$" (make-string level ?*) string)))) (setq org-refile-immediate-target heading)))) (define-key org-mode-map "\C-c\C-x\C-m" 'org-refile-immediate-target) It sure would be helpful if aculich, or some other maven, could please create a variable similar to (setq org-archive-location "~/0.todo.org::* Archived Tasks") so users can specify the file and heading, which is already a part of the org-archive-subtree functionality. I'm doing a search and mark because I don't have the wherewithal to create something like org-archive-location for this setup. EDIT: One step closer -- almost home free . . . (defun lawlist-auto-refile () (interactive) (beginning-of-buffer) (re-search-forward "\* UNDATED") (org-refile-immediate-target) ;; cursor must be on a heading to work. (save-excursion (re-search-backward "\* UNDATED") ;; must be written in such a way so that sub-entries of * UNDATED are not searched; or else infinity loop. (while (re-search-backward "\* \\(None\\|Someday\\) " nil t) (org-refile) ) ) )

    Read the article

  • Matplotlib canvas drawing

    - by Morgoth
    Let's say I define a few functions to do certain matplotlib actions, such as def dostuff(ax): ax.scatter([0.],[0.]) Now if I launch ipython, I can load these functions and start a new figure: In [1]: import matplotlib.pyplot as mpl In [2]: fig = mpl.figure() In [3]: ax = fig.add_subplot(1,1,1) In [4]: run functions # run the file with the above defined function If I now call dostuff, then the figure does not refresh: In [6]: dostuff(ax) I have to then explicitly run: In [7]: fig.canvas.draw() To get the canvas to draw. Now I can modify dostuff to be def dostuff(ax): ax.scatter([0.],[0.]) ax.get_figure().canvas.draw() This re-draws the canvas automatically. But now, say that I have the following code: def dostuff1(ax): ax.scatter([0.],[0.]) ax.get_figure().canvas.draw() def dostuff2(ax): ax.scatter([1.],[1.]) ax.get_figure().canvas.draw() def doboth(ax): dostuff1(ax) dostuff2(ax) ax.get_figure().canvas.draw() I can call each of these functions, and the canvas will be redrawn, but in the case of doboth(), it will get redrawn multiple times. My question is: how could I code this, such that the canvas.draw() only gets called once? In the above example it won't change much, but in more complex cases with tens of functions that can be called individually or grouped, the repeated drawing is much more obvious, and it would be nice to be able to avoid it. I thought of using decorators, but it doesn't look as though it would be simple. Any ideas?

    Read the article

  • How to Find Intersections with Ellipses in PGF/TikZ

    - by infblnpf
    Hello, I am trying to display a sphere in PGF/TikZ to illustrate the idea of great circles. The code for my current result is: \begin{tikzpicture} \tikzfading[name=fade right, left color=transparent!20, right color=transparent!90] \tikzfading[name=fade out, inner color=transparent!100, outer color=transparent!10] \tikzfading[name=fade right gc, left color=transparent!0, right color=transparent!70] \draw [<->, dashed] (0,-5) -- (0,5); % y-axis \draw [->, dashed] (0, 0) -- (20:5); % x-axis \draw [->, dashed] (0, 0) -- (200:5); % x-axis \draw [->, dashed] (0, 0) -- (340:5); % z-axis \draw [->, dashed] (0, 0) -- (160:5); % z-axis \fill [color=cyan, opacity=0.15, path fading=fade out] (0,0) circle (4cm); % bounding circle \fill [color=cyan, opacity=0.25, path fading=fade right, fading angle=90] (0,0) ellipse (4cm and 1cm); % x-y-axis area % great circle 1 \draw [rotate=-40, color=red, path fading=fade right gc, fading angle=40] (0,0) ellipse (4cm and 1cm); % great circle 2 \draw[rotate=5, color=red, path fading=fade right gc, fading angle=5] (0,0) ellipse (1.5cm and 4cm); \end{tikzpicture} How do I find the two points of intersection of the two red ellipses (commented as great circle 1 and 2), find the point of intersection of a line (originating at the center (0,0)) with a ellipse, and place a little circle or rectangle there? Placing a little circle or rectangle there is not an issue. Thank you very much!

    Read the article

  • Regex: match a non nested code block

    - by Sylvanas Garde
    I am currently writing a small texteditor. With this texteditor users are able to create small scripts for a very simple scripting engine. For a better overview I want to highlight codeblocks with the same command like GoTo(x,y) or Draw(x,y). To achieve this I want to use Regular Expresions (I am already using it to highlight other things like variables) Here is my Expression (I know it's very ugly): /(?<!GoTo|Draw|Example)(^(?:GoTo|Draw|Example)\(.+\)*?$)+(?!GoTo|Draw|Example)/gm It matches the following: lala GoTo(5656) -> MATCH 1 sdsd GoTo(sdsd) --comment -> MATCH 2 GoTo(23329); -> MATCH 3 Test() GoTo(12) -> MATCH 4 LALA Draw(23) -> MATCH 5 Draw(24) -> MATCH 6 Draw(25) -> MATCH 7 But what I want to achieve is, that the complete "blocks" of the same command are matched. In this case Match 2 & 4 and Match 5 & 6 & 7 should be one match. Tested with http://regex101.com/, the programming lanuage is vb.net. Any advise would be very useful, Thanks in advance!

    Read the article

  • SOA Suite 11g Native Format Builder Complex Format Example

    - by bob.webster
    This rather long posting details the steps required to process a grouping of fixed length records using Format Builder.   If it’s 10 pm and you’re feeling beat you might want to leave this until tomorrow.  But if it’s 10 pm and you need to get a Format Builder Complex template done, read on… The goal is to process individual orders from a file using the 11g File Adapter and Format Builder Sample Data =========== 001Square Widget            0245.98 102Triagular Widget         1120.00 403Circular Widget           0099.45 ORD8898302/01/2011 301Hexagon Widget         1150.98 ORD6735502/01/2011 The records are fixed length records representing a number of logical Order records. Each order record consists of a number of item records starting with a 3 digit number, followed by a single Summary Record which starts with the constant ORD. How can this file be processed so that the first poll returns the first order? 001Square Widget            0245.98 102Triagular Widget         1120.00 403Circular Widget           0099.45 ORD8898302/01/2011 And the second poll returns the second order? 301Hexagon Widget           1150.98 ORD6735502/01/2011 Note: if you need more than one order per poll, that’s also possible, see the “Multiple Messages” field in the “File Adapter Step 6 of 9” snapshot further down.   To follow along with this example you will need - Studio Edition Version 11.1.1.4.0    with the   - SOA Extension for JDeveloper 11.1.1.4.0 installed Both can be downloaded from here:  http://www.oracle.com/technetwork/middleware/soasuite/downloads/index.html You will not need a running WebLogic Server domain to complete the steps and Format Builder tests in this article.     Start with a SOA Composite containing a File Adapter The Format Builder is part of the File Adapter so start by creating a new SOA Project and Composite. Here is a quick summary for those not familiar with these steps - Start JDeveloper - From the Main Menu choose File->New - In the New Gallery window that opens Expand the “General” category and Select the Applications node.   Then choose SOA Application from the Items section on the right.  Finally press the OK button. - In Step 1 of the “Create SOA Application wizard” that appears enter an Application Name and an Directory of your     choice,   then press the Next button. - In Step 2 of the “Create SOA Application wizard”, press the Next button leaving all entries as defaulted. - In Step 3 of the “Create SOA Application wizard”, Enter a composite name of your choice and Press the Finish   Button These steps result in a new Application and SOA Project. The SOA Project contains a composite.xml file which is opened and shown below. For our example we have not defined a Mediator or a BPEL process to minimize the steps, but one or the other would eventually be needed to use the File Adapter we are about to create. Drag and drop the File Adapter icon from the Component Pallette onto either the LEFT side of the diagram under “Exposed Services” or the right side under “External References”.  (See the Green Circle in the image below).  Placing the adapter on the left side would indicate the file being processed is inbound to the composite, if the adapter is placed on the right side then the data is outbound to a file.     Note that the same Format Builder definition can be used in both directions.  For example we could use the format with a File Adapter on the left side of the composite to parse fixed data into XML, modify the data in our Composite or BPEL process and then use the same Format Builder definition with a File adapter on the right side of the composite to write the data back out in the same fixed data format When the File Adapter is dropped on the Composite the File Adapter Wizard Appears. Skip Past the first page, Step 1 of 9 by pressing the Next button. In Step 2 enter a service name of your choice as shown below, then press Next   When the Native Format Builder appears, skip the welcome page by pressing next. Also press the Next button to accept the settings on Step 3 of 9 On Step 4, select Read File and press the Next button as shown below.   On Step 5 enter a directory that will contain a file with the input data, then  Press the Next button as shown below. In step 6, enter *.txt or another file format to select input files from the input directory mentioned in step 5. ALSO check the “Files contain Multiple Messages” checkbox and set the “Publish Messages in Batches of” field to 1.  The value can be set higher to increase the number of logical order group records returned on each poll of the file adapter.  In other words, it determines the number of Orders that will be sent to each instance of a Mediator or Composite processing using the File Adapter.   Skip Step 7 by pressing the Next button In Step 8 press the Gear Icon on the right side to load the Native Format Builder.       Native Format Builder  appears Before diving into the format, here is an overview of the process. Approach - Bottom up Assuming an Order is a grouping of item records and a summary record…. - Define a separate  Complex Type for each Record Type found in the group.    (One for itemRecord and one for summaryRecord) - Define a Complex Type to contain the Group of Record types defined above   (LogicalOrderRecord) - Define a top level element to represent an order.  (order)   The order element will be of type LogicalOrderRecord   Defining the Format In Step 1 select   “Create new”  and  “Complex Type” and “Next”   In Step two browse to and select a file containing the test data shown at the start of this article. A link is provided at the end of this article to download a file containing the test data. Press the Next button     In Step 3 Complex types must be define for each type of input record. Select the Root-Element and Click on the Add Complex Type icon This creates a new empty complex type definition shown below. The fastest way to create the definition is to highlight the first line of the Sample File data and drag the line onto the  <new_complex_type> Format Builder introspects the data and provides a grid to define additional fields. Change the “Complex Type Name” to  “itemRecord” Then click on the ruler to indicate the position of fixed columns.  Drag the red triangle icons to the exact columns if necessary. Double click on an existing red triangle to remove an unwanted entry. In the case below fields are define in columns 0-3, 4-28, 29-eol When the field definitions are correct, press the “Generate Fields” button. Field entries named C1, C2 and C3 will be created as shown below. Click on the field names and rename them from C1->itemNum, C2->itemDesc and C3->itemCost  When all the fields are correctly defined press OK to save the complex type.        Next, the process is repeated to define a Complex Type for the SummaryRecord. Select the Root-Element in the schema tree and press the new complex type icon Then highlight and drag the Summary Record from the sample data onto the <new_complex_type>   Change the complex type name to “summaryRecord” Mark the fixed fields for Order Number and Order Date. Press the Generate Fields button and rename C1 and C2 to itemNum and orderDate respectively.   The last complex type to be defined is a type to hold the group of items and the summary record. Select the Root-Element in the schema tree and click the new complex type icon Select the “<new_complex_type>” entry and click the pencil icon   On the Complex Type Details page change the name and type of each input field. Change line 1 to be named item and set the Type  to “itemRecord” Change line 2 to be named summary and set the Type to “summaryRecord” We also need to indicate that itemRecords repeat in the input file. Click the pencil icon at the right side of the item line. On the Edit Details page change the “Max Occurs” entry from 1 to UNBOUNDED. We also need to indicate how to identify an itemRecord.  Since each item record has “.” in column 32 we can use this fact to differentiate an item record from a summary record. Change the “Look Ahead” field to value 32 and enter a period in the “Look For” field Press the OK button to save entry.     Finally, its time to create a top level element to represent an order. Select the “Root-Element” in the schema tree and press the New element icon Click on the <new_element> and press the pencil icon.   Set the Element Name to “order” and change the Data Type to “logicalOrderRecord” Press the OK button to save the element definition.   The final definition should match the screenshot below. Press the Next Button to view the definition source.     Press the Test Button to test the definition   Press the Green Triangle Icon to run the test.   And we are presented with an unwelcome error. The error states that the processor ran out of data while working through the definition. The processor was unable to differentiate between itemRecords and summaryRecords and therefore treated the entire file as a list of itemRecords.  At end of file, the “summary” portion of the logicalOrderRecord remained unprocessed but mandatory.   This root cause of this error is the loss of our “lookAhead” definition used to identify itemRecords. This appears to be a bug in the  Native Format Builder 11.1.1.4.0 Luckily, a simple workaround exists. Press the Cancel button and return to the “Step 4 of 4” Window. Manually add    nxsd:lookAhead="32" nxsd:lookFor="."   attributes after the maxOccurs attribute of the item element. as shown in the highlighted text below.   When the lookAhead and lookFor attributes have been added Press the Test button and on the Test page press the Green Triangle. The test is now successful, the first order in the file is returned by the File Adapter.     Below is a complete listing of the Result XML from the right column of the screen above   Try running it The downloaded input test file and completed schema file can be used for testing without following all the Native Format Builder steps in this example. Use the following link to download a file containing the sample data. Download Sample Input Data This is the best approach rather than cutting and pasting the input data at the top of the article.  Since the data is fixed length it’s very important to watch out for trailing spaces in the data and to ensure an eol character at the end of every line. The download file is correctly formatted. The final schema definition can be downloaded at the following link Download Completed Schema Definition   - Save the inputData.txt file to a known location like the xsd folder in your project. - Save the inputData_6.xsd file to the xsd folder in your project. - At step 1 in the Native Format Builder wizard  (as shown above) check the “Edit existing” radio button,    then browse and select the inputData_6.xsd file - At step 2 of the Format Builder configuration Wizard (as shown above) supply the path and filename for    the inputData.txt file. - You can then proceed to the test page and run a test. - Remember the wizard bug will drop the lookAhead and lookFor attributes,  you will need to manually add   nxsd:lookAhead="32" nxsd:lookFor="."    after the maxOccurs attribute of the item element in the   LogicalOrderRecord Complex Type.  (as shown above)   Good Luck with your Format Project

    Read the article

  • Adding Unobtrusive Validation To MVCContrib Fluent Html

    - by srkirkland
    ASP.NET MVC 3 includes a new unobtrusive validation strategy that utilizes HTML5 data-* attributes to decorate form elements.  Using a combination of jQuery validation and an unobtrusive validation adapter script that comes with MVC 3, those attributes are then turned into client side validation rules. A Quick Introduction to Unobtrusive Validation To quickly show how this works in practice, assume you have the following Order.cs class (think Northwind) [If you are familiar with unobtrusive validation in MVC 3 you can skip to the next section]: public class Order : DomainObject { [DataType(DataType.Date)] public virtual DateTime OrderDate { get; set; }   [Required] [StringLength(12)] public virtual string ShipAddress { get; set; }   [Required] public virtual Customer OrderedBy { get; set; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Note the System.ComponentModel.DataAnnotations attributes, which provide the validation and metadata information used by ASP.NET MVC 3 to determine how to render out these properties.  Now let’s assume we have a form which can edit this Order class, specifically let’s look at the ShipAddress property: @Html.LabelFor(x => x.Order.ShipAddress) @Html.EditorFor(x => x.Order.ShipAddress) @Html.ValidationMessageFor(x => x.Order.ShipAddress) .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now the Html.EditorFor() method is smart enough to look at the ShipAddress attributes and write out the necessary unobtrusive validation html attributes.  Note we could have used Html.TextBoxFor() or even Html.TextBox() and still retained the same results. If we view source on the input box generated by the Html.EditorFor() call, we get the following: <input type="text" value="Rua do Paço, 67" name="Order.ShipAddress" id="Order_ShipAddress" data-val-required="The ShipAddress field is required." data-val-length-max="12" data-val-length="The field ShipAddress must be a string with a maximum length of 12." data-val="true" class="text-box single-line input-validation-error"> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } As you can see, we have data-val-* attributes for both required and length, along with the proper error messages and additional data as necessary (in this case, we have the length-max=”12”). And of course, if we try to submit the form with an invalid value, we get an error on the client: Working with MvcContrib’s Fluent Html The MvcContrib project offers a fluent interface for creating Html elements which I find very expressive and useful, especially when it comes to creating select lists.  Let’s look at a few quick examples: @this.TextBox(x => x.FirstName).Class("required").Label("First Name:") @this.MultiSelect(x => x.UserId).Options(ViewModel.Users) @this.CheckBox("enabled").LabelAfter("Enabled").Title("Click to enable.").Styles(vertical_align => "middle")   @(this.Select("Order.OrderedBy").Options(Model.Customers, x => x.Id, x => x.CompanyName) .Selected(Model.Order.OrderedBy != null ? Model.Order.OrderedBy.Id : "") .FirstOption(null, "--Select A Company--") .HideFirstOptionWhen(Model.Order.OrderedBy != null) .Label("Ordered By:")) .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } These fluent html helpers create the normal html you would expect, and I think they make life a lot easier and more readable when dealing with complex markup or select list data models (look ma: no anonymous objects for creating class names!). Of course, the problem we have now is that MvcContrib’s fluent html helpers don’t know about ASP.NET MVC 3’s unobtrusive validation attributes and thus don’t take part in client validation on your page.  This is not ideal, so I wrote a quick helper method to extend fluent html with the knowledge of what unobtrusive validation attributes to include when they are rendered. Extending MvcContrib’s Fluent Html Before posting the code, there are just a few things you need to know.  The first is that all Fluent Html elements implement the IElement interface (MvcContrib.FluentHtml.Elements.IElement), and the second is that the base System.Web.Mvc.HtmlHelper has been extended with a method called GetUnobtrusiveValidationAttributes which we can use to determine the necessary attributes to include.  With this knowledge we can make quick work of extending fluent html: public static class FluentHtmlExtensions { public static T IncludeUnobtrusiveValidationAttributes<T>(this T element, HtmlHelper htmlHelper) where T : MvcContrib.FluentHtml.Elements.IElement { IDictionary<string, object> validationAttributes = htmlHelper .GetUnobtrusiveValidationAttributes(element.GetAttr("name"));   foreach (var validationAttribute in validationAttributes) { element.SetAttr(validationAttribute.Key, validationAttribute.Value); }   return element; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The code is pretty straight forward – basically we use a passed HtmlHelper to get a list of validation attributes for the current element and then add each of the returned attributes to the element to be rendered. The Extension In Action Now let’s get back to the earlier ShipAddress example and see what we’ve accomplished.  First we will use a fluent html helper to render out the ship address text input (this is the ‘before’ case): @this.TextBox("Order.ShipAddress").Label("Ship Address:").Class("class-name") .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } And the resulting HTML: <label id="Order_ShipAddress_Label" for="Order_ShipAddress">Ship Address:</label> <input type="text" value="Rua do Paço, 67" name="Order.ShipAddress" id="Order_ShipAddress" class="class-name"> Now let’s do the same thing except here we’ll use the newly written extension method: @this.TextBox("Order.ShipAddress").Label("Ship Address:") .Class("class-name").IncludeUnobtrusiveValidationAttributes(Html) .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } And the resulting HTML: <label id="Order_ShipAddress_Label" for="Order_ShipAddress">Ship Address:</label> <input type="text" value="Rua do Paço, 67" name="Order.ShipAddress" id="Order_ShipAddress" data-val-required="The ShipAddress field is required." data-val-length-max="12" data-val-length="The field ShipAddress must be a string with a maximum length of 12." data-val="true" class="class-name"> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Excellent!  Now we can continue to use unobtrusive validation and have the flexibility to use ASP.NET MVC’s Html helpers or MvcContrib’s fluent html helpers interchangeably, and every element will participate in client side validation. Wrap Up Overall I’m happy with this solution, although in the best case scenario MvcContrib would know about unobtrusive validation attributes and include them automatically (of course if it is enabled in the web.config file).  I know that MvcContrib allows you to author global behaviors, but that requires changing the base class of your views, which I am not willing to do. Enjoy!

    Read the article

  • C#/.NET Fundamentals: Choosing the Right Collection Class

    - by James Michael Hare
    The .NET Base Class Library (BCL) has a wide array of collection classes at your disposal which make it easy to manage collections of objects. While it's great to have so many classes available, it can be daunting to choose the right collection to use for any given situation. As hard as it may be, choosing the right collection can be absolutely key to the performance and maintainability of your application! This post will look at breaking down any confusion between each collection and the situations in which they excel. We will be spending most of our time looking at the System.Collections.Generic namespace, which is the recommended set of collections. The Generic Collections: System.Collections.Generic namespace The generic collections were introduced in .NET 2.0 in the System.Collections.Generic namespace. This is the main body of collections you should tend to focus on first, as they will tend to suit 99% of your needs right up front. It is important to note that the generic collections are unsynchronized. This decision was made for performance reasons because depending on how you are using the collections its completely possible that synchronization may not be required or may be needed on a higher level than simple method-level synchronization. Furthermore, concurrent read access (all writes done at beginning and never again) is always safe, but for concurrent mixed access you should either synchronize the collection or use one of the concurrent collections. So let's look at each of the collections in turn and its various pros and cons, at the end we'll summarize with a table to help make it easier to compare and contrast the different collections. The Associative Collection Classes Associative collections store a value in the collection by providing a key that is used to add/remove/lookup the item. Hence, the container associates the value with the key. These collections are most useful when you need to lookup/manipulate a collection using a key value. For example, if you wanted to look up an order in a collection of orders by an order id, you might have an associative collection where they key is the order id and the value is the order. The Dictionary<TKey,TVale> is probably the most used associative container class. The Dictionary<TKey,TValue> is the fastest class for associative lookups/inserts/deletes because it uses a hash table under the covers. Because the keys are hashed, the key type should correctly implement GetHashCode() and Equals() appropriately or you should provide an external IEqualityComparer to the dictionary on construction. The insert/delete/lookup time of items in the dictionary is amortized constant time - O(1) - which means no matter how big the dictionary gets, the time it takes to find something remains relatively constant. This is highly desirable for high-speed lookups. The only downside is that the dictionary, by nature of using a hash table, is unordered, so you cannot easily traverse the items in a Dictionary in order. The SortedDictionary<TKey,TValue> is similar to the Dictionary<TKey,TValue> in usage but very different in implementation. The SortedDictionary<TKey,TValye> uses a binary tree under the covers to maintain the items in order by the key. As a consequence of sorting, the type used for the key must correctly implement IComparable<TKey> so that the keys can be correctly sorted. The sorted dictionary trades a little bit of lookup time for the ability to maintain the items in order, thus insert/delete/lookup times in a sorted dictionary are logarithmic - O(log n). Generally speaking, with logarithmic time, you can double the size of the collection and it only has to perform one extra comparison to find the item. Use the SortedDictionary<TKey,TValue> when you want fast lookups but also want to be able to maintain the collection in order by the key. The SortedList<TKey,TValue> is the other ordered associative container class in the generic containers. Once again SortedList<TKey,TValue>, like SortedDictionary<TKey,TValue>, uses a key to sort key-value pairs. Unlike SortedDictionary, however, items in a SortedList are stored as an ordered array of items. This means that insertions and deletions are linear - O(n) - because deleting or adding an item may involve shifting all items up or down in the list. Lookup time, however is O(log n) because the SortedList can use a binary search to find any item in the list by its key. So why would you ever want to do this? Well, the answer is that if you are going to load the SortedList up-front, the insertions will be slower, but because array indexing is faster than following object links, lookups are marginally faster than a SortedDictionary. Once again I'd use this in situations where you want fast lookups and want to maintain the collection in order by the key, and where insertions and deletions are rare. The Non-Associative Containers The other container classes are non-associative. They don't use keys to manipulate the collection but rely on the object itself being stored or some other means (such as index) to manipulate the collection. The List<T> is a basic contiguous storage container. Some people may call this a vector or dynamic array. Essentially it is an array of items that grow once its current capacity is exceeded. Because the items are stored contiguously as an array, you can access items in the List<T> by index very quickly. However inserting and removing in the beginning or middle of the List<T> are very costly because you must shift all the items up or down as you delete or insert respectively. However, adding and removing at the end of a List<T> is an amortized constant operation - O(1). Typically List<T> is the standard go-to collection when you don't have any other constraints, and typically we favor a List<T> even over arrays unless we are sure the size will remain absolutely fixed. The LinkedList<T> is a basic implementation of a doubly-linked list. This means that you can add or remove items in the middle of a linked list very quickly (because there's no items to move up or down in contiguous memory), but you also lose the ability to index items by position quickly. Most of the time we tend to favor List<T> over LinkedList<T> unless you are doing a lot of adding and removing from the collection, in which case a LinkedList<T> may make more sense. The HashSet<T> is an unordered collection of unique items. This means that the collection cannot have duplicates and no order is maintained. Logically, this is very similar to having a Dictionary<TKey,TValue> where the TKey and TValue both refer to the same object. This collection is very useful for maintaining a collection of items you wish to check membership against. For example, if you receive an order for a given vendor code, you may want to check to make sure the vendor code belongs to the set of vendor codes you handle. In these cases a HashSet<T> is useful for super-quick lookups where order is not important. Once again, like in Dictionary, the type T should have a valid implementation of GetHashCode() and Equals(), or you should provide an appropriate IEqualityComparer<T> to the HashSet<T> on construction. The SortedSet<T> is to HashSet<T> what the SortedDictionary<TKey,TValue> is to Dictionary<TKey,TValue>. That is, the SortedSet<T> is a binary tree where the key and value are the same object. This once again means that adding/removing/lookups are logarithmic - O(log n) - but you gain the ability to iterate over the items in order. For this collection to be effective, type T must implement IComparable<T> or you need to supply an external IComparer<T>. Finally, the Stack<T> and Queue<T> are two very specific collections that allow you to handle a sequential collection of objects in very specific ways. The Stack<T> is a last-in-first-out (LIFO) container where items are added and removed from the top of the stack. Typically this is useful in situations where you want to stack actions and then be able to undo those actions in reverse order as needed. The Queue<T> on the other hand is a first-in-first-out container which adds items at the end of the queue and removes items from the front. This is useful for situations where you need to process items in the order in which they came, such as a print spooler or waiting lines. So that's the basic collections. Let's summarize what we've learned in a quick reference table.  Collection Ordered? Contiguous Storage? Direct Access? Lookup Efficiency Manipulate Efficiency Notes Dictionary No Yes Via Key Key: O(1) O(1) Best for high performance lookups. SortedDictionary Yes No Via Key Key: O(log n) O(log n) Compromise of Dictionary speed and ordering, uses binary search tree. SortedList Yes Yes Via Key Key: O(log n) O(n) Very similar to SortedDictionary, except tree is implemented in an array, so has faster lookup on preloaded data, but slower loads. List No Yes Via Index Index: O(1) Value: O(n) O(n) Best for smaller lists where direct access required and no ordering. LinkedList No No No Value: O(n) O(1) Best for lists where inserting/deleting in middle is common and no direct access required. HashSet No Yes Via Key Key: O(1) O(1) Unique unordered collection, like a Dictionary except key and value are same object. SortedSet Yes No Via Key Key: O(log n) O(log n) Unique ordered collection, like SortedDictionary except key and value are same object. Stack No Yes Only Top Top: O(1) O(1)* Essentially same as List<T> except only process as LIFO Queue No Yes Only Front Front: O(1) O(1) Essentially same as List<T> except only process as FIFO   The Original Collections: System.Collections namespace The original collection classes are largely considered deprecated by developers and by Microsoft itself. In fact they indicate that for the most part you should always favor the generic or concurrent collections, and only use the original collections when you are dealing with legacy .NET code. Because these collections are out of vogue, let's just briefly mention the original collection and their generic equivalents: ArrayList A dynamic, contiguous collection of objects. Favor the generic collection List<T> instead. Hashtable Associative, unordered collection of key-value pairs of objects. Favor the generic collection Dictionary<TKey,TValue> instead. Queue First-in-first-out (FIFO) collection of objects. Favor the generic collection Queue<T> instead. SortedList Associative, ordered collection of key-value pairs of objects. Favor the generic collection SortedList<T> instead. Stack Last-in-first-out (LIFO) collection of objects. Favor the generic collection Stack<T> instead. In general, the older collections are non-type-safe and in some cases less performant than their generic counterparts. Once again, the only reason you should fall back on these older collections is for backward compatibility with legacy code and libraries only. The Concurrent Collections: System.Collections.Concurrent namespace The concurrent collections are new as of .NET 4.0 and are included in the System.Collections.Concurrent namespace. These collections are optimized for use in situations where multi-threaded read and write access of a collection is desired. The concurrent queue, stack, and dictionary work much as you'd expect. The bag and blocking collection are more unique. Below is the summary of each with a link to a blog post I did on each of them. ConcurrentQueue Thread-safe version of a queue (FIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentStack Thread-safe version of a stack (LIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentBag Thread-safe unordered collection of objects. Optimized for situations where a thread may be bother reader and writer. For more information see: C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection ConcurrentDictionary Thread-safe version of a dictionary. Optimized for multiple readers (allows multiple readers under same lock). For more information see C#/.NET Little Wonders: The ConcurrentDictionary BlockingCollection Wrapper collection that implement producers & consumers paradigm. Readers can block until items are available to read. Writers can block until space is available to write (if bounded). For more information see C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection Summary The .NET BCL has lots of collections built in to help you store and manipulate collections of data. Understanding how these collections work and knowing in which situations each container is best is one of the key skills necessary to build more performant code. Choosing the wrong collection for the job can make your code much slower or even harder to maintain if you choose one that doesn’t perform as well or otherwise doesn’t exactly fit the situation. Remember to avoid the original collections and stick with the generic collections.  If you need concurrent access, you can use the generic collections if the data is read-only, or consider the concurrent collections for mixed-access if you are running on .NET 4.0 or higher.   Tweet Technorati Tags: C#,.NET,Collecitons,Generic,Concurrent,Dictionary,List,Stack,Queue,SortedList,SortedDictionary,HashSet,SortedSet

    Read the article

  • How do I use Java to sort surnames in alphabetical order from file to file?

    - by user577939
    I have written this code and don't know how to sort surnames in alphabetical order from my file to another file. import java.io.*; import java.util.*; class Asmuo { String pavarde; String vardas; long buvLaikas; int atv1; int atv2; int atv3; } class Irasas { Asmuo duom; Irasas kitas; } class Sarasas { private Irasas p; Sarasas() { p = null; } Irasas itrauktiElementa(String pv, String v, long laikas, int d0, int d1, int d2) { String pvrd, vrd; int data0; int data1; int data2; long lks; lks = laikas; pvrd = pv; vrd = v; data0 = d0; data1 = d1; data2 = d2; Irasas r = new Irasas(); r.duom = new Asmuo(); uzpildymasDuomenimis(r, pvrd, vrd, lks, d0, d1, d2); r.kitas = p; p = r; return r; } void uzpildymasDuomenimis(Irasas r, String pv, String v, long laik, int d0, int d1, int d2) { r.duom.pavarde = pv; r.duom.vardas = v; r.duom.atv1 = d0; r.duom.buvLaikas = laik; r.duom.atv2 = d1; r.duom.atv3 = d2; } void spausdinti() { Irasas d = p; int i = 0; try { FileWriter fstream = new FileWriter("rez.txt"); BufferedWriter rez = new BufferedWriter(fstream); while (d != null) { System.out.println(d.duom.pavarde + " " + d.duom.vardas + " " + d.duom.buvLaikas + " " + d.duom.atv1 + " " + d.duom.atv2 + " " + d.duom.atv3); rez.write(d.duom.pavarde + " " + d.duom.vardas + " " + d.duom.buvLaikas + " " + d.duom.atv1 + " " + d.duom.atv2 + " " + d.duom.atv3 + "\n"); d = d.kitas; i++; } rez.close(); } catch (Exception e) { System.err.println("Error: " + e.getMessage()); } } } public class Gyventojai { public static void main(String args[]) { Sarasas sar = new Sarasas(); Calendar atv = Calendar.getInstance(); Calendar isv = Calendar.getInstance(); try { FileInputStream fstream = new FileInputStream("duom.txt"); DataInputStream in = new DataInputStream(fstream); BufferedReader br = new BufferedReader(new InputStreamReader(in)); String eil; while ((eil = br.readLine()) != null) { String[] cells = eil.split(" "); String pvrd = cells[0]; String vrd = cells[1]; atv.set(Integer.parseInt(cells[2]), Integer.parseInt(cells[3]), Integer.parseInt(cells[4])); isv.set(Integer.parseInt(cells[5]), Integer.parseInt(cells[6]), Integer.parseInt(cells[7])); long laik = (isv.getTimeInMillis() - atv.getTimeInMillis()) / (24 * 60 * 60 * 1000); int d0 = Integer.parseInt(cells[2]); int d1 = Integer.parseInt(cells[3]); int d2 = Integer.parseInt(cells[4]); sar.itrauktiElementa(pvrd, vrd, laik, d0, d1, d2); } in.close(); } catch (Exception e) { System.err.println("Error: " + e.getMessage()); } sar.spausdinti(); } }

    Read the article

  • HTML, CSS: how can I merge these divs in order to use float:left property on their children ?

    - by Patrick
    hi, I've 2 sets of thumbnails and in each set I'm displaying them one nearby each other in 4 columns using float:left. I would like to "merge" the 2 sets (but I cannot change the html code) because I want the thumbnails of the second set floating right after the last thumbnail of the first set. In other terms, if in the last row there are only 2 thumbnails and the last 2 columns are empty, the thumbnails of the second set should fill the empty columns of the last row of the first set. This is the code... <div class="field field-type-filefield field-field-image"> <div class="field-items"> <div class="field-item odd"> <a rel="lightbox[field_image][First image&lt;br /&gt;&lt;br /&gt;&lt;a href=&quot;/lancelmaat/content/stalkshow&quot; id=&quot;node_link_text&quot; class=&quot;active&quot;&gt;View Image Details&lt;/a&gt;]" href="http://localhost/lancelmaat/sites/default/files/files/projects/Stalkshow/images/LPrisPetjong.jpeg" class="lightbox-processed"><img width="89" height="89" title="" alt="First image" src="http://localhost/lancelmaat/sites/default/files/imagecache/galleryImage/files/projects/Stalkshow/images/LPrisPetjong.jpeg"></a> </div> <div class="field-item even"> <a rel="lightbox[field_image][Second image&lt;br /&gt;&lt;br /&gt;&lt;a href=&quot;/lancelmaat/content/stalkshow&quot; id=&quot;node_link_text&quot; class=&quot;active&quot;&gt;View Image Details&lt;/a&gt;]" href="http://localhost/lancelmaat/sites/default/files/files/projects/Stalkshow/images/SeoulLEDScreen2a.jpeg" class="lightbox-processed"><img width="89" height="89" title="" alt="Second image" src="http://localhost/lancelmaat/sites/default/files/imagecache/galleryImage/files/projects/Stalkshow/images/SeoulLEDScreen2a.jpeg"></a> </div> <div class="field-item odd"> <a rel="lightbox[field_image][Third image&lt;br /&gt;&lt;br /&gt;&lt;a href=&quot;/lancelmaat/content/stalkshow&quot; id=&quot;node_link_text&quot; class=&quot;active&quot;&gt;View Image Details&lt;/a&gt;]" href="http://localhost/lancelmaat/sites/default/files/files/projects/Stalkshow/images/SeoulSKT6.jpeg" class="lightbox-processed"><img width="89" height="89" title="" alt="Third image" src="http://localhost/lancelmaat/sites/default/files/imagecache/galleryImage/files/projects/Stalkshow/images/SeoulSKT6.jpeg"></a> </div> </div> <!-- second set --> <div class="field field-type-filefield field-field-video"> <div class="field-items"> <div class="field-item odd"> <a rel="lightbox[field_video][Video Number 1&lt;br /&gt;&lt;br /&gt;&lt;a href=&quot;/lancelmaat/content/stalkshow&quot; id=&quot;node_link_text&quot; class=&quot;active&quot;&gt;View Image Details&lt;/a&gt;]" href="http://localhost/lancelmaat/sites/default/files/files/projects/Stalkshow/videos/StalkSeoul8d1Mbps.flv" class="lightbox-processed"><img title="" alt="Video Number 1" src="http://localhost/lancelmaat/sites/default/files/imagecache/galleryVideo/files/projects/Stalkshow/videos/StalkSeoul8d1Mbps.flv"></a> </div> <div class="field-item even"> <a rel="lightbox[field_video][Video Number 2&lt;br /&gt;&lt;br /&gt;&lt;a href=&quot;/lancelmaat/content/stalkshow&quot; id=&quot;node_link_text&quot; class=&quot;active&quot;&gt;View Image Details&lt;/a&gt;]" href="http://localhost/lancelmaat/sites/default/files/files/projects/Stalkshow/videos/stalkshowdvd21Mbps.flv" class="lightbox-processed"><img title="" alt="Video Number 2" src="http://localhost/lancelmaat/sites/default/files/imagecache/galleryVideo/files/projects/Stalkshow/videos/stalkshowdvd21Mbps.flv"></a> </div> <div class="field-item odd"> <a rel="lightbox[field_video][Video Number 3&lt;br /&gt;&lt;br /&gt;&lt;a href=&quot;/lancelmaat/content/stalkshow&quot; id=&quot;node_link_text&quot; class=&quot;active&quot;&gt;View Image Details&lt;/a&gt;]" href="http://localhost/lancelmaat/sites/default/files/files/projects/Stalkshow/videos/StalkShowMoscow1Mbps.flv" class="lightbox-processed"><img title="" alt="Video Number 3" src="http://localhost/lancelmaat/sites/default/files/imagecache/galleryVideo/files/projects/Stalkshow/videos/StalkShowMoscow1Mbps.flv"></a> </div> </div> </div> How can I merge these divs in order to use float:left property on their children ? thanks

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • Python regex to parse text file, get the items in list and count the list

    - by Nemo
    I have a text file which contains some data. I m particularly interested in finding the count of the number of items in v_dims v_dims pattern in my text file looks like this : v_dims={ "Sales", "Product Family", "Sales Organization", "Region", "Sales Area", "Sales office", "Sales Division", "Sales Person", "Sales Channel", "Sales Order Type", "Sales Number", "Sales Person", "Sales Quantity", "Sales Amount" } So I m thinking of getting all the elements in v_dims and dumping them out in a Python list. Then compute the len(mylist) to get the count of the items. The challenge is in getting all the elements of v_dims from my text file and putting them in an empty list. I m particularly interested in items in v_dims in my text file. The text file has data in the form of v_dims pattern i showed in my original post. Some data has nested patterns of v_dims. Thanks. Here's what I have tried and failed. Any help is appreciated. TIA. import re fname = "C:\Users\XXXX\Test.mrk" with open(fname, "r") as fo: content_as_string = fo.read() match = re.findall(r'v_dims={\"(.+?)\"}',content_as_string) Though I have a big text file, Here's a snippet of what's the structure of my text file version "1"; // Computer generated object language file object 'MRKR' "Main" { Data_Type=2, HeaderBlock={ Version_String="6.3 (25)" }, Printer_Info={ Orientation=0, Page_Width=8.50000000, Page_Height=11.00000000, Page_Header="", Page_Footer="", Margin_type=0, Top_Margin=0.50000000, Left_Margin=0.50000000, Bottom_Margin=0.50000000, Right_Margin=0.50000000 }, Marker_Options={ Close_All="TRUE", Hide_Console="FALSE", Console_Left="FALSE", Console_Width=217, Main_Style="Maximized", MDI_Rect={ 0, 0, 892, 1063 } }, Dives={ { Dive="A", Windows={ { View_Index=0, Window_Info={ Window_Rect={ 0, -288, 400, 1008 }, Window_Style="Maximized Front", Window_Name="Theater [Previous Qtr Diveplan-Dive A]" }, Dependent_bool="FALSE", Colset={ Dive_Type="Normal", Dimension_Name="Theater", Action_List={ Actions={ { Action_Type="Select", select_type=5 }, { Action_Type="Select", select_type=0, Key_Names={ "Theater" }, Key_Indexes={ { "AMERICAS" } } }, { Action_Type="Focus", Focus_Rows="True" }, { Action_Type="Dimensions", v_dims={ "Theater", "Product Family", "Division", "Region", "Install at Country Name", "Connect Home Type", "Connect In Type", "SymmConnect Enabled", "Connect Home Refusal Reason", "Sales Order Channel Type", "Maintained By Group", "PS Flag", "Avalanche Flag", "Product Item Family" }, Xtab_Bool="False", Xtab_Flip="False" }, { Action_Type="Select", select_type=5 }, { Action_Type="Select", select_type=0, Key_Names={ "Theater", "Product Family", "Division", "Region", "Install at Country Name", "Connect Home Type", "Connect In Type", "SymmConnect Enabled", "Connect Home Refusal Reason", "Sales Order Channel Type", "Maintained By Group", "PS Flag", "Avalanche Flag" }, Key_Indexes={ { "AMERICAS", "ATMOS", "Latin America CS Division", "37000 CS Region", "Mexico", "", "", "", "", "DIRECT", "EMC", "N", "0" } } } } }, Num_Palette_cols=0, Num_Palette_rows=0 }, Format={ Window_Type="Tabular", Tabular={ Num_row_labels=8 } } } } } }, Widget_Set={ Widget_Layout="Vertical", Go_Button=1, Picklist_Width=0, Sort_Subset_Dimensions="TRUE", Order={ } }, Views={ { Data_Type=1, dbname="Previous Qtr Diveplan", diveline_dbname="Current Qtr Diveplan", logical_name="Current Qtr Diveplan", cols={ { name="Total TSS installs", column_type="Calc[Total TSS installs]", output_type="Number", format_string="." }, { name="TSS Valid Connectivity Records", column_type="Calc[TSS Valid Connectivity Records]", output_type="Number", format_string="." }, { name="% TSS Connectivity Record", column_type="Calc[% TSS Connectivity Record]", output_type="Number" }, { name="TSS Not Applicable", column_type="Calc[TSS Not Applicable]", output_type="Number", format_string="." }, { name="TSS Customer Refusals", column_type="Calc[TSS Customer Refusals]", output_type="Number", format_string="." }, { name="% TSS Refusals", column_type="Calc[% TSS Refusals]", output_type="Number" }, { name="TSS Eligible for Physical Connectivity", column_type="Calc[TSS Eligible for Physical Connectivity]", output_type="Number", format_string="." }, { name="TSS Boxes with Physical Connectivty", column_type="Calc[TSS Boxes with Physical Connectivty]", output_type="Number", format_string="." }, { name="% TSS Physical Connectivity", column_type="Calc[% TSS Physical Connectivity]", output_type="Number" } }, dim_cols={ { name="Model", column_type="Dimension[Model]", output_type="None" }, { name="Model", column_type="Dimension[Model]", output_type="None" }, { name="Connect In Type", column_type="Dimension[Connect In Type]", output_type="None" }, { name="Connect Home Type", column_type="Dimension[Connect Home Type]", output_type="None" }, { name="SymmConnect Enabled", column_type="Dimension[SymmConnect Enabled]", output_type="None" }, { name="Theater", column_type="Dimension[Theater]", output_type="None" }, { name="Division", column_type="Dimension[Division]", output_type="None" }, { name="Region", column_type="Dimension[Region]", output_type="None" }, { name="Sales Order Number", column_type="Dimension[Sales Order Number]", output_type="None" }, { name="Product Item Family", column_type="Dimension[Product Item Family]", output_type="None" }, { name="Item Serial Number", column_type="Dimension[Item Serial Number]", output_type="None" }, { name="Sales Order Deal Number", column_type="Dimension[Sales Order Deal Number]", output_type="None" }, { name="Item Install Date", column_type="Dimension[Item Install Date]", output_type="None" }, { name="SYR Last Dial Home Date", column_type="Dimension[SYR Last Dial Home Date]", output_type="None" }, { name="Maintained By Group", column_type="Dimension[Maintained By Group]", output_type="None" }, { name="PS Flag", column_type="Dimension[PS Flag]", output_type="None" }, { name="Connect Home Refusal Reason", column_type="Dimension[Connect Home Refusal Reason]", output_type="None", col_width=177 }, { name="Cust Name", column_type="Dimension[Cust Name]", output_type="None" }, { name="Sales Order Channel Type", column_type="Dimension[Sales Order Channel Type]", output_type="None" }, { name="Sales Order Type", column_type="Dimension[Sales Order Type]", output_type="None" }, { name="Part Model Key", column_type="Dimension[Part Model Key]", output_type="None" }, { name="Ship Date", column_type="Dimension[Ship Date]", output_type="None" }, { name="Model Number", column_type="Dimension[Model Number]", output_type="None" }, { name="Item Description", column_type="Dimension[Item Description]", output_type="None" }, { name="Customer Classification", column_type="Dimension[Customer Classification]", output_type="None" }, { name="CS Customer Name", column_type="Dimension[CS Customer Name]", output_type="None" }, { name="Install At Customer Number", column_type="Dimension[Install At Customer Number]", output_type="None" }, { name="Install at Country Name", column_type="Dimension[Install at Country Name]", output_type="None" }, { name="TLA Serial Number", column_type="Dimension[TLA Serial Number]", output_type="None" }, { name="Product Version", column_type="Dimension[Product Version]", output_type="None" }, { name="Avalanche Flag", column_type="Dimension[Avalanche Flag]", output_type="None" }, { name="Product Family", column_type="Dimension[Product Family]", output_type="None" }, { name="Project Number", column_type="Dimension[Project Number]", output_type="None" }, { name="PROJECT_STATUS", column_type="Dimension[PROJECT_STATUS]", output_type="None" } }, Available_Columns={ "Total TSS installs", "TSS Valid Connectivity Records", "% TSS Connectivity Record", "TSS Not Applicable", "TSS Customer Refusals", "% TSS Refusals", "TSS Eligible for Physical Connectivity", "TSS Boxes with Physical Connectivty", "% TSS Physical Connectivity", "Total Installs", "All Boxes with Valid Connectivty Record", "% All Connectivity Record", "Overall Refusals", "Overall Refusals %", "All Eligible for Physical Connectivty", "Boxes with Physical Connectivity", "% All with Physical Conectivity" }, Remaining_columns={ { name="Total Installs", column_type="Calc[Total Installs]", output_type="Number", format_string="." }, { name="All Boxes with Valid Connectivty Record", column_type="Calc[All Boxes with Valid Connectivty Record]", output_type="Number", format_string="." }, { name="% All Connectivity Record", column_type="Calc[% All Connectivity Record]", output_type="Number" }, { name="Overall Refusals", column_type="Calc[Overall Refusals]", output_type="Number", format_string="." }, { name="Overall Refusals %", column_type="Calc[Overall Refusals %]", output_type="Number" }, { name="All Eligible for Physical Connectivty", column_type="Calc[All Eligible for Physical Connectivty]", output_type="Number" }, { name="Boxes with Physical Connectivity", column_type="Calc[Boxes with Physical Connectivity]", output_type="Number" }, { name="% All with Physical Conectivity", column_type="Calc[% All with Physical Conectivity]", output_type="Number" } }, calcs={ { name="Total TSS installs", definition="Total[Total TSS installs]", ts_flag="Not TS Calc" }, { name="TSS Valid Connectivity Records", definition="Total[PS Boxes w/ valid connectivity record (1=yes)]", ts_flag="Not TS Calc" }, { name="% TSS Connectivity Record", definition="Total[PS Boxes w/ valid connectivity record (1=yes)] /Total[Total TSS installs]", ts_flag="Not TS Calc" }, { name="TSS Not Applicable", definition="Total[Bozes w/ valid connectivity record (1=yes)]-Total[Boxes Eligible (1=yes)]-Total[TSS Refusals]", ts_flag="Not TS Calc" }, { name="TSS Customer Refusals", definition="Total[TSS Refusals]", ts_flag="Not TS Calc" }, { name="% TSS Refusals", definition="Total[TSS Refusals]/Total[PS Boxes w/ valid connectivity record (1=yes)]", ts_flag="Not TS Calc" }, { name="TSS Eligible for Physical Connectivity", definition="Total[TSS Eligible]-Total[Exception]", ts_flag="Not TS Calc" }, { name="TSS Boxes with Physical Connectivty", definition="Total[PS Physical Connectivity] - Total[PS Physical Connectivity, SymmConnect Enabled=\"Capable not enabled\"]", ts_flag="Not TS Calc" }, { name="% TSS Physical Connectivity", definition="Total[Boxes w/ phys conn]/Total[Boxes Eligible (1=yes)]", ts_flag="Not TS Calc" }, { name="Total Installs", definition="Total[Total Installs]", ts_flag="Not TS Calc" }, { name="All Boxes with Valid Connectivty Record", definition="Total[Bozes w/ valid connectivity record (1=yes)]", ts_flag="Not TS Calc" }, { name="% All Connectivity Record", definition="Total[Bozes w/ valid connectivity record (1=yes)]/Total[Total Installs]", ts_flag="Not TS Calc" }, { name="Overall Refusals", definition="Total[Overall Refusals]", ts_flag="Not TS Calc" }, { name="Overall Refusals %", definition="Total[Overall Refusals]/Total[Bozes w/ valid connectivity record (1=yes)]", ts_flag="Not TS Calc" }, { name="All Eligible for Physical Connectivty", definition="Total[Boxes Eligible (1=yes)]-Total[Exception]", ts_flag="Not TS Calc" }, { name="Boxes with Physical Connectivity", definition="Total[Boxes w/ phys conn]-Total[Boxes w/ phys conn,SymmConnect Enabled=\"Capable not enabled\"]", ts_flag="Not TS Calc" }, { name="% All with Physical Conectivity", definition="Total[Boxes w/ phys conn]/Total[Boxes Eligible (1=yes)]", ts_flag="Not TS Calc" } }, merge_type="consolidate", merge_dbs={ { dbname="connectivityallproducts.mdl", diveline_dbname="/DI_PSREPORTING/connectivityallproducts.mdl" } }, skip_constant_columns="FALSE", categories={ { name="Geography", dimensions={ "Theater", "Division", "Region", "Install at Country Name" } }, { name="Mappings and Flags", dimensions={ "Connect Home Type", "Connect In Type", "SymmConnect Enabled", "Connect Home Refusal Reason", "Sales Order Channel Type", "Maintained By Group", "Customer Installable", "PS Flag", "Top Level Flag", "Avalanche Flag" } }, { name="Product Information", dimensions={ "Product Family", "Product Item Family", "Product Version", "Item Description" } }, { name="Sales Order Info", dimensions={ "Sales Order Deal Number", "Sales Order Number", "Sales Order Type" } }, { name="Dates", dimensions={ "Item Install Date", "Ship Date", "SYR Last Dial Home Date" } }, { name="Details", dimensions={ "Item Serial Number", "TLA Serial Number", "Part Model Key", "Model Number" } }, { name="Customer Infor", dimensions={ "CS Customer Name", "Install At Customer Number", "Customer Classification", "Cust Name" } }, { name="Other Dimensions", dimensions={ "Model" } } }, Maintain_Category_Order="FALSE", popup_info="false" } } };

    Read the article

< Previous Page | 78 79 80 81 82 83 84 85 86 87 88 89  | Next Page >