Search Results

Search found 35177 results on 1408 pages for 'shared object'.

Page 82/1408 | < Previous Page | 78 79 80 81 82 83 84 85 86 87 88 89  | Next Page >

  • unexpected behaviour of object stored in web service Session

    - by draconis
    Hi. I'm using Session variables inside a web service to maintain state between successive method calls by an external application called QBWC. I set this up by decorating my web service methods with this attribute: [WebMethod(EnableSession = true)] I'm using the Session variable to store an instance of a custom object called QueueManager. The QueueManager has a property called ChangeQueue which looks like this: [Serializable] public class QueueManager { ... public Queue<QBChange> ChangeQueue { get; set; } ... where QBChange is a custom business object belonging to my web service. Now, every time I get a call to a method in my web service, I use this code to retrieve my QueueManager object and access my queue: QueueManager qm = (QueueManager)Session[ticket]; then I remove an object from the queue, using qm.dequeue() and then I save the modified query manager object (modified because it contains one less object in the queue) back to the Session variable, like so: Session[ticket] = qm; ready for the next web service method call using the same ticket. Now here's the thing: if I comment out this last line //Session[ticket] = qm; , then the web service behaves exactly the same way, reducing the size of the queue between method calls. Now why is that? The web service seems to be updating a class contained in serialized form in a Session variable without being asked to. Why would it do that? When I deserialize my Queuemanager object, does the qm variable hold a reference to the serialized object inside the Session[ticket] variable?? This seems very unlikely.

    Read the article

  • Determining if object is visible and clickable

    - by Alan Mendelevich
    I'm looking for ways to effectively determine if a control is actually visible and clickable. I mean beyond checking Visibility property of the object. I can check RenderSize and that would be [0,0] if any of the parent elements is collapsed. So this is simple too. I can also traverse up the visual tree and see if Opacity of all elements is set to 1. What I don't know how to check nicely are these scenarios: The object is obstructed by some other object. Obviously it's possible to use FindElementsInHostCoordinates() and do computations to find out how much these objects obstruct but this could be an overkill. I can also make a "screenshot" of the object in question and "screenshot" of the whole page and check if pixels where my object should be match the actual object pixels. That sounds like an overkill too. The object is obstructed by a transparent object that still "swallows" clicks (taps). The workarounds for the first problem could still fail in this scenario. Any better ideas? Do I miss something? Thanks!

    Read the article

  • How LINQ to Object statements work

    - by rajbk
    This post goes into detail as to now LINQ statements work when querying a collection of objects. This topic assumes you have an understanding of how generics, delegates, implicitly typed variables, lambda expressions, object/collection initializers, extension methods and the yield statement work. I would also recommend you read my previous two posts: Using Delegates in C# Part 1 Using Delegates in C# Part 2 We will start by writing some methods to filter a collection of data. Assume we have an Employee class like so: 1: public class Employee { 2: public int ID { get; set;} 3: public string FirstName { get; set;} 4: public string LastName {get; set;} 5: public string Country { get; set; } 6: } and a collection of employees like so: 1: var employees = new List<Employee> { 2: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 3: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 4: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 5: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 6: }; Filtering We wish to  find all employees that have an even ID. We could start off by writing a method that takes in a list of employees and returns a filtered list of employees with an even ID. 1: static List<Employee> GetEmployeesWithEvenID(List<Employee> employees) { 2: var filteredEmployees = new List<Employee>(); 3: foreach (Employee emp in employees) { 4: if (emp.ID % 2 == 0) { 5: filteredEmployees.Add(emp); 6: } 7: } 8: return filteredEmployees; 9: } The method can be rewritten to return an IEnumerable<Employee> using the yield return keyword. 1: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 2: foreach (Employee emp in employees) { 3: if (emp.ID % 2 == 0) { 4: yield return emp; 5: } 6: } 7: } We put these together in a console application. 1: using System; 2: using System.Collections.Generic; 3: //No System.Linq 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" }, 15: }; 16: var filteredEmployees = GetEmployeesWithEvenID(employees); 17:  18: foreach (Employee emp in filteredEmployees) { 19: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 20: emp.ID, emp.FirstName, emp.LastName, emp.Country); 21: } 22:  23: Console.ReadLine(); 24: } 25: 26: static IEnumerable<Employee> GetEmployeesWithEvenID(IEnumerable<Employee> employees) { 27: foreach (Employee emp in employees) { 28: if (emp.ID % 2 == 0) { 29: yield return emp; 30: } 31: } 32: } 33: } 34:  35: public class Employee { 36: public int ID { get; set;} 37: public string FirstName { get; set;} 38: public string LastName {get; set;} 39: public string Country { get; set; } 40: } Output: ID 2 First_Name Jim Last_Name Ashlock Country UK ID 4 First_Name Jill Last_Name Anderson Country AUS Our filtering method is too specific. Let us change it so that it is capable of doing different types of filtering and lets give our method the name Where ;-) We will add another parameter to our Where method. This additional parameter will be a delegate with the following declaration. public delegate bool Filter(Employee emp); The idea is that the delegate parameter in our Where method will point to a method that contains the logic to do our filtering thereby freeing our Where method from any dependency. The method is shown below: 1: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 2: foreach (Employee emp in employees) { 3: if (filter(emp)) { 4: yield return emp; 5: } 6: } 7: } Making the change to our app, we create a new instance of the Filter delegate on line 14 with a target set to the method EmployeeHasEvenId. Running the code will produce the same output. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, filterDelegate); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  37: public class Employee { 38: public int ID { get; set;} 39: public string FirstName { get; set;} 40: public string LastName {get; set;} 41: public string Country { get; set; } 42: } Lets use lambda expressions to inline the contents of the EmployeeHasEvenId method in place of the method. The next code snippet shows this change (see line 15).  For brevity, the Employee class declaration has been skipped. 1: public delegate bool Filter(Employee emp); 2:  3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: var employees = new List<Employee> { 9: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 10: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 11: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 12: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 13: }; 14: var filterDelegate = new Filter(EmployeeHasEvenId); 15: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 16:  17: foreach (Employee emp in filteredEmployees) { 18: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 19: emp.ID, emp.FirstName, emp.LastName, emp.Country); 20: } 21: Console.ReadLine(); 22: } 23: 24: static bool EmployeeHasEvenId(Employee emp) { 25: return emp.ID % 2 == 0; 26: } 27: 28: static IEnumerable<Employee> Where(IEnumerable<Employee> employees, Filter filter) { 29: foreach (Employee emp in employees) { 30: if (filter(emp)) { 31: yield return emp; 32: } 33: } 34: } 35: } 36:  The output displays the same two employees.  Our Where method is too restricted since it works with a collection of Employees only. Lets change it so that it works with any IEnumerable<T>. In addition, you may recall from my previous post,  that .NET 3.5 comes with a lot of predefined delegates including public delegate TResult Func<T, TResult>(T arg); We will get rid of our Filter delegate and use the one above instead. We apply these two changes to our code. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14:  15: foreach (Employee emp in filteredEmployees) { 16: Console.WriteLine("ID {0} First_Name {1} Last_Name {2} Country {3}", 17: emp.ID, emp.FirstName, emp.LastName, emp.Country); 18: } 19: Console.ReadLine(); 20: } 21: 22: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 23: foreach (var x in source) { 24: if (filter(x)) { 25: yield return x; 26: } 27: } 28: } 29: } We have successfully implemented a way to filter any IEnumerable<T> based on a  filter criteria. Projection Now lets enumerate on the items in the IEnumerable<Employee> we got from the Where method and copy them into a new IEnumerable<EmployeeFormatted>. The EmployeeFormatted class will only have a FullName and ID property. 1: public class EmployeeFormatted { 2: public int ID { get; set; } 3: public string FullName {get; set;} 4: } We could “project” our existing IEnumerable<Employee> into a new collection of IEnumerable<EmployeeFormatted> with the help of a new method. We will call this method Select ;-) 1: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 2: foreach (var emp in employees) { 3: yield return new EmployeeFormatted { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; 7: } 8: } The changes are applied to our app. 1: public class Program 2: { 3: [STAThread] 4: static void Main(string[] args) 5: { 6: var employees = new List<Employee> { 7: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 8: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 9: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 10: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 11: }; 12:  13: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 14: var formattedEmployees = Select(filteredEmployees); 15:  16: foreach (EmployeeFormatted emp in formattedEmployees) { 17: Console.WriteLine("ID {0} Full_Name {1}", 18: emp.ID, emp.FullName); 19: } 20: Console.ReadLine(); 21: } 22:  23: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 24: foreach (var x in source) { 25: if (filter(x)) { 26: yield return x; 27: } 28: } 29: } 30: 31: static IEnumerable<EmployeeFormatted> Select(IEnumerable<Employee> employees) { 32: foreach (var emp in employees) { 33: yield return new EmployeeFormatted { 34: ID = emp.ID, 35: FullName = emp.LastName + ", " + emp.FirstName 36: }; 37: } 38: } 39: } 40:  41: public class Employee { 42: public int ID { get; set;} 43: public string FirstName { get; set;} 44: public string LastName {get; set;} 45: public string Country { get; set; } 46: } 47:  48: public class EmployeeFormatted { 49: public int ID { get; set; } 50: public string FullName {get; set;} 51: } Output: ID 2 Full_Name Ashlock, Jim ID 4 Full_Name Anderson, Jill We have successfully selected employees who have an even ID and then shaped our data with the help of the Select method so that the final result is an IEnumerable<EmployeeFormatted>.  Lets make our Select method more generic so that the user is given the freedom to shape what the output would look like. We can do this, like before, with lambda expressions. Our Select method is changed to accept a delegate as shown below. TSource will be the type of data that comes in and TResult will be the type the user chooses (shape of data) as returned from the selector delegate. 1:  2: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 3: foreach (var x in source) { 4: yield return selector(x); 5: } 6: } We see the new changes to our app. On line 15, we use lambda expression to specify the shape of the data. In this case the shape will be of type EmployeeFormatted. 1:  2: public class Program 3: { 4: [STAThread] 5: static void Main(string[] args) 6: { 7: var employees = new List<Employee> { 8: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 9: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 10: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 11: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 12: }; 13:  14: var filteredEmployees = Where(employees, emp => emp.ID % 2 == 0); 15: var formattedEmployees = Select(filteredEmployees, (emp) => 16: new EmployeeFormatted { 17: ID = emp.ID, 18: FullName = emp.LastName + ", " + emp.FirstName 19: }); 20:  21: foreach (EmployeeFormatted emp in formattedEmployees) { 22: Console.WriteLine("ID {0} Full_Name {1}", 23: emp.ID, emp.FullName); 24: } 25: Console.ReadLine(); 26: } 27: 28: static IEnumerable<T> Where<T>(IEnumerable<T> source, Func<T, bool> filter) { 29: foreach (var x in source) { 30: if (filter(x)) { 31: yield return x; 32: } 33: } 34: } 35: 36: static IEnumerable<TResult> Select<TSource, TResult>(IEnumerable<TSource> source, Func<TSource, TResult> selector) { 37: foreach (var x in source) { 38: yield return selector(x); 39: } 40: } 41: } The code outputs the same result as before. On line 14 we filter our data and on line 15 we project our data. What if we wanted to be more expressive and concise? We could combine both line 14 and 15 into one line as shown below. Assuming you had to perform several operations like this on our collection, you would end up with some very unreadable code! 1: var formattedEmployees = Select(Where(employees, emp => emp.ID % 2 == 0), (emp) => 2: new EmployeeFormatted { 3: ID = emp.ID, 4: FullName = emp.LastName + ", " + emp.FirstName 5: }); A cleaner way to write this would be to give the appearance that the Select and Where methods were part of the IEnumerable<T>. This is exactly what extension methods give us. Extension methods have to be defined in a static class. Let us make the Select and Where extension methods on IEnumerable<T> 1: public static class MyExtensionMethods { 2: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 3: foreach (var x in source) { 4: if (filter(x)) { 5: yield return x; 6: } 7: } 8: } 9: 10: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 11: foreach (var x in source) { 12: yield return selector(x); 13: } 14: } 15: } The creation of the extension method makes the syntax much cleaner as shown below. We can write as many extension methods as we want and keep on chaining them using this technique. 1: var formattedEmployees = employees 2: .Where(emp => emp.ID % 2 == 0) 3: .Select (emp => new EmployeeFormatted { ID = emp.ID, FullName = emp.LastName + ", " + emp.FirstName }); Making these changes and running our code produces the same result. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new EmployeeFormatted { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (EmployeeFormatted emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } 55:  56: public class EmployeeFormatted { 57: public int ID { get; set; } 58: public string FullName {get; set;} 59: } Let’s change our code to return a collection of anonymous types and get rid of the EmployeeFormatted type. We see that the code produces the same output. 1: using System; 2: using System.Collections.Generic; 3:  4: public class Program 5: { 6: [STAThread] 7: static void Main(string[] args) 8: { 9: var employees = new List<Employee> { 10: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 11: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 12: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 13: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 14: }; 15:  16: var formattedEmployees = employees 17: .Where(emp => emp.ID % 2 == 0) 18: .Select (emp => 19: new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: } 23: ); 24:  25: foreach (var emp in formattedEmployees) { 26: Console.WriteLine("ID {0} Full_Name {1}", 27: emp.ID, emp.FullName); 28: } 29: Console.ReadLine(); 30: } 31: } 32:  33: public static class MyExtensionMethods { 34: public static IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> filter) { 35: foreach (var x in source) { 36: if (filter(x)) { 37: yield return x; 38: } 39: } 40: } 41: 42: public static IEnumerable<TResult> Select<TSource, TResult>(this IEnumerable<TSource> source, Func<TSource, TResult> selector) { 43: foreach (var x in source) { 44: yield return selector(x); 45: } 46: } 47: } 48:  49: public class Employee { 50: public int ID { get; set;} 51: public string FirstName { get; set;} 52: public string LastName {get; set;} 53: public string Country { get; set; } 54: } To be more expressive, C# allows us to write our extension method calls as a query expression. Line 16 can be rewritten a query expression like so: 1: var formattedEmployees = from emp in employees 2: where emp.ID % 2 == 0 3: select new { 4: ID = emp.ID, 5: FullName = emp.LastName + ", " + emp.FirstName 6: }; When the compiler encounters an expression like the above, it simply rewrites it as calls to our extension methods.  So far we have been using our extension methods. The System.Linq namespace contains several extension methods for objects that implement the IEnumerable<T>. You can see a listing of these methods in the Enumerable class in the System.Linq namespace. Let’s get rid of our extension methods (which I purposefully wrote to be of the same signature as the ones in the Enumerable class) and use the ones provided in the Enumerable class. Our final code is shown below: 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; //Added 4:  5: public class Program 6: { 7: [STAThread] 8: static void Main(string[] args) 9: { 10: var employees = new List<Employee> { 11: new Employee { ID = 1, FirstName = "John", LastName = "Wright", Country = "USA" }, 12: new Employee { ID = 2, FirstName = "Jim", LastName = "Ashlock", Country = "UK" }, 13: new Employee { ID = 3, FirstName = "Jane", LastName = "Jackson", Country = "CHE" }, 14: new Employee { ID = 4, FirstName = "Jill", LastName = "Anderson", Country = "AUS" } 15: }; 16:  17: var formattedEmployees = from emp in employees 18: where emp.ID % 2 == 0 19: select new { 20: ID = emp.ID, 21: FullName = emp.LastName + ", " + emp.FirstName 22: }; 23:  24: foreach (var emp in formattedEmployees) { 25: Console.WriteLine("ID {0} Full_Name {1}", 26: emp.ID, emp.FullName); 27: } 28: Console.ReadLine(); 29: } 30: } 31:  32: public class Employee { 33: public int ID { get; set;} 34: public string FirstName { get; set;} 35: public string LastName {get; set;} 36: public string Country { get; set; } 37: } 38:  39: public class EmployeeFormatted { 40: public int ID { get; set; } 41: public string FullName {get; set;} 42: } This post has shown you a basic overview of LINQ to Objects work by showning you how an expression is converted to a sequence of calls to extension methods when working directly with objects. It gets more interesting when working with LINQ to SQL where an expression tree is constructed – an in memory data representation of the expression. The C# compiler compiles these expressions into code that builds an expression tree at runtime. The provider can then traverse the expression tree and generate the appropriate SQL query. You can read more about expression trees in this MSDN article.

    Read the article

  • How Does AutoPatch Handle Shared E-Business Suite Products?

    - by Steven Chan
    Space... is big. Really big. You just won't believe how vastly hugely mindbogglingly big it is.~ Douglas AdamsDouglas Adams could have been talking about the E-Business Suite.  Depending upon whom you ask (and how you count them), there are between 200 to 240 products in Oracle E-Business Suite.  The products that make up Oracle E-Business Suite are tightly integrated. Some of these products are known as shared or dependent products. Installed and registered automatically by Rapid Install, such products depend on components from other products for full functionality.For example:General Ledger (GL) depends on Application Object Library (FND) and Oracle Receivables (AR)Inventory (INV) depends on FND and GLReceivables (AR) depends on FND, INV, and GLIt can sometimes be challenging to craft a patching strategy for these types of product dependencies.  To help you with that, our Applications Database (AD) team has recently published a new document that describes the actions AutoPatch takes with shared Oracle E-Business Suite products:Patching Shared Oracle E-Business Suite Products (Note 1069099.1)

    Read the article

  • Linker options to statically link a lib*.a file while creating a shared object

    - by Swaroop S
    How can I tell the linker that statically link libfoo.a while building the shared object sharedobj.so using gcc/make. I have tried to pass the LDFLAG options LDFLAGS += -W1 --whole-archive -L/path/to/libfoo -lfoo I have also tried to pass LDFLAGS the options LDFLAGS += -W1, static -L/path/to/libfoo -lfoo I have also tried to pass LDFLAGS the options LDFLAGS += -W1, Bstatic -L/path/to/libfoo -lfoo and I have also tried to pass LDFLAGS the options LDFLAGS += -W1, statically_linked -L/path/to/libfoo -lfoo I have read through a number of links that tell me how to do it but none have worked so far.

    Read the article

  • Multiple forms with shared fields

    - by SMiX
    How to make multiple forms with shared fields without using javascript? <input type=text name=username /> <form action="/users"> ... some fields ... </form> <form action="/admins"> ... some another fields ... </form>

    Read the article

  • rails i18n shared keys

    - by SMiX
    Hello. How can I define shared keys in my config/locales/lang.yml ? For example I want to use f.label :date and to see translated word "date" in all forms for all models.

    Read the article

  • Linking against multiple shared libraries that all linked against a common static library

    - by live2dream95
    Say you have 2 share libraries, lib1.so and lib2.so, that both have libcommon.a statically linked into them. Would the compiler complain about ambiguous symbol reference if you were to dynamically link both lib1.so and lib2.so? Or would be the compiler be smart enough to know libcommon symbols are shared between lib1 and lib2 and allow you to dynamically link against both?

    Read the article

  • how to use an mdf in App_Data with shared hosting

    - by name
    If I create a website that uses an mdf in App_Data with the connection string: Server=.\SQLExpress;AttachDbFilename=|DataDirectory|mydbfile.mdf;Database=dbname; Trusted_Connection=Yes; what do I need to do to run the site in a shared hosting environment? Do I need to copy the contents of my mdf to the main SQL Server engine of my host? Is there a way to use the non-SQLExpress engine of my host and still keep my mdf in my App_Data?

    Read the article

  • PEAR/PHPUnit installation on shared hosting

    - by Sergei Morozov
    I’ve installed a local (per-account) PEAR instance on shared web-hosting. After that I’ve installed PHPUnit. It doesn’t work in command-line mode because PHPUnit classes are not under default include_path that is ".:/usr/local/lib/php". The same, I think, would happen with local phing and other command-line tools installed via PEAR. Is there a way to specify per-account include_path value that will contain my local PEAR path "~/pear/php"?

    Read the article

  • Mercurial local branching and pushing to shared repository

    - by Steve Horn
    I created a branch on my local Mercurial repository. I want to push to the shared repository so my work can be backed up, but I don't want other project members to see the branch. What's the standard operating procedure in this case? I'd like to avoid having the repository get full of developer branches that I don't need to see.

    Read the article

  • php split array into smaller even arrays

    - by SoulieBaby
    I have a function that is supposed to split my array into smaller, evenly distributed arrays, however it seems to be duplicating my data along the way. If anyone can help me out that'd be great. Here's the original array: Array ( [0] => stdClass Object ( [bid] => 42 [name] => Ray White Mordialloc [imageurl] => sp_raywhite.gif [clickurl] => http://www.raywhite.com/ ) [1] => stdClass Object ( [bid] => 48 [name] => Beachside Osteo [imageurl] => sp_beachside.gif [clickurl] => http://www.beachsideosteo.com.au/ ) [2] => stdClass Object ( [bid] => 53 [name] => Carmotive [imageurl] => sp_carmotive.jpg [clickurl] => http://www.carmotive.com.au/ ) [3] => stdClass Object ( [bid] => 51 [name] => Richmond and Bennison [imageurl] => sp_richmond.jpg [clickurl] => http://www.richbenn.com.au/ ) [4] => stdClass Object ( [bid] => 50 [name] => Letec [imageurl] => sp_letec.jpg [clickurl] => www.letec.biz ) [5] => stdClass Object ( [bid] => 39 [name] => Main Street Mordialloc [imageurl] => main street cafe.jpg [clickurl] => ) [6] => stdClass Object ( [bid] => 40 [name] => Ripponlea Mitsubishi [imageurl] => sp_mitsubishi.gif [clickurl] => ) [7] => stdClass Object ( [bid] => 34 [name] => Adrianos Pizza & Pasta [imageurl] => sp_adrian.gif [clickurl] => ) [8] => stdClass Object ( [bid] => 59 [name] => Pure Sport [imageurl] => sp_psport.jpg [clickurl] => http://www.puresport.com.au/ ) [9] => stdClass Object ( [bid] => 33 [name] => Two Brothers [imageurl] => sp_2brothers.gif [clickurl] => http://www.2brothers.com.au/ ) [10] => stdClass Object ( [bid] => 52 [name] => Mordialloc Travel and Cruise [imageurl] => sp_morditravel.jpg [clickurl] => http://www.yellowpages.com.au/vic/mordialloc/mordialloc-travel-cruise-13492525-listing.html ) [11] => stdClass Object ( [bid] => 57 [name] => Southern Suburbs Physiotherapy Centre [imageurl] => sp_sspc.jpg [clickurl] => http://www.sspc.com.au ) [12] => stdClass Object ( [bid] => 54 [name] => PPM Builders [imageurl] => sp_ppm.jpg [clickurl] => http://www.hotfrog.com.au/Companies/P-P-M-Builders ) [13] => stdClass Object ( [bid] => 36 [name] => Big River [imageurl] => sp_bigriver.gif [clickurl] => ) [14] => stdClass Object ( [bid] => 35 [name] => Bendigo Bank Parkdale / Mentone East [imageurl] => sp_bendigo.gif [clickurl] => http://www.bendigobank.com.au ) [15] => stdClass Object ( [bid] => 56 [name] => Logical Services [imageurl] => sp_logical.jpg [clickurl] => ) [16] => stdClass Object ( [bid] => 58 [name] => Dicount Lollie Shop [imageurl] => new dls logo.jpg [clickurl] => ) [17] => stdClass Object ( [bid] => 46 [name] => Patterson Securities [imageurl] => cmyk patersons_withtag.jpg [clickurl] => ) [18] => stdClass Object ( [bid] => 44 [name] => Mordialloc Personal Trainers [imageurl] => sp_mordipt.gif [clickurl] => # ) [19] => stdClass Object ( [bid] => 37 [name] => Mordialloc Cellar Door [imageurl] => sp_cellardoor.gif [clickurl] => ) [20] => stdClass Object ( [bid] => 41 [name] => Print House Graphics [imageurl] => sp_printhouse.gif [clickurl] => ) [21] => stdClass Object ( [bid] => 55 [name] => 360South [imageurl] => sp_360.jpg [clickurl] => ) [22] => stdClass Object ( [bid] => 43 [name] => Systema [imageurl] => sp_systema.gif [clickurl] => ) [23] => stdClass Object ( [bid] => 38 [name] => Lowe Financial Group [imageurl] => sp_lowe.gif [clickurl] => http://lowefinancial.com/ ) [24] => stdClass Object ( [bid] => 49 [name] => Kim Reed Conveyancing [imageurl] => sp_kimreed.jpg [clickurl] => ) [25] => stdClass Object ( [bid] => 45 [name] => Mordialloc Sporting Club [imageurl] => msc logo.jpg [clickurl] => ) ) Here's the php function which is meant to split the array: function split_array($array, $slices) { $perGroup = floor(count($array) / $slices); $Remainder = count($array) % $slices ; $slicesArray = array(); $i = 0; while( $i < $slices ) { $slicesArray[$i] = array_slice($array, $i * $perGroup, $perGroup); $i++; } if ( $i == $slices ) { if ($Remainder > 0 && $Remainder < $slices) { $z = $i * $perGroup +1; $x = 0; while ($x < $Remainder) { $slicesRemainderArray = array_slice($array, $z, $Remainder+$x); $remainderItems = array_merge($slicesArray[$x],$slicesRemainderArray); $slicesArray[$x] = $remainderItems; $x++; $z++; } } }; return $slicesArray; } Here's the result of the split (it somehow duplicates items from the original array into the smaller arrays): Array ( [0] => Array ( [0] => stdClass Object ( [bid] => 57 [name] => Southern Suburbs Physiotherapy Centre [imageurl] => sp_sspc.jpg [clickurl] => http://www.sspc.com.au ) [1] => stdClass Object ( [bid] => 35 [name] => Bendigo Bank Parkdale / Mentone East [imageurl] => sp_bendigo.gif [clickurl] => http://www.bendigobank.com.au ) [2] => stdClass Object ( [bid] => 38 [name] => Lowe Financial Group [imageurl] => sp_lowe.gif [clickurl] => http://lowefinancial.com/ ) [3] => stdClass Object ( [bid] => 39 [name] => Main Street Mordialloc [imageurl] => main street cafe.jpg [clickurl] => ) [4] => stdClass Object ( [bid] => 48 [name] => Beachside Osteo [imageurl] => sp_beachside.gif [clickurl] => http://www.beachsideosteo.com.au/ ) [5] => stdClass Object ( [bid] => 33 [name] => Two Brothers [imageurl] => sp_2brothers.gif [clickurl] => http://www.2brothers.com.au/ ) [6] => stdClass Object ( [bid] => 40 [name] => Ripponlea Mitsubishi [imageurl] => sp_mitsubishi.gif [clickurl] => ) ) [1] => Array ( [0] => stdClass Object ( [bid] => 44 [name] => Mordialloc Personal Trainers [imageurl] => sp_mordipt.gif [clickurl] => # ) [1] => stdClass Object ( [bid] => 41 [name] => Print House Graphics [imageurl] => sp_printhouse.gif [clickurl] => ) [2] => stdClass Object ( [bid] => 39 [name] => Main Street Mordialloc [imageurl] => main street cafe.jpg [clickurl] => ) [3] => stdClass Object ( [bid] => 48 [name] => Beachside Osteo [imageurl] => sp_beachside.gif [clickurl] => http://www.beachsideosteo.com.au/ ) [4] => stdClass Object ( [bid] => 33 [name] => Two Brothers [imageurl] => sp_2brothers.gif [clickurl] => http://www.2brothers.com.au/ ) [5] => stdClass Object ( [bid] => 40 [name] => Ripponlea Mitsubishi [imageurl] => sp_mitsubishi.gif [clickurl] => ) ) [2] => Array ( [0] => stdClass Object ( [bid] => 56 [name] => Logical Services [imageurl] => sp_logical.jpg [clickurl] => ) [1] => stdClass Object ( [bid] => 43 [name] => Systema [imageurl] => sp_systema.gif [clickurl] => ) [2] => stdClass Object ( [bid] => 48 [name] => Beachside Osteo [imageurl] => sp_beachside.gif [clickurl] => http://www.beachsideosteo.com.au/ ) [3] => stdClass Object ( [bid] => 33 [name] => Two Brothers [imageurl] => sp_2brothers.gif [clickurl] => http://www.2brothers.com.au/ ) [4] => stdClass Object ( [bid] => 40 [name] => Ripponlea Mitsubishi [imageurl] => sp_mitsubishi.gif [clickurl] => ) ) [3] => Array ( [0] => stdClass Object ( [bid] => 53 [name] => Carmotive [imageurl] => sp_carmotive.jpg [clickurl] => http://www.carmotive.com.au/ ) [1] => stdClass Object ( [bid] => 45 [name] => Mordialloc Sporting Club [imageurl] => msc logo.jpg [clickurl] => ) [2] => stdClass Object ( [bid] => 33 [name] => Two Brothers [imageurl] => sp_2brothers.gif [clickurl] => http://www.2brothers.com.au/ ) [3] => stdClass Object ( [bid] => 40 [name] => Ripponlea Mitsubishi [imageurl] => sp_mitsubishi.gif [clickurl] => ) ) [4] => Array ( [0] => stdClass Object ( [bid] => 59 [name] => Pure Sport [imageurl] => sp_psport.jpg [clickurl] => http://www.puresport.com.au/ ) [1] => stdClass Object ( [bid] => 54 [name] => PPM Builders [imageurl] => sp_ppm.jpg [clickurl] => http://www.hotfrog.com.au/Companies/P-P-M-Builders ) [2] => stdClass Object ( [bid] => 40 [name] => Ripponlea Mitsubishi [imageurl] => sp_mitsubishi.gif [clickurl] => ) ) [5] => Array ( [0] => stdClass Object ( [bid] => 46 [name] => Patterson Securities [imageurl] => cmyk patersons_withtag.jpg [clickurl] => ) [1] => stdClass Object ( [bid] => 34 [name] => Adriano's Pizza & Pasta [imageurl] => sp_adrian.gif [clickurl] => # ) ) [6] => Array ( [0] => stdClass Object ( [bid] => 55 [name] => 360South [imageurl] => sp_360.jpg [clickurl] => ) [1] => stdClass Object ( [bid] => 37 [name] => Mordialloc Cellar Door [imageurl] => sp_cellardoor.gif [clickurl] => ) ) [7] => Array ( [0] => stdClass Object ( [bid] => 49 [name] => Kim Reed Conveyancing [imageurl] => sp_kimreed.jpg [clickurl] => ) [1] => stdClass Object ( [bid] => 58 [name] => Dicount Lollie Shop [imageurl] => new dls logo.jpg [clickurl] => ) ) [8] => Array ( [0] => stdClass Object ( [bid] => 51 [name] => Richmond and Bennison [imageurl] => sp_richmond.jpg [clickurl] => http://www.richbenn.com.au/ ) [1] => stdClass Object ( [bid] => 52 [name] => Mordialloc Travel and Cruise [imageurl] => sp_morditravel.jpg [clickurl] => http://www.yellowpages.com.au/vic/mordialloc/mordialloc-travel-cruise-13492525-listing.html ) ) [9] => Array ( [0] => stdClass Object ( [bid] => 50 [name] => Letec [imageurl] => sp_letec.jpg [clickurl] => www.letec.biz ) [1] => stdClass Object ( [bid] => 36 [name] => Big River [imageurl] => sp_bigriver.gif [clickurl] => ) ) ) ^^ As you can see there are duplicates from the original array in the newly created smaller arrays. I thought I could remove the duplicates using a multi-dimensional remove duplicate function but that didn't work. I'm guessing my problem is in the array_split function. Any suggestions? :)

    Read the article

  • shared global variables in C

    - by Claudiu
    How can I create global variables that are shared in C? If I put it in a header file, then the linker complains that the variables are already defined. Is the only way to declare the variable in one of my C files and to manually put in externs at the top of all the other C files that want to use it? That sounds not ideal.

    Read the article

  • Google Apps shared contacts API get a contact for python

    - by Mike
    I'm having some issues trying to pull a shared contact using the gdata api for python that Google provides. Here is what I have to get the contacts.. but they are not all listed there feed = gd_client.GetContactsFeed() for i, entry in enumerate(feed.entry): print entry.title I can't figure out how to pull out a single contact so I can edit the contact information.. thanks!

    Read the article

  • install python modules on shared web hosting

    - by Ali
    I am using a shared hosting environment that will not give me access to the command line. Can I download the python module on my computer, compile it using python setup.py installand then simply upload a .py file to the web host? If yes, where does the install statement place the compiled file?

    Read the article

  • shared library under ubuntu

    - by Hema Joshi
    hi ,i have compiled srp-2.1.2 under ubuntu using make ,it creat a file libsrp.a. can any one tell me how can i use libsrp.a as shared library?.i want to use libsrp in a c# file under ubuntu by using dllimport. thanks

    Read the article

  • Cannot deploy asp.net openid library on shared hosting service

    - by asksuperuser
    I have deployed successfully the dotnetopenid dll under IIS7 but on my shared hosting service it says: Compilation Error Description: An error occurred during the compilation of a resource required to service this request. Please review the following specific error details and modify your source code appropriately. Compiler Error Message: CS0246: The type or namespace name 'DotNetOpenId' could not be found (are you missing a using directive or an assembly reference?) Why ?

    Read the article

  • CakePHP 2.0+ Setup on online shared hosting

    - by gutigrewal
    1 and I've uploaded all the files onto the file server that I am using 000webhost.com however Im having a few problems with the modrewrite I keep getting re-directed to http://error404.000webhost.com/? Does anyone know how to setup cakephp 2.1 on a shared area?? Im getting this error now: Fatal error: Call to undefined function pluginsplit() in /home/a4300629/public_html/lib/Cake/Cache/Cache.php on line 151 not really sure how this error has come about, any ideas? Thanks in advance.

    Read the article

  • IP address of domain on shared host

    - by Ali
    I have domain on a shared hosting provider. How do I find the direct IP address of my domain using Python? Is it possible to post to a script on my domain using the IP address and not the website itself? Thanks.

    Read the article

< Previous Page | 78 79 80 81 82 83 84 85 86 87 88 89  | Next Page >