Genetic Algorithms applied to Curve Fitting
- by devoured elysium
Let's imagine I have an unknown function that I want to approximate via Genetic Algorithms. For this case, I'll assume it is y = 2x.
I'd have a DNA composed of 5 elements, one y for each x, from x = 0 to x = 4, in which, after a lot of trials and computation and I'd arrive near something of the form:
best_adn = [ 0, 2, 4, 6, 8 ]
Keep in mind I don't know beforehand if it is a linear function, a polynomial or something way more ugly, Also, my goal is not to infer from the best_adn what is the type of function, I just want those points, so I can use them later.
This was just an example problem. In my case, instead of having only 5 points in the DNA, I have something like 50 or 100. What is the best approach with GA to find the best set of points?
Generating a population of 100,
discard the worse 20%
Recombine the remaining 80%? How?
Cutting them at a random point and
then putting together the first
part of ADN of the father with the
second part of ADN of the mother?
Mutation, how should I define in
this kind of problem mutation?
Is it worth using Elitism?
Any other simple idea worth using
around?
Thanks