Search Results

Search found 2122 results on 85 pages for 'yoav str'.

Page 82/85 | < Previous Page | 78 79 80 81 82 83 84 85  | Next Page >

  • find window text and save txt to file named that wont work.

    - by blood
    hi, my code wont work and idk why. the point of my code is to find the top window and save a text file with the name the same as the text on the top menu bar (task bar i think?). then save some data to that text file. but everytime i try to use it the write fails if i set the name of the text file before hand so it wont change it will write the data to the file. but if i don't set it before hand it will make the text doc but not write anything to it. or sometimes it will just write numbers for the name (i think it's the handle number) then it will write the data. :\ it's odd can anyone help? #include <iostream> #include <windows.h> #include <fstream> #include <string> #include <sstream> #include <time.h> using namespace std; string header_str = ("NULL"); #define DTTMFMT "%Y-%m-%d %H:%M:%S " #define DTTMSZ 21 char buff[DTTMSZ]; fstream filestr; string ff = ("C:\\System logs\\txst.txt"); TCHAR buf[255]; int main() { GetWindowText(GetForegroundWindow(), buf, 255); stringstream header(stringstream::in | stringstream::out); header.flush(); header << ("C:\\System logs\\"); header << buf; header << (".txt"); header_str = header.str(); ff = header_str; cout << header_str << "\n"; filestr.open (ff.c_str(), fstream::in | fstream::out | fstream::app | ios_base::binary | ios_base::out); filestr << "dfg"; filestr.close(); Sleep(10000); return 0; }

    Read the article

  • getSymbols and using lapply, Cl, and merge to extract close prices

    - by algotr8der
    I've been messing around with this for some time. I recently started using the quantmod package to perform analytics on stock prices. I have a ticker vector that looks like the following: > tickers [1] "SPY" "DIA" "IWM" "SMH" "OIH" "XLY" "XLP" "XLE" "XLI" "XLB" "XLK" "XLU" "XLV" [14] "QQQ" > str(tickers) chr [1:14] "SPY" "DIA" "IWM" "SMH" "OIH" "XLY" "XLP" "XLE" ... I wrote a function called myX to use in a lapply call to save prices for every stock in the vector tickers. It has the following code: myX <- function(tickers, start, end) { require(quantmod) getSymbols(tickers, from=start, to=end) } I call lapply by itself library(quantmod) lapply(tickers,myX,start="2001-03-01", end="2011-03-11") > lapply(tickers,myX,start="2001-03-01", end="2011-03-11") [[1]] [1] "SPY" [[2]] [1] "DIA" [[3]] [1] "IWM" [[4]] [1] "SMH" [[5]] [1] "OIH" [[6]] [1] "XLY" [[7]] [1] "XLP" [[8]] [1] "XLE" [[9]] [1] "XLI" [[10]] [1] "XLB" [[11]] [1] "XLK" [[12]] [1] "XLU" [[13]] [1] "XLV" [[14]] [1] "QQQ" That works fine. Now I want to merge the Close prices for every stock into an object that looks like # BCSI.Close WBSN.Close NTAP.Close FFIV.Close SU.Close # 2011-01-03 30.50 20.36 57.41 134.33 38.82 # 2011-01-04 30.24 19.82 57.38 132.07 38.03 # 2011-01-05 31.36 19.90 57.87 137.29 38.40 # 2011-01-06 32.04 19.79 57.49 138.07 37.23 # 2011-01-07 31.95 19.77 57.20 138.35 37.30 # 2011-01-10 31.55 19.76 58.22 142.69 37.04 Someone recommended I try something like the following: ClosePrices <- do.call(merge, lapply(tickers, function(x) Cl(get(x)))) However I tried various combinations of this without any success. First I tried just calling lapply with Cl(x) >lapply(tickers,myX,start="2001-03-01", end="2011-03-11") Cl(myX))) > lapply(tickers,myX,start="2001-03-01", end="2011-03-11") Cl(x))) Error: unexpected symbol in "lapply(tickers,myX,start="2001-03-01", end="2011-03-11") Cl" > > lapply(tickers,myX(x),start="2001-03-01", end="2011-03-11") Cl(x))) Error: unexpected symbol in "lapply(tickers,myX(x),start="2001-03-01", end="2011-03-11") Cl" > > lapply(tickers,myX(start="2001-03-01", end="2011-03-11") Cl(x) Error: unexpected symbol in "lapply(tickers,myX(start="2001-03-01", end="2011-03-11") Cl" > lapply(tickers,myX(start="2001-03-01", end="2011-03-11") Cl(x)) Error: unexpected symbol in "lapply(tickers,myX(start="2001-03-01", end="2011-03-11") Cl" > Any guidance would be kindly appreciated.

    Read the article

  • Python File Search Line And Return Specific Number of Lines after Match

    - by Simos Anderson
    I have a text file that has lines representing some data sets. The file itself is fairly long but it contains certain sections of the following format: Series_Name INFO Number of teams : n1 | Team | # | wins | | TeamName1 | x | y | . . . | TeamNamen1 | numn | numn | Some Irrelevant lines Series_Name2 INFO Number of teams : n1 | Team | # | wins | | TeamName1 | num1 | num2 | . where each section has a header that begins with the Series_Name. Each Series_Name is different. The line with the header also includes the number of teams in that series, n1. Following the header line is a set of lines that represents a table of data. For each series there are n1+1 rows in the table, where each row shows an individual team name and associated stats. I have been trying to implement a function that will allow the user to search for a Team name and then print out the line in the table associated with that team. However, certain team names show up under multiple series. To resolve this, I am currently trying to write my code so that the user can search for the header line with series name first and then print out just the following n1+1 lines that represent the data associated with the series. Here's what I have come up with so far: import re print fname = raw_input("Enter filename: ") seriesname = raw_input("Enter series: ") def findcounter(fname, seriesname): logfile = open(fname, "r") pat = 'INFO Number of teams :' for line in logfile: if seriesname in line: if pat in line: s=line pattern = re.compile(r"""(?P<name>.*?) #starting name \s*INFO #whitespace and success \s*Number\s*of\s*teams #whitespace and strings \s*\:\s*(?P<n1>.*)""",re.VERBOSE) match = pattern.match(s) name = match.group("name") n1 = int(match.group("n1")) print name + " has " + str(n1) + " teams" lcount = 0 for line in logfile: if line.startswith(name): if pat in line: while lcount <= n1: s.append(line) lcount += 1 return result The first part of my code works; it matches the header line that the person searches for, parses the line, and then prints out how many teams are in that series. Since the header line basically tells me how many lines are in the table, I thought that I could use that information to construct a loop that would continue printing each line until a set counter reached n1. But I've tried running it, and I realize that the way I've set it up so far isn't correct. So here's my question: How do you return a number of lines after a matched line when given the number of desired lines that follow the match? I'm new to programming, and I apologize if this question seems silly. I have been working on this quite diligently with no luck and would appreciate any help.

    Read the article

  • xsl:variable contains nodeset. How to output nth node of variable?

    - by dnagirl
    I am transforming an XML document. There is an attribute @prettydate that is a string similar to "Friday, May 7, 2010". I want to split that string and add links to the month and the year. I am using the exslt:strings module and I can add any other necessary EXSLT module. This is my code so far: <xsl:template match="//calendar"> <xsl:variable name="prettyparts"> <xsl:value-of select="str:split(@prettydate,', ')"/> </xsl:variable> <table class='day'> <thead> <caption><xsl:value-of select="$prettyparts[1]"/>, <a> <xsl:attribute name='href'><xsl:value-of select="$baseref"/>?date=<xsl:value-of select="@highlight"/>&amp;per=m</xsl:attribute> <xsl:value-of select='$prettyparts[2]'/> </a> <xsl:value-of select='$prettyparts[3]'/>, <a> <xsl:attribute name='href'><xsl:value-of select="$baseref"/>?date=<xsl:value-of select="@highlight"/>&amp;per=y</xsl:attribute> <xsl:value-of select='$prettyparts[4]'/> </a> </caption> <!--etcetera--> I have verified, by running $prettyparts through a <xml:for-each/> that I am getting the expected nodeset: <token>Friday</token> <token>May</token> <token>7</token> <token>2010</token> But no matter which way I attempt to refer to a particular <token> directly (not in a foreach) I get nothing or various errors to do with invalid types. Here's some of the syntax I've tried: <xsl:value-of select="$prettyparts[2]"/> <xsl:value-of select="$prettyparts/token[2]"/> <xsl:value-of select="exsl:node-set($prettyparts/token[2])"/> <xsl:value-of select="exsl:node-set($prettyparts/token)[2]"/> Any idea what the expression ought to be?

    Read the article

  • How to efficently build an interpreter (lexer+parser) in C?

    - by Rizo
    I'm trying to make a meta-language for writing markup code (such as xml and html) wich can be directly embedded into C/C++ code. Here is a simple sample written in this language, I call it WDI (Web Development Interface): /* * Simple wdi/html sample source code */ #include <mySite> string name = "myName"; string toCapital(string str); html { head { title { mySiteTitle; } link(rel="stylesheet", href="style.css"); } body(id="default") { // Page content wrapper div(id="wrapper", class="some_class") { h1 { "Hello, " + toCapital(name) + "!"; } // Lists post ul(id="post_list") { for(post in posts) { li { a(href=post.getID()) { post.tilte; } } } } } } } Basically it is a C source with a user-friendly interface for html. As you can see the traditional tag-based style is substituted by C-like, with blocks delimited by curly braces. I need to build an interpreter to translate this code to html and posteriorly insert it into C, so that it can be compiled. The C part stays intact. Inside the wdi source it is not necessary to use prints, every return statement will be used for output (in printf function). The program's output will be clean html code. So, for example a heading 1 tag would be transformed like this: h1 { "Hello, " + toCapital(name) + "!"; } // would become: printf("<h1>Hello, %s!</h1>", toCapital(name)); My main goal is to create an interpreter to translate wdi source to html like this: tag(attributes) {content} = <tag attributes>content</tag> Secondly, html code returned by the interpreter has to be inserted into C code with printfs. Variables and functions that occur inside wdi should also be sorted in order to use them as printf parameters (the case of toCapital(name) in sample source). I am searching for efficient (I want to create a fast parser) way to create a lexer and parser for wdi. Already tried flex and bison, but as I am not sure if they are the best tools. Are there any good alternatives? What is the best way to create such an interpreter? Can you advise some brief literature on this issue?

    Read the article

  • Generate lags R

    - by Btibert3
    Hi All, I hope this is basic; just need a nudge in the right direction. I have read in a database table from MS Access into a data frame using RODBC. Here is a basic structure of what I read in: PRODID PROD Year Week QTY SALES INVOICE Here is the structure: str(data) 'data.frame': 8270 obs. of 7 variables: $ PRODID : int 20001 20001 20001 100001 100001 100001 100001 100001 100001 100001 ... $ PROD : Factor w/ 1239 levels "1% 20qt Box",..: 335 335 335 128 128 128 128 128 128 128 ... $ Year : int 2010 2010 2010 2009 2009 2009 2009 2009 2009 2010 ... $ Week : int 12 18 19 14 15 16 17 18 19 9 ... $ QTY : num 1 1 0 135 300 270 300 270 315 315 ... $ SALES : num 15.5 0 -13.9 243 540 ... $ INVOICES: num 1 1 2 5 11 11 10 11 11 12 ... Here are the top few rows: head(data, n=10) PRODID PROD Year Week QTY SALES INVOICES 1 20001 Dolie 12" 2010 12 1 15.46 1 2 20001 Dolie 12" 2010 18 1 0.00 1 3 20001 Dolie 12" 2010 19 0 -13.88 2 4 100001 Cage Free Eggs 2009 14 135 243.00 5 5 100001 Cage Free Eggs 2009 15 300 540.00 11 6 100001 Cage Free Eggs 2009 16 270 486.00 11 7 100001 Cage Free Eggs 2009 17 300 540.00 10 8 100001 Cage Free Eggs 2009 18 270 486.00 11 9 100001 Cage Free Eggs 2009 19 315 567.00 11 10 100001 Cage Free Eggs 2010 9 315 569.25 12 I simply want to generate lags for QTY, SALES, INVOICE for each product but I am not sure where to start. I know R is great with Time Series, but I am not sure where to start. I have two questions: 1- I have the raw invoice data but have aggregated it for reporting purposes. Would it be easier if I didn't aggregate the data? 2- Regardless of aggregation or not, what functions will I need to loop over each product and generate the lags as I need them? In short, I want to loop over a set of records, calculate lags for a product (if possible), append the lags (as they apply) to the current record for each product, and write the results back to a table in my database for my reporting software to use. Any help you can provide will be greatly appreciated! Many thanks in advance, Brock

    Read the article

  • How to check for palindrome using Python logic

    - by DrOnline
    My background is only a 6 month college class in basic C/C++, and I'm trying to convert to Python. I may be talking nonsense, but it seems to me C, at least at my level, is very for-loop intensive. I solve most problems with these loops. And it seems to me the biggest mistake people do when going from C to Python is trying to implement C logic using Python, which makes things run slowly, and it's just not making the most of the language. I see on this website: http://hyperpolyglot.org/scripting (serach for "c-style for", that Python doesn't have C-style for loops. Might be outdated, but I interpret it to mean Python has its own methods for this. I've tried looking around, I can't find much up to date (Python 3) advice for this. How can I solve a palindrome challenge in Python, without using the for loop? I've done this in C in class, but I want to do it in Python, on a personal basis. The problem is from the Euler Project, great site btw. def isPalindrome(n): lst = [int(n) for n in str(n)] l=len(lst) if l==0 || l==1: return True elif len(lst)%2==0: for k in range (l) ##### else: while (k<=((l-1)/2)): if (list[]): ##### for i in range (999, 100, -1): for j in range (999,100, -1): if isPalindrome(i*j): print(i*j) break I'm missing a lot of code here. The five hashes are just reminders for myself. Concrete questions: 1) In C, I would make a for loop comparing index 0 to index max, and then index 0+1 with max-1, until something something. How to best do this in Python? 2) My for loop (in in range (999, 100, -1), is this a bad way to do it in Python? 3) Does anybody have any good advice, or good websites or resources for people in my position? I'm not a programmer, I don't aspire to be one, I just want to learn enough so that when I write my bachelor's degree thesis (electrical engineering), I don't have to simultaneously LEARN an applicable programming language while trying to obtain good results in the project. "How to go from basic C to great application of Python", that sort of thing. 4) Any specific bits of code to make a great solution to this problem would also be appreciated, I need to learn good algorithms.. I am envisioning 3 situations. If the value is zero or single digit, if it is of odd length, and if it is of even length. I was planning to write for loops... PS: The problem is: Find the highest value product of two 3 digit integers that is also a palindrome.

    Read the article

  • Writing to a xml file in java

    - by user243680
    import java.io.*; import javax.xml.parsers.*; import javax.xml.transform.*; import javax.xml.transform.dom.*; import javax.xml.transform.stream.*; import org.w3c.dom.*; public class CreatXMLFile { public static void main(String[] args) throws Exception { BufferedReader bf = new BufferedReader(new InputStreamReader(System.in)); // System.out.print("Enter number to add elements in your XML file: "); // String str = bf.readLine(); int no=2; // System.out.print("Enter root: "); String root = "SMS"; DocumentBuilderFactory documentBuilderFactory =DocumentBuilderFactory.newInstance(); DocumentBuilder documentBuilder =documentBuilderFactory.newDocumentBuilder(); Document document = documentBuilder.newDocument(); Element rootElement = document.createElement(root); document.appendChild(rootElement); // for (int i = 1; i <= no; i++) // System.out.print("Enter the element: "); // String element = bf.readLine(); String element ="Number"; System.out.print("Enter the Number: "); String data = bf.readLine(); Element em = document.createElement(element); em.appendChild(document.createTextNode(data)); rootElement.appendChild(em); String element1 ="message"; System.out.print("Enter the SMS: "); String data1 = bf.readLine(); Element em1 = document.createElement(element1); em1.appendChild(document.createTextNode(data1)); rootElement.appendChild(em1); TransformerFactory transformerFactory = TransformerFactory.newInstance(); Transformer transformer = transformerFactory.newTransformer(); DOMSource source = new DOMSource(document); StreamResult result = new StreamResult(System.out); transformer.transform(source, result); } } i am working on the above code and it gives the following output run: Enter the Number: 768678 Enter the SMS: ytu <?xml version="1.0" encoding="UTF-8" standalone="no"?><SMS><Number>768678</Number><message>ytu</message></SMS>BUILD SUCCESSFUL (total time: 8 seconds) Now i want to write the output generated(<?xml version="1.0" encoding="UTF-8" standalone="no"?><SMS><Number>768678</Number><message>ytu</message></SMS>) to a XML file on the hard disk.How do i do it?

    Read the article

  • Php plugin to replace '->' with '.' as the member access operator ? Or even better: alternative synt

    - by Gigi
    Present day usable solution: Note that if you use an ide or an advanced editor, you could make a code template, or record a macro that inserts '->' when you press Ctrl and '.' or something. Netbeans has macros, and I have recorded a macro for this, and I like it a lot :) (just click the red circle toolbar button (start record macro),then type -> into the editor (thats all the macro will do, insert the arrow into the editor), then click the gray square (stop record macro) and assign the 'Ctrl dot' shortcut to it, or whatever shortcut you like) The php plugin: The php plugin, would also have to have a different string concatenation operator than the dot. Maybe a double dot ? Yea... why not. All it has to do is set an activation tag so that it doesnt replace / interpreter '.' as '->' for old scripts and scripts that dont intent do use this. Something like this: <php+ $obj.i = 5 ?> (notice the modified '<?php' tag to '<?php+' ) This way it wouldnt break old code. (and you can just add the '<?php+' code template to your editor and then type 'php tab' (for netbeans) and it would insert '<?php+' ) With the alternative syntax method you could even have old and new syntax cohabitating on the same page like this (I am illustrating this to show the great compatibility of this method, not because you would want to do this): <?php+ $obj.i = 5; ?> <?php $obj->str = 'a' . 'b'; ?> You could change the tag to something more explanatory, in case somebody who doesnt know about the plugin reads the script and thinks its a syntax error <?php-dot.com $obj.i = 5; ?> This is easy because most editors have code templates, so its easy to assign a shortcut to it. And whoever doesnt want the dot replacement, doesnt have to use it. These are NOT ultimate solutions, they are ONLY examples to show that solutions exist, and that arguments against replacing '->' with '.' are only excuses. (Just admit you like the arrow, its ok : ) With this potential method, nobody who doesnt want to use it would have to use it, and it wouldnt break old code. And if other problems (ahem... excuses) arise, they could be fixed too. So who can, and who will do such a thing ?

    Read the article

  • Dynamically loading modules in Python (+ threading question)

    - by morpheous
    I am writing a Python package which reads the list of modules (along with ancillary data) from a configuration file. I then want to iterate through each of the dynamically loaded modules and invoke a do_work() function in it which will spawn a new thread, so that the code runs in a separate thread. At the moment, I am importing the list of all known modules at the beginning of my main script - this is a nasty hack I feel, and is not very flexible, as well as being a maintenance pain. This is the function that spawns the threads. I will like to modify it to dynamically load the module when it is encountered. The key in the dictionary is the name of the module containing the code: def do_work(work_info): for (worker, dataset) in work_info.items(): #import the module defined by variable worker here... t = threading.Thread(target=worker.do_work, args=[dataset]) # I'll NOT dameonize since spawned children need to clean up on shutdown # Since the threads will be holding resources #t.daemon = True t.start() Question 1 When I call the function in my script (as written above), I get the following error: AttributeError: 'str' object has no attribute 'do_work' Which makes sense, since the dictionary key is a string (name of the module to be imported). When I add the statement: import worker before spawning the thread, I get the error: ImportError: No module named worker This is strange, since the variable name rather than the value it holds are being used - when I print the variable, I get the value (as I expect) whats going on? Question 2 As I mentioned in the comments section, I realize that the do_work() function written in the spawned children needs to cleanup after itself. My understanding is to write a clean_up function that is called when do_work() has completed successfully, or an unhandled exception is caught - is there anything more I need to do to ensure resources don't leak or leave the OS in an unstable state? Question 3 If I comment out the t.daemon flag statement, will the code stil run ASYNCHRONOUSLY?. The work carried out by the spawned children are pretty intensive, and I don't want to have to be waiting for one child to finish before spawning another child. BTW, I am aware that threading in Python is in reality, a kind of time sharing/slicing - thats ok Lastly is there a better (more Pythonic) way of doing what I'm trying to do?

    Read the article

  • creating an array of objects in c++

    - by tim22
    I'm trying to create an array of objects in c++. I'm creating a employee object, from my constructor in my company class here: employee obj(int tempIdNum, double tempBase, double tempSales, double tempRate); emp[tempcount]=obj; (this doesn't work?) Emp is the name of the array which is defined here, located in my company h file. Employee emp[4]; more code: Company::Company(string name, string fileName){ string str; int tempcount; int tempIdnum; double tempBase; double tempSales; double tempRate; double num; double arr[16]; this->name=name; //Commission temp; ifstream readFile; readFile.open("fileName"); int inc=0; while(tempcount<4){ for(int i=0+inc; i<4+inc; i++){ readFile>>num; arr[i-inc]=num; } tempIdnum=(int)(arr[0]); tempBase=arr[1]; tempSales=arr[2]; tempRate=arr[3]; Employee obj(int tempIdNum, double tempBase, double tempSales, double tempRate); emp[tempcount]=obj; inc+=4; tempcount++; } readFile.close(); } Here is some more from my h file #include <string> include "Commission.h" using namespace std; ifndef Company_H define Company_H class Company{ private: string name; //name of company Employee emp[4]; //array of payrool info about 4 commission employees int numEmp; //number of employees public: Company(); Company(string name, string fileName); ~Company(); string getName(); Commission getEmployee(int element); int getNumEmp(); }; endif enter code here Does not compile: 46 E:\exercise2\Company.cpp no match for 'operator=' in '((Company*)this)-Company::emp[tempcount] = obj'

    Read the article

  • CultureManager issue

    - by Serge
    I have a bug I don't understand. While the following works fine: Resources.Classes.AFieldFormula.DirectFieldFormula this one throws an exception: new ResourceManager(typeof(Resources.Classes.AFieldFormula)).GetString("DirectFieldFormula"); Could not find any resources appropriate for the specified culture or the neutral culture. Make sure \"Resources.Classes.AFieldFormula.resources\" was correctly embedded or linked into assembly \"MygLogWeb\" at compile time, or that all the satellite assemblies required are loadable and fully signed. How comes? Resource designer.cs file: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.18408 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace Resources.Classes { using System; /// <summary> /// A strongly-typed resource class, for looking up localized strings, etc. /// </summary> // This class was auto-generated by the StronglyTypedResourceBuilder // class via a tool like ResGen or Visual Studio. // To add or remove a member, edit your .ResX file then rerun ResGen // with the /str option, or rebuild your VS project. [global::System.CodeDom.Compiler.GeneratedCodeAttribute("System.Resources.Tools.StronglyTypedResourceBuilder", "4.0.0.0")] [global::System.Diagnostics.DebuggerNonUserCodeAttribute()] [global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()] public class AFieldFormula { private static global::System.Resources.ResourceManager resourceMan; private static global::System.Globalization.CultureInfo resourceCulture; [global::System.Diagnostics.CodeAnalysis.SuppressMessageAttribute("Microsoft.Performance", "CA1811:AvoidUncalledPrivateCode")] internal AFieldFormula() { } /// <summary> /// Returns the cached ResourceManager instance used by this class. /// </summary> [global::System.ComponentModel.EditorBrowsableAttribute(global::System.ComponentModel.EditorBrowsableState.Advanced)] public static global::System.Resources.ResourceManager ResourceManager { get { if (object.ReferenceEquals(resourceMan, null)) { global::System.Resources.ResourceManager temp = new global::System.Resources.ResourceManager("MygLogWeb.Classes.AFieldFormula", typeof(AFieldFormula).Assembly); resourceMan = temp; } return resourceMan; } } /// <summary> /// Overrides the current thread's CurrentUICulture property for all /// resource lookups using this strongly typed resource class. /// </summary> [global::System.ComponentModel.EditorBrowsableAttribute(global::System.ComponentModel.EditorBrowsableState.Advanced)] public static global::System.Globalization.CultureInfo Culture { get { return resourceCulture; } set { resourceCulture = value; } } /// <summary> /// Looks up a localized string similar to Direct field. /// </summary> public static string DirectFieldFormula { get { return ResourceManager.GetString("DirectFieldFormula", resourceCulture); } } } }

    Read the article

  • Android , Read in binary data and write it to file

    - by Shpongle
    Hi all , Im trying to read in image file from a server , with the code below . It keeps going into the exception. I know the correct number of bytes are being sent as I print them out when received. Im sending the image file from python like so #open the image file and read it into an object imgfile = open (marked_image, 'rb') obj = imgfile.read() #get the no of bytes in the image and convert it to a string bytes = str(len(obj)) #send the number of bytes self.conn.send( bytes + '\n') if self.conn.sendall(obj) == None: imgfile.flush() imgfile.close() print 'Image Sent' else: print 'Error' Here is the android part , this is where I'm having the problem. Any suggestions on the best way to go about receiving the image and writing it to a file ? //read the number of bytes in the image String noOfBytes = in.readLine(); Toast.makeText(this, noOfBytes, 5).show(); byte bytes [] = new byte [Integer.parseInt(noOfBytes)]; //create a file to store the retrieved image File photo = new File(Environment.getExternalStorageDirectory(), "PostKey.jpg"); DataInputStream dis = new DataInputStream(link.getInputStream()); try{ os =new FileOutputStream(photo); byte buf[]=new byte[1024]; int len; while((len=dis.read(buf))>0) os.write(buf,0,len); Toast.makeText(this, "File recieved", 5).show(); os.close(); dis.close(); }catch(IOException e){ Toast.makeText(this, "An IO Error Occured", 5).show(); } EDIT: I still cant seem to get it working. I have been at it since and the result of all my efforts have either resulted in a file that is not the full size or else the app crashing. I know the file is not corrupt before sending server side. As far as I can tell its definitely sending too as the send all method in python sends all or throws an exception in the event of an error and so far it has never thrown an exception. So the client side is messed up . I have to send the file from the server so I cant use the suggestion suggested by Brian .

    Read the article

  • C++ problem with string stream istringstream

    - by user69514
    I am reading a file in the following format 1001 16000 300 12.50 2002 24000 360 10.50 3003 30000 300 9.50 where the items are: loan id, principal, months, interest rate. I'm not sure what it is that I am doing wrong with my input string stream, but I am not reading the values correctly because only the loan id is read correctly. Everything else is zero. Sorry this is a homework, but I just wanted to know if you could help me identify my error. if( inputstream.is_open() ){ /** print the results **/ cout << fixed << showpoint << setprecision(2); cout << "ID " << "\tPrincipal" << "\tDuration" << "\tInterest" << "\tPayment" <<"\tTotal Payment" << endl; cout << "---------------------------------------------------------------------------------------------" << endl; /** assign line read while we haven't reached end of file **/ string line; istringstream instream; while( inputstream >> line ){ instream.clear(); instream.str(line); /** assing values **/ instream >> loanid >> principal >> duration >> interest; /** compute monthly payment **/ double ratem = interest / 1200.0; double expm = (1.0 + ratem); payment = (ratem * pow(expm, duration) * principal) / (pow(expm, duration) - 1.0); /** computer total payment **/ totalPayment = payment * duration; /** print out calculations **/ cout << loanid << "\t$" << principal <<"\t" << duration << "mo" << "\t" << interest << "\t$" << payment << "\t$" << totalPayment << endl; } }

    Read the article

  • c++ std::ostringstream vs std::string::append

    - by NickSoft
    In all examples that use some kind of buffering I see they use stream instead of string. How is std::ostringstream and << operator different than using string.append. Which one is faster and which one uses less resourses (memory). One difference I know is that you can output different types into output stream (like integer) rather than the limited types that string::append accepts. Here is an example: std::ostringstream os; os << "Content-Type: " << contentType << ";charset=" << charset << "\r\n"; std::string header = os.str(); vs std::string header("Content-Type: "); header.append(contentType); header.append(";charset="); header.append(charset); header.append("\r\n"); Obviously using stream is shorter, but I think append returns reference to the string so it can be written like this: std::string header("Content-Type: "); header.append(contentType) .append(";charset=") .append(charset) .append("\r\n"); And with output stream you can do: std::string content; ... os << "Content-Length: " << content.length() << "\r\n"; But what about memory usage and speed? Especially when used in a big loop. Update: To be more clear the question is: Which one should I use and why? Is there situations when one is preferred or the other? For performance and memory ... well I think benchmark is the only way since every implementation could be different. Update 2: Well I don't get clear idea what should I use from the answers which means that any of them will do the job, plus vector. Cubbi did nice benchmark with the addition of Dietmar Kühl that the biggest difference is construction of those objects. If you are looking for an answer you should check that too. I'll wait a bit more for other answers (look previous update) and if I don't get one I think I'll accept Tolga's answer because his suggestion to use vector is already done before which means vector should be less resource hungry.

    Read the article

  • Can't insert a number into a C++ custom streambuf/ostream

    - by 0xbe5077ed
    I have written a custom std::basic_streambuf and std::basic_ostream because I want an output stream that I can get a JNI string from in a manner similar to how you can call std::ostringstream::str(). These classes are quite simple. namespace myns { class jni_utf16_streambuf : public std::basic_streambuf<char16_t> { JNIEnv * d_env; std::vector<char16_t> d_buf; virtual int_type overflow(int_type); public: jni_utf16_streambuf(JNIEnv *); jstring jstr() const; }; typedef std::basic_ostream<char16_t, std::char_traits<char16_t>> utf16_ostream; class jni_utf16_ostream : public utf16_ostream { jni_utf16_streambuf d_buf; public: jni_utf16_ostream(JNIEnv *); jstring jstr() const; }; // ... } // namespace myns In addition, I have made four overloads of operator<<, all in the same namespace: namespace myns { // ... utf16_ostream& operator<<(utf16_ostream&, jstring) throw(std::bad_cast); utf16_ostream& operator<<(utf16_ostream&, const char *); utf16_ostream& operator<<(utf16_ostream&, const jni_utf16_string_region&); jni_utf16_ostream& operator<<(jni_utf16_ostream&, jstring); // ... } // namespace myns The implementation of jni_utf16_streambuf::overflow(int_type) is trivial. It just doubles the buffer width, puts the requested character, and sets the base, put, and end pointers correctly. It is tested and I am quite sure it works. The jni_utf16_ostream works fine inserting unicode characters. For example, this works fine and results in the stream containing "hello, world": myns::jni_utf16_ostream o(env); o << u"hello, wor" << u'l' << u'd'; My problem is as soon as I try to insert an integer value, the stream's bad bit gets set, for example: myns::jni_utf16_ostream o(env); if (o.badbit()) throw "bad bit before"; // does not throw int32_t x(5); o << x; if (o.badbit()) throw "bad bit after"; // throws :( I don't understand why this is happening! Is there some other method on std::basic_streambuf I need to be implementing????

    Read the article

  • c++ property class structure

    - by Without me Its just Aweso
    I have a c++ project being developed in QT. The problem I'm running in to is I am wanting to have a single base class that all my property classes inherit from so that I can store them all together. Right now I have: class AbstractProperty { public: AbstractProperty(QString propertyName); virtual QString toString() const = 0; virtual QString getName() = 0; virtual void fromString(QString str) = 0; virtual int toInteger() = 0; virtual bool operator==(const AbstractProperty &rightHand) = 0; virtual bool operator!=(const AbstractProperty &rightHand) = 0; virtual bool operator<(const AbstractProperty &rightHand) = 0; virtual bool operator>(const AbstractProperty &rightHand) = 0; virtual bool operator>=(const AbstractProperty &rightHand) = 0; virtual bool operator<=(const AbstractProperty &rightHand) = 0; protected: QString name; }; then I am implementing classes such as PropertyFloat and PropertyString and providing implementation for the comparator operators based on the assumption that only strings are being compared with strings and so on. However the problem with this is there would be no compiletime error thrown if i did if(propertyfloat a < propertystring b) however my implementation of the operators for each derived class relies on them both being the same derived class. So my problem is I cant figure out how to implement a property structure so that I can have them all inherit from some base type but code like what I have above would throw a compile time error. Any ideas on how this can be done? For those familiar with QT I tried using also a implementation with QVariant however QVariant doesn't have operators < and defined in itself only in some of its derived classes so it didn't work out. What my end goal is, is to be able to generically refer to properties. I have an element class that holds a hashmap of properties with string 'name' as key and the AbstractProperty as value. I want to be able to generically operate on the properties. i.e. if I want to get the max and min values of a property given its string name I have methods that are completely generic that will pull out the associated AbstactProperty from each element and find the max/min no matter what the type is. so properties although initially declared as PropertyFloat/PropertyString they will be held generically.

    Read the article

  • template; operator (int)

    - by Oops
    Hi, regarding my Point struct already mentioned here: http://stackoverflow.com/questions/2794369/template-class-ctor-against-function-new-c-standard is there a chance to replace the function toint() with a cast-operator (int)? namespace point { template < unsigned int dims, typename T > struct Point { T X[ dims ]; //umm??? template < typename U > Point< dims, U > operator U() const { Point< dims, U > ret; std::copy( X, X + dims, ret.X ); return ret; } //umm??? Point< dims, int > operator int() const { Point<dims, int> ret; std::copy( X, X + dims, ret.X ); return ret; } //OK Point<dims, int> toint() { Point<dims, int> ret; std::copy( X, X + dims, ret.X ); return ret; } }; //struct Point template < typename T > Point< 2, T > Create( T X0, T X1 ) { Point< 2, T > ret; ret.X[ 0 ] = X0; ret.X[ 1 ] = X1; return ret; } }; //namespace point int main(void) { using namespace point; Point< 2, double > p2d = point::Create( 12.3, 34.5 ); Point< 2, int > p2i = (int)p2d; //äähhm??? std::cout << p2d.str() << std::endl; char c; std::cin >> c; return 0; } I think the problem is here that C++ cannot distinguish between different return types? many thanks in advance. regards Oops

    Read the article

  • c++ program debugged well with Cygwin4 (under Netbeans 7.2) but not with MinGW (under QT 4.8.1)

    - by GoldenAxe
    I have a c++ program which take a map text file and output it to a graph data structure I have made, I am using QT as I needed cross-platform program and GUI as well as visual representation of the map. I have several maps in different sizes (8x8 to 4096x4096). I am using unordered_map with a vector as key and vertex as value, I'm sending hash(1) and equal functions which I wrote to the unordered_map in creation. Under QT I am debugging my program with QT 4.8.1 for desktop MinGW (QT SDK), the program works and debug well until I try the largest map of 4096x4096, then the program stuck with the following error: "the inferior stopped because it received a signal from operating system", when debugging, the program halt at the hash function which used inside the unordered_map and not as part of the insertion state, but at a getter(2). Under Netbeans IDE 7.2 and Cygwin4 all works fine (debug and run). some code info: typedef std::vector<double> coordinate; typedef std::unordered_map<coordinate const*, Vertex<Element>*, container_hash, container_equal> vertexsContainer; vertexsContainer *m_vertexes (1) hash function: struct container_hash { size_t operator()(coordinate const *cord) const { size_t sum = 0; std::ostringstream ss; for ( auto it = cord->begin() ; it != cord->end() ; ++it ) { ss << *it; } sum = std::hash<std::string>()(ss.str()); return sum; } }; (2) the getter: template <class Element> Vertex<Element> *Graph<Element>::getVertex(const coordinate &cord) { try { Vertex<Element> *v = m_vertexes->at(&cord); return v; } catch (std::exception& e) { return NULL; } } I was thinking maybe it was some memory issue at the beginning, so before I was thinking of trying Netbeans I checked it with QT on my friend pc with a 16GB RAM and got the same error. Thanks.

    Read the article

  • C++ dynamic type construction and detection

    - by KneLL
    There was an interesting problem in C++, but it concerns more likely architecture. There are many (10, 20, 40, etc) classes that describe some characteristics (mix-in classes), for exmaple: struct Base { virtual ~Base() {} }; struct A : virtual public Base { int size; }; struct B : virtual public Base { float x, y; }; struct C : virtual public Base { bool some_bool_state; }; struct D : virtual public Base { string str; } // .... Primary module declares and exports a function (for simplicity just function declarations without classes): // .h file void operate(Base *pBase); // .cpp file void operate(Base *pBase) { // .... } Any other module can has a code like this: #include "mixins.h" #include "primary.h" class obj1_t : public A, public C, public D {}; class obj2_t : public B, public D {}; // ... void Pass() { obj1_t obj1; obj2_t obj2; operate(&obj1); operate(&obj2); } The question is how to know what the real type of given object in operate() without dynamic_cast and any type information in classes (constants, etc)? Function operate() is used with big array of objects in small time periods and dynamic_cast is too slow for it. And I don't want to include constants (enum obj_type { ... }) because this is not OOP-way. // module operate.cpp void some_operate(Base *pBase) { processA(pBase); processB(pBase); } void processA(A *pA) { } void processB(B *pB) { } I cannot directly pass a pBase to these functions. And it's impossible to have all possible combinations of classes, because I can add new classes just by including new .h files. As one of solutions that comed to mind, in editor application I can use a composite container: struct CompositeObject { vector<Base *pBase> parts; }; But editor does not need a time optimization and can use dynamic_cast for parts to determine the exact type. In operate() I cannot use this solution. So, is it possible to not use a dynamic_cast and type information to solve this problem? Or maybe I should use another architecture?

    Read the article

  • wireless internet in linux is very very slow... but in windows.... everythnings fine

    - by Cody Acer
    yesterday when i was connecting to our neighbors wifi connection which is the signal strength is below 50%, i cant browse anything... even ping to gateway. 100% packet loss, and sometimes.. i can connect awesomely i can open my facebook account for 15 minutes but after 15min.. connection is extremely slow. but not windows i can surf even the signal str is very poor weird ey??.. root@Emely:~# lspci -knn 00:00.0 Host bridge [0600]: Intel Corporation Atom Processor D4xx/D5xx/N4xx/N5xx DMI Bridge [8086:a010] Subsystem: Samsung Electronics Co Ltd Notebook N150P [144d:c072] Kernel driver in use: agpgart-intel 00:02.0 VGA compatible controller [0300]: Intel Corporation Atom Processor D4xx/D5xx/N4xx/N5xx Integrated Graphics Controller [8086:a011] Subsystem: Samsung Electronics Co Ltd Notebook N150P [144d:c072] Kernel driver in use: i915 Kernel modules: i915 00:02.1 Display controller [0380]: Intel Corporation Atom Processor D4xx/D5xx/N4xx/N5xx Integrated Graphics Controller [8086:a012] Subsystem: Samsung Electronics Co Ltd Notebook N150P [144d:c072] 00:1b.0 Audio device [0403]: Intel Corporation NM10/ICH7 Family High Definition Audio Controller [8086:27d8] (rev 02) Subsystem: Samsung Electronics Co Ltd Notebook N150P [144d:c072] Kernel driver in use: snd_hda_intel Kernel modules: snd-hda-intel 00:1c.0 PCI bridge [0604]: Intel Corporation NM10/ICH7 Family PCI Express Port 1 [8086:27d0] (rev 02) Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.1 PCI bridge [0604]: Intel Corporation NM10/ICH7 Family PCI Express Port 2 [8086:27d2] (rev 02) Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.2 PCI bridge [0604]: Intel Corporation NM10/ICH7 Family PCI Express Port 3 [8086:27d4] (rev 02) Kernel driver in use: pcieport Kernel modules: shpchp 00:1c.3 PCI bridge [0604]: Intel Corporation NM10/ICH7 Family PCI Express Port 4 [8086:27d6] (rev 02) Kernel driver in use: pcieport Kernel modules: shpchp 00:1d.0 USB controller [0c03]: Intel Corporation NM10/ICH7 Family USB UHCI Controller #1 [8086:27c8] (rev 02) Subsystem: Samsung Electronics Co Ltd Notebook N150P [144d:c072] Kernel driver in use: uhci_hcd 00:1d.1 USB controller [0c03]: Intel Corporation NM10/ICH7 Family USB UHCI Controller #2 [8086:27c9] (rev 02) Subsystem: Samsung Electronics Co Ltd Notebook N150P [144d:c072] Kernel driver in use: uhci_hcd 00:1d.2 USB controller [0c03]: Intel Corporation NM10/ICH7 Family USB UHCI Controller #3 [8086:27ca] (rev 02) Subsystem: Samsung Electronics Co Ltd Notebook N150P [144d:c072] Kernel driver in use: uhci_hcd 00:1d.3 USB controller [0c03]: Intel Corporation NM10/ICH7 Family USB UHCI Controller #4 [8086:27cb] (rev 02) Subsystem: Samsung Electronics Co Ltd Notebook N150P [144d:c072] Kernel driver in use: uhci_hcd 00:1d.7 USB controller [0c03]: Intel Corporation NM10/ICH7 Family USB2 EHCI Controller [8086:27cc] (rev 02) Subsystem: Samsung Electronics Co Ltd Notebook N150P [144d:c072] Kernel driver in use: ehci-pci 00:1e.0 PCI bridge [0604]: Intel Corporation 82801 Mobile PCI Bridge [8086:2448] (rev e2) 00:1f.0 ISA bridge [0601]: Intel Corporation NM10 Family LPC Controller [8086:27bc] (rev 02) Subsystem: Samsung Electronics Co Ltd Notebook N150P [144d:c072] Kernel driver in use: lpc_ich Kernel modules: lpc_ich 00:1f.2 SATA controller [0106]: Intel Corporation NM10/ICH7 Family SATA Controller [AHCI mode] [8086:27c1] (rev 02) Subsystem: Samsung Electronics Co Ltd Notebook N150P [144d:c072] Kernel driver in use: ahci Kernel modules: ahci 00:1f.3 SMBus [0c05]: Intel Corporation NM10/ICH7 Family SMBus Controller [8086:27da] (rev 02) Subsystem: Samsung Electronics Co Ltd Notebook N150P [144d:c072] Kernel modules: i2c-i801 05:00.0 Network controller [0280]: Broadcom Corporation BCM4313 802.11bgn Wireless Network Adapter [14e4:4727] (rev 01) Subsystem: Wistron NeWeb Corp. Device [185f:051a] Kernel driver in use: bcma-pci-bridge Kernel modules: bcma 09:00.0 Ethernet controller [0200]: Marvell Technology Group Ltd. 88E8040 PCI-E Fast Ethernet Controller [11ab:4354] Subsystem: Samsung Electronics Co Ltd Notebook N150P [144d:c072] Kernel driver in use: sky2 Kernel modules: sky2 root@Emely:~# ip addr show 1: lo: mtu 65536 qdisc noqueue state UNKNOWN link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo inet6 ::1/128 scope host valid_lft forever preferred_lft forever 2: eth0: mtu 1500 qdisc pfifo_fast state DOWN qlen 1000 link/ether e8:11:32:2e:a6:fd brd ff:ff:ff:ff:ff:ff 3: wlan0: mtu 1500 qdisc mq state UP qlen 1000 link/ether 00:1b:b1:a9:ac:e0 brd ff:ff:ff:ff:ff:ff inet 192.168.1.108/24 brd 192.168.1.255 scope global wlan0 inet6 fe80::21b:b1ff:fea9:ace0/64 scope link valid_lft forever preferred_lft forever root@Emely:~# ip link show 1: lo: mtu 65536 qdisc noqueue state UNKNOWN link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 2: eth0: mtu 1500 qdisc pfifo_fast state DOWN qlen 1000 link/ether e8:11:32:2e:a6:fd brd ff:ff:ff:ff:ff:ff 3: wlan0: mtu 1500 qdisc mq state UP qlen 1000 link/ether 00:1b:b1:a9:ac:e0 brd ff:ff:ff:ff:ff:ff root@Emely:~# rfkill list all 0: samsung-wlan: Wireless LAN Soft blocked: no Hard blocked: no 1: samsung-bluetooth: Bluetooth Soft blocked: no Hard blocked: no 2: hci0: Bluetooth Soft blocked: no Hard blocked: no 3: phy0: Wireless LAN Soft blocked: no Hard blocked: no is this a wireless driver issue?

    Read the article

  • Parallelism in .NET – Part 14, The Different Forms of Task

    - by Reed
    Before discussing Task creation and actual usage in concurrent environments, I will briefly expand upon my introduction of the Task class and provide a short explanation of the distinct forms of Task.  The Task Parallel Library includes four distinct, though related, variations on the Task class. In my introduction to the Task class, I focused on the most basic version of Task.  This version of Task, the standard Task class, is most often used with an Action delegate.  This allows you to implement for each task within the task decomposition as a single delegate. Typically, when using the new threading constructs in .NET 4 and the Task Parallel Library, we use lambda expressions to define anonymous methods.  The advantage of using a lambda expression is that it allows the Action delegate to directly use variables in the calling scope.  This eliminates the need to make separate Task classes for Action<T>, Action<T1,T2>, and all of the other Action<…> delegate types.  As an example, suppose we wanted to make a Task to handle the ”Show Splash” task from our earlier decomposition.  Even if this task required parameters, such as a message to display, we could still use an Action delegate specified via a lambda: // Store this as a local variable string messageForSplashScreen = GetSplashScreenMessage(); // Create our task Task showSplashTask = new Task( () => { // We can use variables in our outer scope, // as well as methods scoped to our class! this.DisplaySplashScreen(messageForSplashScreen); }); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This provides a huge amount of flexibility.  We can use this single form of task for any task which performs an operation, provided the only information we need to track is whether the task has completed successfully or not.  This leads to my first observation: Use a Task with a System.Action delegate for any task for which no result is generated. This observation leads to an obvious corollary: we also need a way to define a task which generates a result.  The Task Parallel Library provides this via the Task<TResult> class. Task<TResult> subclasses the standard Task class, providing one additional feature – the ability to return a value back to the user of the task.  This is done by switching from providing an Action delegate to providing a Func<TResult> delegate.  If we decompose our problem, and we realize we have one task where its result is required by a future operation, this can be handled via Task<TResult>.  For example, suppose we want to make a task for our “Check for Update” task, we could do: Task<bool> checkForUpdateTask = new Task<bool>( () => { return this.CheckWebsiteForUpdate(); }); Later, we would start this task, and perform some other work.  At any point in the future, we could get the value from the Task<TResult>.Result property, which will cause our thread to block until the task has finished processing: // This uses Task<bool> checkForUpdateTask generated above... // Start the task, typically on a background thread checkForUpdateTask.Start(); // Do some other work on our current thread this.DoSomeWork(); // Discover, from our background task, whether an update is available // This will block until our task completes bool updateAvailable = checkForUpdateTask.Result; This leads me to my second observation: Use a Task<TResult> with a System.Func<TResult> delegate for any task which generates a result. Task and Task<TResult> provide a much cleaner alternative to the previous Asynchronous Programming design patterns in the .NET framework.  Instead of trying to implement IAsyncResult, and providing BeginXXX() and EndXXX() methods, implementing an asynchronous programming API can be as simple as creating a method that returns a Task or Task<TResult>.  The client side of the pattern also is dramatically simplified – the client can call a method, then either choose to call task.Wait() or use task.Result when it needs to wait for the operation’s completion. While this provides a much cleaner model for future APIs, there is quite a bit of infrastructure built around the current Asynchronous Programming design patterns.  In order to provide a model to work with existing APIs, two other forms of Task exist.  There is a constructor for Task which takes an Action<Object> and a state parameter.  In addition, there is a constructor for creating a Task<TResult> which takes a Func<Object, TResult> as well as a state parameter.  When using these constructors, the state parameter is stored in the Task.AsyncState property. While these two overloads exist, and are usable directly, I strongly recommend avoiding this for new development.  The two forms of Task which take an object state parameter exist primarily for interoperability with traditional .NET Asynchronous Programming methodologies.  Using lambda expressions to capture variables from the scope of the creator is a much cleaner approach than using the untyped state parameters, since lambda expressions provide full type safety without introducing new variables.

    Read the article

  • Parallelism in .NET – Part 15, Making Tasks Run: The TaskScheduler

    - by Reed
    In my introduction to the Task class, I specifically made mention that the Task class does not directly provide it’s own execution.  In addition, I made a strong point that the Task class itself is not directly related to threads or multithreading.  Rather, the Task class is used to implement our decomposition of tasks.  Once we’ve implemented our tasks, we need to execute them.  In the Task Parallel Library, the execution of Tasks is handled via an instance of the TaskScheduler class. The TaskScheduler class is an abstract class which provides a single function: it schedules the tasks and executes them within an appropriate context.  This class is the class which actually runs individual Task instances.  The .NET Framework provides two (internal) implementations of the TaskScheduler class. Since a Task, based on our decomposition, should be a self-contained piece of code, parallel execution makes sense when executing tasks.  The default implementation of the TaskScheduler class, and the one most often used, is based on the ThreadPool.  This can be retrieved via the TaskScheduler.Default property, and is, by default, what is used when we just start a Task instance with Task.Start(). Normally, when a Task is started by the default TaskScheduler, the task will be treated as a single work item, and run on a ThreadPool thread.  This pools tasks, and provides Task instances all of the advantages of the ThreadPool, including thread pooling for reduced resource usage, and an upper cap on the number of work items.  In addition, .NET 4 brings us a much improved thread pool, providing work stealing and reduced locking within the thread pool queues.  By using the default TaskScheduler, our Tasks are run asynchronously on the ThreadPool. There is one notable exception to my above statements when using the default TaskScheduler.  If a Task is created with the TaskCreationOptions set to TaskCreationOptions.LongRunning, the default TaskScheduler will generate a new thread for that Task, at least in the current implementation.  This is useful for Tasks which will persist for most of the lifetime of your application, since it prevents your Task from starving the ThreadPool of one of it’s work threads. The Task Parallel Library provides one other implementation of the TaskScheduler class.  In addition to providing a way to schedule tasks on the ThreadPool, the framework allows you to create a TaskScheduler which works within a specified SynchronizationContext.  This scheduler can be retrieved within a thread that provides a valid SynchronizationContext by calling the TaskScheduler.FromCurrentSynchronizationContext() method. This implementation of TaskScheduler is intended for use with user interface development.  Windows Forms and Windows Presentation Foundation both require any access to user interface controls to occur on the same thread that created the control.  For example, if you want to set the text within a Windows Forms TextBox, and you’re working on a background thread, that UI call must be marshaled back onto the UI thread.  The most common way this is handled depends on the framework being used.  In Windows Forms, Control.Invoke or Control.BeginInvoke is most often used.  In WPF, the equivelent calls are Dispatcher.Invoke or Dispatcher.BeginInvoke. As an example, say we’re working on a background thread, and we want to update a TextBlock in our user interface with a status label.  The code would typically look something like: // Within background thread work... string status = GetUpdatedStatus(); Dispatcher.BeginInvoke(DispatcherPriority.Normal, new Action( () => { statusLabel.Text = status; })); // Continue on in background method .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This works fine, but forces your method to take a dependency on WPF or Windows Forms.  There is an alternative option, however.  Both Windows Forms and WPF, when initialized, setup a SynchronizationContext in their thread, which is available on the UI thread via the SynchronizationContext.Current property.  This context is used by classes such as BackgroundWorker to marshal calls back onto the UI thread in a framework-agnostic manner. The Task Parallel Library provides the same functionality via the TaskScheduler.FromCurrentSynchronizationContext() method.  When setting up our Tasks, as long as we’re working on the UI thread, we can construct a TaskScheduler via: TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); We then can use this scheduler on any thread to marshal data back onto the UI thread.  For example, our code above can then be rewritten as: string status = GetUpdatedStatus(); (new Task(() => { statusLabel.Text = status; })) .Start(uiScheduler); // Continue on in background method This is nice since it allows us to write code that isn’t tied to Windows Forms or WPF, but is still fully functional with those technologies.  I’ll discuss even more uses for the SynchronizationContext based TaskScheduler when I demonstrate task continuations, but even without continuations, this is a very useful construct. In addition to the two implementations provided by the Task Parallel Library, it is possible to implement your own TaskScheduler.  The ParallelExtensionsExtras project within the Samples for Parallel Programming provides nine sample TaskScheduler implementations.  These include schedulers which restrict the maximum number of concurrent tasks, run tasks on a single threaded apartment thread, use a new thread per task, and more.

    Read the article

  • Parallelism in .NET – Part 6, Declarative Data Parallelism

    - by Reed
    When working with a problem that can be decomposed by data, we have a collection, and some operation being performed upon the collection.  I’ve demonstrated how this can be parallelized using the Task Parallel Library and imperative programming using imperative data parallelism via the Parallel class.  While this provides a huge step forward in terms of power and capabilities, in many cases, special care must still be given for relative common scenarios. C# 3.0 and Visual Basic 9.0 introduced a new, declarative programming model to .NET via the LINQ Project.  When working with collections, we can now write software that describes what we want to occur without having to explicitly state how the program should accomplish the task.  By taking advantage of LINQ, many operations become much shorter, more elegant, and easier to understand and maintain.  Version 4.0 of the .NET framework extends this concept into the parallel computation space by introducing Parallel LINQ. Before we delve into PLINQ, let’s begin with a short discussion of LINQ.  LINQ, the extensions to the .NET Framework which implement language integrated query, set, and transform operations, is implemented in many flavors.  For our purposes, we are interested in LINQ to Objects.  When dealing with parallelizing a routine, we typically are dealing with in-memory data storage.  More data-access oriented LINQ variants, such as LINQ to SQL and LINQ to Entities in the Entity Framework fall outside of our concern, since the parallelism there is the concern of the data base engine processing the query itself. LINQ (LINQ to Objects in particular) works by implementing a series of extension methods, most of which work on IEnumerable<T>.  The language enhancements use these extension methods to create a very concise, readable alternative to using traditional foreach statement.  For example, let’s revisit our minimum aggregation routine we wrote in Part 4: double min = double.MaxValue; foreach(var item in collection) { double value = item.PerformComputation(); min = System.Math.Min(min, value); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, we’re doing a very simple computation, but writing this in an imperative style.  This can be loosely translated to English as: Create a very large number, and save it in min Loop through each item in the collection. For every item: Perform some computation, and save the result If the computation is less than min, set min to the computation Although this is fairly easy to follow, it’s quite a few lines of code, and it requires us to read through the code, step by step, line by line, in order to understand the intention of the developer. We can rework this same statement, using LINQ: double min = collection.Min(item => item.PerformComputation()); Here, we’re after the same information.  However, this is written using a declarative programming style.  When we see this code, we’d naturally translate this to English as: Save the Min value of collection, determined via calling item.PerformComputation() That’s it – instead of multiple logical steps, we have one single, declarative request.  This makes the developer’s intentions very clear, and very easy to follow.  The system is free to implement this using whatever method required. Parallel LINQ (PLINQ) extends LINQ to Objects to support parallel operations.  This is a perfect fit in many cases when you have a problem that can be decomposed by data.  To show this, let’s again refer to our minimum aggregation routine from Part 4, but this time, let’s review our final, parallelized version: // Safe, and fast! double min = double.MaxValue; // Make a "lock" object object syncObject = new object(); Parallel.ForEach( collection, // First, we provide a local state initialization delegate. () => double.MaxValue, // Next, we supply the body, which takes the original item, loop state, // and local state, and returns a new local state (item, loopState, localState) => { double value = item.PerformComputation(); return System.Math.Min(localState, value); }, // Finally, we provide an Action<TLocal>, to "merge" results together localState => { // This requires locking, but it's only once per used thread lock(syncObj) min = System.Math.Min(min, localState); } ); Here, we’re doing the same computation as above, but fully parallelized.  Describing this in English becomes quite a feat: Create a very large number, and save it in min Create a temporary object we can use for locking Call Parallel.ForEach, specifying three delegates For the first delegate: Initialize a local variable to hold the local state to a very large number For the second delegate: For each item in the collection, perform some computation, save the result If the result is less than our local state, save the result in local state For the final delegate: Take a lock on our temporary object to protect our min variable Save the min of our min and local state variables Although this solves our problem, and does it in a very efficient way, we’ve created a set of code that is quite a bit more difficult to understand and maintain. PLINQ provides us with a very nice alternative.  In order to use PLINQ, we need to learn one new extension method that works on IEnumerable<T> – ParallelEnumerable.AsParallel(). That’s all we need to learn in order to use PLINQ: one single method.  We can write our minimum aggregation in PLINQ very simply: double min = collection.AsParallel().Min(item => item.PerformComputation()); By simply adding “.AsParallel()” to our LINQ to Objects query, we converted this to using PLINQ and running this computation in parallel!  This can be loosely translated into English easily, as well: Process the collection in parallel Get the Minimum value, determined by calling PerformComputation on each item Here, our intention is very clear and easy to understand.  We just want to perform the same operation we did in serial, but run it “as parallel”.  PLINQ completely extends LINQ to Objects: the entire functionality of LINQ to Objects is available.  By simply adding a call to AsParallel(), we can specify that a collection should be processed in parallel.  This is simple, safe, and incredibly useful.

    Read the article

  • Launching a WPF Window in a Separate Thread, Part 1

    - by Reed
    Typically, I strongly recommend keeping the user interface within an application’s main thread, and using multiple threads to move the actual “work” into background threads.  However, there are rare times when creating a separate, dedicated thread for a Window can be beneficial.  This is even acknowledged in the MSDN samples, such as the Multiple Windows, Multiple Threads sample.  However, doing this correctly is difficult.  Even the referenced MSDN sample has major flaws, and will fail horribly in certain scenarios.  To ease this, I wrote a small class that alleviates some of the difficulties involved. The MSDN Multiple Windows, Multiple Threads Sample shows how to launch a new thread with a WPF Window, and will work in most cases.  The sample code (commented and slightly modified) works out to the following: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { // Create and show the Window Window1 tempWindow = new Window1(); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Set the apartment state newWindowThread.SetApartmentState(ApartmentState.STA); // Make the thread a background thread newWindowThread.IsBackground = true; // Start the thread newWindowThread.Start(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This sample creates a thread, marks it as single threaded apartment state, and starts the Dispatcher on that thread. That is the minimum requirements to get a Window displaying and handling messages correctly, but, unfortunately, has some serious flaws. The first issue – the created thread will run continuously until the application shuts down, given the code in the sample.  The problem is that the ThreadStart delegate used ends with running the Dispatcher.  However, nothing ever stops the Dispatcher processing.  The thread was created as a Background thread, which prevents it from keeping the application alive, but the Dispatcher will continue to pump dispatcher frames until the application shuts down. In order to fix this, we need to call Dispatcher.InvokeShutdown after the Window is closed.  This would require modifying the above sample to subscribe to the Window’s Closed event, and, at that point, shutdown the Dispatcher: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { Window1 tempWindow = new Window1(); // When the window closes, shut down the dispatcher tempWindow.Closed += (s,e) => Dispatcher.CurrentDispatcher.BeginInvokeShutdown(DispatcherPriority.Background); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Setup and start thread as before This eliminates the first issue.  Now, when the Window is closed, the new thread’s Dispatcher will shut itself down, which in turn will cause the thread to complete. The above code will work correctly for most situations.  However, there is still a potential problem which could arise depending on the content of the Window1 class.  This is particularly nasty, as the code could easily work for most windows, but fail on others. The problem is, at the point where the Window is constructed, there is no active SynchronizationContext.  This is unlikely to be a problem in most cases, but is an absolute requirement if there is code within the constructor of Window1 which relies on a context being in place. While this sounds like an edge case, it’s fairly common.  For example, if a BackgroundWorker is started within the constructor, or a TaskScheduler is built using TaskScheduler.FromCurrentSynchronizationContext() with the expectation of synchronizing work to the UI thread, an exception will be raised at some point.  Both of these classes rely on the existence of a proper context being installed to SynchronizationContext.Current, which happens automatically, but not until Dispatcher.Run is called.  In the above case, SynchronizationContext.Current will return null during the Window’s construction, which can cause exceptions to occur or unexpected behavior. Luckily, this is fairly easy to correct.  We need to do three things, in order, prior to creating our Window: Create and initialize the Dispatcher for the new thread manually Create a synchronization context for the thread which uses the Dispatcher Install the synchronization context Creating the Dispatcher is quite simple – The Dispatcher.CurrentDispatcher property gets the current thread’s Dispatcher and “creates a new Dispatcher if one is not already associated with the thread.”  Once we have the correct Dispatcher, we can create a SynchronizationContext which uses the dispatcher by creating a DispatcherSynchronizationContext.  Finally, this synchronization context can be installed as the current thread’s context via SynchronizationContext.SetSynchronizationContext.  These three steps can easily be added to the above via a single line of code: // Create a thread Thread newWindowThread = new Thread(new ThreadStart( () => { // Create our context, and install it: SynchronizationContext.SetSynchronizationContext( new DispatcherSynchronizationContext( Dispatcher.CurrentDispatcher)); Window1 tempWindow = new Window1(); // When the window closes, shut down the dispatcher tempWindow.Closed += (s,e) => Dispatcher.CurrentDispatcher.BeginInvokeShutdown(DispatcherPriority.Background); tempWindow.Show(); // Start the Dispatcher Processing System.Windows.Threading.Dispatcher.Run(); })); // Setup and start thread as before This now forces the synchronization context to be in place before the Window is created and correctly shuts down the Dispatcher when the window closes. However, there are quite a few steps.  In my next post, I’ll show how to make this operation more reusable by creating a class with a far simpler API…

    Read the article

< Previous Page | 78 79 80 81 82 83 84 85  | Next Page >