Search Results

Search found 9307 results on 373 pages for 'color printer'.

Page 83/373 | < Previous Page | 79 80 81 82 83 84 85 86 87 88 89 90  | Next Page >

  • changing the bg color of an active click function in jquery?

    - by pingpong
    basically i have this click function in jquery: (this is just a snippet, not full) $('.block').click(function(){ var id= $(this).attr('id'); i want to chnage the background color of the block that has been clicked only, assigned with the id i.e. $('.block').click(function(){ var id= $(this).attr('id'); $('.block').css('background-color','grey'); but where do i assign the id, so jquery knows, to only turn the clicked block into grey, not the others, cheers

    Read the article

  • CSS: background:#252 or background-color:#252? will the first cause the browser to assume the same a

    - by nick
    if for a class i include "background:#252", the browser will assume the rest of the background properties that i didn't specify. If instead I used "background-color:#252", would it cause the browser to assume the exact same about the rest of the background properties that i leave unspecified? background:#252 is shorter, but i wonder if it would be better to use background-color:#252? thanks.

    Read the article

  • C# 5 Async, Part 1: Simplifying Asynchrony – That for which we await

    - by Reed
    Today’s announcement at PDC of the future directions C# is taking excite me greatly.  The new Visual Studio Async CTP is amazing.  Asynchronous code – code which frustrates and demoralizes even the most advanced of developers, is taking a huge leap forward in terms of usability.  This is handled by building on the Task functionality in .NET 4, as well as the addition of two new keywords being added to the C# language: async and await. This core of the new asynchronous functionality is built upon three key features.  First is the Task functionality in .NET 4, and based on Task and Task<TResult>.  While Task was intended to be the primary means of asynchronous programming with .NET 4, the .NET Framework was still based mainly on the Asynchronous Pattern and the Event-based Asynchronous Pattern. The .NET Framework added functionality and guidance for wrapping existing APIs into a Task based API, but the framework itself didn’t really adopt Task or Task<TResult> in any meaningful way.  The CTP shows that, going forward, this is changing. One of the three key new features coming in C# is actually a .NET Framework feature.  Nearly every asynchronous API in the .NET Framework has been wrapped into a new, Task-based method calls.  In the CTP, this is done via as external assembly (AsyncCtpLibrary.dll) which uses Extension Methods to wrap the existing APIs.  However, going forward, this will be handled directly within the Framework.  This will have a unifying effect throughout the .NET Framework.  This is the first building block of the new features for asynchronous programming: Going forward, all asynchronous operations will work via a method that returns Task or Task<TResult> The second key feature is the new async contextual keyword being added to the language.  The async keyword is used to declare an asynchronous function, which is a method that either returns void, a Task, or a Task<T>. Inside the asynchronous function, there must be at least one await expression.  This is a new C# keyword (await) that is used to automatically take a series of statements and break it up to potentially use discontinuous evaluation.  This is done by using await on any expression that evaluates to a Task or Task<T>. For example, suppose we want to download a webpage as a string.  There is a new method added to WebClient: Task<string> WebClient.DownloadStringTaskAsync(Uri).  Since this returns a Task<string> we can use it within an asynchronous function.  Suppose, for example, that we wanted to do something similar to my asynchronous Task example – download a web page asynchronously and check to see if it supports XHTML 1.0, then report this into a TextBox.  This could be done like so: private async void button1_Click(object sender, RoutedEventArgs e) { string url = "http://reedcopsey.com"; string content = await new WebClient().DownloadStringTaskAsync(url); this.textBox1.Text = string.Format("Page {0} supports XHTML 1.0: {1}", url, content.Contains("XHTML 1.0")); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Let’s walk through what’s happening here, step by step.  By adding the async contextual keyword to the method definition, we are able to use the await keyword on our WebClient.DownloadStringTaskAsync method call. When the user clicks this button, the new method (Task<string> WebClient.DownloadStringTaskAsync(string)) is called, which returns a Task<string>.  By adding the await keyword, the runtime will call this method that returns Task<string>, and execution will return to the caller at this point.  This means that our UI is not blocked while the webpage is downloaded.  Instead, the UI thread will “await” at this point, and let the WebClient do it’s thing asynchronously. When the WebClient finishes downloading the string, the user interface’s synchronization context will automatically be used to “pick up” where it left off, and the Task<string> returned from DownloadStringTaskAsync is automatically unwrapped and set into the content variable.  At this point, we can use that and set our text box content. There are a couple of key points here: Asynchronous functions are declared with the async keyword, and contain one or more await expressions In addition to the obvious benefits of shorter, simpler code – there are some subtle but tremendous benefits in this approach.  When the execution of this asynchronous function continues after the first await statement, the initial synchronization context is used to continue the execution of this function.  That means that we don’t have to explicitly marshal the call that sets textbox1.Text back to the UI thread – it’s handled automatically by the language and framework!  Exception handling around asynchronous method calls also just works. I’d recommend every C# developer take a look at the documentation on the new Asynchronous Programming for C# and Visual Basic page, download the Visual Studio Async CTP, and try it out.

    Read the article

  • Parallelism in .NET – Part 13, Introducing the Task class

    - by Reed
    Once we’ve used a task-based decomposition to decompose a problem, we need a clean abstraction usable to implement the resulting decomposition.  Given that task decomposition is founded upon defining discrete tasks, .NET 4 has introduced a new API for dealing with task related issues, the aptly named Task class. The Task class is a wrapper for a delegate representing a single, discrete task within your decomposition.  We will go into various methods of construction for tasks later, but, when reduced to its fundamentals, an instance of a Task is nothing more than a wrapper around a delegate with some utility functionality added.  In order to fully understand the Task class within the new Task Parallel Library, it is important to realize that a task really is just a delegate – nothing more.  In particular, note that I never mentioned threading or parallelism in my description of a Task.  Although the Task class exists in the new System.Threading.Tasks namespace: Tasks are not directly related to threads or multithreading. Of course, Task instances will typically be used in our implementation of concurrency within an application, but the Task class itself does not provide the concurrency used.  The Task API supports using Tasks in an entirely single threaded, synchronous manner. Tasks are very much like standard delegates.  You can execute a task synchronously via Task.RunSynchronously(), or you can use Task.Start() to schedule a task to run, typically asynchronously.  This is very similar to using delegate.Invoke to execute a delegate synchronously, or using delegate.BeginInvoke to execute it asynchronously. The Task class adds some nice functionality on top of a standard delegate which improves usability in both synchronous and multithreaded environments. The first addition provided by Task is a means of handling cancellation via the new unified cancellation mechanism of .NET 4.  If the wrapped delegate within a Task raises an OperationCanceledException during it’s operation, which is typically generated via calling ThrowIfCancellationRequested on a CancellationToken, or if the CancellationToken used to construct a Task instance is flagged as canceled, the Task’s IsCanceled property will be set to true automatically.  This provides a clean way to determine whether a Task has been canceled, often without requiring specific exception handling. Tasks also provide a clean API which can be used for waiting on a task.  Although the Task class explicitly implements IAsyncResult, Tasks provide a nicer usage model than the traditional .NET Asynchronous Programming Model.  Instead of needing to track an IAsyncResult handle, you can just directly call Task.Wait() to block until a Task has completed.  Overloads exist for providing a timeout, a CancellationToken, or both to prevent waiting indefinitely.  In addition, the Task class provides static methods for waiting on multiple tasks – Task.WaitAll and Task.WaitAny, again with overloads providing time out options.  This provides a very simple, clean API for waiting on single or multiple tasks. Finally, Tasks provide a much nicer model for Exception handling.  If the delegate wrapped within a Task raises an exception, the exception will automatically get wrapped into an AggregateException and exposed via the Task.Exception property.  This exception is stored with the Task directly, and does not tear down the application.  Later, when Task.Wait() (or Task.WaitAll or Task.WaitAny) is called on this task, an AggregateException will be raised at that point if any of the tasks raised an exception.  For example, suppose we have the following code: Task taskOne = new Task( () => { throw new ApplicationException("Random Exception!"); }); Task taskTwo = new Task( () => { throw new ArgumentException("Different exception here"); }); // Start the tasks taskOne.Start(); taskTwo.Start(); try { Task.WaitAll(new[] { taskOne, taskTwo }); } catch (AggregateException e) { Console.WriteLine(e.InnerExceptions.Count); foreach (var inner in e.InnerExceptions) Console.WriteLine(inner.Message); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, our routine will print: 2 Different exception here Random Exception! Note that we had two separate tasks, each of which raised two distinctly different types of exceptions.  We can handle this cleanly, with very little code, in a much nicer manner than the Asynchronous Programming API.  We no longer need to handle TargetInvocationException or worry about implementing the Event-based Asynchronous Pattern properly by setting the AsyncCompletedEventArgs.Error property.  Instead, we just raise our exception as normal, and handle AggregateException in a single location in our calling code.

    Read the article

  • Parallelism in .NET – Part 16, Creating Tasks via a TaskFactory

    - by Reed
    The Task class in the Task Parallel Library supplies a large set of features.  However, when creating the task, and assigning it to a TaskScheduler, and starting the Task, there are quite a few steps involved.  This gets even more cumbersome when multiple tasks are involved.  Each task must be constructed, duplicating any options required, then started individually, potentially on a specific scheduler.  At first glance, this makes the new Task class seem like more work than ThreadPool.QueueUserWorkItem in .NET 3.5. In order to simplify this process, and make Tasks simple to use in simple cases, without sacrificing their power and flexibility, the Task Parallel Library added a new class: TaskFactory. The TaskFactory class is intended to “Provide support for creating and scheduling Task objects.”  Its entire purpose is to simplify development when working with Task instances.  The Task class provides access to the default TaskFactory via the Task.Factory static property.  By default, TaskFactory uses the default TaskScheduler to schedule tasks on a ThreadPool thread.  By using Task.Factory, we can automatically create and start a task in a single “fire and forget” manner, similar to how we did with ThreadPool.QueueUserWorkItem: Task.Factory.StartNew(() => this.ExecuteBackgroundWork(myData) ); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This provides us with the same level of simplicity we had with ThreadPool.QueueUserWorkItem, but even more power.  For example, we can now easily wait on the task: // Start our task on a background thread var task = Task.Factory.StartNew(() => this.ExecuteBackgroundWork(myData) ); // Do other work on the main thread, // while the task above executes in the background this.ExecuteWorkSynchronously(); // Wait for the background task to finish task.Wait(); TaskFactory simplifies creation and startup of simple background tasks dramatically. In addition to using the default TaskFactory, it’s often useful to construct a custom TaskFactory.  The TaskFactory class includes an entire set of constructors which allow you to specify the default configuration for every Task instance created by that factory.  This is particularly useful when using a custom TaskScheduler.  For example, look at the sample code for starting a task on the UI thread in Part 15: // Given the following, constructed on the UI thread // TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); // When inside a background task, we can do string status = GetUpdatedStatus(); (new Task(() => { statusLabel.Text = status; })) .Start(uiScheduler); This is actually quite a bit more complicated than necessary.  When we create the uiScheduler instance, we can use that to construct a TaskFactory that will automatically schedule tasks on the UI thread.  To do that, we’d create the following on our main thread, prior to constructing our background tasks: // Construct a task scheduler from the current SynchronizationContext (UI thread) var uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); // Construct a new TaskFactory using our UI scheduler var uiTaskFactory = new TaskFactory(uiScheduler); If we do this, when we’re on a background thread, we can use this new TaskFactory to marshal a Task back onto the UI thread.  Our previous code simplifies to: // When inside a background task, we can do string status = GetUpdatedStatus(); // Update our UI uiTaskFactory.StartNew( () => statusLabel.Text = status); Notice how much simpler this becomes!  By taking advantage of the convenience provided by a custom TaskFactory, we can now marshal to set data on the UI thread in a single, clear line of code!

    Read the article

  • Compiling and installing UFRII driver for Canon IR2520 on a headless Ubuntu 12.04 Server

    - by nixnotwin
    I want to setup a headless Ubuntu 12.04 machine as a print server. The printer is Canon IR2520 which needs UFRII driver. Printer is connected to the network via Ethernet. After searching a lot about weather printer can be directly accessed as a SMB share, I decided to make Ubuntu server as print server. The Windows clients send the print jobs to the server and the server will send those jobs via Ethernet to the printer. I followed this how-to for installing the driver. The driver compilation fails with the error that gtk 2.0 package is not available. I cannot have gtk on a headless server, it is very necessary that it should not have any graphical/desktop packages. What would be the solution for installing UFRII on Ubuntu 12.04 Server.

    Read the article

  • Tweaking a few URL validation settings on ASP.NET v4.0

    - by Carlyle Dacosta
    ASP.NET has a few default settings for URLs out of the box. These can be configured quite easily in the web.config file within the  <system.web>/<httpRuntime> configuration section. Some of these are: <httpRuntime maxUrlLength=”<number here>”. This number should be an integer value (defaults to 260 characters). The value must be greater than or equal to zero, though obviously small values will lead to an un-useable website. This attribute gates the length of the Url without query string. <httpRuntime maxQueryStringLength=”<number here>”. This number should be an integer value (defaults to 2048 characters). The value must be greater than or equal to zero, though obviously small values will lead to an un-useable website. <httpRuntime requestPathInvalidCharacters=”List of characters you need included in ASP.NETs validation checks”. By default the characters are “<,>,*,%,&,:,\,?”. However once can easily change this by setting by modifying web.config. Remember, these characters can be specified in a variety of formats. For example, I want the character ‘!’ to be included in ASP.NETs URL validation logic. So I set the following: <httpRuntime requestPathInvalidCharacters=”<,>,*,%,&,:,\,?,!”. A character could also be specified in its xml encoded form. ‘&lt;;’ would mean the ‘<’ sign). I could specify the ‘!’ in its xml encoded unicode format such as requestPathInvalidCharacters=”<,>,*,%,&,:,\,?,$#x0021;” or I could specify it in its unicode encoded form or in the “<,>,*,%,&,:,\,?,%u0021” format. The following settings can be applied at Root Web.Config level, App Web.config level, Folder level or within a location tag: <location path="some path here"> <system.web> <httpRuntime maxUrlLength="" maxQueryStringLength="" requestPathInvalidChars="" .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If any of the above settings fail request validation, an Http 400 “Bad Request” HttpException is thrown. These can be easily handled on the Application_Error handler on Global.asax.   Also, a new attribute in <httpRuntime /> called “relaxedUrlToFileSystemMapping” has been added with a default of false. <httpRuntime … relaxedUrlToFileSystemMapping="true|false" /> When the relaxedUrlToFileSystemMapping attribute is set to false inbound Urls still need to be valid NTFS file paths. For example Urls (sans query string) need to be less than 260 characters; no path segment within a Url can use old-style DOS device names (LPT1, COM1, etc…); Urls must be valid Windows file paths. A url like “http://digg.com/http://cnn.com” should work with this attribute set to true (of course a few characters will need to be unblocked by removing them from requestPathInvalidCharacters="" above). Managed configuration for non-NTFS-compliant Urls is determined from the first valid configuration path found when walking up the path segments of the Url. For example, if the request Url is "/foo/bar/baz/<blah>data</blah>", and there is a web.config in the "/foo/bar" directory, then the managed configuration for the request comes from merging the configuration hierarchy to include the web.config from "/foo/bar". The value of the public property HttpRequest.PhysicalPath is set to [physical file path of the application root] + "REQUEST_URL_IS_NOT_A_VALID_FILESYSTEM_PATH". For example, given a request Url like "/foo/bar/baz/<blah>data</blah>", where the application root is "/foo/bar" and the physical file path for that root is "c:\inetpub\wwwroot\foo\bar", then PhysicalPath would be "c:\inetpub\wwwroot\foo\bar\ REQUEST_URL_IS_NOT_A_VALID_FILESYSTEM_PATH". Carl Dacosta ASP.NET QA Team

    Read the article

  • Tweaking a few URL validation settings on ASP.NET v4.0

    - by Carlyle Dacosta
    ASP.NET has a few default settings for URLs out of the box. These can be configured quite easily in the web.config file within the  <system.web>/<httpRuntime> configuration section. Some of these are: <httpRuntime maxUrlLength=”<number here>” This number should be an integer value (defaults to 260 characters). The value must be greater than or equal to zero, though obviously small values will lead to an un-useable website. This attribute gates the length of the Url without query string. <httpRuntime maxQueryStringLength=”<number here>”. This number should be an integer value (defaults to 2048 characters). The value must be greater than or equal to zero, though obviously small values will lead to an un-useable website. <httpRuntime requestPathInvalidCharacters=”List of characters you need included in ASP.NETs validation checks” /> By default the characters are “<,>,*,%,&,:,\,?”. However once can easily change this by setting by modifying web.config. Remember, these characters can be specified in a variety of formats. For example, I want the character ‘!’ to be included in ASP.NETs URL validation logic. So I set the following: <httpRuntime requestPathInvalidCharacters=”<,>,*,%,&,:,\,?,!”. A character could also be specified in its xml encoded form. ‘&lt;;’ would mean the ‘<’ sign). I could specify the ‘!’ in its xml encoded unicode format such as requestPathInvalidCharacters=”<,>,*,%,&,:,\,?,$#x0021;” or I could specify it in its unicode encoded form or in the “<,>,*,%,&,:,\,?,%u0021” format. The following settings can be applied at Root Web.Config level, App Web.config level, Folder level or within a location tag: <location path="some path here"> <system.web> <httpRuntime maxUrlLength="" maxQueryStringLength="" requestPathInvalidChars="" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If any of the above settings fail request validation, an Http 400 “Bad Request” HttpException is thrown. These can be easily handled on the Application_Error handler on Global.asax.   Also, a new attribute in <httpRuntime /> called “relaxedUrlToFileSystemMapping” has been added with a default of false. <httpRuntime … relaxedUrlToFileSystemMapping="true|false" /> When the relaxedUrlToFileSystemMapping attribute is set to false inbound Urls still need to be valid NTFS file paths. For example Urls (sans query string) need to be less than 260 characters; no path segment within a Url can use old-style DOS device names (LPT1, COM1, etc…); Urls must be valid Windows file paths. A url like “http://digg.com/http://cnn.com” should work with this attribute set to true (of course a few characters will need to be unblocked by removing them from requestPathInvalidCharacters="" above). Managed configuration for non-NTFS-compliant Urls is determined from the first valid configuration path found when walking up the path segments of the Url. For example, if the request Url is "/foo/bar/baz/<blah>data</blah>", and there is a web.config in the "/foo/bar" directory, then the managed configuration for the request comes from merging the configuration hierarchy to include the web.config from "/foo/bar". The value of the public property HttpRequest.PhysicalPath is set to [physical file path of the application root] + "REQUEST_URL_IS_NOT_A_VALID_FILESYSTEM_PATH". For example, given a request Url like "/foo/bar/baz/<blah>data</blah>", where the application root is "/foo/bar" and the physical file path for that root is "c:\inetpub\wwwroot\foo\bar", then PhysicalPath would be "c:\inetpub\wwwroot\foo\bar\ REQUEST_URL_IS_NOT_A_VALID_FILESYSTEM_PATH".

    Read the article

  • Parallelism in .NET – Part 8, PLINQ’s ForAll Method

    - by Reed
    Parallel LINQ extends LINQ to Objects, and is typically very similar.  However, as I previously discussed, there are some differences.  Although the standard way to handle simple Data Parellelism is via Parallel.ForEach, it’s possible to do the same thing via PLINQ. PLINQ adds a new method unavailable in standard LINQ which provides new functionality… LINQ is designed to provide a much simpler way of handling querying, including filtering, ordering, grouping, and many other benefits.  Reading the description in LINQ to Objects on MSDN, it becomes clear that the thinking behind LINQ deals with retrieval of data.  LINQ works by adding a functional programming style on top of .NET, allowing us to express filters in terms of predicate functions, for example. PLINQ is, generally, very similar.  Typically, when using PLINQ, we write declarative statements to filter a dataset or perform an aggregation.  However, PLINQ adds one new method, which provides a very different purpose: ForAll. The ForAll method is defined on ParallelEnumerable, and will work upon any ParallelQuery<T>.  Unlike the sequence operators in LINQ and PLINQ, ForAll is intended to cause side effects.  It does not filter a collection, but rather invokes an action on each element of the collection. At first glance, this seems like a bad idea.  For example, Eric Lippert clearly explained two philosophical objections to providing an IEnumerable<T>.ForEach extension method, one of which still applies when parallelized.  The sole purpose of this method is to cause side effects, and as such, I agree that the ForAll method “violates the functional programming principles that all the other sequence operators are based upon”, in exactly the same manner an IEnumerable<T>.ForEach extension method would violate these principles.  Eric Lippert’s second reason for disliking a ForEach extension method does not necessarily apply to ForAll – replacing ForAll with a call to Parallel.ForEach has the same closure semantics, so there is no loss there. Although ForAll may have philosophical issues, there is a pragmatic reason to include this method.  Without ForAll, we would take a fairly serious performance hit in many situations.  Often, we need to perform some filtering or grouping, then perform an action using the results of our filter.  Using a standard foreach statement to perform our action would avoid this philosophical issue: // Filter our collection var filteredItems = collection.AsParallel().Where( i => i.SomePredicate() ); // Now perform an action foreach (var item in filteredItems) { // These will now run serially item.DoSomething(); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This would cause a loss in performance, since we lose any parallelism in place, and cause all of our actions to be run serially. We could easily use a Parallel.ForEach instead, which adds parallelism to the actions: // Filter our collection var filteredItems = collection.AsParallel().Where( i => i.SomePredicate() ); // Now perform an action once the filter completes Parallel.ForEach(filteredItems, item => { // These will now run in parallel item.DoSomething(); }); This is a noticeable improvement, since both our filtering and our actions run parallelized.  However, there is still a large bottleneck in place here.  The problem lies with my comment “perform an action once the filter completes”.  Here, we’re parallelizing the filter, then collecting all of the results, blocking until the filter completes.  Once the filtering of every element is completed, we then repartition the results of the filter, reschedule into multiple threads, and perform the action on each element.  By moving this into two separate statements, we potentially double our parallelization overhead, since we’re forcing the work to be partitioned and scheduled twice as many times. This is where the pragmatism comes into play.  By violating our functional principles, we gain the ability to avoid the overhead and cost of rescheduling the work: // Perform an action on the results of our filter collection .AsParallel() .Where( i => i.SomePredicate() ) .ForAll( i => i.DoSomething() ); The ability to avoid the scheduling overhead is a compelling reason to use ForAll.  This really goes back to one of the key points I discussed in data parallelism: Partition your problem in a way to place the most work possible into each task.  Here, this means leaving the statement attached to the expression, even though it causes side effects and is not standard usage for LINQ. This leads to my one guideline for using ForAll: The ForAll extension method should only be used to process the results of a parallel query, as returned by a PLINQ expression. Any other usage scenario should use Parallel.ForEach, instead.

    Read the article

  • Parallelism in .NET – Part 17, Think Continuations, not Callbacks

    - by Reed
    In traditional asynchronous programming, we’d often use a callback to handle notification of a background task’s completion.  The Task class in the Task Parallel Library introduces a cleaner alternative to the traditional callback: continuation tasks. Asynchronous programming methods typically required callback functions.  For example, MSDN’s Asynchronous Delegates Programming Sample shows a class that factorizes a number.  The original method in the example has the following signature: public static bool Factorize(int number, ref int primefactor1, ref int primefactor2) { //... .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } However, calling this is quite “tricky”, even if we modernize the sample to use lambda expressions via C# 3.0.  Normally, we could call this method like so: int primeFactor1 = 0; int primeFactor2 = 0; bool answer = Factorize(10298312, ref primeFactor1, ref primeFactor2); Console.WriteLine("{0}/{1} [Succeeded {2}]", primeFactor1, primeFactor2, answer); If we want to make this operation run in the background, and report to the console via a callback, things get tricker.  First, we need a delegate definition: public delegate bool AsyncFactorCaller( int number, ref int primefactor1, ref int primefactor2); Then we need to use BeginInvoke to run this method asynchronously: int primeFactor1 = 0; int primeFactor2 = 0; AsyncFactorCaller caller = new AsyncFactorCaller(Factorize); caller.BeginInvoke(10298312, ref primeFactor1, ref primeFactor2, result => { int factor1 = 0; int factor2 = 0; bool answer = caller.EndInvoke(ref factor1, ref factor2, result); Console.WriteLine("{0}/{1} [Succeeded {2}]", factor1, factor2, answer); }, null); This works, but is quite difficult to understand from a conceptual standpoint.  To combat this, the framework added the Event-based Asynchronous Pattern, but it isn’t much easier to understand or author. Using .NET 4’s new Task<T> class and a continuation, we can dramatically simplify the implementation of the above code, as well as make it much more understandable.  We do this via the Task.ContinueWith method.  This method will schedule a new Task upon completion of the original task, and provide the original Task (including its Result if it’s a Task<T>) as an argument.  Using Task, we can eliminate the delegate, and rewrite this code like so: var background = Task.Factory.StartNew( () => { int primeFactor1 = 0; int primeFactor2 = 0; bool result = Factorize(10298312, ref primeFactor1, ref primeFactor2); return new { Result = result, Factor1 = primeFactor1, Factor2 = primeFactor2 }; }); background.ContinueWith(task => Console.WriteLine("{0}/{1} [Succeeded {2}]", task.Result.Factor1, task.Result.Factor2, task.Result.Result)); This is much simpler to understand, in my opinion.  Here, we’re explicitly asking to start a new task, then continue the task with a resulting task.  In our case, our method used ref parameters (this was from the MSDN Sample), so there is a little bit of extra boiler plate involved, but the code is at least easy to understand. That being said, this isn’t dramatically shorter when compared with our C# 3 port of the MSDN code above.  However, if we were to extend our requirements a bit, we can start to see more advantages to the Task based approach.  For example, supposed we need to report the results in a user interface control instead of reporting it to the Console.  This would be a common operation, but now, we have to think about marshaling our calls back to the user interface.  This is probably going to require calling Control.Invoke or Dispatcher.Invoke within our callback, forcing us to specify a delegate within the delegate.  The maintainability and ease of understanding drops.  However, just as a standard Task can be created with a TaskScheduler that uses the UI synchronization context, so too can we continue a task with a specific context.  There are Task.ContinueWith method overloads which allow you to provide a TaskScheduler.  This means you can schedule the continuation to run on the UI thread, by simply doing: Task.Factory.StartNew( () => { int primeFactor1 = 0; int primeFactor2 = 0; bool result = Factorize(10298312, ref primeFactor1, ref primeFactor2); return new { Result = result, Factor1 = primeFactor1, Factor2 = primeFactor2 }; }).ContinueWith(task => textBox1.Text = string.Format("{0}/{1} [Succeeded {2}]", task.Result.Factor1, task.Result.Factor2, task.Result.Result), TaskScheduler.FromCurrentSynchronizationContext()); This is far more understandable than the alternative.  By using Task.ContinueWith in conjunction with TaskScheduler.FromCurrentSynchronizationContext(), we get a simple way to push any work onto a background thread, and update the user interface on the proper UI thread.  This technique works with Windows Presentation Foundation as well as Windows Forms, with no change in methodology.

    Read the article

  • XEROX Phaser 3160N installation on UBUNTU 12.04 LTE machine

    - by Greg Verrall
    I have recently had windows XP die on one of my machines, and have installed Linux UBUNTU. The OS works great, except for installing the Xerox Phaser 3160N printer. The OS can find and install the network printer, but when I print a test page, it tells me “Internal Error – Please use the correct driver”. I have the correct drivers, as your support team have sent me the link, (http://www.support.xerox.com/support/phaser-3160/file-download/enau.html?operatingSystem=linux&fileLanguage=en_GB&contentId=105724&from=downloads&viewArchived=false) but I cannot install these drivers to run the printer. These are the instructions from the online guide for installing on a Linux machine: 1. Make sure that the machine is connected to your network and powered on. Also, your machine’s IP address should have been set. 2. Insert the supplied software CD into your CD-ROM drive. 3. Double-click CD-ROM icon that appears on your Linux desktop. 4. Double-click the Linux folder. 5. Double-click the install.sh icon. 6. The Xerox Installer window opens. Click Continue. 7. The Add printer wizard window opens. Click Next. 8. Select Network printer and click Search button. 9. The Printer’s IP address and model name appears on list field. 10. Select your machine and click Next. I get as far as step 5, and step 6 never happens, if it did, it would be very easy from there. There are options to add additional software to UBUNTU, however it does not recognise the installation CD as valid when I try to add it as a source. Any ideas on who can help me? regards, Greg Verrall

    Read the article

  • Add a Flight Full of Color to Your Desktop with the Beautiful Birds Theme for Windows 7

    - by Asian Angel
    Do you enjoy looking at and collecting pictures of beautifully colored birds? Then brighten up your desktop with the grace and gorgeous plumage of swans, flamingoes, peacocks, and other exotic birds with this wonderful theme for Windows 7. Note: The theme comes with seventeen awesome wallpapers full of brightly colored avian goodness. Download the Beautiful Birds Theme [Windows 7 Personalization Gallery] How To Encrypt Your Cloud-Based Drive with BoxcryptorHTG Explains: Photography with Film-Based CamerasHow to Clean Your Dirty Smartphone (Without Breaking Something)

    Read the article

  • Switching the layout in Orchard CMS

    - by Bertrand Le Roy
    The UI composition in Orchard is extremely flexible, thanks in no small part to the usage of dynamic Clay shapes. Every notable UI construct in Orchard is built as a shape that other parts of the system can then party on and modify any way they want. Case in point today: modifying the layout (which is a shape) on the fly to provide custom page structures for different parts of the site. This might actually end up being built-in Orchard 1.0 but for the moment it’s not in there. Plus, it’s quite interesting to see how it’s done. We are going to build a little extension that allows for specialized layouts in addition to the default layout.cshtml that Orchard understands out of the box. The extension will add the possibility to add the module name (or, in MVC terms, area name) to the template name, or module and controller names, or module, controller and action names. For example, the home page is served by the HomePage module, so with this extension you’ll be able to add an optional layout-homepage.cshtml file to your theme to specialize the look of the home page while leaving all other pages using the regular layout.cshtml. I decided to implement this sample as a theme with code. This way, the new overrides are only enabled as the theme is activated, which makes a lot of sense as this is going to be where you’ll be creating those additional layouts. The first thing I did was to create my own theme, derived from the default TheThemeMachine with this command: codegen theme CustomLayoutMachine /CreateProject:true /IncludeInSolution:true /BasedOn:TheThemeMachine .csharpcode, .csharpcode pre { font-size: 12px; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Once that was done, I worked around a known bug and moved the new project from the Modules solution folder into Themes (the code was already physically in the right place, this is just about Visual Studio editing). The CreateProject flag in the command-line created a project file for us in the theme’s folder. This is only necessary if you want to run code outside of views from that theme. The code that we want to add is the following LayoutFilter.cs: using System.Linq; using System.Web.Mvc; using System.Web.Routing; using Orchard; using Orchard.Mvc.Filters; namespace CustomLayoutMachine.Filters { public class LayoutFilter : FilterProvider, IResultFilter { private readonly IWorkContextAccessor _wca; public LayoutFilter(IWorkContextAccessor wca) { _wca = wca; } public void OnResultExecuting(ResultExecutingContext filterContext) { var workContext = _wca.GetContext(); var routeValues = filterContext.RouteData.Values; workContext.Layout.Metadata.Alternates.Add( BuildShapeName(routeValues, "area")); workContext.Layout.Metadata.Alternates.Add( BuildShapeName(routeValues, "area", "controller")); workContext.Layout.Metadata.Alternates.Add( BuildShapeName(routeValues, "area", "controller", "action")); } public void OnResultExecuted(ResultExecutedContext filterContext) { } private static string BuildShapeName( RouteValueDictionary values, params string[] names) { return "Layout__" + string.Join("__", names.Select(s => ((string)values[s] ?? "").Replace(".", "_"))); } } } This filter is intercepting ResultExecuting, which is going to provide a context object out of which we can extract the route data. We are also injecting an IWorkContextAccessor dependency that will give us access to the current Layout object, so that we can add alternate shape names to its metadata. We are adding three possible shape names to the default, with different combinations of area, controller and action names. For example, a request to a blog post is going to be routed to the “Orchard.Blogs” module’s “BlogPost” controller’s “Item” action. Our filters will then add the following shape names to the default “Layout”: Layout__Orchard_Blogs Layout__Orchard_Blogs__BlogPost Layout__Orchard_Blogs__BlogPost__Item Those template names get mapped into the following file names by the system (assuming the Razor view engine): Layout-Orchard_Blogs.cshtml Layout-Orchard_Blogs-BlogPost.cshtml Layout-Orchard_Blogs-BlogPost-Item.cshtml This works for any module/controller/action of course, but in the sample I created Layout-HomePage.cshtml (a specific layout for the home page), Layout-Orchard_Blogs.cshtml (a layout for all the blog views) and Layout-Orchard_Blogs-BlogPost-Item.cshtml (a layout that is specific to blog posts). Of course, this is just an example, and this kind of dynamic extension of shapes that you didn’t even create in the first place is highly encouraged in Orchard. You don’t have to do it from a filter, we only did it this way because that was a good place where we could get the context that we needed. And of course, you can base your alternate shape names on something completely different from route values if you want. For example, you might want to create your own part that modifies the layout for a specific content item, or you might want to do it based on the raw URL (like it’s done in widget rules) or who knows what crazy custom rule. The point of all this is to show that extending or modifying shapes is easy, and the layout just happens to be a shape. In other words, you can do whatever you want. Ain’t that nice? The custom theme can be found here: Orchard.Theme.CustomLayoutMachine.1.0.nupkg Many thanks to Louis, who showed me how to do this.

    Read the article

  • XNA running slow when making a texture

    - by Anthony
    I'm using XNA to test an image analysis algorithm for a robot. I made a simple 3D world that has a grass, a robot, and white lines (that are represent the course). The image analysis algorithm is a modification of the Hough line detection algorithm. I have the game render 2 camera views to a render target in memory. One camera is a top down view of the robot going around the course, and the second camera is the view from the robot's perspective as it moves along. I take the rendertarget of the robot camera and convert it to a Color[,] so that I can do image analysis on it. private Color[,] TextureTo2DArray(Texture2D texture, Color[] colors1D, Color[,] colors2D) { texture.GetData(colors1D); for (int x = 0; x < texture.Width; x++) { for (int y = 0; y < texture.Height; y++) { colors2D[x, y] = colors1D[x + (y * texture.Width)]; } } return colors2D; } I want to overlay the results of the image analysis on the robot camera view. The first part of the image analysis is finding the white pixels. When I find the white pixels I create a bool[,] array showing which pixels were white and which were black. Then I want to convert it back into a texture so that I can overlay on the robot view. When I try to create the new texture showing which ones pixels were white, then the game goes super slow (around 10 hz). Can you give me some pointers as to what to do to make the game go faster. If I comment out this algorithm, then it goes back up to 60 hz. private Texture2D GenerateTexturesFromBoolArray(bool[,] boolArray,Color[] colorMap, Texture2D textureToModify) { for(int i =0;i < screenWidth;i++) { for(int j =0;j<screenHeight;j++) { if (boolArray[i, j] == true) { colorMap[i+(j*screenWidth)] = Color.Red; } else { colorMap[i + (j * screenWidth)] = Color.Transparent; } } } textureToModify.SetData<Color>(colorMap); return textureToModify; } Each Time I run draw, I must set the texture to null, so that I can modify it. public override void Draw(GameTime gameTime) { Vector2 topRightVector = ((SimulationMain)Game).spriteRectangleManager.topRightVector; Vector2 scaleFactor = ((SimulationMain)Game).config.scaleFactorScreenSizeToWindow; this.spriteBatch.Begin(); // Start the 2D drawing this.spriteBatch.Draw(this.textureFindWhite, topRightVector, null, Color.White, 0, Vector2.Zero, scaleFactor, SpriteEffects.None, 0); this.spriteBatch.End(); // Stop drawing. GraphicsDevice.Textures[0] = null; } Thanks for the help, Anthony G.

    Read the article

  • Why does editor color scheme preference seem to vary by language?

    - by Carl Manaster
    I've spent most of my career in C++ and Java, and like most of my peers I have the editor configured to display dark (black with dark-colored syntax highlighting) on a white background. I spent a day this week with Rubyists, and they all seem to favor light text on a dark background. I've observed this before. Why is it? What cultural differences between the Java and Ruby communities explain it? Or is it as simple as these are the default settings for our respective editors?

    Read the article

  • Dynamically switching the theme in Orchard

    - by Bertrand Le Roy
    It may sound a little puzzling at first, but in Orchard CMS, more than one theme can be active at any given time. The reason for that is that we have an extensibility point that allows a module (or a theme) to participate in the choice of the theme to use, for each request. The motivation for building the theme engine this way was to enable developers to switch themes based on arbitrary criteria, such as user preferences or the user agent (if you want to serve a mobile theme for phones for example). The choice is made between the active themes, which is why there is a difference between the default theme and the active themes. In order to have a say in the choice of the theme, all you have to do is implement IThemeSelector. That interface is quite simple as it only has one method, GetTheme, that takes the current RequestContext and returns a ThemeSelectorResult or null if the implementation of the interface does not want to participate in the current request (we'll see an example in a moment). ThemeSelectorResult itself is just a ThemeName string property and an integer Priority. We're using a priority so that an arbitrary number of implementations of IThemeSelector can contribute to the choice of a theme. If you look for existing implementations of the interface in Orchard, you'll find four: AdminThemeSelector: selects the TheAdmin theme with a very high priority (100) if the current request is for a page that is part of the admin. Otherwise, null is returned, which enables other implementations to choose the theme. PreviewThemeSelector: selects the preview theme if there is one, with a high priority (90), and null otherwise. This enables administrators to view the site under a different theme while everybody else continues to see the current default theme. SiteThemeSelector: this is the implementation that is doing what you expect most of the time, which is to get the current theme from site settings and set it with a priority of –5. SafeModeThemeSelector: this is the fallback implementation, which should almost never win. It sets the theme as the safe mode theme, which has no style and just uses the default templates for everything. The priority is very low (-100). While this extensibility mechanism is great to have, I wanted to bring that level of choice into the hands of the site administrator rather than just developers. In order to achieve that, I built the Vandelay Theme Picker module. The module provides administration UI to create rules for theme selection. It provides its own extensibility point (the IThemeSelectionRule interface) and one implementation of a rule: UserAgentThemeSelectorRule. This rule gets the current user agent from the context and tries to match it with a regular expression that the administrator can configure in the admin UI. You can for example configure a rule with a regular expression that matches IE6 and serve a different subtheme where the stylesheet has been tweaked for such an antique browser. Another possible configuration is to detect mobile devices from their agent string and serve the mobile theme. All those operations can be done with this module entirely from the admin UI, without writing a line of code. The module also offers the administrator the opportunity to inject a link into the front-end in a specific zone and with a specific position that enables the user to switch to the default theme if he wishes to. This is especially useful for sites that use a mobile theme but still want to allow users to use the full desktop site. While the module is nice and flexible, it may be overkill. On my own personal blog, I have only two active themes: the desktop theme and the mobile theme. I'm fine with going into code to change the criteria on which to switch the theme, so I'm not using my own Theme Picker module. Instead, I made the mobile theme a theme with code (in other words there is a csproj file in the theme). The project includes a single C# file, my MobileThemeSelector for which the code is the following: public class MobileThemeSelector : IThemeSelector { private static readonly Regex _Msie678 = new Regex(@"^Mozilla\/4\.0 \(compatible; MSIE [678]" + @"\.0; Windows NT \d\.\d(.*)\)$", RegexOptions.IgnoreCase); private ThemeSelectorResult _requestCache; private bool _requestCached; public ThemeSelectorResult GetTheme(RequestContext context) { if (_requestCached) return _requestCache; _requestCached = true; var userAgent = context.HttpContext.Request.UserAgent; if (userAgent.IndexOf("phone", StringComparison.OrdinalIgnoreCase) != -1 || _Msie678.IsMatch(userAgent) || userAgent.IndexOf("windows live writer", StringComparison.OrdinalIgnoreCase) != -1) { _requestCache = new ThemeSelectorResult { Priority = 10, ThemeName = "VuLuMobile" }; } return _requestCache; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The theme selector selects the current theme for Internet Explorer versions 6 to 8, for phones, and for Windows Live Writer (so that the theme that is used when I write posts is as simple as possible). What's interesting here is that it's the theme that selects itself here, based on its own criteria. This should give you a good panorama of what's possible in terms of dynamic theme selection in Orchard. I hope you find some fun uses for it. As usual, I can't wait to see what you're going to come up with…

    Read the article

  • Canon Pixma 432 network scanner

    - by Donald Cutler
    I have a problem with a Canon Pixma MX432 Printer/Scanner. I just removed Windows 7 and installed Ubuntu 14.04 8/17/2014 on an older desktop that I built (The computer is an AMD build with an ASUS motherboard). The printer/scanner is an all-in-one unit that is networked in my house via WiFi. All of the computers in my house can access this printer/scanner. My Macbook, my wife's Windows 8 laptop, and my kids mini iPads. I am giving Linux a test-drive with some success as far as setting devices up. But, for the life of me I cannot figure out my scanner issue. If anyone can help I would appreciate it. Make/Model: Canon Pixma MX432 PPD Driver: I have no idea how to get this info. Supported?: no, from the information I gather from old forum posts. Works?: the printer works via WiFi perfectly, but not the scanner. The Simple Scan program sees the scanner, but produces an error when I attempt to scan. I also tried XSANE, but that program does not even detect the scanner. NOTE: THE PRINTER IS WORKING OFF OF AN UBUNTU DRIVER AND NOT A CANON DRIVER. Linux Version: Ubuntu 14.04 I tried the steps in this post, downloaded the "scangearmp-mx430series-1.90-1-deb.tar.gz" file, but could not get the scanner to work. http://ubuntuforums.org/archive/index.php/t-2096430.html any suggestions?

    Read the article

  • Why does Windows spooler require an administrator account?

    - by Software Monkey
    Does anyone know what changes I might need to make to allow restricted users to print using a printer configured for spooling? My Windows XP SP3 system currently requires me to use an Admin account for printing if the printer is configured to spool documents before printing. If the printer is configured for direct printing it works for all accounts. This used to work and some months back it just stopped, and I can't pin down why. The printer, which is an HP PSC 1200 (an old printer) itself is configured for Everyone to have Print authority and my specific (restricted) account to have Full authority, that is Print, Manage Printers and Manager Documents. My HDD is locked down for restricted users given them only read authority to the entire file system except their data directories, which is how I have run my systems for years. I assume there may be a directory somewhere that I need to allow users to write to.

    Read the article

  • Telerik Releases a new Visual Entity Designer

    Love LINQ to SQL but are concerned that it is a second class citizen? Need to connect to more databases other than SQL Server? Think that the Entity Framework is too complex? Want a domain model designer for data access that is easy, yet powerful? Then the Telerik Visual Entity Designer is for you. Built on top of Telerik OpenAccess ORM, a very mature and robust product, Teleriks Visual Entity Designer is a new way to build your domain model that is very powerful and also real easy to use. How easy? Ill show you here. First Look: Using the Telerik Visual Entity Designer To get started, you need to install the Telerik OpenAccess ORM Q1 release for Visual Studio 2008 or 2010. You dont need to use any of the Telerik OpenAccess wizards, designers, or using statements. Just right click on your project and select Add|New Item from the context menu. Choose Telerik OpenAccess Domain Model from the Visual Studio project templates. (Note to existing OpenAccess users, dont run the Enable ORM wizard or any other OpenAccess menu unless you are building OpenAccess Entities.) You will then have to specify the database backend (SQL Server, SQL Azure, Oracle, MySQL, etc) and connection. After you establish your connection, select the database objects you want to add to your domain model. You can also name your model, by default it will be NameofyourdatabaseEntityDiagrams. You can click finish here if you are comfortable, or tweak some advanced settings. Many users of domain models like to add prefixes and suffixes to classes, fields, and properties as well as handle pluralization. I personally accept the defaults, however, I hate how DBAs force underscores on me, so I click on the option to remove them. You can also tweak your namespace, mapping options, and define your own code generation template to gain further control over the outputted code. This is a very powerful feature, but for now, I will just accept the defaults.   When we click finish, you can see your domain model as a file with the .rlinq extension in the Solution Explorer. You can also bring up the visual designer to view or further tweak your model by double clicking on the model in the Solution Explorer.  Time to use the model! Writing a LINQ Query Programming against the domain model is very simple using LINQ. Just set a reference to the model (line 12 of the code below) and write a standard LINQ statement (lines 14-16).  (OpenAccess users: notice the you dont need any using statements for OpenAccess or an IObjectScope, just raw LINQ against your model.) 1: using System; 2: using System.Linq; 3: //no need for anOpenAccess using statement 4:   5: namespace ConsoleApplication3 6: { 7: class Program 8: { 9: static void Main(string[] args) 10: { 11: //a reference tothe data context 12: NorthwindEntityDiagrams dat = new NorthwindEntityDiagrams(); 13: //LINQ Statement 14: var result = from c in dat.Customers 15: where c.Country == "Germany" 16: select c; 17:   18: //Print out the company name 19: foreach (var cust in result) 20: { 21: Console.WriteLine("CompanyName: " + cust.CompanyName); 22: } 23: //keep the consolewindow open 24: Console.Read(); 25: } 26: } 27: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Lines 19-24 loop through the result of our LINQ query and displays the results. Thats it! All of the super powerful features of OpenAccess are available to you to further enhance your experience, however, in most cases this is all you need. In future posts I will show how to use the Visual Designer with some other scenarios. Stay tuned. Enjoy! Technorati Tags: Telerik,OpenAccess,LINQ Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

< Previous Page | 79 80 81 82 83 84 85 86 87 88 89 90  | Next Page >