Search Results

Search found 19017 results on 761 pages for 'purchase order'.

Page 83/761 | < Previous Page | 79 80 81 82 83 84 85 86 87 88 89 90  | Next Page >

  • More CPU cores may not always lead to better performance – MAXDOP and query memory distribution in spotlight

    - by sqlworkshops
    More hardware normally delivers better performance, but there are exceptions where it can hinder performance. Understanding these exceptions and working around it is a major part of SQL Server performance tuning.   When a memory allocating query executes in parallel, SQL Server distributes memory to each task that is executing part of the query in parallel. In our example the sort operator that executes in parallel divides the memory across all tasks assuming even distribution of rows. Common memory allocating queries are that perform Sort and do Hash Match operations like Hash Join or Hash Aggregation or Hash Union.   In reality, how often are column values evenly distributed, think about an example; are employees working for your company distributed evenly across all the Zip codes or mainly concentrated in the headquarters? What happens when you sort result set based on Zip codes? Do all products in the catalog sell equally or are few products hot selling items?   One of my customers tested the below example on a 24 core server with various MAXDOP settings and here are the results:MAXDOP 1: CPU time = 1185 ms, elapsed time = 1188 msMAXDOP 4: CPU time = 1981 ms, elapsed time = 1568 msMAXDOP 8: CPU time = 1918 ms, elapsed time = 1619 msMAXDOP 12: CPU time = 2367 ms, elapsed time = 2258 msMAXDOP 16: CPU time = 2540 ms, elapsed time = 2579 msMAXDOP 20: CPU time = 2470 ms, elapsed time = 2534 msMAXDOP 0: CPU time = 2809 ms, elapsed time = 2721 ms - all 24 cores.In the above test, when the data was evenly distributed, the elapsed time of parallel query was always lower than serial query.   Why does the query get slower and slower with more CPU cores / higher MAXDOP? Maybe you can answer this question after reading the article; let me know: [email protected].   Well you get the point, let’s see an example.   The best way to learn is to practice. To create the below tables and reproduce the behavior, join the mailing list by using this link: www.sqlworkshops.com/ml and I will send you the table creation script.   Let’s update the Employees table with 49 out of 50 employees located in Zip code 2001. update Employees set Zip = EmployeeID / 400 + 1 where EmployeeID % 50 = 1 update Employees set Zip = 2001 where EmployeeID % 50 != 1 go update statistics Employees with fullscan go   Let’s create the temporary table #FireDrill with all possible Zip codes. drop table #FireDrill go create table #FireDrill (Zip int primary key) insert into #FireDrill select distinct Zip from Employees update statistics #FireDrill with fullscan go  Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --First serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) goThe query took 1011 ms to complete.   The execution plan shows the 77816 KB of memory was granted while the estimated rows were 799624.  No Sort Warnings in SQL Server Profiler.  Now let’s execute the query in parallel with MAXDOP 0. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 1912 ms to complete.  The execution plan shows the 79360 KB of memory was granted while the estimated rows were 799624.  The estimated number of rows between serial and parallel plan are the same. The parallel plan has slightly more memory granted due to additional overhead. Sort properties shows the rows are unevenly distributed over the 4 threads.   Sort Warnings in SQL Server Profiler.   Intermediate Summary: The reason for the higher duration with parallel plan was sort spill. This is due to uneven distribution of employees over Zip codes, especially concentration of 49 out of 50 employees in Zip code 2001. Now let’s update the Employees table and distribute employees evenly across all Zip codes.   update Employees set Zip = EmployeeID / 400 + 1 go update statistics Employees with fullscan go  Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --Serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) go   The query took 751 ms to complete.  The execution plan shows the 77816 KB of memory was granted while the estimated rows were 784707.  No Sort Warnings in SQL Server Profiler.   Now let’s execute the query in parallel with MAXDOP 0. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 661 ms to complete.  The execution plan shows the 79360 KB of memory was granted while the estimated rows were 784707.  Sort properties shows the rows are evenly distributed over the 4 threads. No Sort Warnings in SQL Server Profiler.    Intermediate Summary: When employees were distributed unevenly, concentrated on 1 Zip code, parallel sort spilled while serial sort performed well without spilling to tempdb. When the employees were distributed evenly across all Zip codes, parallel sort and serial sort did not spill to tempdb. This shows uneven data distribution may affect the performance of some parallel queries negatively. For detailed discussion of memory allocation, refer to webcasts available at www.sqlworkshops.com/webcasts.     Some of you might conclude from the above execution times that parallel query is not faster even when there is no spill. Below you can see when we are joining limited amount of Zip codes, parallel query will be fasted since it can use Bitmap Filtering.   Let’s update the Employees table with 49 out of 50 employees located in Zip code 2001. update Employees set Zip = EmployeeID / 400 + 1 where EmployeeID % 50 = 1 update Employees set Zip = 2001 where EmployeeID % 50 != 1 go update statistics Employees with fullscan go  Let’s create the temporary table #FireDrill with limited Zip codes. drop table #FireDrill go create table #FireDrill (Zip int primary key) insert into #FireDrill select distinct Zip       from Employees where Zip between 1800 and 2001 update statistics #FireDrill with fullscan go  Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --Serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) go The query took 989 ms to complete.  The execution plan shows the 77816 KB of memory was granted while the estimated rows were 785594. No Sort Warnings in SQL Server Profiler.  Now let’s execute the query in parallel with MAXDOP 0. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 1799 ms to complete.  The execution plan shows the 79360 KB of memory was granted while the estimated rows were 785594.  Sort Warnings in SQL Server Profiler.    The estimated number of rows between serial and parallel plan are the same. The parallel plan has slightly more memory granted due to additional overhead.  Intermediate Summary: The reason for the higher duration with parallel plan even with limited amount of Zip codes was sort spill. This is due to uneven distribution of employees over Zip codes, especially concentration of 49 out of 50 employees in Zip code 2001.   Now let’s update the Employees table and distribute employees evenly across all Zip codes. update Employees set Zip = EmployeeID / 400 + 1 go update statistics Employees with fullscan go Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --Serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) go The query took 250  ms to complete.  The execution plan shows the 9016 KB of memory was granted while the estimated rows were 79973.8.  No Sort Warnings in SQL Server Profiler.  Now let’s execute the query in parallel with MAXDOP 0.  --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 85 ms to complete.  The execution plan shows the 13152 KB of memory was granted while the estimated rows were 784707.  No Sort Warnings in SQL Server Profiler.    Here you see, parallel query is much faster than serial query since SQL Server is using Bitmap Filtering to eliminate rows before the hash join.   Parallel queries are very good for performance, but in some cases it can hinder performance. If one identifies the reason for these hindrances, then it is possible to get the best out of parallelism. I covered many aspects of monitoring and tuning parallel queries in webcasts (www.sqlworkshops.com/webcasts) and articles (www.sqlworkshops.com/articles). I suggest you to watch the webcasts and read the articles to better understand how to identify and tune parallel query performance issues.   Summary: One has to avoid sort spill over tempdb and the chances of spills are higher when a query executes in parallel with uneven data distribution. Parallel query brings its own advantage, reduced elapsed time and reduced work with Bitmap Filtering. So it is important to understand how to avoid spills over tempdb and when to execute a query in parallel.   I explain these concepts with detailed examples in my webcasts (www.sqlworkshops.com/webcasts), I recommend you to watch them. The best way to learn is to practice. To create the above tables and reproduce the behavior, join the mailing list at www.sqlworkshops.com/ml and I will send you the relevant SQL Scripts.   Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.   Disclaimer and copyright information:This article refers to organizations and products that may be the trademarks or registered trademarks of their various owners. Copyright of this article belongs to R Meyyappan / www.sqlworkshops.com. You may freely use the ideas and concepts discussed in this article with acknowledgement (www.sqlworkshops.com), but you may not claim any of it as your own work. This article is for informational purposes only; you use any of the suggestions given here entirely at your own risk.   Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.   R Meyyappan [email protected] LinkedIn: http://at.linkedin.com/in/rmeyyappan  

    Read the article

  • C#/.NET Little Wonders: The Joy of Anonymous Types

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the .NET 3 Framework, Microsoft introduced the concept of anonymous types, which provide a way to create a quick, compiler-generated types at the point of instantiation.  These may seem trivial, but are very handy for concisely creating lightweight, strongly-typed objects containing only read-only properties that can be used within a given scope. Creating an Anonymous Type In short, an anonymous type is a reference type that derives directly from object and is defined by its set of properties base on their names, number, types, and order given at initialization.  In addition to just holding these properties, it is also given appropriate overridden implementations for Equals() and GetHashCode() that take into account all of the properties to correctly perform property comparisons and hashing.  Also overridden is an implementation of ToString() which makes it easy to display the contents of an anonymous type instance in a fairly concise manner. To construct an anonymous type instance, you use basically the same initialization syntax as with a regular type.  So, for example, if we wanted to create an anonymous type to represent a particular point, we could do this: 1: var point = new { X = 13, Y = 7 }; Note the similarity between anonymous type initialization and regular initialization.  The main difference is that the compiler generates the type name and the properties (as readonly) based on the names and order provided, and inferring their types from the expressions they are assigned to. It is key to remember that all of those factors (number, names, types, order of properties) determine the anonymous type.  This is important, because while these two instances share the same anonymous type: 1: // same names, types, and order 2: var point1 = new { X = 13, Y = 7 }; 3: var point2 = new { X = 5, Y = 0 }; These similar ones do not: 1: var point3 = new { Y = 3, X = 5 }; // different order 2: var point4 = new { X = 3, Y = 5.0 }; // different type for Y 3: var point5 = new {MyX = 3, MyY = 5 }; // different names 4: var point6 = new { X = 1, Y = 2, Z = 3 }; // different count Limitations on Property Initialization Expressions The expression for a property in an anonymous type initialization cannot be null (though it can evaluate to null) or an anonymous function.  For example, the following are illegal: 1: // Null can't be used directly. Null reference of what type? 2: var cantUseNull = new { Value = null }; 3:  4: // Anonymous methods cannot be used. 5: var cantUseAnonymousFxn = new { Value = () => Console.WriteLine(“Can’t.”) }; Note that the restriction on null is just that you can’t use it directly as the expression, because otherwise how would it be able to determine the type?  You can, however, use it indirectly assigning a null expression such as a typed variable with the value null, or by casting null to a specific type: 1: string str = null; 2: var fineIndirectly = new { Value = str }; 3: var fineCast = new { Value = (string)null }; All of the examples above name the properties explicitly, but you can also implicitly name properties if they are being set from a property, field, or variable.  In these cases, when a field, property, or variable is used alone, and you don’t specify a property name assigned to it, the new property will have the same name.  For example: 1: int variable = 42; 2:  3: // creates two properties named varriable and Now 4: var implicitProperties = new { variable, DateTime.Now }; Is the same type as: 1: var explicitProperties = new { variable = variable, Now = DateTime.Now }; But this only works if you are using an existing field, variable, or property directly as the expression.  If you use a more complex expression then the name cannot be inferred: 1: // can't infer the name variable from variable * 2, must name explicitly 2: var wontWork = new { variable * 2, DateTime.Now }; In the example above, since we typed variable * 2, it is no longer just a variable and thus we would have to assign the property a name explicitly. ToString() on Anonymous Types One of the more trivial overrides that an anonymous type provides you is a ToString() method that prints the value of the anonymous type instance in much the same format as it was initialized (except actual values instead of expressions as appropriate of course). For example, if you had: 1: var point = new { X = 13, Y = 42 }; And then print it out: 1: Console.WriteLine(point.ToString()); You will get: 1: { X = 13, Y = 42 } While this isn’t necessarily the most stunning feature of anonymous types, it can be handy for debugging or logging values in a fairly easy to read format. Comparing Anonymous Type Instances Because anonymous types automatically create appropriate overrides of Equals() and GetHashCode() based on the underlying properties, we can reliably compare two instances or get hash codes.  For example, if we had the following 3 points: 1: var point1 = new { X = 1, Y = 2 }; 2: var point2 = new { X = 1, Y = 2 }; 3: var point3 = new { Y = 2, X = 1 }; If we compare point1 and point2 we’ll see that Equals() returns true because they overridden version of Equals() sees that the types are the same (same number, names, types, and order of properties) and that the values are the same.   In addition, because all equal objects should have the same hash code, we’ll see that the hash codes evaluate to the same as well: 1: // true, same type, same values 2: Console.WriteLine(point1.Equals(point2)); 3:  4: // true, equal anonymous type instances always have same hash code 5: Console.WriteLine(point1.GetHashCode() == point2.GetHashCode()); However, if we compare point2 and point3 we get false.  Even though the names, types, and values of the properties are the same, the order is not, thus they are two different types and cannot be compared (and thus return false).  And, since they are not equal objects (even though they have the same value) there is a good chance their hash codes are different as well (though not guaranteed): 1: // false, different types 2: Console.WriteLine(point2.Equals(point3)); 3:  4: // quite possibly false (was false on my machine) 5: Console.WriteLine(point2.GetHashCode() == point3.GetHashCode()); Using Anonymous Types Now that we’ve created instances of anonymous types, let’s actually use them.  The property names (whether implicit or explicit) are used to access the individual properties of the anonymous type.  The main thing, once again, to keep in mind is that the properties are readonly, so you cannot assign the properties a new value (note: this does not mean that instances referred to by a property are immutable – for more information check out C#/.NET Fundamentals: Returning Data Immutably in a Mutable World). Thus, if we have the following anonymous type instance: 1: var point = new { X = 13, Y = 42 }; We can get the properties as you’d expect: 1: Console.WriteLine(“The point is: ({0},{1})”, point.X, point.Y); But we cannot alter the property values: 1: // compiler error, properties are readonly 2: point.X = 99; Further, since the anonymous type name is only known by the compiler, there is no easy way to pass anonymous type instances outside of a given scope.  The only real choices are to pass them as object or dynamic.  But really that is not the intention of using anonymous types.  If you find yourself needing to pass an anonymous type outside of a given scope, you should really consider making a POCO (Plain Old CLR Type – i.e. a class that contains just properties to hold data with little/no business logic) instead. Given that, why use them at all?  Couldn’t you always just create a POCO to represent every anonymous type you needed?  Sure you could, but then you might litter your solution with many small POCO classes that have very localized uses. It turns out this is the key to when to use anonymous types to your advantage: when you just need a lightweight type in a local context to store intermediate results, consider an anonymous type – but when that result is more long-lived and used outside of the current scope, consider a POCO instead. So what do we mean by intermediate results in a local context?  Well, a classic example would be filtering down results from a LINQ expression.  For example, let’s say we had a List<Transaction>, where Transaction is defined something like: 1: public class Transaction 2: { 3: public string UserId { get; set; } 4: public DateTime At { get; set; } 5: public decimal Amount { get; set; } 6: // … 7: } And let’s say we had this data in our List<Transaction>: 1: var transactions = new List<Transaction> 2: { 3: new Transaction { UserId = "Jim", At = DateTime.Now, Amount = 2200.00m }, 4: new Transaction { UserId = "Jim", At = DateTime.Now, Amount = -1100.00m }, 5: new Transaction { UserId = "Jim", At = DateTime.Now.AddDays(-1), Amount = 900.00m }, 6: new Transaction { UserId = "John", At = DateTime.Now.AddDays(-2), Amount = 300.00m }, 7: new Transaction { UserId = "John", At = DateTime.Now, Amount = -10.00m }, 8: new Transaction { UserId = "Jane", At = DateTime.Now, Amount = 200.00m }, 9: new Transaction { UserId = "Jane", At = DateTime.Now, Amount = -50.00m }, 10: new Transaction { UserId = "Jaime", At = DateTime.Now.AddDays(-3), Amount = -100.00m }, 11: new Transaction { UserId = "Jaime", At = DateTime.Now.AddDays(-3), Amount = 300.00m }, 12: }; So let’s say we wanted to get the transactions for each day for each user.  That is, for each day we’d want to see the transactions each user performed.  We could do this very simply with a nice LINQ expression, without the need of creating any POCOs: 1: // group the transactions based on an anonymous type with properties UserId and Date: 2: byUserAndDay = transactions 3: .GroupBy(tx => new { tx.UserId, tx.At.Date }) 4: .OrderBy(grp => grp.Key.Date) 5: .ThenBy(grp => grp.Key.UserId); Now, those of you who have attempted to use custom classes as a grouping type before (such as GroupBy(), Distinct(), etc.) may have discovered the hard way that LINQ gets a lot of its speed by utilizing not on Equals(), but also GetHashCode() on the type you are grouping by.  Thus, when you use custom types for these purposes, you generally end up having to write custom Equals() and GetHashCode() implementations or you won’t get the results you were expecting (the default implementations of Equals() and GetHashCode() are reference equality and reference identity based respectively). As we said before, it turns out that anonymous types already do these critical overrides for you.  This makes them even more convenient to use!  Instead of creating a small POCO to handle this grouping, and then having to implement a custom Equals() and GetHashCode() every time, we can just take advantage of the fact that anonymous types automatically override these methods with appropriate implementations that take into account the values of all of the properties. Now, we can look at our results: 1: foreach (var group in byUserAndDay) 2: { 3: // the group’s Key is an instance of our anonymous type 4: Console.WriteLine("{0} on {1:MM/dd/yyyy} did:", group.Key.UserId, group.Key.Date); 5:  6: // each grouping contains a sequence of the items. 7: foreach (var tx in group) 8: { 9: Console.WriteLine("\t{0}", tx.Amount); 10: } 11: } And see: 1: Jaime on 06/18/2012 did: 2: -100.00 3: 300.00 4:  5: John on 06/19/2012 did: 6: 300.00 7:  8: Jim on 06/20/2012 did: 9: 900.00 10:  11: Jane on 06/21/2012 did: 12: 200.00 13: -50.00 14:  15: Jim on 06/21/2012 did: 16: 2200.00 17: -1100.00 18:  19: John on 06/21/2012 did: 20: -10.00 Again, sure we could have just built a POCO to do this, given it an appropriate Equals() and GetHashCode() method, but that would have bloated our code with so many extra lines and been more difficult to maintain if the properties change.  Summary Anonymous types are one of those Little Wonders of the .NET language that are perfect at exactly that time when you need a temporary type to hold a set of properties together for an intermediate result.  While they are not very useful beyond the scope in which they are defined, they are excellent in LINQ expressions as a way to create and us intermediary values for further expressions and analysis. Anonymous types are defined by the compiler based on the number, type, names, and order of properties created, and they automatically implement appropriate Equals() and GetHashCode() overrides (as well as ToString()) which makes them ideal for LINQ expressions where you need to create a set of properties to group, evaluate, etc. Technorati Tags: C#,CSharp,.NET,Little Wonders,Anonymous Types,LINQ

    Read the article

  • Simplex Noise Help

    - by Alex Larsen
    Im Making A Minecraft Like Gae In XNA C# And I Need To Generate Land With Caves This Is The Code For Simplex I Have /// <summary> /// 1D simplex noise /// </summary> /// <param name="x"></param> /// <returns></returns> public static float Generate(float x) { int i0 = FastFloor(x); int i1 = i0 + 1; float x0 = x - i0; float x1 = x0 - 1.0f; float n0, n1; float t0 = 1.0f - x0 * x0; t0 *= t0; n0 = t0 * t0 * grad(perm[i0 & 0xff], x0); float t1 = 1.0f - x1 * x1; t1 *= t1; n1 = t1 * t1 * grad(perm[i1 & 0xff], x1); // The maximum value of this noise is 8*(3/4)^4 = 2.53125 // A factor of 0.395 scales to fit exactly within [-1,1] return 0.395f * (n0 + n1); } /// <summary> /// 2D simplex noise /// </summary> /// <param name="x"></param> /// <param name="y"></param> /// <returns></returns> public static float Generate(float x, float y) { const float F2 = 0.366025403f; // F2 = 0.5*(sqrt(3.0)-1.0) const float G2 = 0.211324865f; // G2 = (3.0-Math.sqrt(3.0))/6.0 float n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in float s = (x + y) * F2; // Hairy factor for 2D float xs = x + s; float ys = y + s; int i = FastFloor(xs); int j = FastFloor(ys); float t = (float)(i + j) * G2; float X0 = i - t; // Unskew the cell origin back to (x,y) space float Y0 = j - t; float x0 = x - X0; // The x,y distances from the cell origin float y0 = y - Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if (x0 > y0) { i1 = 1; j1 = 0; } // lower triangle, XY order: (0,0)->(1,0)->(1,1) else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 float x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords float y1 = y0 - j1 + G2; float x2 = x0 - 1.0f + 2.0f * G2; // Offsets for last corner in (x,y) unskewed coords float y2 = y0 - 1.0f + 2.0f * G2; // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds int ii = i % 256; int jj = j % 256; // Calculate the contribution from the three corners float t0 = 0.5f - x0 * x0 - y0 * y0; if (t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * grad(perm[ii + perm[jj]], x0, y0); } float t1 = 0.5f - x1 * x1 - y1 * y1; if (t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1]], x1, y1); } float t2 = 0.5f - x2 * x2 - y2 * y2; if (t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * grad(perm[ii + 1 + perm[jj + 1]], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 40.0f * (n0 + n1 + n2); // TODO: The scale factor is preliminary! } public static float Generate(float x, float y, float z) { // Simple skewing factors for the 3D case const float F3 = 0.333333333f; const float G3 = 0.166666667f; float n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in float s = (x + y + z) * F3; // Very nice and simple skew factor for 3D float xs = x + s; float ys = y + s; float zs = z + s; int i = FastFloor(xs); int j = FastFloor(ys); int k = FastFloor(zs); float t = (float)(i + j + k) * G3; float X0 = i - t; // Unskew the cell origin back to (x,y,z) space float Y0 = j - t; float Z0 = k - t; float x0 = x - X0; // The x,y,z distances from the cell origin float y0 = y - Y0; float z0 = z - Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords /* This code would benefit from a backport from the GLSL version! */ if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order } else { // x0<y0 if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where // c = 1/6. float x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords float y1 = y0 - j1 + G3; float z1 = z0 - k1 + G3; float x2 = x0 - i2 + 2.0f * G3; // Offsets for third corner in (x,y,z) coords float y2 = y0 - j2 + 2.0f * G3; float z2 = z0 - k2 + 2.0f * G3; float x3 = x0 - 1.0f + 3.0f * G3; // Offsets for last corner in (x,y,z) coords float y3 = y0 - 1.0f + 3.0f * G3; float z3 = z0 - 1.0f + 3.0f * G3; // Wrap the integer indices at 256, to avoid indexing perm[] out of bounds int ii = i % 256; int jj = j % 256; int kk = k % 256; // Calculate the contribution from the four corners float t0 = 0.6f - x0 * x0 - y0 * y0 - z0 * z0; if (t0 < 0.0f) n0 = 0.0f; else { t0 *= t0; n0 = t0 * t0 * grad(perm[ii + perm[jj + perm[kk]]], x0, y0, z0); } float t1 = 0.6f - x1 * x1 - y1 * y1 - z1 * z1; if (t1 < 0.0f) n1 = 0.0f; else { t1 *= t1; n1 = t1 * t1 * grad(perm[ii + i1 + perm[jj + j1 + perm[kk + k1]]], x1, y1, z1); } float t2 = 0.6f - x2 * x2 - y2 * y2 - z2 * z2; if (t2 < 0.0f) n2 = 0.0f; else { t2 *= t2; n2 = t2 * t2 * grad(perm[ii + i2 + perm[jj + j2 + perm[kk + k2]]], x2, y2, z2); } float t3 = 0.6f - x3 * x3 - y3 * y3 - z3 * z3; if (t3 < 0.0f) n3 = 0.0f; else { t3 *= t3; n3 = t3 * t3 * grad(perm[ii + 1 + perm[jj + 1 + perm[kk + 1]]], x3, y3, z3); } // Add contributions from each corner to get the final noise value. // The result is scaled to stay just inside [-1,1] return 32.0f * (n0 + n1 + n2 + n3); // TODO: The scale factor is preliminary! } private static byte[] perm = new byte[512] { 151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180, 151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180 }; private static int FastFloor(float x) { return (x > 0) ? ((int)x) : (((int)x) - 1); } private static float grad(int hash, float x) { int h = hash & 15; float grad = 1.0f + (h & 7); // Gradient value 1.0, 2.0, ..., 8.0 if ((h & 8) != 0) grad = -grad; // Set a random sign for the gradient return (grad * x); // Multiply the gradient with the distance } private static float grad(int hash, float x, float y) { int h = hash & 7; // Convert low 3 bits of hash code float u = h < 4 ? x : y; // into 8 simple gradient directions, float v = h < 4 ? y : x; // and compute the dot product with (x,y). return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -2.0f * v : 2.0f * v); } private static float grad(int hash, float x, float y, float z) { int h = hash & 15; // Convert low 4 bits of hash code into 12 simple float u = h < 8 ? x : y; // gradient directions, and compute dot product. float v = h < 4 ? y : h == 12 || h == 14 ? x : z; // Fix repeats at h = 12 to 15 return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v); } private static float grad(int hash, float x, float y, float z, float t) { int h = hash & 31; // Convert low 5 bits of hash code into 32 simple float u = h < 24 ? x : y; // gradient directions, and compute dot product. float v = h < 16 ? y : z; float w = h < 8 ? z : t; return ((h & 1) != 0 ? -u : u) + ((h & 2) != 0 ? -v : v) + ((h & 4) != 0 ? -w : w); } This Is My World Generation Code Block[,] BlocksInMap = new Block[1024, 256]; public bool IsWorldGenerated = false; Random r = new Random(); private void RunThread() { for (int BH = 0; BH <= 256; BH++) { for (int BW = 0; BW <= 1024; BW++) { Block b = new Block(); if (BH >= 192) { } BlocksInMap[BW, BH] = b; } } IsWorldGenerated = true; } public void GenWorld() { new Thread(new ThreadStart(RunThread)).Start(); } And This Is A Example Of How I Set Blocks Block b = new Block(); b.BlockType = = Block.BlockTypes.Air; This Is A Example Of How I Set Models foreach (Block b in MyWorld) { switch(b.BlockType) { case Block.BlockTypes.Dirt: b.Model = DirtModel; break; ect. } } How Would I Use These To Generate To World (The Block Array) And If Possible Thread It More? btw It's 1024 Wide And 256 Tall

    Read the article

  • Windows Server Configuration with Exchange, SQL Express and IIS

    - by Reafidy
    In our small office we are currently running a standalone tower server with WS 2008 R2, SQL Express and IIS. This server is going to be decommissioned and scrapped as its old and very noisy. We are going to purchase a new server with WS 2012 Standard and a heap of ram. It will still be a standalone server so it will be a domain controller, have SQL Express and IIS installed. We intend to install the hyper-v role and host a second virtual server to distribute the load. We are a small company and have only 15 staff members so its not a huge load on the server. Can a single server handle this type of installation, we don't want to purchase two servers. If so how should it be configured with regard to which software packages should be virtualized(if any). Redundancy is not a huge issue for us.

    Read the article

  • Why can't I register a domain name that a registrar owns?

    - by barfoon
    Hey everyone, I am interested in purchasing a .ca domain name. It was taken, and when I did a WHOIS it showed me that GoDaddy (a registrar) has control of it, however when I go to GoDaddy to purchase it, I have no such option. I have always wondered - why do registrars do this? I've come across this situation before with other domains as well. Is there any way to actually purchase a domain like this for yourself? If anyone can shed some light on this issue, I'd greatly appreciate it. Cheers,

    Read the article

  • Is there any viable alternative to using a linux/unix/BSD firewall/router/vpn?

    - by ObligatoryMoniker
    I am trying to purchase something to replace our Vyatta router that is running in a virtual machine on Hyper V (having the whole network go down when the host has to reboot is not convenient and I am getting the sense that this configuration may not be stable). Most posts on this topic suggest using Linux/OpenBSD/FreeBSD/etc with some recommendations to use appliances from vendors for specific purposes like firewall and VPN. We are a windows shop and it has been a stretch for us to make use of Vyatta but since it was free and straightforward to use we decided to use it. Now we need something that is easier for our team to (re)deploy and manage. I would rather purchase something windows based or an appliance that can do all of the following things: DHCP server (reservations, specified gateway, dns, etc) Static Routes that route traffic across three interfaces Easily Reproducible (Powershell script, Puppet, Chef, etc) Intuitive interface (Decent web interface would be fine but I don't want them to have to go to CLI) Does any one have any recommendations on what I should be looking at that might meet our needs?

    Read the article

  • sonicwall nsa 240

    - by Adam
    Hi We are looking into putting a hardware firewall into a data center to protect our rack of servers. We are using the servers for terminal services and we have 2 x 1GB connections to the Internet. We have about 50 servers supporting about 250 users which will grow very soon to 500 users. We plan to purchase 2 hardware firewalls to provide HA. Do you think the Sonicwall NSA 240 with Total Secure is a good match for this in terms of performance and protection (from spyware, virus etc?) or is there a better purchase? (Maybe a Watchguard X5 or X8?)

    Read the article

  • 2.5" SSD in a 3.5" desktop drive bay normal?

    - by Cory Petosky
    I'm a little out of touch with modern desktop builds, but I recently built a new machine anyway. I want to pick up a SSD for my I/O intensive apps (EverQuest 2 and Flash CS4 mostly), but I'm having trouble finding any in the 3.5" form factor. Is this expected, or do I fail at product search? And, if it is expected, do 2.5" SSDs come with an adapter to fit them in my desktop machine, or will I need to purchase one separately? And, finally, if I do need to purchase an adapter, are they pretty standard or are some better than others. General advice is most welcomed, though specific product recommendations in addition would be helpful!

    Read the article

  • Is there any Mac Pro hardware parts that can ONLY be purchased thru Apple?

    - by bigp
    I'd like to know if I need to be concerned about any hardware parts that I should include in a brand new Mac Pro purchase, instead of trying to hunt it down on 3rd party vendors (or whitelist vendors / hardware suppliers). The main components I'm interested for "upgradeability" are: Processors (If starting with Two 2.4GHz Quad-Core "Westmere"); RAM (If starting with the least possible, which seems to be 6 x 1GB); Video Cards (If starting with one ATI Radeon HD 5770, can a 2nd one be purchased elsewhere?) Hard-Drives (Since these are mounted in specialized trays [if I'm not mistaking], are they also sold elsewhere? And can they be bought as SSDs?) Power Supply (Do I need to be concerned about this at all, or does it auto-adjust depending on the new component upgrades?) I just want to be sure by choosing a Mac Pro with lower component specifications that I can in fact purchase upgrade parts cheaper elsewhere. Thanks!

    Read the article

  • What is the largest flatscreen monitor available for PC use?

    - by Avery Payne
    I'll qualify this specifically (by order of preference): must have the highest diagonal measurement, widescreen or "normal" aspect ratio doesn't matter here, just the diagonal. must have the highest resolution available, which means 72 inches of 1280x1024 won't cut it. must not have a TV tuner built into it, I'm not looking for a TV set, this is a monitor! must be available at a retail outlet that caters to the general public, i.e. Best Buy, Sears, Costco (all of these examples are in the U.S., although you can suggest something from whatever chain is in your area/nation/geography). Non-retail or non-physical venues like eBay, or businesses that only cater to other businesses, do not qualify under this requirement. I should be able to walk into this place and purchase it, not just whip up an order online. If you are unsure about this requirement, just ask yourself: can I physically see it before I open my wallet and purchase it?

    Read the article

  • Microsoft CALs for Domain Controller

    - by Damo
    I am designing a network and I've come to the point of specifying out the number of CALs required for this network. Microsoft licensing has always confused me, it's just not always clear to me. I plan to have 1 2008 std domain controller, another 2008 server (not a domain controller) and 200 Windows 7 devices connected to the domain for domain services. The 200 W7 devices will all authenticate to the domain controller with the same domain account. (this is a special type of network, not a user workstation network) Therefore, do I need to purchase 200 CALS for the 200 devices, or can I purchase say 10 CALS (user CALS) as the amount of unique user accounts is very low. Many thanks for looking.

    Read the article

  • Using an Internal HDD as an External HDD also or an External HDD for installing SAP ?

    - by Asterix
    Is it possible and advisable to use an Internal Hard Drive as an External Hard drive also. I wanted to install SAP ECC 6 on my system which has only 250 GB but atleast 300 GB is required.I wanted to buy an External Drive first, then I heard loading SAP on an External would make it extremely slow. I'll be using it only as a beginer so even if it is a little slow i don't mind. Is it feasible to run such a big application from an External Hard disk ? So can i purchase a 500 or 1 TB Internal Hard disk and use it as an External too by fitting it with the necessary USB 3.0 Hard drive cases and cables ? or should i purchase a External and load SAP onto it ? Thank you.

    Read the article

  • Which type of Form factor (motherboard) i should buy and why?

    - by metal gear solid
    If budged is not a problem. I just need best performance with less power consumption. I can purchase any cabinet , power supply and Motherboard. Is Power supply has any relation with Form factor, should i purchase PSU according to Form factor of motherboard? Is the size of motherboard and number of Slots only difference between all form factors? Is there any differences among form factors, related to performance of motherboard? Is bigger in Size (ATX) motherboard always better? Is it so smaller in Size motherboard will consume less power? What are pros and cons of each Form factor? What there are so many Form factor were created?

    Read the article

  • “Query cost (relative to the batch)” <> Query cost relative to batch

    - by Dave Ballantyne
    OK, so that is quite a contradictory title, but unfortunately it is true that a common misconception is that the query with the highest percentage relative to batch is the worst performing.  Simply put, it is a lie, or more accurately we dont understand what these figures mean. Consider the two below simple queries: SELECT * FROM Person.BusinessEntity JOIN Person.BusinessEntityAddress ON Person.BusinessEntity.BusinessEntityID = Person.BusinessEntityAddress.BusinessEntityID go SELECT * FROM Sales.SalesOrderDetail JOIN Sales.SalesOrderHeader ON Sales.SalesOrderDetail.SalesOrderID = Sales.SalesOrderHeader.SalesOrderID After executing these and looking at the plans, I see this : So, a 13% / 87% split ,  but 13% / 87% of WHAT ? CPU ? Duration ? Reads ? Writes ? or some magical weighted algorithm ?  In a Profiler trace of the two we can find the metrics we are interested in. CPU and duration are well out but what about reads (210 and 1935)? To save you doing the maths, though you are more than welcome to, that’s a 90.2% / 9.8% split.  Close, but no cigar. Lets try a different tact.  Looking at the execution plan the “Estimated Subtree cost” of query 1 is 0.29449 and query 2 its 1.96596.  Again to save you the maths that works out to 13.03% and 86.97%, round those and thats the figures we are after.  But, what is the worrying word there ? “Estimated”.  So these are not “actual”  execution costs,  but what’s the problem in comparing the estimated costs to derive a meaning of “Most Costly”.  Well, in the case of simple queries such as the above , probably not a lot.  In more complicated queries , a fair bit. By modifying the second query to also show the total number of lines on each order SELECT *,COUNT(*) OVER (PARTITION BY Sales.SalesOrderDetail.SalesOrderID) FROM Sales.SalesOrderDetail JOIN Sales.SalesOrderHeader ON Sales.SalesOrderDetail.SalesOrderID = Sales.SalesOrderHeader.SalesOrderID The split in percentages is now 6% / 94% and the profiler metrics are : Even more of a discrepancy. Estimates can be out with actuals for a whole host of reasons,  scalar UDF’s are a particular bug bear of mine and in-fact the cost of a udf call is entirely hidden inside the execution plan.  It always estimates to 0 (well, a very small number). Take for instance the following udf Create Function dbo.udfSumSalesForCustomer(@CustomerId integer) returns money as begin Declare @Sum money Select @Sum= SUM(SalesOrderHeader.TotalDue) from Sales.SalesOrderHeader where CustomerID = @CustomerId return @Sum end If we have two statements , one that fires the udf and another that doesn't: Select CustomerID from Sales.Customer order by CustomerID go Select CustomerID,dbo.udfSumSalesForCustomer(Customer.CustomerID) from Sales.Customer order by CustomerID The costs relative to batch is a 50/50 split, but the has to be an actual cost of firing the udf. Indeed profiler shows us : No where even remotely near 50/50!!!! Moving forward to window framing functionality in SQL Server 2012 the optimizer sees ROWS and RANGE ( see here for their functional differences) as the same ‘cost’ too SELECT SalesOrderDetailID,SalesOrderId, SUM(LineTotal) OVER(PARTITION BY salesorderid ORDER BY Salesorderdetailid RANGE unbounded preceding) from Sales.SalesOrderdetail go SELECT SalesOrderDetailID,SalesOrderId, SUM(LineTotal) OVER(PARTITION BY salesorderid ORDER BY Salesorderdetailid Rows unbounded preceding) from Sales.SalesOrderdetail By now it wont be a great display to show you the Profiler trace reads a *tiny* bit different. So moral of the story, Percentage relative to batch can give a rough ‘finger in the air’ measurement, but dont rely on it as fact.

    Read the article

  • 3 Key Trends For Mobile Commerce – Location, Location, Location

    - by Michael Hylton
    This past weekend I was at a major bookstore chain and looking for a particular book.  Rather than ask the clerk, I went to my smartphone and went online to find the book title, author, and competing price.  I know I’m not alone in this effort and more and more individuals (and businesses) will use the power of mobility to tilt the scale in their favor. Armed with a mobile device – smartphone or tablet – folks will use them to research, compare, and ultimately purchase.  A recent PayPal survey found that 46% of respondents plan to use a mobile device this holiday season to make a purchase.   An astounding 27% of consumers in an e-tailing group survey commissioned by Oracle, use a tablet device daily or several times a week to research products and services. Beyond researching or making purchases, 35% of consumers use their smartphone to receive offers and coupons, and 32% access coupons and redeem them at their local retail store.  And with GPS capabilities in smartphones and tablet (and with user’s approval), retailers will start pushing coupons and offers directly to phone users based on their proximity to their store (or their competitors). Security is one concern that both shoppers, companies and phone manufacturers will have to deal with in the coming years.  In that same Oracle-sponsored e-tailing group consumer survey, 32% of consumers were concerned about giving their credit card information via a smartphone. You can gain further insight into the mind of today’s consumer by reading the e-tailing group white paper, titled “the connected consumer”.

    Read the article

  • 3 Key Trends For Mobile Commerce – Location, Location, Location

    - by Michael Hylton
    This past weekend I was at a major bookstore chain and looking for a particular book.  Rather than ask the clerk, I went to my smartphone and went online to find the book title, author, and competing price.  I know I’m not alone in this effort and more and more individuals (and businesses) will use the power of mobility to tilt the scale in their favor. Armed with a mobile device – smartphone or tablet – folks will use them to research, compare, and ultimately purchase.  A recent PayPal survey found that 46% of respondents plan to use a mobile device this holiday season to make a purchase.   An astounding 27% of consumers in an e-tailing group survey commissioned by Oracle, use a tablet device daily or several times a week to research products and services. Beyond researching or making purchases, 35% of consumers use their smartphone to receive offers and coupons, and 32% access coupons and redeem them at their local retail store.  And with GPS capabilities in smartphones and tablet (and with user’s approval), retailers will start pushing coupons and offers directly to phone users based on their proximity to their store (or their competitors). Security is one concern that both shoppers, companies and phone manufacturers will have to deal with in the coming years.  In that same Oracle-sponsored e-tailing group consumer survey, 32% of consumers were concerned about giving their credit card information via a smartphone. You can gain further insight into the mind of today’s consumer by reading the e-tailing group white paper, titled “the connected consumer”.

    Read the article

  • Fix: Azure Disabled over 49 cents? Beware of using a Java Virtual Machine on Microsoft Azure

    - by Ken Cox [MVP]
    I love my MSDN Azure account. I can spin up a demo/dev app or VM in seconds. In fact, it is so easy to create a virtual machine that Azure shut down my whole account! Last night I spun up a Java Virtual Machine to play with some Android stuff. My mistake was that I didn’t read the Virtual Machine pricing warning: “I have a MSDN Azure Benefit subscription. Can I use my monthly Azure credits to purchase Oracle software?” “No, Azure credits in our MSDN offers are not applicable to Oracle software. In order to purchase Oracle software in the MSDN Azure Benefit subscription, customers need to turn off their {0} spending limit and pay at the regular pay-as-you-go rate. Otherwise, Oracle usage will hit the {1} spending limit and the subscription will be immediately disabled.”  Immediately disabled? Yup. Everything connected to the subscription was shut off, deallocated, rendered useless - even the free Web sites and the free Sendgrid email service.  The fix? I had to remove the spending limit from my account so I could pay $0.49 (49 cents) for the JVM usage. I still had $134.10 in credits remaining for regular usage with 6 days left in the billing month.  Now the restoration/clean-up begins… figuring out how to get the web sites and services back online.  To me, the preferable way would be for Azure to warn me when setting up a JVM that I had no way of paying for the service. In the alternative, shut down just the offending services – the ones that can’t be covered by the regular credits. What a mess.

    Read the article

  • A Guide to Fusion SCM at Oracle OpenWorld 2012

    - by Pam Petropoulos
    Are you attending next week’s Oracle OpenWorld 2012 conference? Then you won’t want to miss the Fusion SCM activities and customer presenters from leading companies like Boeing and Fideltronik. Below you’ll find a day by day guide of the various Fusion SCM sessions, demos and activities during OpenWorld 2012, September 30 – October 4 in San Francisco, CA. Tuesday, October 2 All of the Fusion SCM sessions during OpenWorld will take place in various rooms at Moscone West, a convenience you are sure to appreciate, as will your feet.   The first session at 10:15 – 11:15 am (Moscone West, Room 2006), entitled “Oracle Fusion Supply Chain Management: Overview, Strategy, Customer Experiences, and Roadmap”, provides an overview of Fusion Supply Chain Management applications and will discuss Fusion SCM strategy, future roadmap, and highlights of customer examples. The next session at 11:45 am – 12:45 pm (Moscone West, Room 2022), entitled “Enabling Trusted Enterprise Product Data with Oracle Fusion Product Hub”, may be the session for you if you’re struggling with achieving consistent, high-quality product data that provides significant business value. This session will discuss how Oracle Fusion Product Hub and Oracle Enterprise Data Quality can help you to achieve this vision. A customer presenter from Fideltronik will share their experiences with Oracle Fusion Product Hub. At the end of the day unwind at the Supply Chain Management customer reception from 6:00 – 8:00 pm at the Roe Lounge, located at 651 Howard Street. Registration is required. Click here for details. Wednesday, October 3 Wednesday is a busy day with three Fusion SCM sessions on the agenda. Start your day at 10:15 am at the “Oracle Fusion Supply Chain Management: Customer Adoption and Experiences” session (Moscone West, Room 2003).  This must see session will showcase customer speakers from The Boeing Company and Fideltronik, each of whom will share their company’s experiences in selecting and implementing Fusion SCM applications. If you’re wondering how Fusion SCM applications can co-exist with your existing Oracle applications, then you’ll want to sit in on the 3:30 pm session entitled “Oracle Fusion Supply Chain Management: Coexistence with Other Oracle Applications” (Moscone West, Room 2003). Stick around until 5:00 pm for the final Fusion SCM session of the day entitled “Responsive Fulfillment with Oracle Fusion Supply Chain Management” (Moscone West, Room 2001).  This session will showcase Oracle Fusion Distributed Order Orchestration and Oracle Fusion Global Order Promising and how they are changing the way companies manage order fulfillment in environments. In addition to discussing the current business challenges, product capabilities, value propositions, industry applicability, and future roadmap this session will also feature a customer presenter from The Boeing Company. Thursday, October 4 If you are a retail customer we highly recommend that you attend the final Fusion SCM session of the week at 12:45 pm, entitled “Multichannel Fulfillment Excellence in the Direct-to-Consumer Market” (Moscone West, Room 2024).  Retailers will learn how they can transform their supply chains to meet the ever-increasing demands of buy anywhere/get anywhere cross-channel requirements with Fusion Distributed Order Orchestration and Oracle Fusion Product Hub. Throughout the week, you’ll also want to visit the Fusion SCM demo pods at the Demogrounds in Moscone West so you can see demos of these Fusion applications. Visit pod W-005 for Fusion Distributed Order Orchestration, W-008 for Fusion Inventory and Cost Management, and W-006 for Fusion Product Hub. Click here for the Demogrounds map. A reminder that you can also pre-register for these sessions to secure your spot. Visit the Schedule Builder to pre-enroll for these sessions. Finally, you'll also want to check out the Fusion SCM FocusOn document which includes additional keynote and general sessions that you may want to attend throughout the week.   We look forward to seeing you in San Francisco next week.

    Read the article

  • How do I deal with a third party application that has embedded hints that result in a sub-optimal execution plan in my environment?

    - by Maria Colgan
    I have gotten many variations on this question recently as folks begin to upgrade to Oracle Database 11g and there have been several posts on this blog and on others describing how to use SQL Plan Management (SPM) so that a non-hinted SQL statement can use a plan generated with hints. But what if the hint is supplied in the third party application and is causing performance regressions on your system? You can actually use a very similar technique to the ones shown before but this time capture the un-hinted plan and have the hinted SQL statement use that plan instead. Below is an example that demonstrates the necessary steps. 1. We will begin by running the hinted statement 2. After examining the execution plan we can see it is suboptimal because of a bad join order. 3. In order to use SPM to correct the problem we must create a SQL plan baseline for the statement. In order to create a baseline we will need the SQL_ID for the hinted statement. Easy place to get it is in V$SQL. 4. A SQL plan baseline can be created using a SQL_ID and DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE. This will capture the existing plan for this SQL_ID from the shared pool and store in the SQL plan baseline. 5. We can check the SQL plan baseline got created successfully by querying DBA_SQL_PLAN_BASELINES. 6. When you manually create a SQL plan baseline the first plan added is automatically accepted and enabled. We know that the hinted plan is poorly performing plan so we will disable it using DBMS_SPM.ALTER_SQL_PLAN_BASELINE. Disabling the plan tells the optimizer that this plan not a good plan, however since there is no alternative plan at this point the optimizer will still continue to use this plan until we provide a better one. 7. Now let's run the statement without the hint. 8. Looking at the execution plan we can see that the join order is different. The plan without the hint also has a lower cost (3X lower), which indicates it should perform better. 9. In order to map the un-hinted plan to the hinted SQL statement we need to add the plan to the SQL plan baseline for the hinted statement. We can do this using DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE but we will need the SQL_ID and  PLAN_HASH_VALUE for the non-hinted statement, which we can find in V$SQL. 10. Now we can add the non-hinted plan to the SQL plan baseline of the hinted SQL statement using DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE. This time we need to pass a few more arguments. We will use the SQL_ID and PLAN_HASH_VALUE of the non-hinted statement but the SQL_HANDLE of the hinted statement. 11. The SQL plan baseline for our statement now has two plans. But only the newly added plan (SQL_PLAN_gbpcg3f67pc788a6d8911) is enabled and accepted. This tells the Optimizer that this is the plan it should use for this statement. We can confirm that the correct plan (non-hinted) will be selected for the statement from now on by re-executing the hinted statement and checking its execution plan.

    Read the article

  • Selling Android apps from Latvia? or should I just put banners?

    - by Roger Travis
    I am in Latvia ( which is not supported to sell apps at android market ), so I am thinking about the best way of monetizing my app. So far I've come up with such options: somehow imitate that I am from a supported country, get a bank account there, etc. use PayPal for in-app purchases. The player get, say, first 10 levels for free, but then is asked to pay 0.99$ for the rest of the game. downsides: player might not feel comfortable entering his paypal details into an app. also android market might not really like that. making the app free and get money from advertising... let's do some calculation here, say, I get 1m free downloads, each user during his playtime would see 10 banners, therefor 10m / 1000 * 0.3 = gives roughly 33k$ ( if we use adMob with their 0.3$ per 1000 impressions ). On the other hand, if we use paypal in app purchase, we need a 3% or more conversion rate to beat this... hmm... What do you think about all this? Thanks! edit: from what I just read all over the net, it looks like advertisers will change their eCPM price a lot without you understanding why... while using in-app paypal purchase you can at least somehow monitor the cashflow.

    Read the article

  • Project structure: where to put business logic

    - by Mister Smith
    First of all, I'm not asking where does business logic belong. This has been asked before and most answers I've read agree in that it belongs in the model: Where to put business logic in MVC design? How much business logic should be allowed to exist in the controller layer? How accurate is "Business logic should be in a service, not in a model"? Why put the business logic in the model? What happens when I have multiple types of storage? However people disagree in the way this logic should be distributed across classes. There seem to exist three major currents of thought: Fat model with business logic inside entity classes. Anemic model and business logic in "Service" classes. It depends. I find all of them problematic. The first option is what most Fowlerites stick to. The problem with a fat model is that sometimes a business logic funtion is not only related to a class, and instead uses a bunch of other classes. If, for example, we are developing a web store, there should be a function that calcs an order's total. We could think of putting this function inside the Order class, but what actually happens is that the logic needs to use different classes, not only data contained in the Order class, but also in the User class, the Session class, and maybe the Tax class, Country class, or Giftcard, Payment, etc. Some of these classes could be composed inside the Order class, but some others not. Sorry if the example is not very good, but I hope you understand what I mean. Putting such a function inside the Order class would break the single responsibility principle, adding unnecesary dependences. The business logic would be scattered across entity classes, making it hard to find. The second option is the one I usually follow, but after many projects I'm still in doubt about how to name the class or classes holding the business logic. In my company we usually develop apps with offline capabilities. The user is able to perform entire transactions offline, so all validation and business rules should be implemented in the client, and then there's usually a background thread that syncs with the server. So we usually have the following classes/packages in every project: Data model (DTOs) Data Access Layer (Persistence) Web Services layer (Usually one class per WS, and one method per WS method). Now for the business logic, what is the standard approach? A single class holding all the logic? Multiple classes? (if so, what criteria is used to distribute the logic across them?). And how should we name them? FooManager? FooService? (I know the last one is common, but in our case it is bad naming because the WS layer usually has classes named FooWebService). The third option is probably the right one, but it is also devoid of any useful info. To sum up: I don't like the first approach, but I accept that I might have been unable to fully understand the Zen of it. So if you advocate for fat models as the only and universal solution you are welcome to post links explaining how to do it the right way. I'd like to know what is the standard design and naming conventions for the second approach in OO languages. Class names and package structure, in particular. It would also be helpful too if you could include links to Open Source projects showing how it is done. Thanks in advance.

    Read the article

  • New SQL Azure Development Accelerator Core promotional offer announced

    - by Eric Nelson
    This is (almost) a straight copy and paste but represents an important announcement worthy of a little more “exposure” :-) Starting August 1, 2010, we will release a new SQL Azure Development Accelerator Core promotional offer.  This new offer will give you the flexibility to purchase commitment quantities of SQL Azure Business Edition databases independent of other Windows Azure platform services at a deeply discounted monthly price.  The offer is valid only for a six month term.  You may purchase in 10 GB increments the amount of our Business Edition relational database that you require (each Business Edition database is capable of storing up to 50 GB).  The offer price will be $74.95 per 10 GB per month.  This promotional offer represents 25% off of our normal consumption rates.  Monthly Business Edition relational database usage exceeding the purchased commitment amount and usage for other Windows Azure platform services for this offer will be charged at our normal consumption rates.  Please click here for full details of our new SQL Azure Development Accelerator Core offer.  Related Links: Details of 5GB and 50GB databases have been released http://ukazure.ning.com UK community site Getting started with the Windows Azure Platform

    Read the article

  • Personalized Pricing

    - by David Dorf
    In past postings I've spent a fair amount of time talking about targeted promotions.  Using a complete view of the customer that includes purchase history, location history, and psychographics gleaned from social media, we can select the offer with the greatest chance of redemption.  This is done to influence shopping behavior, which might be introducing the consumer to a new product line, increasing their basket size, increasing frequency of purchases, etc. Safeway seems to be taking a slightly different approach with their personalized pricing.  In additional to offering electronic coupons and club card offers, they are also providing a personalized price for certain items based on purchase history.  So when Sally want to shop at Safeway, she first checks the "Just for U" website for three types of deals.  She starts by selecting manufacturer coupons to load into her loyalty card, then she checks the Club Card for offers like "buy one get one free." The third step is the interesting one.  Safeway will set a particular lower price for Sally good for 90 days on items she buys often.  Clearly this isn't enforcing a new behavior but rather instilling loyalty.  I would love to know exactly how they are determining the personalized price.  Of course bargain hunters can still stack the three offers so they can, for example, get their $4.99 Oatmeal for $0.72. I like this particular question and answer from their website's FAQ: My offers are not that great. Can I tell you what offers I need? That's a good idea. That functionality is not currently available, but we appreciate your input and are constantly improving our just for U program. Stay tuned for exciting enhancements! I suppose if Safeway is tracking all the purchases, they can easily determine whether the customer if profitable.  As long as the customer stays profitable, why not let them determine a few offers themselves?  Food for thought.

    Read the article

  • Are XML Comments Necessary Documentation?

    - by Bob Horn
    I used to be a fan of requiring XML comments for documentation. I've since changed my mind for two main reasons: Like good code, methods should be self-explanatory. In practice, most XML comments are useless noise that provide no additional value. Many times we simply use GhostDoc to generate generic comments, and this is what I mean by useless noise: /// <summary> /// Gets or sets the unit of measure. /// </summary> /// <value> /// The unit of measure. /// </value> public string UnitOfMeasure { get; set; } To me, that's obvious. Having said that, if there were special instructions to include, then we should absolutely use XML comments. I like this excerpt from this article: Sometimes, you will need to write comments. But, it should be the exception not the rule. Comments should only be used when they are expressing something that cannot be expressed in code. If you want to write elegant code, strive to eliminate comments and instead write self-documenting code. Am I wrong to think we should only be using XML comments when the code isn't enough to explain itself on its own? I believe this is a good example where XML comments make pretty code look ugly. It takes a class like this... public class RawMaterialLabel : EntityBase { public long Id { get; set; } public string ManufacturerId { get; set; } public string PartNumber { get; set; } public string Quantity { get; set; } public string UnitOfMeasure { get; set; } public string LotNumber { get; set; } public string SublotNumber { get; set; } public int LabelSerialNumber { get; set; } public string PurchaseOrderNumber { get; set; } public string PurchaseOrderLineNumber { get; set; } public DateTime ManufacturingDate { get; set; } public string LastModifiedUser { get; set; } public DateTime LastModifiedTime { get; set; } public Binary VersionNumber { get; set; } public ICollection<LotEquipmentScan> LotEquipmentScans { get; private set; } } ... And turns it into this: /// <summary> /// Container for properties of a raw material label /// </summary> public class RawMaterialLabel : EntityBase { /// <summary> /// Gets or sets the id. /// </summary> /// <value> /// The id. /// </value> public long Id { get; set; } /// <summary> /// Gets or sets the manufacturer id. /// </summary> /// <value> /// The manufacturer id. /// </value> public string ManufacturerId { get; set; } /// <summary> /// Gets or sets the part number. /// </summary> /// <value> /// The part number. /// </value> public string PartNumber { get; set; } /// <summary> /// Gets or sets the quantity. /// </summary> /// <value> /// The quantity. /// </value> public string Quantity { get; set; } /// <summary> /// Gets or sets the unit of measure. /// </summary> /// <value> /// The unit of measure. /// </value> public string UnitOfMeasure { get; set; } /// <summary> /// Gets or sets the lot number. /// </summary> /// <value> /// The lot number. /// </value> public string LotNumber { get; set; } /// <summary> /// Gets or sets the sublot number. /// </summary> /// <value> /// The sublot number. /// </value> public string SublotNumber { get; set; } /// <summary> /// Gets or sets the label serial number. /// </summary> /// <value> /// The label serial number. /// </value> public int LabelSerialNumber { get; set; } /// <summary> /// Gets or sets the purchase order number. /// </summary> /// <value> /// The purchase order number. /// </value> public string PurchaseOrderNumber { get; set; } /// <summary> /// Gets or sets the purchase order line number. /// </summary> /// <value> /// The purchase order line number. /// </value> public string PurchaseOrderLineNumber { get; set; } /// <summary> /// Gets or sets the manufacturing date. /// </summary> /// <value> /// The manufacturing date. /// </value> public DateTime ManufacturingDate { get; set; } /// <summary> /// Gets or sets the last modified user. /// </summary> /// <value> /// The last modified user. /// </value> public string LastModifiedUser { get; set; } /// <summary> /// Gets or sets the last modified time. /// </summary> /// <value> /// The last modified time. /// </value> public DateTime LastModifiedTime { get; set; } /// <summary> /// Gets or sets the version number. /// </summary> /// <value> /// The version number. /// </value> public Binary VersionNumber { get; set; } /// <summary> /// Gets the lot equipment scans. /// </summary> /// <value> /// The lot equipment scans. /// </value> public ICollection<LotEquipmentScan> LotEquipmentScans { get; private set; } }

    Read the article

< Previous Page | 79 80 81 82 83 84 85 86 87 88 89 90  | Next Page >