Search Results

Search found 16903 results on 677 pages for 'single responsibility'.

Page 83/677 | < Previous Page | 79 80 81 82 83 84 85 86 87 88 89 90  | Next Page >

  • Autohotkey to map F5 to Shift+Home and then F5 - eventually executing a single line query in sql server?

    - by puretechy
    Reading the syntax from autohotkey, I am trying to achieve this. But the first step of selecting the entire line is not working:- F5:: send {Shift Home} return I have tried few others too, but its not working. This is not sending Shift+Home combination on pressing F5 key. Please tell me what's wrong with this? Also if possible, what to do next?, as if I will write send {F5} I believe, it will recursively fire this script again and again..

    Read the article

  • How do I create a self referential association (self join) in a single class using ActiveRecord in Rails?

    - by Daniel Chang
    I am trying to create a self join table that represents a list of customers who can refer each other (perhaps to a product or a program). I am trying to limit my model to just one class, "Customer". The schema is: create_table "customers", force: true do |t| t.string "name" t.integer "referring_customer_id" t.datetime "created_at" t.datetime "updated_at" end add_index "customers", ["referring_customer_id"], name: "index_customers_on_referring_customer_id" My model is: class Customer < ActiveRecord::Base has_many :referrals, class_name: "Customer", foreign_key: "referring_customer_id", conditions: {:referring_customer_id => :id} belongs_to :referring_customer, class_name: "Customer", foreign_key: "referring_customer_id" end I have no problem accessing a customer's referring_customer: @customer.referring_customer.name ... returns the name of the customer that referred @customer. However, I keep getting an empty array when accessing referrals: @customer.referrals ... returns []. I ran binding.pry to see what SQL was being run, given a customer who has a "referer" and should have several referrals. This is the SQL being executed. Customer Load (0.3ms) SELECT "customers".* FROM "customers" WHERE "customers"."id" = ? ORDER BY "customers"."id" ASC LIMIT 1 [["id", 2]] Customer Exists (0.2ms) SELECT 1 AS one FROM "customers" WHERE "customers"."referring_customer_id" = ? AND "customers"."referring_customer_id" = 'id' LIMIT 1 [["referring_customer_id", 3]] I'm a bit lost and am unsure where my problem lies. I don't think my query is correct -- @customer.referrals should return an array of all the referrals, which are the customers who have @customer.id as their referring_customer_id.

    Read the article

  • How do I group my package imports into a single custom package?

    - by pavun_cool
    Hi All.. Normally when I am writing the perl program . I used to include following package . use strict ; use warnings ; use Data::Dumper ; Now , I want like this, I will not include all this package for every program . for that I will have these all package in my own package. like following. my_packages.pm package my_packages ; { use strict ; use warnings ; use Data::Dumper; } 1; So, that if I add my_packages.pm in perl program , it needs have all above packages . Actually I have done this experimentation . But I am not able get this things . which means when I am using my_packages . I am not able get the functionality of "use strict, use warnings , use Data::Dumper ". Someone help me out of this problem.....

    Read the article

  • How do I copy a version of a single file from one git branch to another?

    - by madlep
    I've got two branches that are fully merged together. However, after the merge is done, I realise that one file has been messed up by the merge (someone else did an auto-format, gah), and it would just be easier to change to the new version in the other branch, and then re-insert my one line change after bringing it over into my branch. So what's the easiest way in git to do this?

    Read the article

  • Reading from a very large table using multiple threads (Java ) and writing them to a single file

    - by user2534926
    I am currently facing a situation where i have a table with almost 80 millions data and i have to take a dump of that table and store it into a csv file. Currently i am using a not so professional approach( with a perl script+DBI interface , printing the values to stdout and redirecting to a csv file). Now i am planning to use java threading approach. Can you suggest a way forward. Thanks in advance

    Read the article

  • how do I refactor this to make single function calls?

    - by stack.user.1
    I've been using this for a while updating mysql as needed. However I'm not too sure on the syntax..and need to migrate the sql to an array. Particulary the line database::query("CREATE TABLE $name($query)"); Does this translate to CREATE TABLE bookmark(name VARCHAR(64), url VARCHAR(256), tag VARCHAR(256), id INT) This is my ...guess. Is this correct? class table extends database { private function create($name, $query) { database::query("CREATE TABLE $name($query)"); } public function make($type) { switch ($type) { case "credentials": self::create('credentials', 'id INT NOT NULL AUTO_INCREMENT, flname VARCHAR(60), email VARCHAR(32), pass VARCHAR(40), PRIMARY KEY(id)'); break; case "booomark": self::create('boomark', 'name VARCHAR(64), url VARCHAR(256), tag VARCHAR(256), id INT'); break; case "tweet": self::create('tweet', 'time INT, fname VARCHAR(32), message VARCHAR(128), email VARCHAR(64)'); break; default: throw new Exception('Invalid Table Type'); } } }

    Read the article

  • How to find next (by a single parameter) element in c++? (stl) [closed]

    - by user2136963
    I have n humans of THuman class Each human has scored some points in one of two rounds. (score1 and score2) Each human has its unique id. Score1 and 2 are also unique. Besides, a human has a score_t=score1+score2, which can be the same for two of them. I need to implement 6 variables to THuman which return id of a human with: bigger score1 smaller score1 bigger score2 smaller score2 bigger score_t smaller score_t (if there are many humans those satisfy theese conditions, the one with smallest difference of corresponding parameter should be chosen (like score1 for 1 and 2)) In other words, it's some kind of storing 3 human sortings. Two more functions I need should get argument x, set score1 or score 2 to x, and then refresh some of the 6 variables above. If I needed sorting by only one variable, I would simply create set and defined and < operators for my class. But what is the solution for three of parameters? Is it possible to use STL here, or I should create my own lists/treaps? __ Answer: How to update set of pointers c++?

    Read the article

  • How do I use 2 include statements in a single MVC EF query?

    - by alockrem
    I am trying to write a query that includes 2 joins. 1 StoryTemplate can have multiple Stories 1 Story can have multiple StoryDrafts I am starting the query on the StoryDrafts object because that is where it's linked to the UserId. I don't have a reference from the StoryDrafts object directly to the StoryTemplates object. How would I build this query properly? public JsonResult Index(int userId) { return Json( db.StoryDrafts .Include("Story") .Include("StoryTemplate") .Where(d => d.UserId == userId) ,JsonRequestBehavior.AllowGet); } Thank you for any help.

    Read the article

  • How to design a database where the main entity table has 25+ columns but a single entity's columns g

    - by thenextwebguy
    The entities to be stored have 25+ properties (table columns). The entities are pretty diverse, meaning that, most of the columns are empty. On average, I'd say, less than 20% (<5) properties have a value in any particular item. So, I have a lot of redundant empty columns for most of the table rows. Almost all of the columns are decimal numbers. Given this scenario, would you suggest serializing the columns instead, or perhaps, create another table named "Property", which would contain all the possible properties and then creating yet another table "EntityProperty" which would map an property to an entity using foreign keys? Or would you leave it as it is?

    Read the article

  • Developer’s Life – Attitude and Communication – They Can Cause Problems – Notes from the Field #027

    - by Pinal Dave
    [Note from Pinal]: This is a 27th episode of Notes from the Field series. The biggest challenge for anyone is to understand human nature. We human have so many things on our mind at any moment of time. There are cases when what we say is not what we mean and there are cases where what we mean we do not say. We do say and things as per our mood and our agenda in mind. Sometimes there are incidents when our attitude creates confusion in the communication and we end up creating a situation which is absolutely not warranted. In this episode of the Notes from the Field series database expert Mike Walsh explains a very crucial issue we face in our career, which is not technical but more to relate to human nature. Read on this may be the best blog post you might read in recent times. In this week’s note from the field, I’m taking a slight departure from technical knowledge and concepts explained. We’ll be back to it next week, I’m sure. Pinal wanted us to explain some of the issues we bump into and how we see some of our customers arrive at problem situations and how we have helped get them back on the right track. Often it is a technical problem we are officially solving – but in a lot of cases as a consultant, we are really helping fix some communication difficulties. This is a technical blog post and not an “advice column” in a newspaper – but the longer I am a consultant, the more years I add to my experience in technology the more I learn that the vast majority of the problems we encounter have “soft skills” included in the chain of causes for the issue we are helping overcome. This is not going to be exhaustive but I hope that sharing four pieces of advice inspired by real issues starts a process of searching for places where we can be the cause of these challenges and look at fixing them in ourselves. Or perhaps we can begin looking at resolving them in teams that we manage. I’ll share three statements that I’ve either heard, read or said and talk about some of the communication or attitude challenges highlighted by the statement. 1 – “But that’s the SAN Administrator’s responsibility…” I heard that early on in my consulting career when talking with a customer who had serious corruption and no good recent backups – potentially no good backups at all. The statement doesn’t have to be this one exactly, but the attitude here is an attitude of “my job stops here, and I don’t care about the intent or principle of why I’m here.” It’s also a situation of having the attitude that as long as there is someone else to blame, I’m fine…  You see in this case, the DBA had a suspicion that the backups were not being handled right.  They were the DBA and they knew that they had responsibility to ensure SQL backups were good to go – it’s a basic requirement of a production DBA. In my “As A DBA Where Do I start?!” presentation, I argue that is job #1 of a DBA. But in this case, the thought was that there was someone else to blame. Rather than create extra work and take on responsibility it was decided to just let it be another team’s responsibility. This failed the company, the company’s customers and no one won. As technologists – we should strive to go the extra mile. If there is a lack of clarity around roles and responsibilities and we know it – we should push to get it resolved. Especially as the DBAs who should act as the advocates of the data contained in the databases we are responsible for. 2 – “We’ve always done it this way, it’s never caused a problem before!” Complacency. I have to say that many failures I’ve been paid good money to help recover from would have not happened had it been for an attitude of complacency. If any thoughts like this have entered your mind about your situation you may be suffering from it. If, while reading this, you get this sinking feeling in your stomach about that one thing you know should be fixed but haven’t done it.. Why don’t you stop and go fix it then come back.. “We should have better backups, but we’re on a SAN so we should be fine really.” “Technically speaking that could happen, but what are the chances?” “We’ll just clean that up as a fast follow” ..and so on. In the age of tightening IT budgets, increased expectations of up time, availability and performance there is no room for complacency. Our customers and business units expect – no demand – the best. Complacency says “we will give you second best or hopefully good enough and we accept the risk and know this may hurt us later. Sometimes an organization will opt for “good enough” and I agree with the concept that at times the perfect can be the enemy of the good. But when we make those decisions in a vacuum and are not reporting them up and discussing them as an organization that is different. That is us unilaterally choosing to do something less than the best and purposefully playing a game of chance. 3 – “This device must accept interference from other devices but not create any” I’ve paraphrased this one – but it’s something the Federal Communications Commission – a federal agency in the United States that regulates electronic communication – requires of all manufacturers of any device that could cause or receive interference electronically. I blogged in depth about this here (http://www.straightpathsql.com/archives/2011/07/relationship-advice-from-the-fcc/) so I won’t go into much detail other than to say this… If we all operated more on the premise that we should do our best to not be the cause of conflict, and to be less easily offended and less upset when we perceive offense life would be easier in many areas! This doesn’t always cause the issues we are called in to help out. Not directly. But where we see it is in unhealthy relationships between the various technology teams at a client. We’ll see teams hoarding knowledge, not sharing well with others and almost working against other teams instead of working with them. If you trace these problems back far enough it often stems from someone or some group of people violating this principle from the FCC. To Sum It Up Technology problems are easy to solve. At Linchpin People we help many customers get past the toughest technological challenge – and at the end of the day it is really just a repeatable process of pattern based troubleshooting, logical thinking and starting at the beginning and carefully stepping through to the end. It’s easy at the end of the day. The tough part of what we do as consultants is the people skills. Being able to help get teams working together, being able to help teams take responsibility, to improve team to team communication? That is the difficult part, and we get to use the soft skills on every engagement. Work on professional development (http://professionaldevelopment.sqlpass.org/) and see continuing improvement here, not just with technology. I can teach just about anyone how to be an excellent DBA and performance tuner, but some of these soft skills are much more difficult to teach. If you want to get started with performance analytics and triage of virtualized SQL Servers with the help of experts, read more over at Fix Your SQL Server. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: Notes from the Field, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Variant Management– Which Approach fits for my Product?

    - by C. Chadwick
    Jürgen Kunz – Director Product Development – Oracle ORACLE Deutschland B.V. & Co. KG Introduction In a difficult economic environment, it is important for companies to understand the customer requirements in detail and to address them in their products. Customer specific products, however, usually cause increased costs. Variant management helps to find the best combination of standard components and custom components which balances customer’s product requirements and product costs. Depending on the type of product, different approaches to variant management will be applied. For example the automotive product “car” or electronic/high-tech products like a “computer”, with a pre-defined set of options to be combined in the individual configuration (so called “Assembled to Order” products), require a different approach to products in heavy machinery, which are (at least partially) engineered in a customer specific way (so-called “Engineered-to Order” products). This article discusses different approaches to variant management. Starting with the simple Bill of Material (BOM), this article presents three different approaches to variant management, which are provided by Agile PLM. Single level BOM and Variant BOM The single level BOM is the basic form of the BOM. The product structure is defined using assemblies and single parts. A particular product is thus represented by a fixed product structure. As soon as you have to manage product variants, the single level BOM is no longer sufficient. A variant BOM will be needed to manage product variants. The variant BOM is sometimes referred to as 150% BOM, since a variant BOM contains more parts and assemblies than actually needed to assemble the (final) product – just 150% of the parts You can evolve the variant BOM from the single level BOM by replacing single nodes with a placeholder node. The placeholder in this case represents the possible variants of a part or assembly. Product structure nodes, which are part of any product, are so-called “Must-Have” parts. “Optional” parts can be omitted in the final product. Additional attributes allow limiting the quantity of parts/assemblies which can be assigned at a certain position in the Variant BOM. Figure 1 shows the variant BOM of Agile PLM. Figure 1 Variant BOM in Agile PLM During the instantiation of the Variant BOM, the placeholders get replaced by specific variants of the parts and assemblies. The selection of the desired or appropriate variants is either done step by step by the user or by applying pre-defined configuration rules. As a result of the instantiation, an independent BOM will be created (Figure 2). Figure 2 Instantiated BOM in Agile PLM This kind of Variant BOM  can be used for „Assembled –To-Order“ type products as well as for „Engineered-to-Order“-type products. In case of “Assembled –To-Order” type products, typically the instantiation is done automatically with pre-defined configuration rules. For „Engineered- to-Order“-type products at least part of the product is selected manually to make use of customized parts/assemblies, that have been engineered according to the specific custom requirements. Template BOM The Template BOM is used for „Engineered-to-Order“-type products. It is another type of variant BOM. The engineer works in a flexible environment which allows him to build the most creative solutions. At the same time the engineer shall be guided to re-use existing solutions and it shall be assured that product variants of the same product family share the same base structure. The template BOM defines the basic structure of products belonging to the same product family. Let’s take a gearbox as an example. The customer specific configuration of the gearbox is influenced by several parameters (e.g. rpm range, transmitted torque), which are defined in the customer’s requirement document.  Figure 3 shows part of a Template BOM (yellow) and its relation to the product family hierarchy (blue).  Figure 3 Template BOM Every component of the Template BOM has links to the variants that have been engineeried so far for the component (depending on the level in the Template BOM, they are product variants, Assembly Variant or single part variants). This library of solutions, the so-called solution space, can be used by the engineers to build new product variants. In the best case, the engineer selects an existing solution variant, such as the gearbox shown in figure 3. When the existing variants do not fulfill the specific requirements, a new variant will be engineered. This new variant must be compliant with the given Template BOM. If we look at the gearbox in figure 3  it must consist of a transmission housing, a Connecting Plate, a set of Gears and a Planetary transmission – pre-assumed that all components are must have components. The new variant will enhance the solution space and is automatically available for re-use in future variants. The result of the instantiation of the Template BOM is a stand-alone BOM which represents the customer specific product variant. Modular BOM The concept of the modular BOM was invented in the automotive industry. Passenger cars are so-called „Assembled-to-Order“-products. The customer first selects the specific equipment of the car (so-called specifications) – for instance engine, audio equipment, rims, color. Based on this information the required parts will be determined and the customer specific car will be assembled. Certain combinations of specification are not available for the customer, because they are not feasible from technical perspective (e.g. a convertible with sun roof) or because the combination will not be offered for marketing reasons (e.g. steel rims with a sports line car). The modular BOM (yellow structure in figure 4) is defined in the context of a specific product family (in the sample it is product family „Speedstar“). It is the same modular BOM for the different types of cars of the product family (e.g. sedan, station wagon). The assembly or single parts of the car (blue nodes in figure 4) are assigned at the leaf level of the modular BOM. The assignment of assembly and parts to the modular BOM is enriched with a configuration rule (purple elements in figure 4). The configuration rule defines the conditions to use a specific assembly or single part. The configuration rule is valid in the context of a type of car (green elements in figure 4). Color specific parts are assigned to the color independent parts via additional configuration rules (grey elements in figure 4). The configuration rules use Boolean operators to connect the specifications. Additional consistency rules (constraints) may be used to define invalid combinations of specification (so-called exclusions). Furthermore consistency rules may be used to add specifications to the set of specifications. For instance it is important that a car with diesel engine always is build using the high capacity battery.  Figure 4 Modular BOM The calculation of the car configuration consists of several steps. First the consistency rules (constraints) are applied. Resulting from that specification might be added automatically. The second step will determine the assemblies and single parts for the complete structure of the modular BOM, by evaluating the configuration rules in the context of the current type of car. The evaluation of the rules for one component in the modular BOM might result in several rules being fulfilled. In this case the most specific rule (typically the longest rule) will win. Thanks to this approach, it is possible to add a specific variant to the modular BOM without the need to change any other configuration rules.  As a result the whole set of configuration rules is easy to maintain. Finally the color specific assemblies respective parts will be determined and the configuration is completed. Figure 5 Calculated Car Configuration The result of the car configuration is shown in figure 5. It shows the list of assemblies respective single parts (blue components in figure 5), which are required to build the customer specific car. Summary There are different approaches to variant management. Three different approaches have been presented in this article. At the end of the day, it is the type of the product which decides about the best approach.  For „Assembled to Order“-type products it is very likely that you can define the configuration rules and calculate the product variant automatically. Products of type „Engineered-to-Order“ ,however, need to be engineered. Nevertheless in the majority of cases, part of the product structure can be generated automatically in a similar way to „Assembled to Order“-tape products.  That said it is important first to analyze the product portfolio, in order to define the best approach to variant management.

    Read the article

  • Wordpress how to retrieve the post id once its been reset in the page

    - by Scott B
    I'm working with a script in which the postid of the page has been reset via a script include. How can I retrieve the actual true post id and reset its value once it has been changed via script? Here is the script that I'm referring to. Somewhere in there, the postid is being reset so that the page's the_content() call is no longer pulling the current page being viewed. <?php //$featpages = get_option('woo_slider_pages_landing'); $featpages = '579,584,537'; $featarr=split(",",$featpages); $featarr = array_diff($featarr, array("")); $i = 1; foreach ( $featarr as $featured_tab ) { query_posts('page_id=' . $featured_tab); while (have_posts()) : the_post(); ?> <div class="featured-slide" id="slide-<?php echo $i; $i++; ?>" <?php if($i >=3 ){echo 'style="display:none"';} ?>> <div class="text"> <h2><?php if ( get_post_meta($post->ID, "page_desc", $single = true) <> "" ) { echo get_post_meta($post->ID, "page_desc", $single = true); } else { the_title(); } ?></h2> <p><?php if ( get_post_meta($post->ID, "page_excerpt", $single = true) <> "" ) { echo get_post_meta($post->ID, "page_excerpt", $single = true); } else { the_excerpt(); } ?></p> <?php if ( get_post_meta($post->ID, "link_text", $single = true) <> "" and get_post_meta($post->ID, "link_link", $single = true) <> "" ) { ?> <p><a href="<?php echo get_post_meta($post->ID, "link_link", $single = true); ?>" title="<?php echo get_post_meta($post->ID, "link_text", $single = true); ?>"><?php echo get_post_meta($post->ID, "link_text", $single = true); ?></a></p> <?php } ?> </div><!-- /.text --> <?php if ( get_post_meta($post->ID, "image", $single = true) <> "" ) { ?> <div class="image"> <img src="<?php echo get_post_meta($post->ID, "image", $single = true); ?>" alt="<?php the_title(); ?>" class="featured" /> </div><!-- /.image --> <?php } ?> </div><!-- /.featured-slide --> <?php endwhile; } //endforeach ?>

    Read the article

  • Quick guide to Oracle IRM 11g: Classification design

    - by Simon Thorpe
    Quick guide to Oracle IRM 11g indexThis is the final article in the quick guide to Oracle IRM. If you've followed everything prior you will now have a fully functional and tested Information Rights Management service. It doesn't matter if you've been following the 10g or 11g guide as this next article is common to both. ContentsWhy this is the most important part... Understanding the classification and standard rights model Identifying business use cases Creating an effective IRM classification modelOne single classification across the entire businessA context for each and every possible granular use caseWhat makes a good context? Deciding on the use of roles in the context Reviewing the features and security for context roles Summary Why this is the most important part...Now the real work begins, installing and getting an IRM system running is as simple as following instructions. However to actually have an IRM technology easily protecting your most sensitive information without interfering with your users existing daily work flows and be able to scale IRM across the entire business, requires thought into how confidential documents are created, used and distributed. This article is going to give you the information you need to ask the business the right questions so that you can deploy your IRM service successfully. The IRM team here at Oracle have over 10 years of experience in helping customers and it is important you understand the following to be successful in securing access to your most confidential information. Whatever you are trying to secure, be it mergers and acquisitions information, engineering intellectual property, health care documentation or financial reports. No matter what type of user is going to access the information, be they employees, contractors or customers, there are common goals you are always trying to achieve.Securing the content at the earliest point possible and do it automatically. Removing the dependency on the user to decide to secure the content reduces the risk of mistakes significantly and therefore results a more secure deployment. K.I.S.S. (Keep It Simple Stupid) Reduce complexity in the rights/classification model. Oracle IRM lets you make changes to access to documents even after they are secured which allows you to start with a simple model and then introduce complexity once you've understood how the technology is going to be used in the business. After an initial learning period you can review your implementation and start to make informed decisions based on user feedback and administration experience. Clearly communicate to the user, when appropriate, any changes to their existing work practice. You must make every effort to make the transition to sealed content as simple as possible. For external users you must help them understand why you are securing the documents and inform them the value of the technology to both your business and them. Before getting into the detail, I must pay homage to Martin White, Vice President of client services in SealedMedia, the company Oracle acquired and who created Oracle IRM. In the SealedMedia years Martin was involved with every single customer and was key to the design of certain aspects of the IRM technology, specifically the context model we will be discussing here. Listening carefully to customers and understanding the flexibility of the IRM technology, Martin taught me all the skills of helping customers build scalable, effective and simple to use IRM deployments. No matter how well the engineering department designed the software, badly designed and poorly executed projects can result in difficult to use and manage, and ultimately insecure solutions. The advice and information that follows was born with Martin and he's still delivering IRM consulting with customers and can be found at www.thinkers.co.uk. It is from Martin and others that Oracle not only has the most advanced, scalable and usable document security solution on the market, but Oracle and their partners have the most experience in delivering successful document security solutions. Understanding the classification and standard rights model The goal of any successful IRM deployment is to balance the increase in security the technology brings without over complicating the way people use secured content and avoid a significant increase in administration and maintenance. With Oracle it is possible to automate the protection of content, deploy the desktop software transparently and use authentication methods such that users can open newly secured content initially unaware the document is any different to an insecure one. That is until of course they attempt to do something for which they don't have any rights, such as copy and paste to an insecure application or try and print. Central to achieving this objective is creating a classification model that is simple to understand and use but also provides the right level of complexity to meet the business needs. In Oracle IRM the term used for each classification is a "context". A context defines the relationship between.A group of related documents The people that use the documents The roles that these people perform The rights that these people need to perform their role The context is the key to the success of Oracle IRM. It provides the separation of the role and rights of a user from the content itself. Documents are sealed to contexts but none of the rights, user or group information is stored within the content itself. Sealing only places information about the location of the IRM server that sealed it, the context applied to the document and a few other pieces of metadata that pertain only to the document. This important separation of rights from content means that millions of documents can be secured against a single classification and a user needs only one right assigned to be able to access all documents. If you have followed all the previous articles in this guide, you will be ready to start defining contexts to which your sensitive information will be protected. But before you even start with IRM, you need to understand how your own business uses and creates sensitive documents and emails. Identifying business use cases Oracle is able to support multiple classification systems, but usually there is one single initial need for the technology which drives a deployment. This need might be to protect sensitive mergers and acquisitions information, engineering intellectual property, financial documents. For this and every subsequent use case you must understand how users create and work with documents, to who they are distributed and how the recipients should interact with them. A successful IRM deployment should start with one well identified use case (we go through some examples towards the end of this article) and then after letting this use case play out in the business, you learn how your users work with content, how well your communication to the business worked and if the classification system you deployed delivered the right balance. It is at this point you can start rolling the technology out further. Creating an effective IRM classification model Once you have selected the initial use case you will address with IRM, you need to design a classification model that defines the access to secured documents within the use case. In Oracle IRM there is an inbuilt classification system called the "context" model. In Oracle IRM 11g it is possible to extend the server to support any rights classification model, but the majority of users who are not using an application integration (such as Oracle IRM within Oracle Beehive) are likely to be starting out with the built in context model. Before looking at creating a classification system with IRM, it is worth reviewing some recognized standards and methods for creating and implementing security policy. A very useful set of documents are the ISO 17799 guidelines and the SANS security policy templates. First task is to create a context against which documents are to be secured. A context consists of a group of related documents (all top secret engineering research), a list of roles (contributors and readers) which define how users can access documents and a list of users (research engineers) who have been given a role allowing them to interact with sealed content. Before even creating the first context it is wise to decide on a philosophy which will dictate the level of granularity, the question is, where do you start? At a department level? By project? By technology? First consider the two ends of the spectrum... One single classification across the entire business Imagine that instead of having separate contexts, one for engineering intellectual property, one for your financial data, one for human resources personally identifiable information, you create one context for all documents across the entire business. Whilst you may have immediate objections, there are some significant benefits in thinking about considering this. Document security classification decisions are simple. You only have one context to chose from! User provisioning is simple, just make sure everyone has a role in the only context in the business. Administration is very low, if you assign rights to groups from the business user repository you probably never have to touch IRM administration again. There are however some obvious downsides to this model.All users in have access to all IRM secured content. So potentially a sales person could access sensitive mergers and acquisition documents, if they can get their hands on a copy that is. You cannot delegate control of different documents to different parts of the business, this may not satisfy your regulatory requirements for the separation and delegation of duties. Changing a users role affects every single document ever secured. Even though it is very unlikely a business would ever use one single context to secure all their sensitive information, thinking about this scenario raises one very important point. Just having one single context and securing all confidential documents to it, whilst incurring some of the problems detailed above, has one huge value. Once secured, IRM protected content can ONLY be accessed by authorized users. Just think of all the sensitive documents in your business today, imagine if you could ensure that only everyone you trust could open them. Even if an employee lost a laptop or someone accidentally sent an email to the wrong recipient, only the right people could open that file. A context for each and every possible granular use case Now let's think about the total opposite of a single context design. What if you created a context for each and every single defined business need and created multiple contexts within this for each level of granularity? Let's take a use case where we need to protect engineering intellectual property. Imagine we have 6 different engineering groups, and in each we have a research department, a design department and manufacturing. The company information security policy defines 3 levels of information sensitivity... restricted, confidential and top secret. Then let's say that each group and department needs to define access to information from both internal and external users. Finally add into the mix that they want to review the rights model for each context every financial quarter. This would result in a huge amount of contexts. For example, lets just look at the resulting contexts for one engineering group. Q1FY2010 Restricted Internal - Engineering Group 1 - Research Q1FY2010 Restricted Internal - Engineering Group 1 - Design Q1FY2010 Restricted Internal - Engineering Group 1 - Manufacturing Q1FY2010 Restricted External- Engineering Group 1 - Research Q1FY2010 Restricted External - Engineering Group 1 - Design Q1FY2010 Restricted External - Engineering Group 1 - Manufacturing Q1FY2010 Confidential Internal - Engineering Group 1 - Research Q1FY2010 Confidential Internal - Engineering Group 1 - Design Q1FY2010 Confidential Internal - Engineering Group 1 - Manufacturing Q1FY2010 Confidential External - Engineering Group 1 - Research Q1FY2010 Confidential External - Engineering Group 1 - Design Q1FY2010 Confidential External - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret Internal - Engineering Group 1 - Research Q1FY2010 Top Secret Internal - Engineering Group 1 - Design Q1FY2010 Top Secret Internal - Engineering Group 1 - Manufacturing Q1FY2010 Top Secret External - Engineering Group 1 - Research Q1FY2010 Top Secret External - Engineering Group 1 - Design Q1FY2010 Top Secret External - Engineering Group 1 - Manufacturing Now multiply the above by 6 for each engineering group, 18 contexts. You are then creating/reviewing another 18 every 3 months. After a year you've got 72 contexts. What would be the advantages of such a complex classification model? You can satisfy very granular rights requirements, for example only an authorized engineering group 1 researcher can create a top secret report for access internally, and his role will be reviewed on a very frequent basis. Your business may have very complex rights requirements and mapping this directly to IRM may be an obvious exercise. The disadvantages of such a classification model are significant...Huge administrative overhead. Someone in the business must manage, review and administrate each of these contexts. If the engineering group had a single administrator, they would have 72 classifications to reside over each year. From an end users perspective life will be very confusing. Imagine if a user has rights in just 6 of these contexts. They may be able to print content from one but not another, be able to edit content in 2 contexts but not the other 4. Such confusion at the end user level causes frustration and resistance to the use of the technology. Increased synchronization complexity. Imagine a user who after 3 years in the company ends up with over 300 rights in many different contexts across the business. This would result in long synchronization times as the client software updates all your offline rights. Hard to understand who can do what with what. Imagine being the VP of engineering and as part of an internal security audit you are asked the question, "What rights to researchers have to our top secret information?". In this complex model the answer is not simple, it would depend on many roles in many contexts. Of course this example is extreme, but it highlights that trying to build many barriers in your business can result in a nightmare of administration and confusion amongst users. In the real world what we need is a balance of the two. We need to seek an optimum number of contexts. Too many contexts are unmanageable and too few contexts does not give fine enough granularity. What makes a good context? Good context design derives mainly from how well you understand your business requirements to secure access to confidential information. Some customers I have worked with can tell me exactly the documents they wish to secure and know exactly who should be opening them. However there are some customers who know only of the government regulation that requires them to control access to certain types of information, they don't actually know where the documents are, how they are created or understand exactly who should have access. Therefore you need to know how to ask the business the right questions that lead to information which help you define a context. First ask these questions about a set of documentsWhat is the topic? Who are legitimate contributors on this topic? Who are the authorized readership? If the answer to any one of these is significantly different, then it probably merits a separate context. Remember that sealed documents are inherently secure and as such they cannot leak to your competitors, therefore it is better sealed to a broad context than not sealed at all. Simplicity is key here. Always revert to the first extreme example of a single classification, then work towards essential complexity. If there is any doubt, always prefer fewer contexts. Remember, Oracle IRM allows you to change your mind later on. You can implement a design now and continue to change and refine as you learn how the technology is used. It is easy to go from a simple model to a more complex one, it is much harder to take a complex model that is already embedded in the work practice of users and try to simplify it. It is also wise to take a single use case and address this first with the business. Don't try and tackle many different problems from the outset. Do one, learn from the process, refine it and then take what you have learned into the next use case, refine and continue. Once you have a good grasp of the technology and understand how your business will use it, you can then start rolling out the technology wider across the business. Deciding on the use of roles in the context Once you have decided on that first initial use case and a context to create let's look at the details you need to decide upon. For each context, identify; Administrative rolesBusiness owner, the person who makes decisions about who may or may not see content in this context. This is often the person who wanted to use IRM and drove the business purchase. They are the usually the person with the most at risk when sensitive information is lost. Point of contact, the person who will handle requests for access to content. Sometimes the same as the business owner, sometimes a trusted secretary or administrator. Context administrator, the person who will enact the decisions of the Business Owner. Sometimes the point of contact, sometimes a trusted IT person. Document related rolesContributors, the people who create and edit documents in this context. Reviewers, the people who are involved in reviewing documents but are not trusted to secure information to this classification. This role is not always necessary. (See later discussion on Published-work and Work-in-Progress) Readers, the people who read documents from this context. Some people may have several of the roles above, which is fine. What you are trying to do is understand and define how the business interacts with your sensitive information. These roles obviously map directly to roles available in Oracle IRM. Reviewing the features and security for context roles At this point we have decided on a classification of information, understand what roles people in the business will play when administrating this classification and how they will interact with content. The final piece of the puzzle in getting the information for our first context is to look at the permissions people will have to sealed documents. First think why are you protecting the documents in the first place? It is to prevent the loss of leaking of information to the wrong people. To control the information, making sure that people only access the latest versions of documents. You are not using Oracle IRM to prevent unauthorized people from doing legitimate work. This is an important point, with IRM you can erect many barriers to prevent access to content yet too many restrictions and authorized users will often find ways to circumvent using the technology and end up distributing unprotected originals. Because IRM is a security technology, it is easy to get carried away restricting different groups. However I would highly recommend starting with a simple solution with few restrictions. Ensure that everyone who reasonably needs to read documents can do so from the outset. Remember that with Oracle IRM you can change rights to content whenever you wish and tighten security. Always return to the fact that the greatest value IRM brings is that ONLY authorized users can access secured content, remember that simple "one context for the entire business" model. At the start of the deployment you really need to aim for user acceptance and therefore a simple model is more likely to succeed. As time passes and users understand how IRM works you can start to introduce more restrictions and complexity. Another key aspect to focus on is handling exceptions. If you decide on a context model where engineering can only access engineering information, and sales can only access sales data. Act quickly when a sales manager needs legitimate access to a set of engineering documents. Having a quick and effective process for permitting other people with legitimate needs to obtain appropriate access will be rewarded with acceptance from the user community. These use cases can often be satisfied by integrating IRM with a good Identity & Access Management technology which simplifies the process of assigning users the correct business roles. The big print issue... Printing is often an issue of contention, users love to print but the business wants to ensure sensitive information remains in the controlled digital world. There are many cases of physical document loss causing a business pain, it is often overlooked that IRM can help with this issue by limiting the ability to generate physical copies of digital content. However it can be hard to maintain a balance between security and usability when it comes to printing. Consider the following points when deciding about whether to give print rights. Oracle IRM sealed documents can contain watermarks that expose information about the user, time and location of access and the classification of the document. This information would reside in the printed copy making it easier to trace who printed it. Printed documents are slower to distribute in comparison to their digital counterparts, so time sensitive information in printed format may present a lower risk. Print activity is audited, therefore you can monitor and react to users abusing print rights. Summary In summary it is important to think carefully about the way you create your context model. As you ask the business these questions you may get a variety of different requirements. There may be special projects that require a context just for sensitive information created during the lifetime of the project. There may be a department that requires all information in the group is secured and you might have a few senior executives who wish to use IRM to exchange a small number of highly sensitive documents with a very small number of people. Oracle IRM, with its very flexible context classification system, can support all of these use cases. The trick is to introducing the complexity to deliver them at the right level. In another article i'm working on I will go through some examples of how Oracle IRM might map to existing business use cases. But for now, this article covers all the important questions you need to get your IRM service deployed and successfully protecting your most sensitive information.

    Read the article

  • Single click handler for all buttons in Javascript? Is it a pattern? Whats the benefit?

    - by Hasan Khan
    I have been told that when there are multiple buttons on the page for same purpose but targeting different item e.g. delete item on a grid of items, they say it is recommended to just register for click handler only on the top most element like 'body' and check what was clicked instead of hooking up click with every delete button. Whats the benefit of this? Creating more handlers causes problems? Is it an optimization of some sort? Is it a pattern? Does it have anything to do with performance? Where can I read more about it?

    Read the article

  • Is it a good idea to create seperate root, home, swap prior to installing Ubuntu or just Installing Ubuntu on a Single partition is a Good Choice?

    - by Curious Apprentice
    I wish to go for dual boot installation with already installed windows 7. Now, should I choose " Install along Side of Windows 7 " or go to advanced and make separate partitions for home, swap ,root etc ? What are the advantages of doing it ? There are similar topics on askubuntu.com. But here I want a complete answer. Edit : What is / and /root ? How i can allocate maximum space for software installation ? (70% for software and 30 % for home)

    Read the article

  • Count, inner join

    - by Urosh
    I have two tables: DRIVER (Driver_Id,First name,Last name,...) PARTICIPANT IN CAR ACCIDENT (Participant_Id,Driver_Id-foreign key,responsibility-yes or no,...) Now, I need to find out which driver participated in accident where responsibility is 'YES', and how many times. I did this: Select Driver_ID, COUNT (Participant.Driver_ID)as 'Number of accidents' from Participant in car accident where responsibility='YES' group by Driver_ID order by COUNT (Participant.Driver_ID) desc But, I need to add drivers first and last name from the first table(using inner join, I suppose). I don't know how, because it is not contained in either an aggregate function or the GROUP BY clause. Please help :)

    Read the article

  • Will open files limit in Centos affect HTTP connections? Does the limit apply to a single session or all sessions?

    - by forestclown
    When I do a ulimit -n I got 256, I assume it means I can open 256 files at the sametime. Does it means I can open 256 files with one single session? or all sessions? For example, I logined to my server with username "abc" (via putty/ssh), and open 200 files, with the session still running, I logined to the same server again with the same username "abc" (via putty/ssh), I can open only another 56 files? or I can open another 256 files? Lastly, does this limit also restrict number of http connections? e.g. with the above example, I have opened 200 files, and then I use "wget" or "curl" to make http connections. Thanks

    Read the article

  • How to delete just one LINE of text (NOT a table-row!) with a single KEYBOARD shortcut in Microsoft Office Word 2010?

    - by Sk8erPeter
    Are there any shortcuts to delete just one row (which is NOT a table row, just a single row in a text) in Microsoft Office Word 2010? If not, how can I assign one to do it? In worst case, can I make a macro (in VB) which could do the same with a custom shortcut? To clarify my problem: I would like to avoid multiple clicks and/or pushing multiple buttons, even if I click in the middle of the line of text. :) For example, in Notepad++ I can delete the entire current line with Ctrl+L, in NetBeans, I can delete an entire line with Ctrl+E, in Eclipse, I can delete current line with Ctrl+D, etc., where it doesn't really matter where my mouse cursor is actually... so there are these simple solutions, which I look for in Word too. It really would simplify my work in huge documents.

    Read the article

  • Where can I get a splitter to connect a device with a single 3.5 mm plug into the audio input/output jacks on my laptop?

    - by XinJeisan
    I recently bought the :Hype Retro Handset for Mobile Phone" -- its just a device that looks like a handset to use when chatting on a computer or mobile phone that plugs into the phone/computer with a single 3.5 mm plug. I was hoping to use it on my windows 7 Toshiba laptop. I can hear audio fine through the handset but what I'm saying is not being picked up on the handset. On the box it says "some phones and computers may need additional adapters," so I'm hoping it is possible to get a splitter or something for this to work properly. I did email the parent company (http://dglusa.com/) but I haven't heard from them, and, looking over their website, I doubt I will. I also went to the local radio shack, and the guy said I needed a splitter, but he didn't know where to get one. I can find the kind of splitter I think I need online, but I'm unsure whether they are just for output or can also do input/output.

    Read the article

  • Passing multiple POST parameters to Web API Controller Methods

    - by Rick Strahl
    ASP.NET Web API introduces a new API for creating REST APIs and making AJAX callbacks to the server. This new API provides a host of new great functionality that unifies many of the features of many of the various AJAX/REST APIs that Microsoft created before it - ASP.NET AJAX, WCF REST specifically - and combines them into a whole more consistent API. Web API addresses many of the concerns that developers had with these older APIs, namely that it was very difficult to build consistent REST style resource APIs easily. While Web API provides many new features and makes many scenarios much easier, a lot of the focus has been on making it easier to build REST compliant APIs that are focused on resource based solutions and HTTP verbs. But  RPC style calls that are common with AJAX callbacks in Web applications, have gotten a lot less focus and there are a few scenarios that are not that obvious, especially if you're expecting Web API to provide functionality similar to ASP.NET AJAX style AJAX callbacks. RPC vs. 'Proper' REST RPC style HTTP calls mimic calling a method with parameters and returning a result. Rather than mapping explicit server side resources or 'nouns' RPC calls tend simply map a server side operation, passing in parameters and receiving a typed result where parameters and result values are marshaled over HTTP. Typically RPC calls - like SOAP calls - tend to always be POST operations rather than following HTTP conventions and using the GET/POST/PUT/DELETE etc. verbs to implicitly determine what operation needs to be fired. RPC might not be considered 'cool' anymore, but for typical private AJAX backend operations of a Web site I'd wager that a large percentage of use cases of Web API will fall towards RPC style calls rather than 'proper' REST style APIs. Web applications that have needs for things like live validation against data, filling data based on user inputs, handling small UI updates often don't lend themselves very well to limited HTTP verb usage. It might not be what the cool kids do, but I don't see RPC calls getting replaced by proper REST APIs any time soon.  Proper REST has its place - for 'real' API scenarios that manage and publish/share resources, but for more transactional operations RPC seems a better choice and much easier to implement than trying to shoehorn a boatload of endpoint methods into a few HTTP verbs. In any case Web API does a good job of providing both RPC abstraction as well as the HTTP Verb/REST abstraction. RPC works well out of the box, but there are some differences especially if you're coming from ASP.NET AJAX service or WCF Rest when it comes to multiple parameters. Action Routing for RPC Style Calls If you've looked at Web API demos you've probably seen a bunch of examples of how to create HTTP Verb based routing endpoints. Verb based routing essentially maps a controller and then uses HTTP verbs to map the methods that are called in response to HTTP requests. This works great for resource APIs but doesn't work so well when you have many operational methods in a single controller. HTTP Verb routing is limited to the few HTTP verbs available (plus separate method signatures) and - worse than that - you can't easily extend the controller with custom routes or action routing beyond that. Thankfully Web API also supports Action based routing which allows you create RPC style endpoints fairly easily:RouteTable.Routes.MapHttpRoute( name: "AlbumRpcApiAction", routeTemplate: "albums/{action}/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumApi", action = "GetAblums" } ); This uses traditional MVC style {action} method routing which is different from the HTTP verb based routing you might have read a bunch about in conjunction with Web API. Action based routing like above lets you specify an end point method in a Web API controller either via the {action} parameter in the route string or via a default value for custom routes. Using routing you can pass multiple parameters either on the route itself or pass parameters on the query string, via ModelBinding or content value binding. For most common scenarios this actually works very well. As long as you are passing either a single complex type via a POST operation, or multiple simple types via query string or POST buffer, there's no issue. But if you need to pass multiple parameters as was easily done with WCF REST or ASP.NET AJAX things are not so obvious. Web API has no issue allowing for single parameter like this:[HttpPost] public string PostAlbum(Album album) { return String.Format("{0} {1:d}", album.AlbumName, album.Entered); } There are actually two ways to call this endpoint: albums/PostAlbum Using the Model Binder with plain POST values In this mechanism you're sending plain urlencoded POST values to the server which the ModelBinder then maps the parameter. Each property value is matched to each matching POST value. This works similar to the way that MVC's  ModelBinder works. Here's how you can POST using the ModelBinder and jQuery:$.ajax( { url: "albums/PostAlbum", type: "POST", data: { AlbumName: "Dirty Deeds", Entered: "5/1/2012" }, success: function (result) { alert(result); }, error: function (xhr, status, p3, p4) { var err = "Error " + " " + status + " " + p3; if (xhr.responseText && xhr.responseText[0] == "{") err = JSON.parse(xhr.responseText).message; alert(err); } }); Here's what the POST data looks like for this request: The model binder and it's straight form based POST mechanism is great for posting data directly from HTML pages to model objects. It avoids having to do manual conversions for many operations and is a great boon for AJAX callback requests. Using Web API JSON Formatter The other option is to post data using a JSON string. The process for this is similar except that you create a JavaScript object and serialize it to JSON first.album = { AlbumName: "PowerAge", Entered: new Date(1977,0,1) } $.ajax( { url: "albums/PostAlbum", type: "POST", contentType: "application/json", data: JSON.stringify(album), success: function (result) { alert(result); } }); Here the data is sent using a JSON object rather than form data and the data is JSON encoded over the wire. The trace reveals that the data is sent using plain JSON (Source above), which is a little more efficient since there's no UrlEncoding that occurs. BTW, notice that WebAPI automatically deals with the date. I provided the date as a plain string, rather than a JavaScript date value and the Formatter and ModelBinder both automatically map the date propertly to the Entered DateTime property of the Album object. Passing multiple Parameters to a Web API Controller Single parameters work fine in either of these RPC scenarios and that's to be expected. ModelBinding always works against a single object because it maps a model. But what happens when you want to pass multiple parameters? Consider an API Controller method that has a signature like the following:[HttpPost] public string PostAlbum(Album album, string userToken) Here I'm asking to pass two objects to an RPC method. Is that possible? This used to be fairly straight forward either with WCF REST and ASP.NET AJAX ASMX services, but as far as I can tell this is not directly possible using a POST operation with WebAPI. There a few workarounds that you can use to make this work: Use both POST *and* QueryString Parameters in Conjunction If you have both complex and simple parameters, you can pass simple parameters on the query string. The above would actually work with: /album/PostAlbum?userToken=sekkritt but that's not always possible. In this example it might not be a good idea to pass a user token on the query string though. It also won't work if you need to pass multiple complex objects, since query string values do not support complex type mapping. They only work with simple types. Use a single Object that wraps the two Parameters If you go by service based architecture guidelines every service method should always pass and return a single value only. The input should wrap potentially multiple input parameters and the output should convey status as well as provide the result value. You typically have a xxxRequest and a xxxResponse class that wraps the inputs and outputs. Here's what this method might look like:public PostAlbumResponse PostAlbum(PostAlbumRequest request) { var album = request.Album; var userToken = request.UserToken; return new PostAlbumResponse() { IsSuccess = true, Result = String.Format("{0} {1:d} {2}", album.AlbumName, album.Entered,userToken) }; } with these support types:public class PostAlbumRequest { public Album Album { get; set; } public User User { get; set; } public string UserToken { get; set; } } public class PostAlbumResponse { public string Result { get; set; } public bool IsSuccess { get; set; } public string ErrorMessage { get; set; } }   To call this method you now have to assemble these objects on the client and send it up as JSON:var album = { AlbumName: "PowerAge", Entered: "1/1/1977" } var user = { Name: "Rick" } var userToken = "sekkritt"; $.ajax( { url: "samples/PostAlbum", type: "POST", contentType: "application/json", data: JSON.stringify({ Album: album, User: user, UserToken: userToken }), success: function (result) { alert(result.Result); } }); I assemble the individual types first and then combine them in the data: property of the $.ajax() call into the actual object passed to the server, that mimics the structure of PostAlbumRequest server class that has Album, User and UserToken properties. This works well enough but it gets tedious if you have to create Request and Response types for each method signature. If you have common parameters that are always passed (like you always pass an album or usertoken) you might be able to abstract this to use a single object that gets reused for all methods, but this gets confusing too: Overload a single 'parameter' too much and it becomes a nightmare to decipher what your method actual can use. Use JObject to parse multiple Property Values out of an Object If you recall, ASP.NET AJAX and WCF REST used a 'wrapper' object to make default AJAX calls. Rather than directly calling a service you always passed an object which contained properties for each parameter: { parm1: Value, parm2: Value2 } WCF REST/ASP.NET AJAX would then parse this top level property values and map them to the parameters of the endpoint method. This automatic type wrapping functionality is no longer available directly in Web API, but since Web API now uses JSON.NET for it's JSON serializer you can actually simulate that behavior with a little extra code. You can use the JObject class to receive a dynamic JSON result and then using the dynamic cast of JObject to walk through the child objects and even parse them into strongly typed objects. Here's how to do this on the API Controller end:[HttpPost] public string PostAlbum(JObject jsonData) { dynamic json = jsonData; JObject jalbum = json.Album; JObject juser = json.User; string token = json.UserToken; var album = jalbum.ToObject<Album>(); var user = juser.ToObject<User>(); return String.Format("{0} {1} {2}", album.AlbumName, user.Name, token); } This is clearly not as nice as having the parameters passed directly, but it works to allow you to pass multiple parameters and access them using Web API. JObject is JSON.NET's generic object container which sports a nice dynamic interface that allows you to walk through the object's properties using standard 'dot' object syntax. All you have to do is cast the object to dynamic to get access to the property interface of the JSON type. Additionally JObject also allows you to parse JObject instances into strongly typed objects, which enables us here to retrieve the two objects passed as parameters from this jquery code:var album = { AlbumName: "PowerAge", Entered: "1/1/1977" } var user = { Name: "Rick" } var userToken = "sekkritt"; $.ajax( { url: "samples/PostAlbum", type: "POST", contentType: "application/json", data: JSON.stringify({ Album: album, User: user, UserToken: userToken }), success: function (result) { alert(result); } }); Summary ASP.NET Web API brings many new features and many advantages over the older Microsoft AJAX and REST APIs, but realize that some things like passing multiple strongly typed object parameters will work a bit differently. It's not insurmountable, but just knowing what options are available to simulate this behavior is good to know. Now let me say here that it's probably not a good practice to pass a bunch of parameters to an API call. Ideally APIs should be closely factored to accept single parameters or a single content parameter at least along with some identifier parameters that can be passed on the querystring. But saying that doesn't mean that occasionally you don't run into a situation where you have the need to pass several objects to the server and all three of the options I mentioned might have merit in different situations. For now I'm sure the question of how to pass multiple parameters will come up quite a bit from people migrating WCF REST or ASP.NET AJAX code to Web API. At least there are options available to make it work.© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Do unit tests sometimes break encapsulation?

    - by user1288851
    I very often hear the following: "If you want to test private methods, you'd better put that in another class and expose it." While sometimes that's the case and we have a hiding concept inside our class, other times you end up with classes that have the same attributes (or, worst, every attribute of one class become a argument on a method in the other class) and exposes functionality that is, in fact, implementation detail. Specially on TDD, when you refactor a class with public methods out of a previous tested class, that class is now part of your interface, but has no tests to it (since you refactored it, and is a implementation detail). Now, I may be not finding an obvious better answer, but if my answer is the "correct", that means that sometimes writting unit tests can break encapsulation, and divide the same responsibility into different classes. A simple example would be testing a setter method when a getter is not actually needed for anything in the real code. Please when aswering don't provide simple answers to specific cases I may have written. Rather, try to explain more of the generic case and theoretical approach. And this is neither language specific. Thanks in advance. EDIT: The answer given by Matthew Flynn was really insightful, but didn't quite answer the question. Altough he made the fair point that you either don't test private methods or extract them because they really are other concern and responsibility (or at least that was what I could understand from his answer), I think there are situations where unit testing private methods is useful. My primary example is when you have a class that has one responsibility but the output (or input) that it gives (takes) is just to complex. For example, a hashing function. There's no good way to break a hashing function apart and mantain cohesion and encapsulation. However, testing a hashing function can be really tough, since you would need to calculate by hand (you can't use code calculation to test code calculation!) the hashing, and test multiple cases where the hash changes. In that way (and this may be a question worth of its own topic) I think private method testing is the best way to handle it. Now, I'm not sure if I should ask another question, or ask it here, but are there any better way to test such complex output (input)? OBS: Please, if you think I should ask another question on that topic, leave a comment. :)

    Read the article

  • E-Business Integration with SSO using AccessGate

    - by user774220
    Moving away from the legacy Oracle SSO, Oracle E-Business Suite (EBS) came up with EBS AccessGate as the way forward to provide Single Sign On with Oracle Access Manager (OAM). As opposed to AccessGate in OAM terminology, EBS AccessGate has no specific connection with OAM with respect to configuration. Instead, EBS AccessGate uses the header variables sent from the SSO system to create the native user-session, like any other SSO enabled web application. E-Business Suite Integration with Oracle Access Manager It is a known fact that E-Business suite requires Oracle Internet Directory (OID) as the user repository to enable Single Sign On. This is due to the fact that E-Business Suite needs to be registered with OID to for Single Sign On. Additionally, E-Business Suite uses “orclguid” in OID to map the Single Sign On user with the corresponding local user profile. During authentication, EBS AccessGate expects SSO system to return orclguid and EBS username (stored as a user-attribute in SSO user store) in two header variables USER_ORCLGUID and USER_NAME respectively. Following diagram depicts the authentication flow once SSO system returns EBS Username and orclguid after successful authentication: Topic to brainstorm: EBS AccessGate as a generic SSO enablement solution for E-Business Suite AccessGate Even though EBS AccessGate is suggested as an integration approach between OAM and Oracle E-Business Suite, this section attempts to look at EBS AccessGate as a generic solution approach to provide SSO to Oracle E-Business Suite using any Web SSO solution. From the above points, the only dependency on the SSO system is that it should be able to return the corresponding orclguid from the OID which is configured with the E-Business Suite. This can be achieved by a variety of approaches: By using the same OID referred by E-Business Suite as the Single Sign On user store. If SSO System is using a different user store then: Use DIP or OIM to synch orclsguid from E-Business Suite OID to SSO user store Use OVD to provide an LDAP view where orclguid from E-Business Suite OID is part of the user entity in the user store referred by SSO System

    Read the article

  • ADDS: 1 - Introducing and designing

    - by marc dekeyser
    Normal 0 false false false EN-GB X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi; mso-fareast-language:EN-US;} What is ADDS?  Every Microsoft oriented infrastructure in today's enterprises will depend largely on the active directory version built by Microsoft. It is the foundation stone on which all other products (Exchange, update services, office communicator, the system center family, etc) rely on to get their information. And that is just looking at it from an infrastructure perspective. A well designed and implemented Active Directory implementation makes life for IT personnel and user alike a lot easier. Centralised management and the abilities opened up  by having it in place are ample.  But what is Active Directory Domain Services? We can look at ADDS as a centralised directory containing all objects your infrastructure runs on in one way or another. Since it is a Microsoft product you'll obviously not be seeing linux or mac clients listed in here (exceptions exist) but in general we can say it contains everything your company has in place in one form or another.  The domain name services. The domain naming service (or DNS for short) is a service which translates IP address (the identifiers for each computer in your domain) into readable and easy to understand names. This service is a prequisite for ADDA to work and having wrong record in a DNS server will make any ADDS service fail. Generally speaking a DNS service will be run on the same server as the ADDS service but it is worth wile to remember that this is not necessary. You could, for example, run your DNS services on a linux box (which would need special preparing to host an ADDS integrated DNS zone) and run the ADDS service of another box… Where to start? If the aim is to put in place a first time implementation of ADDS in your enterprise there are plenty of things to consider depending on what you are going to do in the long run. Great care has to be taken when first designing and implementing as having it set up wrong will cause a headache down the line. It is for that reason that I like to start building from the bottom up and start with a generic installation of ADDS (which will still differ for every client) and make it adaptable for future services which can hook in to the existing environment. Adapting existing environments is out of scope for this document (and series) although it is possible to take the pointers and change your existing environment to run in a smoother manor. Take great care when changing things as one small slip of the hand can give you a forest wide failure… Whenever starting with an ADDS deployment I ask the client the following questions:  What are your long term plans and goals?  How flexible do you want it? Are you currently linux heavy and want to keep this or can we go for an all Microsoft design? Those three questions should give some sort of indicator what direction can be taken and if the client has thought about some things themselves :).  The technical side of things  What is next to consider is what kind of infrastructure is already in place. For these series I'll keep it simple and introduce some general concepts without going in to depth on integrating ADDS with other DNS services.  Building from the ground up means we need to consider our layers on which our infrastructure will rely. In my view that goes as follows:  Network (WAN/LAN links and physical sites DNS Namespacing All in one domain or split up in different domains/forests? Security (both for ADDS and physical sites) The network side of things  Looking at how the network is currently set up can potentially teach us a large deal about the client. Do they have multiple physical site? What network speeds exist between these sites, etc… Depending on this information we will design our site links (which controls replication) in future stages. DNS Namespacing Maybe the single most intresting thing to know is what the domain will be named (ADDS will need a DNS domain with the same name) and where this will be hosted. Note that active directory can be set up with a singe name (aka contoso instead of contoso.com) but it is highly recommended to never do this. If you do end up with a domain like that for some reason there will be a lot of services that are going to give you good grief in the future (exchange being one of them). So one of the best practises would be always to use a double name (contoso.com or contoso.lan for example). Internal namespace A single namespace is just what it sounds like. You have a DNS domain which is different internally from what the client has as an external namespace. f.e. contoso.com as an external name (out on the internet) and contoso.lan on the internal network. his setup is has its advantages in that you have more obscurity from the internet in the DNS side of this but it will require additional work to publish services to the web. External namespace Quite like the internal namespace only here you do not differ the internal namespace of the company from what is known on the internet. In this implementation you would host your own DNS servers for the external domain inside the network. Or in other words, any external computer doing a DNS lookup would contact your internal DNS server for the resolution. Generally speaking this set up is a bad idea from the security side of things. Split DNS Whilst using an external namespace design is fairly easy it involves a lot of security risks. Opening up you ADDS DSN servers for lookups exposes your entire network to the internet and should be avoided at any cost. And that is where the "split DNS" design comes in. In this setup up would still have the same namespace internally and externally but you would be using different DNS servers for lookups on the external network who have no records of your internal resources unless you explicitly publish them. All in one or not? In determining your active directory design you can look at the following possibilities:  Single forest, Single domain Single forest, multiple domains Multiple forests, multiple domains I've listed the possibilities for design in increasing order of administrative magnitude. Microsoft recommends trying to use a single forest, single domain in as much situations as possible. It is, however, always possible that you require your services to be seperated from your users in a resource forest with trusts set up between the different forests. To start out I would go with the single forest design to avoid complexity unless there are strict requirements to have multiple forests. Security What kind of security is required on the domain and does this reflect the physical security on the sites? Not every client can afford to have a domain controller in a secluded server room on every site and it is exactly for that reason that Microsoft introduced the RODC (read only domain controller). A RODC is a domain controller that has been limited in functionality, in essence it will only cache the data you explicitly tell it to cache and in the case of a DC compromise (it being stolen) only a limited number of accounts will need to be affected. Th- Th- Th- That’s all folks! Well at least for now! In future editions of this series we’ll be walking through the different task that need to be done and the thought which needs to be put in to it. But for all editions we’ll be going from the concept of running a single forest, single domain with a split DNS setup… See you next time!

    Read the article

< Previous Page | 79 80 81 82 83 84 85 86 87 88 89 90  | Next Page >