Search Results

Search found 17458 results on 699 pages for 'the dark bug returns'.

Page 83/699 | < Previous Page | 79 80 81 82 83 84 85 86 87 88 89 90  | Next Page >

  • Java SE Updates

    - by Tori Wieldt
    Duke's helpers from around the world have been busy making Java just right for all good developers. Here are the updates:  Java SE 7 Update 10This releases provides key security features and bug fixes. Oracle strongly recommends that all Java SE 7 users upgrade to this release. JavaFX 2.2.4 is now bundled with the JDK on Windows, Mac and Linux x86/x64.Learn more Download Java SE 6 Update 38  This release provides security features and bug fixes. Oracle strongly recommends that all Java SE 6 users upgrade to this release (or to Java SE 7 update 10). Learn more Download Java SE Embedded 7 Update 10 This releases provides the security features and bug fixes from Java SE 7 Update 10. Learn more Download Java SE Embedded 6 Update 38  This releases provides the security features and bug fixes from Java SE 6 Update 38. Learn more Download NOTE: The end of public updates for Java SE 6 will occur in February 2013. See "The End of Public Updates for Java SE 6" and the Java SE Support Roadmap for more information.

    Read the article

  • How can I be certain that my code is flawless? [duplicate]

    - by David
    This question already has an answer here: Theoretically bug-free programs 5 answers I have just completed an exercise from my textbook which wanted me to write a program to check if a number is prime or not. I have tested it and seems to work fine, but how can I be certain that it will work for every prime number? public boolean isPrime(int n) { int divisor = 2; int limit = n-1 ; if (n == 2) { return true; } else { int mod = 0; while (divisor <= limit) { mod = n % divisor; if (mod == 0) { return false; } divisor++; } if (mod > 0) { return true; } } return false; } Note that this question is not a duplicate of Theoretically Bug Free Programs because that question asks about whether one can write bug free programs in the face of the the limitative results such as Turing's proof of the incomputability of halting, Rice's theorem and Godel's incompleteness theorems. This question asks how a program can be shown to be bug free.

    Read the article

  • What is the value of checking in failing unit tests?

    - by user20194
    While there are ways of keeping unit tests from being executed, what is the value of checking in failing unit tests? I will use a simple example: Case Sensitivity. The current code is case sensitive. A valid input into the method is "Cat" and it would return an enum of Animal.Cat. However, the desired functionality of the method should not be case sensitive. So if the method described was passed "cat" it could possibly return something like Animal.Null instead of Animal.Cat and the unit test would fail. Though a simple code change would make this work, a more complex issue may take weeks to fix, but identifying the bug with a unit test could be a less complex task. The application currently being analyzed has 4 years of code that "works". However, recent discussions regarding unit tests have found flaws in the code. Some just need explicit implementation documentation (ex. case sensitive or not), or code that does not execute the bug based on how it is currently called. But unit tests can be created executing specific scenarios that will cause the bug to be seen and are valid inputs. What is the value of checking in unit tests that exercise the bug until someone can get around to fixing the code? Should this unit test be flagged with ignore, priority, category etc, to determine whether a build was successful based on tests executed? Eventually the unit test should be created to execute the code once someone fixes it. On one hand it shows that identified bugs have not been fixed. On the other, there could be hundreds of failed unit tests showing up in the logs and weeding through the ones that should fail vs. failures due to a code check-in would be difficult to find.

    Read the article

  • Introduction to the ASP.NET Web API

    - by Stephen.Walther
    I am a huge fan of Ajax. If you want to create a great experience for the users of your website – regardless of whether you are building an ASP.NET MVC or an ASP.NET Web Forms site — then you need to use Ajax. Otherwise, you are just being cruel to your customers. We use Ajax extensively in several of the ASP.NET applications that my company, Superexpert.com, builds. We expose data from the server as JSON and use jQuery to retrieve and update that data from the browser. One challenge, when building an ASP.NET website, is deciding on which technology to use to expose JSON data from the server. For example, how do you expose a list of products from the server as JSON so you can retrieve the list of products with jQuery? You have a number of options (too many options) including ASMX Web services, WCF Web Services, ASHX Generic Handlers, WCF Data Services, and MVC controller actions. Fortunately, the world has just been simplified. With the release of ASP.NET 4 Beta, Microsoft has introduced a new technology for exposing JSON from the server named the ASP.NET Web API. You can use the ASP.NET Web API with both ASP.NET MVC and ASP.NET Web Forms applications. The goal of this blog post is to provide you with a brief overview of the features of the new ASP.NET Web API. You learn how to use the ASP.NET Web API to retrieve, insert, update, and delete database records with jQuery. We also discuss how you can perform form validation when using the Web API and use OData when using the Web API. Creating an ASP.NET Web API Controller The ASP.NET Web API exposes JSON data through a new type of controller called an API controller. You can add an API controller to an existing ASP.NET MVC 4 project through the standard Add Controller dialog box. Right-click your Controllers folder and select Add, Controller. In the dialog box, name your controller MovieController and select the Empty API controller template: A brand new API controller looks like this: using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { } } An API controller, unlike a standard MVC controller, derives from the base ApiController class instead of the base Controller class. Using jQuery to Retrieve, Insert, Update, and Delete Data Let’s create an Ajaxified Movie Database application. We’ll retrieve, insert, update, and delete movies using jQuery with the MovieController which we just created. Our Movie model class looks like this: namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } public string Title { get; set; } public string Director { get; set; } } } Our application will consist of a single HTML page named Movies.html. We’ll place all of our jQuery code in the Movies.html page. Getting a Single Record with the ASP.NET Web API To support retrieving a single movie from the server, we need to add a Get method to our API controller: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public Movie GetMovie(int id) { // Return movie by id if (id == 1) { return new Movie { Id = 1, Title = "Star Wars", Director = "Lucas" }; } // Otherwise, movie was not found throw new HttpResponseException(HttpStatusCode.NotFound); } } } In the code above, the GetMovie() method accepts the Id of a movie. If the Id has the value 1 then the method returns the movie Star Wars. Otherwise, the method throws an exception and returns 404 Not Found HTTP status code. After building your project, you can invoke the MovieController.GetMovie() method by entering the following URL in your web browser address bar: http://localhost:[port]/api/movie/1 (You’ll need to enter the correct randomly generated port). In the URL api/movie/1, the first “api” segment indicates that this is a Web API route. The “movie” segment indicates that the MovieController should be invoked. You do not specify the name of the action. Instead, the HTTP method used to make the request – GET, POST, PUT, DELETE — is used to identify the action to invoke. The ASP.NET Web API uses different routing conventions than normal ASP.NET MVC controllers. When you make an HTTP GET request then any API controller method with a name that starts with “GET” is invoked. So, we could have called our API controller action GetPopcorn() instead of GetMovie() and it would still be invoked by the URL api/movie/1. The default route for the Web API is defined in the Global.asax file and it looks like this: routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); We can invoke our GetMovie() controller action with the jQuery code in the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Get Movie</title> </head> <body> <div> Title: <span id="title"></span> </div> <div> Director: <span id="director"></span> </div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> getMovie(1, function (movie) { $("#title").html(movie.Title); $("#director").html(movie.Director); }); function getMovie(id, callback) { $.ajax({ url: "/api/Movie", data: { id: id }, type: "GET", contentType: "application/json;charset=utf-8", statusCode: { 200: function (movie) { callback(movie); }, 404: function () { alert("Not Found!"); } } }); } </script> </body> </html> In the code above, the jQuery $.ajax() method is used to invoke the GetMovie() method. Notice that the Ajax call handles two HTTP response codes. When the GetMove() method successfully returns a movie, the method returns a 200 status code. In that case, the details of the movie are displayed in the HTML page. Otherwise, if the movie is not found, the GetMovie() method returns a 404 status code. In that case, the page simply displays an alert box indicating that the movie was not found (hopefully, you would implement something more graceful in an actual application). You can use your browser’s Developer Tools to see what is going on in the background when you open the HTML page (hit F12 in the most recent version of most browsers). For example, you can use the Network tab in Google Chrome to see the Ajax request which invokes the GetMovie() method: Getting a Set of Records with the ASP.NET Web API Let’s modify our Movie API controller so that it returns a collection of movies. The following Movie controller has a new ListMovies() method which returns a (hard-coded) collection of movies: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public IEnumerable<Movie> ListMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=1, Title="King Kong", Director="Jackson"}, new Movie {Id=1, Title="Memento", Director="Nolan"} }; } } } Because we named our action ListMovies(), the default Web API route will never match it. Therefore, we need to add the following custom route to our Global.asax file (at the top of the RegisterRoutes() method): routes.MapHttpRoute( name: "ActionApi", routeTemplate: "api/{controller}/{action}/{id}", defaults: new { id = RouteParameter.Optional } ); This route enables us to invoke the ListMovies() method with the URL /api/movie/listmovies. Now that we have exposed our collection of movies from the server, we can retrieve and display the list of movies using jQuery in our HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>List Movies</title> </head> <body> <div id="movies"></div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> listMovies(function (movies) { var strMovies=""; $.each(movies, function (index, movie) { strMovies += "<div>" + movie.Title + "</div>"; }); $("#movies").html(strMovies); }); function listMovies(callback) { $.ajax({ url: "/api/Movie/ListMovies", data: {}, type: "GET", contentType: "application/json;charset=utf-8", }).then(function(movies){ callback(movies); }); } </script> </body> </html>     Inserting a Record with the ASP.NET Web API Now let’s modify our Movie API controller so it supports creating new records: public HttpResponseMessage<Movie> PostMovie(Movie movieToCreate) { // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } The PostMovie() method in the code above accepts a movieToCreate parameter. We don’t actually store the new movie anywhere. In real life, you will want to call a service method to store the new movie in a database. When you create a new resource, such as a new movie, you should return the location of the new resource. In the code above, the URL where the new movie can be retrieved is assigned to the Location header returned in the PostMovie() response. Because the name of our method starts with “Post”, we don’t need to create a custom route. The PostMovie() method can be invoked with the URL /Movie/PostMovie – just as long as the method is invoked within the context of a HTTP POST request. The following HTML page invokes the PostMovie() method. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "Jackson" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }); function createMovie(movieToCreate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); } </script> </body> </html> This page creates a new movie (the Hobbit) by calling the createMovie() method. The page simply displays the Id of the new movie: The HTTP Post operation is performed with the following call to the jQuery $.ajax() method: $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); Notice that the type of Ajax request is a POST request. This is required to match the PostMovie() method. Notice, furthermore, that the new movie is converted into JSON using JSON.stringify(). The JSON.stringify() method takes a JavaScript object and converts it into a JSON string. Finally, notice that success is represented with a 201 status code. The HttpStatusCode.Created value returned from the PostMovie() method returns a 201 status code. Updating a Record with the ASP.NET Web API Here’s how we can modify the Movie API controller to support updating an existing record. In this case, we need to create a PUT method to handle an HTTP PUT request: public void PutMovie(Movie movieToUpdate) { if (movieToUpdate.Id == 1) { // Update the movie in the database return; } // If you can't find the movie to update throw new HttpResponseException(HttpStatusCode.NotFound); } Unlike our PostMovie() method, the PutMovie() method does not return a result. The action either updates the database or, if the movie cannot be found, returns an HTTP Status code of 404. The following HTML page illustrates how you can invoke the PutMovie() method: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Put Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToUpdate = { id: 1, title: "The Hobbit", director: "Jackson" }; updateMovie(movieToUpdate, function () { alert("Movie updated!"); }); function updateMovie(movieToUpdate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToUpdate), type: "PUT", contentType: "application/json;charset=utf-8", statusCode: { 200: function () { callback(); }, 404: function () { alert("Movie not found!"); } } }); } </script> </body> </html> Deleting a Record with the ASP.NET Web API Here’s the code for deleting a movie: public HttpResponseMessage DeleteMovie(int id) { // Delete the movie from the database // Return status code return new HttpResponseMessage(HttpStatusCode.NoContent); } This method simply deletes the movie (well, not really, but pretend that it does) and returns a No Content status code (204). The following page illustrates how you can invoke the DeleteMovie() action: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Delete Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> deleteMovie(1, function () { alert("Movie deleted!"); }); function deleteMovie(id, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify({id:id}), type: "DELETE", contentType: "application/json;charset=utf-8", statusCode: { 204: function () { callback(); } } }); } </script> </body> </html> Performing Validation How do you perform form validation when using the ASP.NET Web API? Because validation in ASP.NET MVC is driven by the Default Model Binder, and because the Web API uses the Default Model Binder, you get validation for free. Let’s modify our Movie class so it includes some of the standard validation attributes: using System.ComponentModel.DataAnnotations; namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } [Required(ErrorMessage="Title is required!")] [StringLength(5, ErrorMessage="Title cannot be more than 5 characters!")] public string Title { get; set; } [Required(ErrorMessage="Director is required!")] public string Director { get; set; } } } In the code above, the Required validation attribute is used to make both the Title and Director properties required. The StringLength attribute is used to require the length of the movie title to be no more than 5 characters. Now let’s modify our PostMovie() action to validate a movie before adding the movie to the database: public HttpResponseMessage PostMovie(Movie movieToCreate) { // Validate movie if (!ModelState.IsValid) { var errors = new JsonArray(); foreach (var prop in ModelState.Values) { if (prop.Errors.Any()) { errors.Add(prop.Errors.First().ErrorMessage); } } return new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } If ModelState.IsValid has the value false then the errors in model state are copied to a new JSON array. Each property – such as the Title and Director property — can have multiple errors. In the code above, only the first error message is copied over. The JSON array is returned with a Bad Request status code (400 status code). The following HTML page illustrates how you can invoke our modified PostMovie() action and display any error messages: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }, function (errors) { var strErrors = ""; $.each(errors, function(index, err) { strErrors += "*" + err + "\n"; }); alert(strErrors); } ); function createMovie(movieToCreate, success, fail) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToCreate), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { success(newMovie); }, 400: function (xhr) { var errors = JSON.parse(xhr.responseText); fail(errors); } } }); } </script> </body> </html> The createMovie() function performs an Ajax request and handles either a 201 or a 400 status code from the response. If a 201 status code is returned then there were no validation errors and the new movie was created. If, on the other hand, a 400 status code is returned then there was a validation error. The validation errors are retrieved from the XmlHttpRequest responseText property. The error messages are displayed in an alert: (Please don’t use JavaScript alert dialogs to display validation errors, I just did it this way out of pure laziness) This validation code in our PostMovie() method is pretty generic. There is nothing specific about this code to the PostMovie() method. In the following video, Jon Galloway demonstrates how to create a global Validation filter which can be used with any API controller action: http://www.asp.net/web-api/overview/web-api-routing-and-actions/video-custom-validation His validation filter looks like this: using System.Json; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http.Controllers; using System.Web.Http.Filters; namespace MyWebAPIApp.Filters { public class ValidationActionFilter:ActionFilterAttribute { public override void OnActionExecuting(HttpActionContext actionContext) { var modelState = actionContext.ModelState; if (!modelState.IsValid) { dynamic errors = new JsonObject(); foreach (var key in modelState.Keys) { var state = modelState[key]; if (state.Errors.Any()) { errors[key] = state.Errors.First().ErrorMessage; } } actionContext.Response = new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } } } } And you can register the validation filter in the Application_Start() method in the Global.asax file like this: GlobalConfiguration.Configuration.Filters.Add(new ValidationActionFilter()); After you register the Validation filter, validation error messages are returned from any API controller action method automatically when validation fails. You don’t need to add any special logic to any of your API controller actions to take advantage of the filter. Querying using OData The OData protocol is an open protocol created by Microsoft which enables you to perform queries over the web. The official website for OData is located here: http://odata.org For example, here are some of the query options which you can use with OData: · $orderby – Enables you to retrieve results in a certain order. · $top – Enables you to retrieve a certain number of results. · $skip – Enables you to skip over a certain number of results (use with $top for paging). · $filter – Enables you to filter the results returned. The ASP.NET Web API supports a subset of the OData protocol. You can use all of the query options listed above when interacting with an API controller. The only requirement is that the API controller action returns its data as IQueryable. For example, the following Movie controller has an action named GetMovies() which returns an IQueryable of movies: public IQueryable<Movie> GetMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=2, Title="King Kong", Director="Jackson"}, new Movie {Id=3, Title="Willow", Director="Lucas"}, new Movie {Id=4, Title="Shrek", Director="Smith"}, new Movie {Id=5, Title="Memento", Director="Nolan"} }.AsQueryable(); } If you enter the following URL in your browser: /api/movie?$top=2&$orderby=Title Then you will limit the movies returned to the top 2 in order of the movie Title. You will get the following results: By using the $top option in combination with the $skip option, you can enable client-side paging. For example, you can use $top and $skip to page through thousands of products, 10 products at a time. The $filter query option is very powerful. You can use this option to filter the results from a query. Here are some examples: Return every movie directed by Lucas: /api/movie?$filter=Director eq ‘Lucas’ Return every movie which has a title which starts with ‘S’: /api/movie?$filter=startswith(Title,’S') Return every movie which has an Id greater than 2: /api/movie?$filter=Id gt 2 The complete documentation for the $filter option is located here: http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption Summary The goal of this blog entry was to provide you with an overview of the new ASP.NET Web API introduced with the Beta release of ASP.NET 4. In this post, I discussed how you can retrieve, insert, update, and delete data by using jQuery with the Web API. I also discussed how you can use the standard validation attributes with the Web API. You learned how to return validation error messages to the client and display the error messages using jQuery. Finally, we briefly discussed how the ASP.NET Web API supports the OData protocol. For example, you learned how to filter records returned from an API controller action by using the $filter query option. I’m excited about the new Web API. This is a feature which I expect to use with almost every ASP.NET application which I build in the future.

    Read the article

  • Introduction to the ASP.NET Web API

    - by Stephen.Walther
    I am a huge fan of Ajax. If you want to create a great experience for the users of your website – regardless of whether you are building an ASP.NET MVC or an ASP.NET Web Forms site — then you need to use Ajax. Otherwise, you are just being cruel to your customers. We use Ajax extensively in several of the ASP.NET applications that my company, Superexpert.com, builds. We expose data from the server as JSON and use jQuery to retrieve and update that data from the browser. One challenge, when building an ASP.NET website, is deciding on which technology to use to expose JSON data from the server. For example, how do you expose a list of products from the server as JSON so you can retrieve the list of products with jQuery? You have a number of options (too many options) including ASMX Web services, WCF Web Services, ASHX Generic Handlers, WCF Data Services, and MVC controller actions. Fortunately, the world has just been simplified. With the release of ASP.NET 4 Beta, Microsoft has introduced a new technology for exposing JSON from the server named the ASP.NET Web API. You can use the ASP.NET Web API with both ASP.NET MVC and ASP.NET Web Forms applications. The goal of this blog post is to provide you with a brief overview of the features of the new ASP.NET Web API. You learn how to use the ASP.NET Web API to retrieve, insert, update, and delete database records with jQuery. We also discuss how you can perform form validation when using the Web API and use OData when using the Web API. Creating an ASP.NET Web API Controller The ASP.NET Web API exposes JSON data through a new type of controller called an API controller. You can add an API controller to an existing ASP.NET MVC 4 project through the standard Add Controller dialog box. Right-click your Controllers folder and select Add, Controller. In the dialog box, name your controller MovieController and select the Empty API controller template: A brand new API controller looks like this: using System; using System.Collections.Generic; using System.Linq; using System.Net.Http; using System.Web.Http; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { } } An API controller, unlike a standard MVC controller, derives from the base ApiController class instead of the base Controller class. Using jQuery to Retrieve, Insert, Update, and Delete Data Let’s create an Ajaxified Movie Database application. We’ll retrieve, insert, update, and delete movies using jQuery with the MovieController which we just created. Our Movie model class looks like this: namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } public string Title { get; set; } public string Director { get; set; } } } Our application will consist of a single HTML page named Movies.html. We’ll place all of our jQuery code in the Movies.html page. Getting a Single Record with the ASP.NET Web API To support retrieving a single movie from the server, we need to add a Get method to our API controller: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public Movie GetMovie(int id) { // Return movie by id if (id == 1) { return new Movie { Id = 1, Title = "Star Wars", Director = "Lucas" }; } // Otherwise, movie was not found throw new HttpResponseException(HttpStatusCode.NotFound); } } } In the code above, the GetMovie() method accepts the Id of a movie. If the Id has the value 1 then the method returns the movie Star Wars. Otherwise, the method throws an exception and returns 404 Not Found HTTP status code. After building your project, you can invoke the MovieController.GetMovie() method by entering the following URL in your web browser address bar: http://localhost:[port]/api/movie/1 (You’ll need to enter the correct randomly generated port). In the URL api/movie/1, the first “api” segment indicates that this is a Web API route. The “movie” segment indicates that the MovieController should be invoked. You do not specify the name of the action. Instead, the HTTP method used to make the request – GET, POST, PUT, DELETE — is used to identify the action to invoke. The ASP.NET Web API uses different routing conventions than normal ASP.NET MVC controllers. When you make an HTTP GET request then any API controller method with a name that starts with “GET” is invoked. So, we could have called our API controller action GetPopcorn() instead of GetMovie() and it would still be invoked by the URL api/movie/1. The default route for the Web API is defined in the Global.asax file and it looks like this: routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); We can invoke our GetMovie() controller action with the jQuery code in the following HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Get Movie</title> </head> <body> <div> Title: <span id="title"></span> </div> <div> Director: <span id="director"></span> </div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> getMovie(1, function (movie) { $("#title").html(movie.Title); $("#director").html(movie.Director); }); function getMovie(id, callback) { $.ajax({ url: "/api/Movie", data: { id: id }, type: "GET", contentType: "application/json;charset=utf-8", statusCode: { 200: function (movie) { callback(movie); }, 404: function () { alert("Not Found!"); } } }); } </script> </body> </html> In the code above, the jQuery $.ajax() method is used to invoke the GetMovie() method. Notice that the Ajax call handles two HTTP response codes. When the GetMove() method successfully returns a movie, the method returns a 200 status code. In that case, the details of the movie are displayed in the HTML page. Otherwise, if the movie is not found, the GetMovie() method returns a 404 status code. In that case, the page simply displays an alert box indicating that the movie was not found (hopefully, you would implement something more graceful in an actual application). You can use your browser’s Developer Tools to see what is going on in the background when you open the HTML page (hit F12 in the most recent version of most browsers). For example, you can use the Network tab in Google Chrome to see the Ajax request which invokes the GetMovie() method: Getting a Set of Records with the ASP.NET Web API Let’s modify our Movie API controller so that it returns a collection of movies. The following Movie controller has a new ListMovies() method which returns a (hard-coded) collection of movies: using System; using System.Collections.Generic; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http; using MyWebAPIApp.Models; namespace MyWebAPIApp.Controllers { public class MovieController : ApiController { public IEnumerable<Movie> ListMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=1, Title="King Kong", Director="Jackson"}, new Movie {Id=1, Title="Memento", Director="Nolan"} }; } } } Because we named our action ListMovies(), the default Web API route will never match it. Therefore, we need to add the following custom route to our Global.asax file (at the top of the RegisterRoutes() method): routes.MapHttpRoute( name: "ActionApi", routeTemplate: "api/{controller}/{action}/{id}", defaults: new { id = RouteParameter.Optional } ); This route enables us to invoke the ListMovies() method with the URL /api/movie/listmovies. Now that we have exposed our collection of movies from the server, we can retrieve and display the list of movies using jQuery in our HTML page: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>List Movies</title> </head> <body> <div id="movies"></div> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> listMovies(function (movies) { var strMovies=""; $.each(movies, function (index, movie) { strMovies += "<div>" + movie.Title + "</div>"; }); $("#movies").html(strMovies); }); function listMovies(callback) { $.ajax({ url: "/api/Movie/ListMovies", data: {}, type: "GET", contentType: "application/json;charset=utf-8", }).then(function(movies){ callback(movies); }); } </script> </body> </html>     Inserting a Record with the ASP.NET Web API Now let’s modify our Movie API controller so it supports creating new records: public HttpResponseMessage<Movie> PostMovie(Movie movieToCreate) { // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } The PostMovie() method in the code above accepts a movieToCreate parameter. We don’t actually store the new movie anywhere. In real life, you will want to call a service method to store the new movie in a database. When you create a new resource, such as a new movie, you should return the location of the new resource. In the code above, the URL where the new movie can be retrieved is assigned to the Location header returned in the PostMovie() response. Because the name of our method starts with “Post”, we don’t need to create a custom route. The PostMovie() method can be invoked with the URL /Movie/PostMovie – just as long as the method is invoked within the context of a HTTP POST request. The following HTML page invokes the PostMovie() method. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "Jackson" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }); function createMovie(movieToCreate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); } </script> </body> </html> This page creates a new movie (the Hobbit) by calling the createMovie() method. The page simply displays the Id of the new movie: The HTTP Post operation is performed with the following call to the jQuery $.ajax() method: $.ajax({ url: "/api/Movie", data: JSON.stringify( movieToCreate ), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { callback(newMovie); } } }); Notice that the type of Ajax request is a POST request. This is required to match the PostMovie() method. Notice, furthermore, that the new movie is converted into JSON using JSON.stringify(). The JSON.stringify() method takes a JavaScript object and converts it into a JSON string. Finally, notice that success is represented with a 201 status code. The HttpStatusCode.Created value returned from the PostMovie() method returns a 201 status code. Updating a Record with the ASP.NET Web API Here’s how we can modify the Movie API controller to support updating an existing record. In this case, we need to create a PUT method to handle an HTTP PUT request: public void PutMovie(Movie movieToUpdate) { if (movieToUpdate.Id == 1) { // Update the movie in the database return; } // If you can't find the movie to update throw new HttpResponseException(HttpStatusCode.NotFound); } Unlike our PostMovie() method, the PutMovie() method does not return a result. The action either updates the database or, if the movie cannot be found, returns an HTTP Status code of 404. The following HTML page illustrates how you can invoke the PutMovie() method: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Put Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToUpdate = { id: 1, title: "The Hobbit", director: "Jackson" }; updateMovie(movieToUpdate, function () { alert("Movie updated!"); }); function updateMovie(movieToUpdate, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToUpdate), type: "PUT", contentType: "application/json;charset=utf-8", statusCode: { 200: function () { callback(); }, 404: function () { alert("Movie not found!"); } } }); } </script> </body> </html> Deleting a Record with the ASP.NET Web API Here’s the code for deleting a movie: public HttpResponseMessage DeleteMovie(int id) { // Delete the movie from the database // Return status code return new HttpResponseMessage(HttpStatusCode.NoContent); } This method simply deletes the movie (well, not really, but pretend that it does) and returns a No Content status code (204). The following page illustrates how you can invoke the DeleteMovie() action: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Delete Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> deleteMovie(1, function () { alert("Movie deleted!"); }); function deleteMovie(id, callback) { $.ajax({ url: "/api/Movie", data: JSON.stringify({id:id}), type: "DELETE", contentType: "application/json;charset=utf-8", statusCode: { 204: function () { callback(); } } }); } </script> </body> </html> Performing Validation How do you perform form validation when using the ASP.NET Web API? Because validation in ASP.NET MVC is driven by the Default Model Binder, and because the Web API uses the Default Model Binder, you get validation for free. Let’s modify our Movie class so it includes some of the standard validation attributes: using System.ComponentModel.DataAnnotations; namespace MyWebAPIApp.Models { public class Movie { public int Id { get; set; } [Required(ErrorMessage="Title is required!")] [StringLength(5, ErrorMessage="Title cannot be more than 5 characters!")] public string Title { get; set; } [Required(ErrorMessage="Director is required!")] public string Director { get; set; } } } In the code above, the Required validation attribute is used to make both the Title and Director properties required. The StringLength attribute is used to require the length of the movie title to be no more than 5 characters. Now let’s modify our PostMovie() action to validate a movie before adding the movie to the database: public HttpResponseMessage PostMovie(Movie movieToCreate) { // Validate movie if (!ModelState.IsValid) { var errors = new JsonArray(); foreach (var prop in ModelState.Values) { if (prop.Errors.Any()) { errors.Add(prop.Errors.First().ErrorMessage); } } return new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } // Add movieToCreate to the database and update primary key movieToCreate.Id = 23; // Build a response that contains the location of the new movie var response = new HttpResponseMessage<Movie>(movieToCreate, HttpStatusCode.Created); var relativePath = "/api/movie/" + movieToCreate.Id; response.Headers.Location = new Uri(Request.RequestUri, relativePath); return response; } If ModelState.IsValid has the value false then the errors in model state are copied to a new JSON array. Each property – such as the Title and Director property — can have multiple errors. In the code above, only the first error message is copied over. The JSON array is returned with a Bad Request status code (400 status code). The following HTML page illustrates how you can invoke our modified PostMovie() action and display any error messages: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Create Movie</title> </head> <body> <script type="text/javascript" src="Scripts/jquery-1.6.2.min.js"></script> <script type="text/javascript"> var movieToCreate = { title: "The Hobbit", director: "" }; createMovie(movieToCreate, function (newMovie) { alert("New movie created with an Id of " + newMovie.Id); }, function (errors) { var strErrors = ""; $.each(errors, function(index, err) { strErrors += "*" + err + "n"; }); alert(strErrors); } ); function createMovie(movieToCreate, success, fail) { $.ajax({ url: "/api/Movie", data: JSON.stringify(movieToCreate), type: "POST", contentType: "application/json;charset=utf-8", statusCode: { 201: function (newMovie) { success(newMovie); }, 400: function (xhr) { var errors = JSON.parse(xhr.responseText); fail(errors); } } }); } </script> </body> </html> The createMovie() function performs an Ajax request and handles either a 201 or a 400 status code from the response. If a 201 status code is returned then there were no validation errors and the new movie was created. If, on the other hand, a 400 status code is returned then there was a validation error. The validation errors are retrieved from the XmlHttpRequest responseText property. The error messages are displayed in an alert: (Please don’t use JavaScript alert dialogs to display validation errors, I just did it this way out of pure laziness) This validation code in our PostMovie() method is pretty generic. There is nothing specific about this code to the PostMovie() method. In the following video, Jon Galloway demonstrates how to create a global Validation filter which can be used with any API controller action: http://www.asp.net/web-api/overview/web-api-routing-and-actions/video-custom-validation His validation filter looks like this: using System.Json; using System.Linq; using System.Net; using System.Net.Http; using System.Web.Http.Controllers; using System.Web.Http.Filters; namespace MyWebAPIApp.Filters { public class ValidationActionFilter:ActionFilterAttribute { public override void OnActionExecuting(HttpActionContext actionContext) { var modelState = actionContext.ModelState; if (!modelState.IsValid) { dynamic errors = new JsonObject(); foreach (var key in modelState.Keys) { var state = modelState[key]; if (state.Errors.Any()) { errors[key] = state.Errors.First().ErrorMessage; } } actionContext.Response = new HttpResponseMessage<JsonValue>(errors, HttpStatusCode.BadRequest); } } } } And you can register the validation filter in the Application_Start() method in the Global.asax file like this: GlobalConfiguration.Configuration.Filters.Add(new ValidationActionFilter()); After you register the Validation filter, validation error messages are returned from any API controller action method automatically when validation fails. You don’t need to add any special logic to any of your API controller actions to take advantage of the filter. Querying using OData The OData protocol is an open protocol created by Microsoft which enables you to perform queries over the web. The official website for OData is located here: http://odata.org For example, here are some of the query options which you can use with OData: · $orderby – Enables you to retrieve results in a certain order. · $top – Enables you to retrieve a certain number of results. · $skip – Enables you to skip over a certain number of results (use with $top for paging). · $filter – Enables you to filter the results returned. The ASP.NET Web API supports a subset of the OData protocol. You can use all of the query options listed above when interacting with an API controller. The only requirement is that the API controller action returns its data as IQueryable. For example, the following Movie controller has an action named GetMovies() which returns an IQueryable of movies: public IQueryable<Movie> GetMovies() { return new List<Movie> { new Movie {Id=1, Title="Star Wars", Director="Lucas"}, new Movie {Id=2, Title="King Kong", Director="Jackson"}, new Movie {Id=3, Title="Willow", Director="Lucas"}, new Movie {Id=4, Title="Shrek", Director="Smith"}, new Movie {Id=5, Title="Memento", Director="Nolan"} }.AsQueryable(); } If you enter the following URL in your browser: /api/movie?$top=2&$orderby=Title Then you will limit the movies returned to the top 2 in order of the movie Title. You will get the following results: By using the $top option in combination with the $skip option, you can enable client-side paging. For example, you can use $top and $skip to page through thousands of products, 10 products at a time. The $filter query option is very powerful. You can use this option to filter the results from a query. Here are some examples: Return every movie directed by Lucas: /api/movie?$filter=Director eq ‘Lucas’ Return every movie which has a title which starts with ‘S’: /api/movie?$filter=startswith(Title,’S') Return every movie which has an Id greater than 2: /api/movie?$filter=Id gt 2 The complete documentation for the $filter option is located here: http://www.odata.org/developers/protocols/uri-conventions#FilterSystemQueryOption Summary The goal of this blog entry was to provide you with an overview of the new ASP.NET Web API introduced with the Beta release of ASP.NET 4. In this post, I discussed how you can retrieve, insert, update, and delete data by using jQuery with the Web API. I also discussed how you can use the standard validation attributes with the Web API. You learned how to return validation error messages to the client and display the error messages using jQuery. Finally, we briefly discussed how the ASP.NET Web API supports the OData protocol. For example, you learned how to filter records returned from an API controller action by using the $filter query option. I’m excited about the new Web API. This is a feature which I expect to use with almost every ASP.NET application which I build in the future.

    Read the article

  • Game AI: Pattern for implementing Sense-Think-Act components?

    - by Rosarch
    I'm developing a game. Each entity in the game is a GameObject. Each GameObject is composed of a GameObjectController, GameObjectModel, and GameObjectView. (Or inheritants thereof.) For NPCs, the GameObjectController is split into: IThinkNPC: reads current state and makes a decision about what to do IActNPC: updates state based on what needs to be done ISenseNPC: reads current state to answer world queries (eg "am I being in the shadows?") My question: Is this ok for the ISenseNPC interface? public interface ISenseNPC { // ... /// <summary> /// True if `dest` is a safe point to which to retreat. /// </summary> /// <param name="dest"></param> /// <param name="angleToThreat"></param> /// <param name="range"></param> /// <returns></returns> bool IsSafeToRetreat(Vector2 dest, float angleToThreat, float range); /// <summary> /// Finds a new location to which to retreat. /// </summary> /// <param name="angleToThreat"></param> /// <returns></returns> Vector2 newRetreatDest(float angleToThreat); /// <summary> /// Returns the closest LightSource that illuminates the NPC. /// Null if the NPC is not illuminated. /// </summary> /// <returns></returns> ILightSource ClosestIlluminatingLight(); /// <summary> /// True if the NPC is sufficiently far away from target. /// Assumes that target is the only entity it could ever run from. /// </summary> /// <returns></returns> bool IsSafeFromTarget(); } None of the methods take any parameters. Instead, the implementation is expected to maintain a reference to the relevant GameObjectController and read that. However, I'm now trying to write unit tests for this. Obviously, it's necessary to use mocking, since I can't pass arguments directly. The way I'm doing it feels really brittle - what if another implementation comes along that uses the world query utilities in a different way? Really, I'm not testing the interface, I'm testing the implementation. Poor. The reason I used this pattern in the first place was to keep IThinkNPC implementation code clean: public BehaviorState RetreatTransition(BehaviorState currentBehavior) { if (sense.IsCollidingWithTarget()) { NPCUtils.TraceTransitionIfNeeded(ToString(), BehaviorState.ATTACK.ToString(), "is colliding with target"); return BehaviorState.ATTACK; } if (sense.IsSafeFromTarget() && sense.ClosestIlluminatingLight() == null) { return BehaviorState.WANDER; } if (sense.ClosestIlluminatingLight() != null && sense.SeesTarget()) { NPCUtils.TraceTransitionIfNeeded(ToString(), BehaviorState.ATTACK.ToString(), "collides with target"); return BehaviorState.CHASE; } return currentBehavior; } Perhaps the cleanliness isn't worth it, however. So, if ISenseNPC takes all the params it needs every time, I could make it static. Is there any problem with that?

    Read the article

  • Understanding C# async / await (2) Awaitable / Awaiter Pattern

    - by Dixin
    What is awaitable Part 1 shows that any Task is awaitable. Actually there are other awaitable types. Here is an example: Task<int> task = new Task<int>(() => 0); int result = await task.ConfigureAwait(false); // Returns a ConfiguredTaskAwaitable<TResult>. The returned ConfiguredTaskAwaitable<TResult> struct is awaitable. And it is not Task at all: public struct ConfiguredTaskAwaitable<TResult> { private readonly ConfiguredTaskAwaiter m_configuredTaskAwaiter; internal ConfiguredTaskAwaitable(Task<TResult> task, bool continueOnCapturedContext) { this.m_configuredTaskAwaiter = new ConfiguredTaskAwaiter(task, continueOnCapturedContext); } public ConfiguredTaskAwaiter GetAwaiter() { return this.m_configuredTaskAwaiter; } } It has one GetAwaiter() method. Actually in part 1 we have seen that Task has GetAwaiter() method too: public class Task { public TaskAwaiter GetAwaiter() { return new TaskAwaiter(this); } } public class Task<TResult> : Task { public new TaskAwaiter<TResult> GetAwaiter() { return new TaskAwaiter<TResult>(this); } } Task.Yield() is a another example: await Task.Yield(); // Returns a YieldAwaitable. The returned YieldAwaitable is not Task either: public struct YieldAwaitable { public YieldAwaiter GetAwaiter() { return default(YieldAwaiter); } } Again, it just has one GetAwaiter() method. In this article, we will look at what is awaitable. The awaitable / awaiter pattern By observing different awaitable / awaiter types, we can tell that an object is awaitable if It has a GetAwaiter() method (instance method or extension method); Its GetAwaiter() method returns an awaiter. An object is an awaiter if: It implements INotifyCompletion or ICriticalNotifyCompletion interface; It has an IsCompleted, which has a getter and returns a Boolean; it has a GetResult() method, which returns void, or a result. This awaitable / awaiter pattern is very similar to the iteratable / iterator pattern. Here is the interface definitions of iteratable / iterator: public interface IEnumerable { IEnumerator GetEnumerator(); } public interface IEnumerator { object Current { get; } bool MoveNext(); void Reset(); } public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IDisposable, IEnumerator { T Current { get; } } In case you are not familiar with the out keyword, please find out the explanation in Understanding C# Covariance And Contravariance (2) Interfaces. The “missing” IAwaitable / IAwaiter interfaces Similar to IEnumerable and IEnumerator interfaces, awaitable / awaiter can be visualized by IAwaitable / IAwaiter interfaces too. This is the non-generic version: public interface IAwaitable { IAwaiter GetAwaiter(); } public interface IAwaiter : INotifyCompletion // or ICriticalNotifyCompletion { // INotifyCompletion has one method: void OnCompleted(Action continuation); // ICriticalNotifyCompletion implements INotifyCompletion, // also has this method: void UnsafeOnCompleted(Action continuation); bool IsCompleted { get; } void GetResult(); } Please notice GetResult() returns void here. Task.GetAwaiter() / TaskAwaiter.GetResult() is of such case. And this is the generic version: public interface IAwaitable<out TResult> { IAwaiter<TResult> GetAwaiter(); } public interface IAwaiter<out TResult> : INotifyCompletion // or ICriticalNotifyCompletion { bool IsCompleted { get; } TResult GetResult(); } Here the only difference is, GetResult() return a result. Task<TResult>.GetAwaiter() / TaskAwaiter<TResult>.GetResult() is of this case. Please notice .NET does not define these IAwaitable / IAwaiter interfaces at all. As an UI designer, I guess the reason is, IAwaitable interface will constraint GetAwaiter() to be instance method. Actually C# supports both GetAwaiter() instance method and GetAwaiter() extension method. Here I use these interfaces only for better visualizing what is awaitable / awaiter. Now, if looking at above ConfiguredTaskAwaitable / ConfiguredTaskAwaiter, YieldAwaitable / YieldAwaiter, Task / TaskAwaiter pairs again, they all “implicitly” implement these “missing” IAwaitable / IAwaiter interfaces. In the next part, we will see how to implement awaitable / awaiter. Await any function / action In C# await cannot be used with lambda. This code: int result = await (() => 0); will cause a compiler error: Cannot await 'lambda expression' This is easy to understand because this lambda expression (() => 0) may be a function or a expression tree. Obviously we mean function here, and we can tell compiler in this way: int result = await new Func<int>(() => 0); It causes an different error: Cannot await 'System.Func<int>' OK, now the compiler is complaining the type instead of syntax. With the understanding of the awaitable / awaiter pattern, Func<TResult> type can be easily made into awaitable. GetAwaiter() instance method, using IAwaitable / IAwaiter interfaces First, similar to above ConfiguredTaskAwaitable<TResult>, a FuncAwaitable<TResult> can be implemented to wrap Func<TResult>: internal struct FuncAwaitable<TResult> : IAwaitable<TResult> { private readonly Func<TResult> function; public FuncAwaitable(Func<TResult> function) { this.function = function; } public IAwaiter<TResult> GetAwaiter() { return new FuncAwaiter<TResult>(this.function); } } FuncAwaitable<TResult> wrapper is used to implement IAwaitable<TResult>, so it has one instance method, GetAwaiter(), which returns a IAwaiter<TResult>, which wraps that Func<TResult> too. FuncAwaiter<TResult> is used to implement IAwaiter<TResult>: public struct FuncAwaiter<TResult> : IAwaiter<TResult> { private readonly Task<TResult> task; public FuncAwaiter(Func<TResult> function) { this.task = new Task<TResult>(function); this.task.Start(); } bool IAwaiter<TResult>.IsCompleted { get { return this.task.IsCompleted; } } TResult IAwaiter<TResult>.GetResult() { return this.task.Result; } void INotifyCompletion.OnCompleted(Action continuation) { new Task(continuation).Start(); } } Now a function can be awaited in this way: int result = await new FuncAwaitable<int>(() => 0); GetAwaiter() extension method As IAwaitable shows, all that an awaitable needs is just a GetAwaiter() method. In above code, FuncAwaitable<TResult> is created as a wrapper of Func<TResult> and implements IAwaitable<TResult>, so that there is a  GetAwaiter() instance method. If a GetAwaiter() extension method  can be defined for Func<TResult>, then FuncAwaitable<TResult> is no longer needed: public static class FuncExtensions { public static IAwaiter<TResult> GetAwaiter<TResult>(this Func<TResult> function) { return new FuncAwaiter<TResult>(function); } } So a Func<TResult> function can be directly awaited: int result = await new Func<int>(() => 0); Using the existing awaitable / awaiter - Task / TaskAwaiter Remember the most frequently used awaitable / awaiter - Task / TaskAwaiter. With Task / TaskAwaiter, FuncAwaitable / FuncAwaiter are no longer needed: public static class FuncExtensions { public static TaskAwaiter<TResult> GetAwaiter<TResult>(this Func<TResult> function) { Task<TResult> task = new Task<TResult>(function); task.Start(); return task.GetAwaiter(); // Returns a TaskAwaiter<TResult>. } } Similarly, with this extension method: public static class ActionExtensions { public static TaskAwaiter GetAwaiter(this Action action) { Task task = new Task(action); task.Start(); return task.GetAwaiter(); // Returns a TaskAwaiter. } } an action can be awaited as well: await new Action(() => { }); Now any function / action can be awaited: await new Action(() => HelperMethods.IO()); // or: await new Action(HelperMethods.IO); If function / action has parameter(s), closure can be used: int arg0 = 0; int arg1 = 1; int result = await new Action(() => HelperMethods.IO(arg0, arg1)); Using Task.Run() The above code is used to demonstrate how awaitable / awaiter can be implemented. Because it is a common scenario to await a function / action, so .NET provides a built-in API: Task.Run(): public class Task2 { public static Task Run(Action action) { // The implementation is similar to: Task task = new Task(action); task.Start(); return task; } public static Task<TResult> Run<TResult>(Func<TResult> function) { // The implementation is similar to: Task<TResult> task = new Task<TResult>(function); task.Start(); return task; } } In reality, this is how we await a function: int result = await Task.Run(() => HelperMethods.IO(arg0, arg1)); and await a action: await Task.Run(() => HelperMethods.IO());

    Read the article

  • elisp: posn-at-point returns nil after goto-char. How to update the display before posn-at-point?

    - by Cheeso
    In emacs lisp, posn-at-point is documented as: posn-at-point is a built-in function in C source code. (posn-at-point &optional POS WINDOW) . Return position information for buffer POS in WINDOW. POS defaults to point in WINDOW; WINDOW defaults to the selected window. . Return nil if position is not visible in window. Otherwise, the return value is similar to that returned by event-start for a mouse click at the upper left corner of the glyph corresponding to the given buffer position: (WINDOW AREA-OR-POS (X . Y) TIMESTAMP OBJECT POS (COL . ROW) IMAGE (DX . DY) (WIDTH . HEIGHT)) The posn- functions access elements of such lists. ok, now I've got a function that looks something like this: (defun my-move-and-popup-menu () "move the point, then pop up a menu." (goto-char xxxx) (setq p (posn-at-point)) (my-popup-menu p ...) ) Basically, move the point, then retrieve the screen position at that point, and then popup a menu at that screen position. But I am finding that posn-at-point returns non-nil, only if the xxxx character position (the after position) is visible in the window, before the call to goto-char. It seems that the position is not actually updated until exit from the function. If goto-char goes a long way, more than one screenful, then the retrieved position is always nil, and my code doesn't know where to popup the menu. The reason I suggest that the position is not actually updated until exit from the function - when the menu successfully pops up, the cursor is clearly visible in its previous location while the popup menu is being displayed. When I dismiss the menu, the cursor moves to where I expected it to move, after the goto-char call. How can I get the position to be really updated, between goto-char and posn-at-point, so that posn-at-point will not return nil? In a Windows Forms application I would call Form.Update() or something similar to update the display in the middle of an event handler. What's the emacs version of that?

    Read the article

  • Creating an ASP.NET report using Visual Studio 2010 - Part 1

    - by rajbk
    This tutorial walks you through creating an report based on the Northwind sample database. You will add a client report definition file (RDLC), create a dataset for the RDLC, define queries using LINQ to Entities, design the report and add a ReportViewer web control to render the report in a ASP.NET web page. The report will have a chart control. Different results will be generated by changing filter criteria. At the end of the walkthrough, you should have a UI like the following.  From the UI below, a user is able to view the product list and can see a chart with the sum of Unit price for a given category. They can filter by Category and Supplier. The drop downs will auto post back when the selection is changed.  This demo uses Visual Studio 2010 RTM. This post is split into three parts. The last part has the sample code attached. Creating an ASP.NET report using Visual Studio 2010 - Part 2 Creating an ASP.NET report using Visual Studio 2010 - Part 3   Lets start by creating a new ASP.NET empty web application called “NorthwindReports” Creating the Data Access Layer (DAL) Add a web form called index.aspx to the root directory. You do this by right clicking on the NorthwindReports web project and selecting “Add item..” . Create a folder called “DAL”. We will store all our data access methods and any data transfer objects in here.   Right click on the DAL folder and add a ADO.NET Entity data model called Northwind. Select “Generate from database” and click Next. Create a connection to your database containing the Northwind sample database and click Next.   From the table list, select Categories, Products and Suppliers and click next. Our Entity data model gets created and looks like this:    Adding data transfer objects Right click on the DAL folder and add a ProductViewModel. Add the following code. This class contains properties we need to render our report. public class ProductViewModel { public int? ProductID { get; set; } public string ProductName { get; set; } public System.Nullable<decimal> UnitPrice { get; set; } public string CategoryName { get; set; } public int? CategoryID { get; set; } public int? SupplierID { get; set; } public bool Discontinued { get; set; } } Add a SupplierViewModel class. This will be used to render the supplier DropDownlist. public class SupplierViewModel { public string CompanyName { get; set; } public int SupplierID { get; set; } } Add a CategoryViewModel class. public class CategoryViewModel { public string CategoryName { get; set; } public int CategoryID { get; set; } } Create an IProductRepository interface. This will contain the signatures of all the methods we need when accessing the entity model.  This step is not needed but follows the repository pattern. interface IProductRepository { IQueryable<Product> GetProducts(); IQueryable<ProductViewModel> GetProductsProjected(int? supplierID, int? categoryID); IQueryable<SupplierViewModel> GetSuppliers(); IQueryable<CategoryViewModel> GetCategories(); } Create a ProductRepository class that implements the IProductReposity above. The methods available in this class are as follows: GetProducts – returns an IQueryable of all products. GetProductsProjected – returns an IQueryable of ProductViewModel. The method filters all the products based on SupplierId and CategoryId if any. It then projects the result into the ProductViewModel. GetSuppliers() – returns an IQueryable of all suppliers projected into a SupplierViewModel GetCategories() – returns an IQueryable of all categories projected into a CategoryViewModel  public class ProductRepository : IProductRepository { /// <summary> /// IQueryable of all Products /// </summary> /// <returns></returns> public IQueryable<Product> GetProducts() { var dataContext = new NorthwindEntities(); var products = from p in dataContext.Products select p; return products; }   /// <summary> /// IQueryable of Projects projected /// into the ProductViewModel class /// </summary> /// <returns></returns> public IQueryable<ProductViewModel> GetProductsProjected(int? supplierID, int? categoryID) { var projectedProducts = from p in GetProducts() select new ProductViewModel { ProductID = p.ProductID, ProductName = p.ProductName, UnitPrice = p.UnitPrice, CategoryName = p.Category.CategoryName, CategoryID = p.CategoryID, SupplierID = p.SupplierID, Discontinued = p.Discontinued }; // Filter on SupplierID if (supplierID.HasValue) { projectedProducts = projectedProducts.Where(a => a.SupplierID == supplierID); }   // Filter on CategoryID if (categoryID.HasValue) { projectedProducts = projectedProducts.Where(a => a.CategoryID == categoryID); }   return projectedProducts; }     public IQueryable<SupplierViewModel> GetSuppliers() { var dataContext = new NorthwindEntities(); var suppliers = from s in dataContext.Suppliers select new SupplierViewModel { SupplierID = s.SupplierID, CompanyName = s.CompanyName }; return suppliers; }   public IQueryable<CategoryViewModel> GetCategories() { var dataContext = new NorthwindEntities(); var categories = from c in dataContext.Categories select new CategoryViewModel { CategoryID = c.CategoryID, CategoryName = c.CategoryName }; return categories; } } Your solution explorer should look like the following. Build your project and make sure you don’t get any errors. In the next part, we will see how to create the client report definition file using the Report Wizard.   Creating an ASP.NET report using Visual Studio 2010 - Part 2

    Read the article

  • Get Application Title from Windows Phone

    - by psheriff
    In a Windows Phone application that I am currently developing I needed to be able to retrieve the Application Title of the phone application. You can set the Deployment Title in the Properties of your Windows Phone Application, however getting to this value programmatically can be a little tricky. This article assumes that you have Visual Studio 2010 and the Windows Phone tools installed along with it. The Windows Phone tools must be downloaded separately and installed with Visual Studio2010. You may also download the free Visual Studio2010 Express for Windows Phone developer environment. The WMAppManifest.xml File First off you need to understand that when you set the Deployment Title in the Properties windows of your Windows Phone application, this title actually gets stored into an XML file located under the \Properties folder of your application. This XML file is named WMAppManifest.xml. A portion of this file is shown in the following listing. <?xml version="1.0" encoding="utf-8"?><Deployment  http://schemas.microsoft.com/windowsphone/2009/deployment"http://schemas.microsoft.com/windowsphone/2009/deployment"  AppPlatformVersion="7.0">  <App xmlns=""       ProductID="{71d20842-9acc-4f2f-b0e0-8ef79842ea53}"       Title="Mobile Time Track"       RuntimeType="Silverlight"       Version="1.0.0.0"       Genre="apps.normal"       Author="PDSA, Inc."       Description="Mobile Time Track"       Publisher="PDSA, Inc."> ... ...  </App></Deployment> Notice the “Title” attribute in the <App> element in the above XML document. This is the value that gets set when you modify the Deployment Title in your Properties Window of your Phone project. The only value you can set from the Properties Window is the Title. All of the other attributes you see here must be set by going into the XML file and modifying them directly. Note that this information duplicates some of the information that you can also set from the Assembly Information… button in the Properties Window. Why Microsoft did not just use that information, I don’t know. Reading Attributes from WMAppManifest I searched all over the namespaces and classes within the Windows Phone DLLs and could not find a way to read the attributes within the <App> element. Thus, I had to resort to good old fashioned XML processing. First off I created a WinPhoneCommon class and added two static methods as shown in the snippet below: public class WinPhoneCommon{  /// <summary>  /// Returns the Application Title   /// from the WMAppManifest.xml file  /// </summary>  /// <returns>The application title</returns>  public static string GetApplicationTitle()  {    return GetWinPhoneAttribute("Title");  }   /// <summary>  /// Returns the Application Description   /// from the WMAppManifest.xml file  /// </summary>  /// <returns>The application description</returns>  public static string GetApplicationDescription()  {    return GetWinPhoneAttribute("Description");  }   ... GetWinPhoneAttribute method here ...} In your Windows Phone application you can now simply call WinPhoneCommon.GetApplicationTitle() or WinPhone.GetApplicationDescription() to retrieve the Title or Description properties from the WMAppManifest.xml file respectively. You notice that each of these methods makes a call to the GetWinPhoneAttribute method. This method is shown in the following code snippet: /// <summary>/// Gets an attribute from the Windows Phone WMAppManifest.xml file/// To use this method, add a reference to the System.Xml.Linq DLL/// </summary>/// <param name="attributeName">The attribute to read</param>/// <returns>The Attribute's Value</returns>private static string GetWinPhoneAttribute(string attributeName){  string ret = string.Empty;   try  {    XElement xe = XElement.Load("WMAppManifest.xml");    var attr = (from manifest in xe.Descendants("App")                select manifest).SingleOrDefault();    if (attr != null)      ret = attr.Attribute(attributeName).Value;  }  catch  {    // Ignore errors in case this method is called    // from design time in VS.NET  }   return ret;} I love using the new LINQ to XML classes contained in the System.Xml.Linq.dll. When I did a Bing search the only samples I found for reading attribute information from WMAppManifest.xml used either an XmlReader or XmlReaderSettings objects. These are fine and work, but involve a little extra code. Instead of using these, I added a reference to the System.Xml.Linq.dll, then added two using statements to the top of the WinPhoneCommon class: using System.Linq;using System.Xml.Linq; Now, with just a few lines of LINQ to XML code you can read to the App element and extract the appropriate attribute that you pass into the GetWinPhoneAttribute method. Notice that I added a little bit of exception handling code in this method. I ignore the exception in case you call this method in the Loaded event of a user control. In design-time you cannot access the WMAppManifest file and thus an exception would be thrown. Summary In this article you learned how to retrieve the attributes from the WMAppManifest.xml file. I use this technique to grab information that I would otherwise have to hard-code in my application. Getting the Title or Description for your Windows Phone application is easy with just a little bit of LINQ to XML code. NOTE: You can download the complete sample code at my website. http://www.pdsa.com/downloads. Choose Tips & Tricks, then "Get Application Title from Windows Phone" from the drop-down. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free video on Silverlight entitled Silverlight XAML for the Complete Novice - Part 1.  

    Read the article

  • Setting background color in gvim

    - by petersohn
    I use a terminal with white text on black background (I just like it better), so I wrote the following line in my .vimrc file: set background=dark However, gvim has black on white text. How do I do either of the following: Set the background of gvim to black Check in .vimrc if I'm using gvim I tried this: I started up gvim, and typed echo &term. The answer was "builtin_gui". So I wrote the following into .vimrc: if &term == "builtin_gui" set background=light else set background=dark endif Somehow, it didn't work.

    Read the article

  • Setting background color in gvim

    - by petersohn
    I use a terminal with white text on black background (I just like it better), so I wrote the following line in my .vimrc file: set background=dark However, gvim has black on white text. How do I do either of the following: Set the background of gvim to black Check in .vimrc if I'm using gvim I tried this: I started up gvim, and typed echo &term. The answer was "builtin_gui". So I wrote the following into .vimrc: if &term == "builtin_gui" set background=light else set background=dark endif Somehow, it didn't work.

    Read the article

  • Gimp: change one colour to another?

    - by AP257
    Simple to explain: possibly not so simple to do. In Gimp, I have a green button GIF image: it shades from dark green to light green, against a transparent background. I would like to change it to blue, and keep the shading, so it shades from dark blue to light blue. Anyone know how I can do this? Can't find an explanation by Googling! Thanks.

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

  • Upgrading 13.04 to 13.10, could not calculate the upgrade

    - by topless
    I am running sudo update-manager -d and start the upgrade process. I select upgrade option and when then manager enters Setting new software channels it throws an error. Could not calculate the upgrade An unresolvable problem occurred while calculating the upgrade. This can be caused by: * Upgrading to a pre-release version of Ubuntu * Running the current pre-release version of Ubuntu * Unofficial software packages not provided by Ubuntu If none of this applies, then please report this bug using the command 'ubuntu-bug ubuntu-release-upgrader-core' in a terminal. I have disabled all unofficial and third party packages, I am not running a pre-release version since I am at 13.04 and I am trying to update to beta 2 which is not a pre-release. Before I fill a bug report, since its happening to both of my systems I would like to figure out if anyone else had same issues.

    Read the article

  • Using LogParser - part 2

    - by fatherjack
    PersonAddress.csv SalesOrderDetail.tsv In part 1 of this series we downloaded and installed LogParser and used it to list data from a csv file. That was a good start and in this article we are going to see the different ways we can stream data and choose whether a whole file is selected. We are also going to take a brief look at what file types we can interrogate. If we take the query from part 1 and add a value for the output parameter as -o:datagrid so that the query becomes LOGPARSER "SELECT top 15 * FROM C:\LP\person_address.csv" -o:datagrid and run that we get a different result. A pop-up dialog that lets us view the results in a resizable grid. Notice that because we didn't specify the columns we wanted returned by LogParser (we used SELECT *) is has added two columns to the recordset - filename and rownumber. This behaviour can be very useful as we will see in future parts of this series. You can click Next 10 rows or All rows or close the datagrid once you are finished reviewing the data. You may have noticed that the files that I am working with are different file types - one is a csv (comma separated values) and the other is a tsv (tab separated values). If you want to convert a file from one to another then LogParser makes it incredibly simple. Rather than using 'datagrid' as the value for the output parameter, use 'csv': logparser "SELECT SalesOrderID, SalesOrderDetailID, CarrierTrackingNumber, OrderQty, ProductID, SpecialOfferID, UnitPrice, UnitPriceDiscount, LineTotal, rowguid, ModifiedDate into C:\Sales_SalesOrderDetail.csv FROM C:\Sales_SalesOrderDetail.tsv" -i:tsv -o:csv Those familiar with SQL will not have to make a very big leap of faith to making adjustments to the above query to filter in/out records from the source file. Lets get all the records from the same file where the Order Quantity (OrderQty) is more than 25: logparser "SELECT SalesOrderID, SalesOrderDetailID, CarrierTrackingNumber, OrderQty, ProductID, SpecialOfferID, UnitPrice, UnitPriceDiscount, LineTotal, rowguid, ModifiedDate into C:\LP\Sales_SalesOrderDetailOver25.csv FROM C:\LP\Sales_SalesOrderDetail.tsv WHERE orderqty > 25" -i:tsv -o:csv Or we could find all those records where the Order Quantity is equal to 25 and output it to an xml file: logparser "SELECT SalesOrderID, SalesOrderDetailID, CarrierTrackingNumber, OrderQty, ProductID, SpecialOfferID, UnitPrice, UnitPriceDiscount, LineTotal, rowguid, ModifiedDate into C:\LP\Sales_SalesOrderDetailEq25.xml FROM C:\LP\Sales_SalesOrderDetail.tsv WHERE orderqty = 25" -i:tsv -o:xml All the standard comparison operators are to be found in LogParser; >, <, =, LIKE, BETWEEN, OR, NOT, AND. Input and Output file formats. LogParser has a pretty impressive list of file formats that it can parse and a good selection of output formats that will let you generate output in a format that is useable for whatever process or application you may be using. From any of these To any of these IISW3C: parses IIS log files in the W3C Extended Log File Format.   NAT: formats output records as readable tabulated columns. IIS: parses IIS log files in the Microsoft IIS Log File Format. CSV: formats output records as comma-separated values text. BIN: parses IIS log files in the Centralized Binary Log File Format. TSV: formats output records as tab-separated or space-separated values text. IISODBC: returns database records from the tables logged to by IIS when configured to log in the ODBC Log Format. XML: formats output records as XML documents. HTTPERR: parses HTTP error log files generated by Http.sys. W3C: formats output records in the W3C Extended Log File Format. URLSCAN: parses log files generated by the URLScan IIS filter. TPL: formats output records following user-defined templates. CSV: parses comma-separated values text files. IIS: formats output records in the Microsoft IIS Log File Format. TSV: parses tab-separated and space-separated values text files. SQL: uploads output records to a table in a SQL database. XML: parses XML text files. SYSLOG: sends output records to a Syslog server. W3C: parses text files in the W3C Extended Log File Format. DATAGRID: displays output records in a graphical user interface. NCSA: parses web server log files in the NCSA Common, Combined, and Extended Log File Formats. CHART: creates image files containing charts. TEXTLINE: returns lines from generic text files. TEXTWORD: returns words from generic text files. EVT: returns events from the Windows Event Log and from Event Log backup files (.evt files). FS: returns information on files and directories. REG: returns information on registry values. ADS: returns information on Active Directory objects. NETMON: parses network capture files created by NetMon. ETW: parses Enterprise Tracing for Windows trace log files and live sessions. COM: provides an interface to Custom Input Format COM Plugins. So, you can query data from any of the types on the left and really easily get it into a format where it is ready for analysis by other tools. To a DBA or network Administrator with an enquiring mind this is a treasure trove. In part 3 we will look at working with multiple sources and specifically outputting to SQL format. See you there!

    Read the article

  • Windows Forms Host + System.Windows.Forms.DataVisualization.Chart

    - by dark-elf2
    Good day all I have the following question: I would like to use Chart from Windows Forms due to the fact that it allows to build much more types of graphical visualisation that one from WPF Toolkit does. So, I am adding Chart control for Windows Forms as a child element into the WindowsFormsHost. But, when I run the application I and all my clients see only white area. Though, any other Windows Forms Control works great in Windows Forms Host. What is wrong with the Chart control? Here is the XAML code <Window x:Class="WpfApplication1.Window1" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:wfi="clr-namespace:System.Windows.Forms.Integration;assembly=WindowsFormsIntegration" xmlns:wf="clr-namespace:System.Windows.Forms;assembly=System.Windows.Forms" xmlns:CHR="clr-namespace:System.Windows.Forms.DataVisualization.Charting;assembly=System.Windows.Forms.DataVisualization" Title="Window1" Height="300" Width="300"> <Grid> <wfi:WindowsFormsHost x:Name="mainFGrid" > <CHR:Chart x:Name="mainChart" /> </wfi:WindowsFormsHost> </Grid> </Window> Kind regards, Anatoliy Sova

    Read the article

  • ifup eth0 failed in Ubuntu 11.10 and Ubuntu 10.04.3

    - by Ajay
    ifup eth0 failed to bring up eth0 First, I have set static ip using the below commands: Commands: ifdown eth0 ifconfig eth0 X.X.X.X netmask 255.255.252.0 up route add default gw X.X.X.X I was successful in setting up static ip X.X.X.X and I could see the same in the output of command "ifconfig". Now I am trying to revert network back to dhcp using the below commands: Commands: ifdown eth0 ifup eth0 Output : RTNETLINK answers: File exists ssh stop/waiting ssh start/running, process 1524 ifup eth0, failed to bring back dhcp. Contents of /etc/network/interfaces root@bdhcp396:~# cat /etc/network/interfaces # The loopback network interface auto lo iface lo inet loopback # The primary network interface auto eth0 iface eth0 inet dhcp Is this a bug in Ubuntu 11.10/10.04.3? I see a similar bug raised - https://bugs.launchpad.net/ubuntu/+source/ifupdown/+bug/876829

    Read the article

  • Advice moving from Eclipse to xCode

    - by Gloin the Dark
    To xCode xPerts: I have been doing Java in Eclipse for about 9 years now and I have really gotten used to the power of the refactoring tools. There are a few operations I do all the time. I am looking for equivalents in xCode since it has better support for objective-c than eclipse. (I'm not at my Mac as I write this. So some of this is from memory. I am still very new to xCode.) 1 "rename". It seems that the xCode equivalent for variables is "edit all in scope". Does this work for files/classes/methods too? 2 "extract local variable" select an expression it creates a local var initialized to that expression. It even creates a usable name for the variable. 3 "extract method" select some code and it will create a method with that code and appropriate parameters/return value. 4 "inline" (variable or method) opposite of extract, inlines all or just the selected occurrence of the selected var or method. 5 "find next" occurrence of selected text. In eclipse I can select some text and hit ctrl-k to go to the next occurrence of that in the file. likewise shift-ctrl-k finds backwards. IIRC the xCode "find next" ignores the selection and only uses what is in the find box. 6 "change method signature" This would be very useful with ocjective-c's named parameter messaging syntax. This is great for adding parameters to a method. 7 "pull-up/push-down" for moving methods up or down the class hierarchy. 8 "move" for moving elements around to other classes etc. Those are the ones that I use all of the time. I have estimated that these tools cut my coding time in half. Are any of these supported in xCode? Thanks in advance for any advice.

    Read the article

  • UIWebView - get total height of contents using Javascript

    - by Emil
    Hey. I'm trying to use a UIWebView for displaying content higher than the screen of the iPhone, without needing to scroll in the webView itself. For that, I need a way to get the total document size, including the scrollable area. I have tried a number of different Javascript solutions: (document.height !== undefined) ? document.height : document.body.offsetHeight // Returns height of UIWebView document.body.offsetHeight // Returns zero document.body.clientHeight // Returns zero document.documentElement.clientHeight // Returns height of UIWebView window.innerHeight // Returns height of UIWebView -2 Can you think of any other way to do it? Thanks.

    Read the article

  • Playing with aspx page cycle using JustMock

    - by mehfuzh
    In this post , I will cover a test code that will mock the various elements needed to complete a HTTP page request and  assert the expected page cycle steps. To begin, i have a simple enumeration that has my predefined page steps: public enum PageStep {     PreInit,     Load,     PreRender,     UnLoad } Once doing so, i  first created the page object [not mocking]. Page page = new Page(); Here, our target is to fire up the page process through ProcessRequest call, now if we take a look inside the method with reflector.net,  the call trace will go like : ProcessRequest –> ProcessRequestWithNoAssert –> SetInstrinsics –> Finallly ProcessRequest. Inside SetInstrinsics ,  it requires calls from HttpRequest, HttpResponse and HttpBrowserCababilities. Using this clue at hand, we can easily know the classes / calls  we need to mock in order to get through the expected call. Accordingly, for  HttpBrowserCapabilities our required mock code will look like: var browser = Mock.Create<HttpBrowserCapabilities>(); // Arrange Mock.Arrange(() => browser.PreferredRenderingMime).Returns("text/html"); Mock.Arrange(() => browser.PreferredResponseEncoding).Returns("UTF-8"); Mock.Arrange(() => browser.PreferredRequestEncoding).Returns("UTF-8"); Now, HttpBrowserCapabilities is get though [Instance]HttpRequest.Browser. Therefore, we create the HttpRequest mock: var request = Mock.Create<HttpRequest>(); Then , add the required get call : Mock.Arrange(() => request.Browser).Returns(browser); As, [instance]Browser.PerferrredResponseEncoding and [instance]Browser.PreferredResponseEncoding  are also set to the request object and to make that they are set properly, we can add the following lines as well [not required though]. bool requestContentEncodingSet = false; Mock.ArrangeSet(() => request.ContentEncoding = Encoding.GetEncoding("UTF-8")).DoInstead(() =>  requestContentEncodingSet = true); Similarly, for response we can write:  var response = Mock.Create<HttpResponse>();    bool responseContentEncodingSet = false;  Mock.ArrangeSet(() => response.ContentEncoding = Encoding.GetEncoding("UTF-8")).DoInstead(() => responseContentEncodingSet = true); Finally , I created a mock of HttpContext and set the Request and Response properties that will returns the mocked version. var context = Mock.Create<HttpContext>();   Mock.Arrange(() => context.Request).Returns(request); Mock.Arrange(() => context.Response).Returns(response); As, Page internally calls RenderControl method , we just need to replace that with our one and optionally we can check if  invoked properly: bool rendered = false; Mock.Arrange(() => page.RenderControl(Arg.Any<HtmlTextWriter>())).DoInstead(() => rendered = true); That’s  it, the rest of the code is simple,  where  i asserted the page cycle with the PageSteps that i defined earlier: var pageSteps = new Queue<PageStep>();   page.PreInit +=delegate { pageSteps.Enqueue(PageStep.PreInit); }; page.Load += delegate { pageSteps.Enqueue(PageStep.Load); }; page.PreRender += delegate { pageSteps.Enqueue(PageStep.PreRender);}; page.Unload +=delegate { pageSteps.Enqueue(PageStep.UnLoad);};   page.ProcessRequest(context);   Assert.True(requestContentEncodingSet); Assert.True(responseContentEncodingSet); Assert.True(rendered);   Assert.Equal(pageSteps.Dequeue(), PageStep.PreInit); Assert.Equal(pageSteps.Dequeue(), PageStep.Load); Assert.Equal(pageSteps.Dequeue(), PageStep.PreRender); Assert.Equal(pageSteps.Dequeue(), PageStep.UnLoad);   Mock.Assert(request); Mock.Assert(response); You can get the test class shown in this post here to give a try by yourself with of course JustMock :-). Enjoy!!

    Read the article

  • Style Switcher & Text Resizer Combined?

    - by Stephen
    Hi there, I've came across various style switchers that allow you to change the stylesheet (i.e. Light, Dark, High Contrast), and carious text-resizers that allow you to resize the test (usually with Three A's, small, medium and large). However, I can't seem to find a single switcher/resizer that works well together by allowing permutations of the two. i.e. so the user can choose a dark background with small text, or a dark background with large text, etc. I can only seem to get this working where the user can choose one or the other styles (large text or High Contrast, not a combination of the two). Any ideas on anything that may be suitable for this at all? Thanks, Stephen

    Read the article

  • What is causing a Hibernate SQL query exception?

    - by Dark Star1
    Hi all and sorry in advance for this post but I've spent way too much time going around in circles so I'm hoping someone could shed a light on it here for me. I updated a webapp on Tomcat and I'm getting the following error which didn't exist on the previous version. Though I am quite confident that the part of code I modifed isn't to blame as I have tested the app on two different dev servers. The production server is configured thus: CentOS 5.4 virtual server with tomcat 5.5.23 running mysql 5.0.77. The two dev servers are: Windows XP SP2 running tomcat 5.5.23 with mysql 5.1.49 Mac OSX 10.6.6 Running tomcat 6 with mysql 5.1.51 The application was developed using struts (1.1 as far as I can gather) with hibernate 3 as the peristence layer. It only fails on the production server for some reason I can't fathom. I'd like to draw your attention to the java.sql.SQLException near the bottom. After some long searching I found this but because it was posted years ago (about 1 year before development started on this app I'm sure Hibernate has evolved from that version. as I can't find a way of implementing his solution. I use Eclipse Helios as an IDE. Thanks in advance for taking your time to read this, to all who manage to reply. javax.servlet.ServletException: org.hibernate.exception.SQLGrammarException: could not execute query at fr.company.action.login.LoginAction.execute(LoginAction.java:219) at org.apache.struts.action.RequestProcessor.processActionPerform(RequestProcessor.java:484) at org.apache.struts.action.RequestProcessor.process(RequestProcessor.java:274) at org.apache.struts.action.ActionServlet.process(ActionServlet.java:1482) at org.apache.struts.action.ActionServlet.doPost(ActionServlet.java:525) at javax.servlet.http.HttpServlet.service(HttpServlet.java:710) at javax.servlet.http.HttpServlet.service(HttpServlet.java:803) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:269) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:188) at fr.company.util.EncodingFilter.doFilter(EncodingFilter.java:37) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:215) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:188) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:210) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:172) at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:525) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:117) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:108) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:151) at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:875) at org.apache.coyote.http11.Http11BaseProtocol$Http11ConnectionHandler.processConnection(Http11BaseProtocol.java:665) at org.apache.tomcat.util.net.PoolTcpEndpoint.processSocket(PoolTcpEndpoint.java:528) at org.apache.tomcat.util.net.MasterSlaveWorkerThread.run(MasterSlaveWorkerThread.java:113) at java.lang.Thread.run(Thread.java:636) javax.servlet.ServletException: org.hibernate.exception.SQLGrammarException: could not execute query at fr.company.action.login.LoginAction.execute(LoginAction.java:219) at org.apache.struts.action.RequestProcessor.processActionPerform(RequestProcessor.java:484) at org.apache.struts.action.RequestProcessor.process(RequestProcessor.java:274) at org.apache.struts.action.ActionServlet.process(ActionServlet.java:1482) at org.apache.struts.action.ActionServlet.doPost(ActionServlet.java:525) at javax.servlet.http.HttpServlet.service(HttpServlet.java:710) at javax.servlet.http.HttpServlet.service(HttpServlet.java:803) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:269) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:188) at fr.company.util.EncodingFilter.doFilter(EncodingFilter.java:37) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:215) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:188) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:210) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:172) at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:525) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:117) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:108) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:151) at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:875) at org.apache.coyote.http11.Http11BaseProtocol$Http11ConnectionHandler.processConnection(Http11BaseProtocol.java:665) at org.apache.tomcat.util.net.PoolTcpEndpoint.processSocket(PoolTcpEndpoint.java:528) at org.apache.tomcat.util.net.MasterSlaveWorkerThread.run(MasterSlaveWorkerThread.java:113) at java.lang.Thread.run(Thread.java:636) java.lang.Exception: org.hibernate.exception.SQLGrammarException: could not execute query at fr.company.dao.GenericDAO.findOne(GenericDAO.java:204) at fr.company.dao.UserDAO.findOneUser(UserDAO.java:146) at fr.company.service.UserPeer.logUser(UserPeer.java:72) at fr.company.action.login.LoginAction.execute(LoginAction.java:127) at org.apache.struts.action.RequestProcessor.processActionPerform(RequestProcessor.java:484) at org.apache.struts.action.RequestProcessor.process(RequestProcessor.java:274) at org.apache.struts.action.ActionServlet.process(ActionServlet.java:1482) at org.apache.struts.action.ActionServlet.doPost(ActionServlet.java:525) at javax.servlet.http.HttpServlet.service(HttpServlet.java:710) at javax.servlet.http.HttpServlet.service(HttpServlet.java:803) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:269) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:188) at fr.company.util.EncodingFilter.doFilter(EncodingFilter.java:37) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:215) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:188) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:210) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:172) at org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:525) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:117) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:108) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:151) at org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:875) at org.apache.coyote.http11.Http11BaseProtocol$Http11ConnectionHandler.processConnection(Http11BaseProtocol.java:665) at org.apache.tomcat.util.net.PoolTcpEndpoint.processSocket(PoolTcpEndpoint.java:528) at org.apache.tomcat.util.net.MasterSlaveWorkerThread.run(MasterSlaveWorkerThread.java:113) at java.lang.Thread.run(Thread.java:636) Caused by: org.hibernate.exception.SQLGrammarException: could not execute query at org.hibernate.exception.SQLStateConverter.convert(SQLStateConverter.java:65) at org.hibernate.exception.JDBCExceptionHelper.convert(JDBCExceptionHelper.java:43) at org.hibernate.loader.Loader.doList(Loader.java:2153) at org.hibernate.loader.Loader.listIgnoreQueryCache(Loader.java:2029) at org.hibernate.loader.Loader.list(Loader.java:2024) at org.hibernate.loader.hql.QueryLoader.list(QueryLoader.java:369) at org.hibernate.hql.ast.QueryTranslatorImpl.list(QueryTranslatorImpl.java:300) at org.hibernate.engine.query.HQLQueryPlan.performList(HQLQueryPlan.java:153) at org.hibernate.impl.SessionImpl.list(SessionImpl.java:1128) at org.hibernate.impl.QueryImpl.list(QueryImpl.java:79) at org.hibernate.impl.AbstractQueryImpl.uniqueResult(AbstractQueryImpl.java:749) at fr.company.dao.GenericDAO.findOne(GenericDAO.java:198) ... 26 more Caused by: java.sql.SQLException: Unknown column 'user0_1_.poloSize' in 'field list' at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:2928) at com.mysql.jdbc.MysqlIO.sendCommand(MysqlIO.java:1571) at com.mysql.jdbc.MysqlIO.sqlQueryDirect(MysqlIO.java:1666) at com.mysql.jdbc.Connection.execSQL(Connection.java:2994) at com.mysql.jdbc.PreparedStatement.executeInternal(PreparedStatement.java:936) at com.mysql.jdbc.PreparedStatement.executeQuery(PreparedStatement.java:1030) at com.mchange.v2.c3p0.impl.NewProxyPreparedStatement.executeQuery(NewProxyPreparedStatement.java:76) at org.hibernate.jdbc.AbstractBatcher.getResultSet(AbstractBatcher.java:139) at org.hibernate.loader.Loader.getResultSet(Loader.java:1669) at org.hibernate.loader.Loader.doQuery(Loader.java:662) at org.hibernate.loader.Loader.doQueryAndInitializeNonLazyCollections(Loader.java:224) at org.hibernate.loader.Loader.doList(Loader.java:2150) ... 35 more

    Read the article

  • XCode automatically deactivating breakpoints

    - by Brian Postow
    I'm using xcode in C++. I'm trying to debug my project, but at random intervals, it seems to ignore my breakpoints. There are three things that it does: 1) Sometimes, when I run, it automatically switches to "de-activate break points" mode. (the relevant button goes light and says "Activate") 2) Sometimes when I run, ALL of my breakpoints go "can't find" mode, with the yellow insides. I need to click twice on them to get them back dark blue (once to light blue = inactive, once to dark blue = active) 3) Sometimes, when I run, my breakpoint is dark blue, the button says "deactivate" and it still just ignores my breakpoint, running straight past it. This makes it very difficult to debug my program... I should add that I'm using XCode 3.1 beta on OSX 10.5.6, in case that matters. thanks.

    Read the article

< Previous Page | 79 80 81 82 83 84 85 86 87 88 89 90  | Next Page >