Search Results

Search found 5045 results on 202 pages for 'delusional logic'.

Page 84/202 | < Previous Page | 80 81 82 83 84 85 86 87 88 89 90 91  | Next Page >

  • Custom spring bean

    - by Hari
    Hi, I want to convert some of our internal API into a spring bean that we can use in other projects. This API needs some instantiation and other logic which I want to encapsulate in this bean so that we can just put the bean into our app context with necessary propoerties alone. I remember having read an article on this somewhere in the past - but cant find it now. Any pointers to something similar will be helpful

    Read the article

  • Advice on reading indexes

    - by London
    Hello, I'm trying to figure out the right way to read lucene index only once whilst running the application multiple times, how can I do that in java? Because indexed data will not change so reading them each time would not be necessary. Can someone explain me the logic of it reading them only once? thank you

    Read the article

  • SQl server 2008 permission and encryption

    - by paranjai
    i have made columns in some of the tables encrypted in sql server 2008. Now as i am a db owner i have the access to encode and decode the data using the symmetric key and certificate. But some other users have only currently datareader and datawriter rights ,and when they execute any SP referring the logic which uses the key and certificate "User does has not right on the certificate to execute". What rights / exact permission should i grant them just to solve this problem

    Read the article

  • Using two threads and controlling one from the other in java?

    - by sidra
    Can someone please help me out. I need to use two threads in a way that one thread will run permanently while(true) and will keep track of a positioning pointer (some random value coming in form a method). This thread has a logic, if the value equals something, it should start the new thread. And if the value does not equal it should stop the other thread. Can someone give me some code snippet (block level) about how to realize this?

    Read the article

  • When to Use Properties & When to Use Methods?

    - by DaveDev
    Hi Guys I was looking at the following line of code foreach (PropertyInfo prop in t.GetProperties()) and I noticed that tprovides a method to return the type's properties instead of a property like t.Properties This makes me wonder why sometimes people use properties to make a type's data avilable and other times there's a method provided? Is there some logic behind the decision? Thanks Dave

    Read the article

  • Prototype with a callback problem

    - by Lisio
    function Foo() { this.bar = false; } Foo.prototype={ onLoad: function() { this.bar=true; }, create: function(id) { SomeClass.someMethod({ id: id, onWorkIsDone: this.onLoad }); } }; var temp=new Foo(); temp.create(); This sample has a logic error in string 'onWorkIsDone: this.onLoad'. What I have to place instead of 'this.onLoad' to make SomeClass call exactly the temp.onLoad method when it finishes it's work?

    Read the article

  • Why does Convert.ToBoolean("0") fail?

    - by JL
    I know that trying to convert string "0" to boolean will fail, I also know how to fix this, thanks to Jon Skeets answers on other questions. What I would like to know is WHY does C# not recognize "0" as a valid input for a boolean conversion, surely you could look at it like 0 = false, 1 = true, or even -1 = false and 0 = true, anyways, my logic tells me that it could be a valid input, so is there a very good reason why its not? My bet is old vb6 would be able to recognize the string input "0" as valid.

    Read the article

  • regarding object recycling

    - by ajaycv
    I have a question. What is wrong with regards to the below code: ArrayList tempList2 = new ArrayList(); tempList2 = getXYZ(tempList1, tempList2); //method getXYZ getXYZ(ArrayList tempList1, ArrayList tempList2) { //does some logic and adds objects into tempList2 return tempList2; } The code will get executed but it seems by passing tempList2 to the getXYZ method argument, it is doing object recycling. My question is, Is recycling the tempList2 arraylist object correct?

    Read the article

  • java Thread class run() method

    - by JavaUser
    Hi, Thread class has run method to implement the business logic that could be executed in parallel.But I want implement different business logics in a single run method and to run simultaneously.How to get this feature. thanks

    Read the article

  • Node.js Adventure - When Node Flying in Wind

    - by Shaun
    In the first post of this series I mentioned some popular modules in the community, such as underscore, async, etc.. I also listed a module named “Wind (zh-CN)”, which is created by one of my friend, Jeff Zhao (zh-CN). Now I would like to use a separated post to introduce this module since I feel it brings a new async programming style in not only Node.js but JavaScript world. If you know or heard about the new feature in C# 5.0 called “async and await”, or you learnt F#, you will find the “Wind” brings the similar async programming experience in JavaScript. By using “Wind”, we can write async code that looks like the sync code. The callbacks, async stats and exceptions will be handled by “Wind” automatically and transparently.   What’s the Problem: Dense “Callback” Phobia Let’s firstly back to my second post in this series. As I mentioned in that post, when we wanted to read some records from SQL Server we need to open the database connection, and then execute the query. In Node.js all IO operation are designed as async callback pattern which means when the operation was done, it will invoke a function which was taken from the last parameter. For example the database connection opening code would be like this. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: } 8: }); And then if we need to query the database the code would be like this. It nested in the previous function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: } 14: }; 15: } 16: }); Assuming if we need to copy some data from this database to another then we need to open another connection and execute the command within the function under the query function. 1: sql.open(connectionString, function(error, conn) { 2: if(error) { 3: // some error handling code 4: } 5: else { 6: // connection opened successfully 7: conn.queryRaw(command, function(error, results) { 8: if(error) { 9: // failed to execute this command 10: } 11: else { 12: // records retrieved successfully 13: target.open(targetConnectionString, function(error, t_conn) { 14: if(error) { 15: // connect failed 16: } 17: else { 18: t_conn.queryRaw(copy_command, function(error, results) { 19: if(error) { 20: // copy failed 21: } 22: else { 23: // and then, what do you want to do now... 24: } 25: }; 26: } 27: }; 28: } 29: }; 30: } 31: }); This is just an example. In the real project the logic would be more complicated. This means our application might be messed up and the business process will be fragged by many callback functions. I would like call this “Dense Callback Phobia”. This might be a challenge how to make code straightforward and easy to read, something like below. 1: try 2: { 3: // open source connection 4: var s_conn = sqlConnect(s_connectionString); 5: // retrieve data 6: var results = sqlExecuteCommand(s_conn, s_command); 7: 8: // open target connection 9: var t_conn = sqlConnect(t_connectionString); 10: // prepare the copy command 11: var t_command = getCopyCommand(results); 12: // execute the copy command 13: sqlExecuteCommand(s_conn, t_command); 14: } 15: catch (ex) 16: { 17: // error handling 18: }   What’s the Problem: Sync-styled Async Programming Similar as the previous problem, the callback-styled async programming model makes the upcoming operation as a part of the current operation, and mixed with the error handling code. So it’s very hard to understand what on earth this code will do. And since Node.js utilizes non-blocking IO mode, we cannot invoke those operations one by one, as they will be executed concurrently. For example, in this post when I tried to copy the records from Windows Azure SQL Database (a.k.a. WASD) to Windows Azure Table Storage, if I just insert the data into table storage one by one and then print the “Finished” message, I will see the message shown before the data had been copied. This is because all operations were executed at the same time. In order to make the copy operation and print operation executed synchronously I introduced a module named “async” and the code was changed as below. 1: async.forEach(results.rows, 2: function (row, callback) { 3: var resource = { 4: "PartitionKey": row[1], 5: "RowKey": row[0], 6: "Value": row[2] 7: }; 8: client.insertEntity(tableName, resource, function (error) { 9: if (error) { 10: callback(error); 11: } 12: else { 13: console.log("entity inserted."); 14: callback(null); 15: } 16: }); 17: }, 18: function (error) { 19: if (error) { 20: error["target"] = "insertEntity"; 21: res.send(500, error); 22: } 23: else { 24: console.log("all done."); 25: res.send(200, "Done!"); 26: } 27: }); It ensured that the “Finished” message will be printed when all table entities had been inserted. But it cannot promise that the records will be inserted in sequence. It might be another challenge to make the code looks like in sync-style? 1: try 2: { 3: forEach(row in rows) { 4: var entity = { /* ... */ }; 5: tableClient.insert(tableName, entity); 6: } 7:  8: console.log("Finished"); 9: } 10: catch (ex) { 11: console.log(ex); 12: }   How “Wind” Helps “Wind” is a JavaScript library which provides the control flow with plain JavaScript for asynchronous programming (and more) without additional pre-compiling steps. It’s available in NPM so that we can install it through “npm install wind”. Now let’s create a very simple Node.js application as the example. This application will take some website URLs from the command arguments and tried to retrieve the body length and print them in console. Then at the end print “Finish”. I’m going to use “request” module to make the HTTP call simple so I also need to install by the command “npm install request”. The code would be like this. 1: var request = require("request"); 2:  3: // get the urls from arguments, the first two arguments are `node.exe` and `fetch.js` 4: var args = process.argv.splice(2); 5:  6: // main function 7: var main = function() { 8: for(var i = 0; i < args.length; i++) { 9: // get the url 10: var url = args[i]; 11: // send the http request and try to get the response and body 12: request(url, function(error, response, body) { 13: if(!error && response.statusCode == 200) { 14: // log the url and the body length 15: console.log( 16: "%s: %d.", 17: response.request.uri.href, 18: body.length); 19: } 20: else { 21: // log error 22: console.log(error); 23: } 24: }); 25: } 26: 27: // finished 28: console.log("Finished"); 29: }; 30:  31: // execute the main function 32: main(); Let’s execute this application. (I made them in multi-lines for better reading.) 1: node fetch.js 2: "http://www.igt.com/us-en.aspx" 3: "http://www.igt.com/us-en/games.aspx" 4: "http://www.igt.com/us-en/cabinets.aspx" 5: "http://www.igt.com/us-en/systems.aspx" 6: "http://www.igt.com/us-en/interactive.aspx" 7: "http://www.igt.com/us-en/social-gaming.aspx" 8: "http://www.igt.com/support.aspx" Below is the output. As you can see the finish message was printed at the beginning, and the pages’ length retrieved in a different order than we specified. This is because in this code the request command, console logging command are executed asynchronously and concurrently. Now let’s introduce “Wind” to make them executed in order, which means it will request the websites one by one, and print the message at the end.   First of all we need to import the “Wind” package and make sure the there’s only one global variant named “Wind”, and ensure it’s “Wind” instead of “wind”. 1: var Wind = require("wind");   Next, we need to tell “Wind” which code will be executed asynchronously so that “Wind” can control the execution process. In this case the “request” operation executed asynchronously so we will create a “Task” by using a build-in helps function in “Wind” named Wind.Async.Task.create. 1: var requestBodyLengthAsync = function(url) { 2: return Wind.Async.Task.create(function(t) { 3: request(url, function(error, response, body) { 4: if(error || response.statusCode != 200) { 5: t.complete("failure", error); 6: } 7: else { 8: var data = 9: { 10: uri: response.request.uri.href, 11: length: body.length 12: }; 13: t.complete("success", data); 14: } 15: }); 16: }); 17: }; The code above created a “Task” from the original request calling code. In “Wind” a “Task” means an operation will be finished in some time in the future. A “Task” can be started by invoke its start() method, but no one knows when it actually will be finished. The Wind.Async.Task.create helped us to create a task. The only parameter is a function where we can put the actual operation in, and then notify the task object it’s finished successfully or failed by using the complete() method. In the code above I invoked the request method. If it retrieved the response successfully I set the status of this task as “success” with the URL and body length. If it failed I set this task as “failure” and pass the error out.   Next, we will change the main() function. In “Wind” if we want a function can be controlled by Wind we need to mark it as “async”. This should be done by using the code below. 1: var main = eval(Wind.compile("async", function() { 2: })); When the application is running, Wind will detect “eval(Wind.compile(“async”, function” and generate an anonymous code from the body of this original function. Then the application will run the anonymous code instead of the original one. In our example the main function will be like this. 1: var main = eval(Wind.compile("async", function() { 2: for(var i = 0; i < args.length; i++) { 3: try 4: { 5: var result = $await(requestBodyLengthAsync(args[i])); 6: console.log( 7: "%s: %d.", 8: result.uri, 9: result.length); 10: } 11: catch (ex) { 12: console.log(ex); 13: } 14: } 15: 16: console.log("Finished"); 17: })); As you can see, when I tried to request the URL I use a new command named “$await”. It tells Wind, the operation next to $await will be executed asynchronously, and the main thread should be paused until it finished (or failed). So in this case, my application will be pause when the first response was received, and then print its body length, then try the next one. At the end, print the finish message.   Finally, execute the main function. The full code would be like this. 1: var request = require("request"); 2: var Wind = require("wind"); 3:  4: var args = process.argv.splice(2); 5:  6: var requestBodyLengthAsync = function(url) { 7: return Wind.Async.Task.create(function(t) { 8: request(url, function(error, response, body) { 9: if(error || response.statusCode != 200) { 10: t.complete("failure", error); 11: } 12: else { 13: var data = 14: { 15: uri: response.request.uri.href, 16: length: body.length 17: }; 18: t.complete("success", data); 19: } 20: }); 21: }); 22: }; 23:  24: var main = eval(Wind.compile("async", function() { 25: for(var i = 0; i < args.length; i++) { 26: try 27: { 28: var result = $await(requestBodyLengthAsync(args[i])); 29: console.log( 30: "%s: %d.", 31: result.uri, 32: result.length); 33: } 34: catch (ex) { 35: console.log(ex); 36: } 37: } 38: 39: console.log("Finished"); 40: })); 41:  42: main().start();   Run our new application. At the beginning we will see the compiled and generated code by Wind. Then we can see the pages were requested one by one, and at the end the finish message was printed. Below is the code Wind generated for us. As you can see the original code, the output code were shown. 1: // Original: 2: function () { 3: for(var i = 0; i < args.length; i++) { 4: try 5: { 6: var result = $await(requestBodyLengthAsync(args[i])); 7: console.log( 8: "%s: %d.", 9: result.uri, 10: result.length); 11: } 12: catch (ex) { 13: console.log(ex); 14: } 15: } 16: 17: console.log("Finished"); 18: } 19:  20: // Compiled: 21: /* async << function () { */ (function () { 22: var _builder_$0 = Wind.builders["async"]; 23: return _builder_$0.Start(this, 24: _builder_$0.Combine( 25: _builder_$0.Delay(function () { 26: /* var i = 0; */ var i = 0; 27: /* for ( */ return _builder_$0.For(function () { 28: /* ; i < args.length */ return i < args.length; 29: }, function () { 30: /* ; i ++) { */ i ++; 31: }, 32: /* try { */ _builder_$0.Try( 33: _builder_$0.Delay(function () { 34: /* var result = $await(requestBodyLengthAsync(args[i])); */ return _builder_$0.Bind(requestBodyLengthAsync(args[i]), function (result) { 35: /* console.log("%s: %d.", result.uri, result.length); */ console.log("%s: %d.", result.uri, result.length); 36: return _builder_$0.Normal(); 37: }); 38: }), 39: /* } catch (ex) { */ function (ex) { 40: /* console.log(ex); */ console.log(ex); 41: return _builder_$0.Normal(); 42: /* } */ }, 43: null 44: ) 45: /* } */ ); 46: }), 47: _builder_$0.Delay(function () { 48: /* console.log("Finished"); */ console.log("Finished"); 49: return _builder_$0.Normal(); 50: }) 51: ) 52: ); 53: /* } */ })   How Wind Works Someone may raise a big concern when you find I utilized “eval” in my code. Someone may assume that Wind utilizes “eval” to execute some code dynamically while “eval” is very low performance. But I would say, Wind does NOT use “eval” to run the code. It only use “eval” as a flag to know which code should be compiled at runtime. When the code was firstly been executed, Wind will check and find “eval(Wind.compile(“async”, function”. So that it knows this function should be compiled. Then it utilized parse-js to analyze the inner JavaScript and generated the anonymous code in memory. Then it rewrite the original code so that when the application was running it will use the anonymous one instead of the original one. Since the code generation was done at the beginning of the application was started, in the future no matter how long our application runs and how many times the async function was invoked, it will use the generated code, no need to generate again. So there’s no significant performance hurt when using Wind.   Wind in My Previous Demo Let’s adopt Wind into one of my previous demonstration and to see how it helps us to make our code simple, straightforward and easy to read and understand. In this post when I implemented the functionality that copied the records from my WASD to table storage, the logic would be like this. 1, Open database connection. 2, Execute a query to select all records from the table. 3, Recreate the table in Windows Azure table storage. 4, Create entities from each of the records retrieved previously, and then insert them into table storage. 5, Finally, show message as the HTTP response. But as the image below, since there are so many callbacks and async operations, it’s very hard to understand my logic from the code. Now let’s use Wind to rewrite our code. First of all, of course, we need the Wind package. Then we need to include the package files into project and mark them as “Copy always”. Add the Wind package into the source code. Pay attention to the variant name, you must use “Wind” instead of “wind”. 1: var express = require("express"); 2: var async = require("async"); 3: var sql = require("node-sqlserver"); 4: var azure = require("azure"); 5: var Wind = require("wind"); Now we need to create some async functions by using Wind. All async functions should be wrapped so that it can be controlled by Wind which are open database, retrieve records, recreate table (delete and create) and insert entity in table. Below are these new functions. All of them are created by using Wind.Async.Task.create. 1: sql.openAsync = function (connectionString) { 2: return Wind.Async.Task.create(function (t) { 3: sql.open(connectionString, function (error, conn) { 4: if (error) { 5: t.complete("failure", error); 6: } 7: else { 8: t.complete("success", conn); 9: } 10: }); 11: }); 12: }; 13:  14: sql.queryAsync = function (conn, query) { 15: return Wind.Async.Task.create(function (t) { 16: conn.queryRaw(query, function (error, results) { 17: if (error) { 18: t.complete("failure", error); 19: } 20: else { 21: t.complete("success", results); 22: } 23: }); 24: }); 25: }; 26:  27: azure.recreateTableAsync = function (tableName) { 28: return Wind.Async.Task.create(function (t) { 29: client.deleteTable(tableName, function (error, successful, response) { 30: console.log("delete table finished"); 31: client.createTableIfNotExists(tableName, function (error, successful, response) { 32: console.log("create table finished"); 33: if (error) { 34: t.complete("failure", error); 35: } 36: else { 37: t.complete("success", null); 38: } 39: }); 40: }); 41: }); 42: }; 43:  44: azure.insertEntityAsync = function (tableName, entity) { 45: return Wind.Async.Task.create(function (t) { 46: client.insertEntity(tableName, entity, function (error, entity, response) { 47: if (error) { 48: t.complete("failure", error); 49: } 50: else { 51: t.complete("success", null); 52: } 53: }); 54: }); 55: }; Then in order to use these functions we will create a new function which contains all steps for data copying. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: } 4: catch (ex) { 5: console.log(ex); 6: res.send(500, "Internal error."); 7: } 8: })); Let’s execute steps one by one with the “$await” keyword introduced by Wind so that it will be invoked in sequence. First is to open the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: } 7: catch (ex) { 8: console.log(ex); 9: res.send(500, "Internal error."); 10: } 11: })); Then retrieve all records from the database connection. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: } 10: catch (ex) { 11: console.log(ex); 12: res.send(500, "Internal error."); 13: } 14: })); After recreated the table, we need to create the entities and insert them into table storage. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: } 24: } 25: catch (ex) { 26: console.log(ex); 27: res.send(500, "Internal error."); 28: } 29: })); Finally, send response back to the browser. 1: var copyRecords = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage one by one 14: for (var i = 0; i < results.rows.length; i++) { 15: var entity = { 16: "PartitionKey": results.rows[i][1], 17: "RowKey": results.rows[i][0], 18: "Value": results.rows[i][2] 19: }; 20: $await(azure.insertEntityAsync(tableName, entity)); 21: console.log("entity inserted"); 22: } 23: // send response 24: console.log("all done"); 25: res.send(200, "All done!"); 26: } 27: } 28: catch (ex) { 29: console.log(ex); 30: res.send(500, "Internal error."); 31: } 32: })); If we compared with the previous code we will find now it became more readable and much easy to understand. It’s very easy to know what this function does even though without any comments. When user go to URL “/was/copyRecords” we will execute the function above. The code would be like this. 1: app.get("/was/copyRecords", function (req, res) { 2: copyRecords(req, res).start(); 3: }); And below is the logs printed in local compute emulator console. As we can see the functions executed one by one and then finally the response back to me browser.   Scaffold Functions in Wind Wind provides not only the async flow control and compile functions, but many scaffold methods as well. We can build our async code more easily by using them. I’m going to introduce some basic scaffold functions here. In the code above I created some functions which wrapped from the original async function such as open database, create table, etc.. All of them are very similar, created a task by using Wind.Async.Task.create, return error or result object through Task.complete function. In fact, Wind provides some functions for us to create task object from the original async functions. If the original async function only has a callback parameter, we can use Wind.Async.Binding.fromCallback method to get the task object directly. For example the code below returned the task object which wrapped the file exist check function. 1: var Wind = require("wind"); 2: var fs = require("fs"); 3:  4: fs.existsAsync = Wind.Async.Binding.fromCallback(fs.exists); In Node.js a very popular async function pattern is that, the first parameter in the callback function represent the error object, and the other parameters is the return values. In this case we can use another build-in function in Wind named Wind.Async.Binding.fromStandard. For example, the open database function can be created from the code below. 1: sql.openAsync = Wind.Async.Binding.fromStandard(sql.open); 2:  3: /* 4: sql.openAsync = function (connectionString) { 5: return Wind.Async.Task.create(function (t) { 6: sql.open(connectionString, function (error, conn) { 7: if (error) { 8: t.complete("failure", error); 9: } 10: else { 11: t.complete("success", conn); 12: } 13: }); 14: }); 15: }; 16: */ When I was testing the scaffold functions under Wind.Async.Binding I found for some functions, such as the Azure SDK insert entity function, cannot be processed correctly. So I personally suggest writing the wrapped method manually.   Another scaffold method in Wind is the parallel tasks coordination. In this example, the steps of open database, retrieve records and recreated table should be invoked one by one, but it can be executed in parallel when copying data from database to table storage. In Wind there’s a scaffold function named Task.whenAll which can be used here. Task.whenAll accepts a list of tasks and creates a new task. It will be returned only when all tasks had been completed, or any errors occurred. For example in the code below I used the Task.whenAll to make all copy operation executed at the same time. 1: var copyRecordsInParallel = eval(Wind.compile("async", function (req, res) { 2: try { 3: // connect to the windows azure sql database 4: var conn = $await(sql.openAsync(connectionString)); 5: console.log("connection opened"); 6: // retrieve all records from database 7: var results = $await(sql.queryAsync(conn, "SELECT * FROM [Resource]")); 8: console.log("records selected. count = %d", results.rows.length); 9: if (results.rows.length > 0) { 10: // recreate the table 11: $await(azure.recreateTableAsync(tableName)); 12: console.log("table created"); 13: // insert records in table storage in parallal 14: var tasks = new Array(results.rows.length); 15: for (var i = 0; i < results.rows.length; i++) { 16: var entity = { 17: "PartitionKey": results.rows[i][1], 18: "RowKey": results.rows[i][0], 19: "Value": results.rows[i][2] 20: }; 21: tasks[i] = azure.insertEntityAsync(tableName, entity); 22: } 23: $await(Wind.Async.Task.whenAll(tasks)); 24: // send response 25: console.log("all done"); 26: res.send(200, "All done!"); 27: } 28: } 29: catch (ex) { 30: console.log(ex); 31: res.send(500, "Internal error."); 32: } 33: })); 34:  35: app.get("/was/copyRecordsInParallel", function (req, res) { 36: copyRecordsInParallel(req, res).start(); 37: });   Besides the task creation and coordination, Wind supports the cancellation solution so that we can send the cancellation signal to the tasks. It also includes exception solution which means any exceptions will be reported to the caller function.   Summary In this post I introduced a Node.js module named Wind, which created by my friend Jeff Zhao. As you can see, different from other async library and framework, adopted the idea from F# and C#, Wind utilizes runtime code generation technology to make it more easily to write async, callback-based functions in a sync-style way. By using Wind there will be almost no callback, and the code will be very easy to understand. Currently Wind is still under developed and improved. There might be some problems but the author, Jeff, should be very happy and enthusiastic to learn your problems, feedback, suggestion and comments. You can contact Jeff by - Email: [email protected] - Group: https://groups.google.com/d/forum/windjs - GitHub: https://github.com/JeffreyZhao/wind/issues   Source code can be download here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Custom ASP.NET Routing to an HttpHandler

    - by Rick Strahl
    As of version 4.0 ASP.NET natively supports routing via the now built-in System.Web.Routing namespace. Routing features are automatically integrated into the HtttpRuntime via a few custom interfaces. New Web Forms Routing Support In ASP.NET 4.0 there are a host of improvements including routing support baked into Web Forms via a RouteData property available on the Page class and RouteCollection.MapPageRoute() route handler that makes it easy to route to Web forms. To map ASP.NET Page routes is as simple as setting up the routes with MapPageRoute:protected void Application_Start(object sender, EventArgs e) { RegisterRoutes(RouteTable.Routes); } void RegisterRoutes(RouteCollection routes) { routes.MapPageRoute("StockQuote", "StockQuote/{symbol}", "StockQuote.aspx"); routes.MapPageRoute("StockQuotes", "StockQuotes/{symbolList}", "StockQuotes.aspx"); } and then accessing the route data in the page you can then use the new Page class RouteData property to retrieve the dynamic route data information:public partial class StockQuote1 : System.Web.UI.Page { protected StockQuote Quote = null; protected void Page_Load(object sender, EventArgs e) { string symbol = RouteData.Values["symbol"] as string; StockServer server = new StockServer(); Quote = server.GetStockQuote(symbol); // display stock data in Page View } } Simple, quick and doesn’t require much explanation. If you’re using WebForms most of your routing needs should be served just fine by this simple mechanism. Kudos to the ASP.NET team for putting this in the box and making it easy! How Routing Works To handle Routing in ASP.NET involves these steps: Registering Routes Creating a custom RouteHandler to retrieve an HttpHandler Attaching RouteData to your HttpHandler Picking up Route Information in your Request code Registering routes makes ASP.NET aware of the Routes you want to handle via the static RouteTable.Routes collection. You basically add routes to this collection to let ASP.NET know which URL patterns it should watch for. You typically hook up routes off a RegisterRoutes method that fires in Application_Start as I did in the example above to ensure routes are added only once when the application first starts up. When you create a route, you pass in a RouteHandler instance which ASP.NET caches and reuses as routes are matched. Once registered ASP.NET monitors the routes and if a match is found just prior to the HttpHandler instantiation, ASP.NET uses the RouteHandler registered for the route and calls GetHandler() on it to retrieve an HttpHandler instance. The RouteHandler.GetHandler() method is responsible for creating an instance of an HttpHandler that is to handle the request and – if necessary – to assign any additional custom data to the handler. At minimum you probably want to pass the RouteData to the handler so the handler can identify the request based on the route data available. To do this you typically add  a RouteData property to your handler and then assign the property from the RouteHandlers request context. This is essentially how Page.RouteData comes into being and this approach should work well for any custom handler implementation that requires RouteData. It’s a shame that ASP.NET doesn’t have a top level intrinsic object that’s accessible off the HttpContext object to provide route data more generically, but since RouteData is directly tied to HttpHandlers and not all handlers support it it might cause some confusion of when it’s actually available. Bottom line is that if you want to hold on to RouteData you have to assign it to a custom property of the handler or else pass it to the handler via Context.Items[] object that can be retrieved on an as needed basis. It’s important to understand that routing is hooked up via RouteHandlers that are responsible for loading HttpHandler instances. RouteHandlers are invoked for every request that matches a route and through this RouteHandler instance the Handler gains access to the current RouteData. Because of this logic it’s important to understand that Routing is really tied to HttpHandlers and not available prior to handler instantiation, which is pretty late in the HttpRuntime’s request pipeline. IOW, Routing works with Handlers but not with earlier in the pipeline within Modules. Specifically ASP.NET calls RouteHandler.GetHandler() from the PostResolveRequestCache HttpRuntime pipeline event. Here’s the call stack at the beginning of the GetHandler() call: which fires just before handler resolution. Non-Page Routing – You need to build custom RouteHandlers If you need to route to a custom Http Handler or other non-Page (and non-MVC) endpoint in the HttpRuntime, there is no generic mapping support available. You need to create a custom RouteHandler that can manage creating an instance of an HttpHandler that is fired in response to a routed request. Depending on what you are doing this process can be simple or fairly involved as your code is responsible based on the route data provided which handler to instantiate, and more importantly how to pass the route data on to the Handler. Luckily creating a RouteHandler is easy by implementing the IRouteHandler interface which has only a single GetHttpHandler(RequestContext context) method. In this method you can pick up the requestContext.RouteData, instantiate the HttpHandler of choice, and assign the RouteData to it. Then pass back the handler and you’re done.Here’s a simple example of GetHttpHandler() method that dynamically creates a handler based on a passed in Handler type./// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } Note that this code checks for a specific type of handler and if it matches assigns the RouteData to this handler. This is optional but quite a common scenario if you want to work with RouteData. If the handler you need to instantiate isn’t under your control but you still need to pass RouteData to Handler code, an alternative is to pass the RouteData via the HttpContext.Items collection:IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; requestContext.HttpContext.Items["RouteData"] = requestContext.RouteData; return handler; } The code in the handler implementation can then pick up the RouteData from the context collection as needed:RouteData routeData = HttpContext.Current.Items["RouteData"] as RouteData This isn’t as clean as having an explicit RouteData property, but it does have the advantage that the route data is visible anywhere in the Handler’s code chain. It’s definitely preferable to create a custom property on your handler, but the Context work-around works in a pinch when you don’t’ own the handler code and have dynamic code executing as part of the handler execution. An Example of a Custom RouteHandler: Attribute Based Route Implementation In this post I’m going to discuss a custom routine implementation I built for my CallbackHandler class in the West Wind Web & Ajax Toolkit. CallbackHandler can be very easily used for creating AJAX, REST and POX requests following RPC style method mapping. You can pass parameters via URL query string, POST data or raw data structures, and you can retrieve results as JSON, XML or raw string/binary data. It’s a quick and easy way to build service interfaces with no fuss. As a quick review here’s how CallbackHandler works: You create an Http Handler that derives from CallbackHandler You implement methods that have a [CallbackMethod] Attribute and that’s it. Here’s an example of an CallbackHandler implementation in an ashx.cs based handler:// RestService.ashx.cs public class RestService : CallbackHandler { [CallbackMethod] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } } CallbackHandler makes it super easy to create a method on the server, pass data to it via POST, QueryString or raw JSON/XML data, and then retrieve the results easily back in various formats. This works wonderful and I’ve used these tools in many projects for myself and with clients. But one thing missing has been the ability to create clean URLs. Typical URLs looked like this: http://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuote&symbol=msfthttp://www.west-wind.com/WestwindWebToolkit/samples/Rest/StockService.ashx?Method=GetStockQuotes&symbolList=msft,intc,gld,slw,mwe&format=xml which works and is clear enough, but also clearly very ugly. It would be much nicer if URLs could look like this: http://www.west-wind.com//WestwindWebtoolkit/Samples/StockQuote/msfthttp://www.west-wind.com/WestwindWebtoolkit/Samples/StockQuotes/msft,intc,gld,slw?format=xml (the Virtual Root in this sample is WestWindWebToolkit/Samples and StockQuote/{symbol} is the route)(If you use FireFox try using the JSONView plug-in make it easier to view JSON content) So, taking a clue from the WCF REST tools that use RouteUrls I set out to create a way to specify RouteUrls for each of the endpoints. The change made basically allows changing the above to: [CallbackMethod(RouteUrl="RestService/StockQuote/{symbol}")] public StockQuote GetStockQuote(string symbol) { StockServer server = new StockServer(); return server.GetStockQuote(symbol); } [CallbackMethod(RouteUrl = "RestService/StockQuotes/{symbolList}")] public StockQuote[] GetStockQuotes(string symbolList) { StockServer server = new StockServer(); string[] symbols = symbolList.Split(new char[2] { ',',';' },StringSplitOptions.RemoveEmptyEntries); return server.GetStockQuotes(symbols); } where a RouteUrl is specified as part of the Callback attribute. And with the changes made with RouteUrls I can now get URLs like the second set shown earlier. So how does that work? Let’s find out… How to Create Custom Routes As mentioned earlier Routing is made up of several steps: Creating a custom RouteHandler to create HttpHandler instances Mapping the actual Routes to the RouteHandler Retrieving the RouteData and actually doing something useful with it in the HttpHandler In the CallbackHandler routing example above this works out to something like this: Create a custom RouteHandler that includes a property to track the method to call Set up the routes using Reflection against the class Looking for any RouteUrls in the CallbackMethod attribute Add a RouteData property to the CallbackHandler so we can access the RouteData in the code of the handler Creating a Custom Route Handler To make the above work I created a custom RouteHandler class that includes the actual IRouteHandler implementation as well as a generic and static method to automatically register all routes marked with the [CallbackMethod(RouteUrl="…")] attribute. Here’s the code:/// <summary> /// Route handler that can create instances of CallbackHandler derived /// callback classes. The route handler tracks the method name and /// creates an instance of the service in a predictable manner /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler type</typeparam> public class CallbackHandlerRouteHandler : IRouteHandler { /// <summary> /// Method name that is to be called on this route. /// Set by the automatically generated RegisterRoutes /// invokation. /// </summary> public string MethodName { get; set; } /// <summary> /// The type of the handler we're going to instantiate. /// Needed so we can semi-generically instantiate the /// handler and call the method on it. /// </summary> public Type CallbackHandlerType { get; set; } /// <summary> /// Constructor to pass in the two required components we /// need to create an instance of our handler. /// </summary> /// <param name="methodName"></param> /// <param name="callbackHandlerType"></param> public CallbackHandlerRouteHandler(string methodName, Type callbackHandlerType) { MethodName = methodName; CallbackHandlerType = callbackHandlerType; } /// <summary> /// Retrieves an Http Handler based on the type specified in the constructor /// </summary> /// <param name="requestContext"></param> /// <returns></returns> IHttpHandler IRouteHandler.GetHttpHandler(RequestContext requestContext) { IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; // If we're dealing with a Callback Handler // pass the RouteData for this route to the Handler if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; } /// <summary> /// Generic method to register all routes from a CallbackHandler /// that have RouteUrls defined on the [CallbackMethod] attribute /// </summary> /// <typeparam name="TCallbackHandler">CallbackHandler Type</typeparam> /// <param name="routes"></param> public static void RegisterRoutes<TCallbackHandler>(RouteCollection routes) { // find all methods var methods = typeof(TCallbackHandler).GetMethods(BindingFlags.Instance | BindingFlags.Public); foreach (var method in methods) { var attrs = method.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (attrs.Length < 1) continue; CallbackMethodAttribute attr = attrs[0] as CallbackMethodAttribute; if (string.IsNullOrEmpty(attr.RouteUrl)) continue; // Add the route routes.Add(method.Name, new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler)))); } } } The RouteHandler implements IRouteHandler, and its responsibility via the GetHandler method is to create an HttpHandler based on the route data. When ASP.NET calls GetHandler it passes a requestContext parameter which includes a requestContext.RouteData property. This parameter holds the current request’s route data as well as an instance of the current RouteHandler. If you look at GetHttpHandler() you can see that the code creates an instance of the handler we are interested in and then sets the RouteData property on the handler. This is how you can pass the current request’s RouteData to the handler. The RouteData object also has a  RouteData.RouteHandler property that is also available to the Handler later, which is useful in order to get additional information about the current route. In our case here the RouteHandler includes a MethodName property that identifies the method to execute in the handler since that value no longer comes from the URL so we need to figure out the method name some other way. The method name is mapped explicitly when the RouteHandler is created and here the static method that auto-registers all CallbackMethods with RouteUrls sets the method name when it creates the routes while reflecting over the methods (more on this in a minute). The important point here is that you can attach additional properties to the RouteHandler and you can then later access the RouteHandler and its properties later in the Handler to pick up these custom values. This is a crucial feature in that the RouteHandler serves in passing additional context to the handler so it knows what actions to perform. The automatic route registration is handled by the static RegisterRoutes<TCallbackHandler> method. This method is generic and totally reusable for any CallbackHandler type handler. To register a CallbackHandler and any RouteUrls it has defined you simple use code like this in Application_Start (or other application startup code):protected void Application_Start(object sender, EventArgs e) { // Register Routes for RestService CallbackHandlerRouteHandler.RegisterRoutes<RestService>(RouteTable.Routes); } If you have multiple CallbackHandler style services you can make multiple calls to RegisterRoutes for each of the service types. RegisterRoutes internally uses reflection to run through all the methods of the Handler, looking for CallbackMethod attributes and whether a RouteUrl is specified. If it is a new instance of a CallbackHandlerRouteHandler is created and the name of the method and the type are set. routes.Add(method.Name,           new Route(attr.RouteUrl, new CallbackHandlerRouteHandler(method.Name, typeof(TCallbackHandler) )) ); While the routing with CallbackHandlerRouteHandler is set up automatically for all methods that use the RouteUrl attribute, you can also use code to hook up those routes manually and skip using the attribute. The code for this is straightforward and just requires that you manually map each individual route to each method you want a routed: protected void Application_Start(objectsender, EventArgs e){    RegisterRoutes(RouteTable.Routes);}void RegisterRoutes(RouteCollection routes) { routes.Add("StockQuote Route",new Route("StockQuote/{symbol}",                     new CallbackHandlerRouteHandler("GetStockQuote",typeof(RestService) ) ) );     routes.Add("StockQuotes Route",new Route("StockQuotes/{symbolList}",                     new CallbackHandlerRouteHandler("GetStockQuotes",typeof(RestService) ) ) );}I think it’s clearly easier to have CallbackHandlerRouteHandler.RegisterRoutes() do this automatically for you based on RouteUrl attributes, but some people have a real aversion to attaching logic via attributes. Just realize that the option to manually create your routes is available as well. Using the RouteData in the Handler A RouteHandler’s responsibility is to create an HttpHandler and as mentioned earlier, natively IHttpHandler doesn’t have any support for RouteData. In order to utilize RouteData in your handler code you have to pass the RouteData to the handler. In my CallbackHandlerRouteHandler when it creates the HttpHandler instance it creates the instance and then assigns the custom RouteData property on the handler:IHttpHandler handler = Activator.CreateInstance(CallbackHandlerType) as IHttpHandler; if (handler is CallbackHandler) ((CallbackHandler)handler).RouteData = requestContext.RouteData; return handler; Again this only works if you actually add a RouteData property to your handler explicitly as I did in my CallbackHandler implementation:/// <summary> /// Optionally store RouteData on this handler /// so we can access it internally /// </summary> public RouteData RouteData {get; set; } and the RouteHandler needs to set it when it creates the handler instance. Once you have the route data in your handler you can access Route Keys and Values and also the RouteHandler. Since my RouteHandler has a custom property for the MethodName to retrieve it from within the handler I can do something like this now to retrieve the MethodName (this example is actually not in the handler but target is an instance pass to the processor): // check for Route Data method name if (target is CallbackHandler) { var routeData = ((CallbackHandler)target).RouteData; if (routeData != null) methodToCall = ((CallbackHandlerRouteHandler)routeData.RouteHandler).MethodName; } When I need to access the dynamic values in the route ( symbol in StockQuote/{symbol}) I can retrieve it easily with the Values collection (RouteData.Values["symbol"]). In my CallbackHandler processing logic I’m basically looking for matching parameter names to Route parameters: // look for parameters in the routeif(routeData != null){    string parmString = routeData.Values[parameter.Name] as string;    adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType);} And with that we’ve come full circle. We’ve created a custom RouteHandler() that passes the RouteData to the handler it creates. We’ve registered our routes to use the RouteHandler, and we’ve utilized the route data in our handler. For completeness sake here’s the routine that executes a method call based on the parameters passed in and one of the options is to retrieve the inbound parameters off RouteData (as well as from POST data or QueryString parameters):internal object ExecuteMethod(string method, object target, string[] parameters, CallbackMethodParameterType paramType, ref CallbackMethodAttribute callbackMethodAttribute) { HttpRequest Request = HttpContext.Current.Request; object Result = null; // Stores parsed parameters (from string JSON or QUeryString Values) object[] adjustedParms = null; Type PageType = target.GetType(); MethodInfo MI = PageType.GetMethod(method, BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic); if (MI == null) throw new InvalidOperationException("Invalid Server Method."); object[] methods = MI.GetCustomAttributes(typeof(CallbackMethodAttribute), false); if (methods.Length < 1) throw new InvalidOperationException("Server method is not accessible due to missing CallbackMethod attribute"); if (callbackMethodAttribute != null) callbackMethodAttribute = methods[0] as CallbackMethodAttribute; ParameterInfo[] parms = MI.GetParameters(); JSONSerializer serializer = new JSONSerializer(); RouteData routeData = null; if (target is CallbackHandler) routeData = ((CallbackHandler)target).RouteData; int parmCounter = 0; adjustedParms = new object[parms.Length]; foreach (ParameterInfo parameter in parms) { // Retrieve parameters out of QueryString or POST buffer if (parameters == null) { // look for parameters in the route if (routeData != null) { string parmString = routeData.Values[parameter.Name] as string; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // GET parameter are parsed as plain string values - no JSON encoding else if (HttpContext.Current.Request.HttpMethod == "GET") { // Look up the parameter by name string parmString = Request.QueryString[parameter.Name]; adjustedParms[parmCounter] = ReflectionUtils.StringToTypedValue(parmString, parameter.ParameterType); } // POST parameters are treated as methodParameters that are JSON encoded else if (paramType == CallbackMethodParameterType.Json) //string newVariable = methodParameters.GetValue(parmCounter) as string; adjustedParms[parmCounter] = serializer.Deserialize(Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject( Request.Params["parm" + (parmCounter + 1).ToString()], parameter.ParameterType); } else if (paramType == CallbackMethodParameterType.Json) adjustedParms[parmCounter] = serializer.Deserialize(parameters[parmCounter], parameter.ParameterType); else adjustedParms[parmCounter] = SerializationUtils.DeSerializeObject(parameters[parmCounter], parameter.ParameterType); parmCounter++; } Result = MI.Invoke(target, adjustedParms); return Result; } The code basically uses Reflection to loop through all the parameters available on the method and tries to assign the parameters from RouteData, QueryString or POST variables. The parameters are converted into their appropriate types and then used to eventually make a Reflection based method call. What’s sweet is that the RouteData retrieval is just another option for dealing with the inbound data in this scenario and it adds exactly two lines of code plus the code to retrieve the MethodName I showed previously – a seriously low impact addition that adds a lot of extra value to this endpoint callback processing implementation. Debugging your Routes If you create a lot of routes it’s easy to run into Route conflicts where multiple routes have the same path and overlap with each other. This can be difficult to debug especially if you are using automatically generated routes like the routes created by CallbackHandlerRouteHandler.RegisterRoutes. Luckily there’s a tool that can help you out with this nicely. Phill Haack created a RouteDebugging tool you can download and add to your project. The easiest way to do this is to grab and add this to your project is to use NuGet (Add Library Package from your Project’s Reference Nodes):   which adds a RouteDebug assembly to your project. Once installed you can easily debug your routes with this simple line of code which needs to be installed at application startup:protected void Application_Start(object sender, EventArgs e) { CallbackHandlerRouteHandler.RegisterRoutes<StockService>(RouteTable.Routes); // Debug your routes RouteDebug.RouteDebugger.RewriteRoutesForTesting(RouteTable.Routes); } Any routed URL then displays something like this: The screen shows you your current route data and all the routes that are mapped along with a flag that displays which route was actually matched. This is useful – if you have any overlap of routes you will be able to see which routes are triggered – the first one in the sequence wins. This tool has saved my ass on a few occasions – and with NuGet now it’s easy to add it to your project in a few seconds and then remove it when you’re done. Routing Around Custom routing seems slightly complicated on first blush due to its disconnected components of RouteHandler, route registration and mapping of custom handlers. But once you understand the relationship between a RouteHandler, the RouteData and how to pass it to a handler, utilizing of Routing becomes a lot easier as you can easily pass context from the registration to the RouteHandler and through to the HttpHandler. The most important thing to understand when building custom routing solutions is to figure out how to map URLs in such a way that the handler can figure out all the pieces it needs to process the request. This can be via URL routing parameters and as I did in my example by passing additional context information as part of the RouteHandler instance that provides the proper execution context. In my case this ‘context’ was the method name, but it could be an actual static value like an enum identifying an operation or category in an application. Basically user supplied data comes in through the url and static application internal data can be passed via RouteHandler property values. Routing can make your application URLs easier to read by non-techie types regardless of whether you’re building Service type or REST applications, or full on Web interfaces. Routing in ASP.NET 4.0 makes it possible to create just about any extensionless URLs you can dream up and custom RouteHanmdler References Sample ProjectIncludes the sample CallbackHandler service discussed here along with compiled versionsof the Westwind.Web and Westwind.Utilities assemblies.  (requires .NET 4.0/VS 2010) West Wind Web Toolkit includes full implementation of CallbackHandler and the Routing Handler West Wind Web Toolkit Source CodeContains the full source code to the Westwind.Web and Westwind.Utilities assemblies usedin these samples. Includes the source described in the post.(Latest build in the Subversion Repository) CallbackHandler Source(Relevant code to this article tree in Westwind.Web assembly) JSONView FireFoxPluginA simple FireFox Plugin to easily view JSON data natively in FireFox.For IE you can use a registry hack to display JSON as raw text.© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  AJAX  HTTP  

    Read the article

  • Routing Issue in ASP.NET MVC 3 RC 2

    - by imran_ku07
         Introduction:             Two weeks ago, ASP.NET MVC team shipped the ASP.NET MVC 3 RC 2 release. This release includes some new features and some performance optimization. This release also fixes most of the bugs but still some minor issues are present in this release. Some of these issues are already discussed by Scott Guthrie at Update on ASP.NET MVC 3 RC2 (and a workaround for a bug in it). In addition to these issues, I have found another issue in this release regarding routing. In this article, I will show you the issue regarding routing and a simple workaround for this issue.       Description:             The easiest way to understand an issue is to reproduce it in the application. So create a MVC 2 application and a MVC 3 RC 2 application. Then in both applications, just open global.asax file and update the default route as below,     routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id1}/{id2}", // URL with parameters new { controller = "Home", action = "Index", id1 = UrlParameter.Optional, id2 = UrlParameter.Optional } // Parameter defaults );              Then just open Index View and add the following lines,    <%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage" %> <asp:Content ID="Content1" ContentPlaceHolderID="TitleContent" runat="server"> Home Page </asp:Content> <asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server"> <% Html.RenderAction("About"); %> </asp:Content>             The above view will issue a child request to About action method. Now run both applications. ASP.NET MVC 2 application will run just fine. But ASP.NET MVC 3 RC 2 application will throw an exception as shown below,                  You may think that this is a routing issue but this is not the case here as both ASP.NET MVC 2 and ASP.NET MVC  3 RC 2 applications(created above) are built with .NET Framework 4.0 and both will use the same routing defined in System.Web. Something is wrong in ASP.NET MVC 3 RC 2. So after digging into ASP.NET MVC source code, I have found that the UrlParameter class in ASP.NET MVC 3 RC 2 overrides the ToString method which simply return an empty string.     public sealed class UrlParameter { public static readonly UrlParameter Optional = new UrlParameter(); private UrlParameter() { } public override string ToString() { return string.Empty; } }             In MVC 2 the ToString method was not overridden. So to quickly fix the above problem just replace UrlParameter.Optional default value with a different value other than null or empty(for example, a single white space) or replace UrlParameter.Optional default value with a new class object containing the same code as UrlParameter class have except the ToString method is not overridden (or with a overridden ToString method that return a string value other than null or empty). But by doing this you will loose the benefit of ASP.NET MVC 2 Optional URL Parameters. There may be many different ways to fix the above problem and not loose the benefit of optional parameters. Here I will create a new class MyUrlParameter with the same code as UrlParameter class have except the ToString method is not overridden. Then I will create a base controller class which contains a constructor to remove all MyUrlParameter route data parameters, same like ASP.NET MVC doing with UrlParameter route data parameters early in the request.     public class BaseController : Controller { public BaseController() { if (System.Web.HttpContext.Current.CurrentHandler is MvcHandler) { RouteValueDictionary rvd = ((MvcHandler)System.Web.HttpContext.Current.CurrentHandler).RequestContext.RouteData.Values; string[] matchingKeys = (from entry in rvd where entry.Value == MyUrlParameter.Optional select entry.Key).ToArray(); foreach (string key in matchingKeys) { rvd.Remove(key); } } } } public class HomeController : BaseController { public ActionResult Index(string id1) { ViewBag.Message = "Welcome to ASP.NET MVC!"; return View(); } public ActionResult About() { return Content("Child Request Contents"); } }     public sealed class MyUrlParameter { public static readonly MyUrlParameter Optional = new MyUrlParameter(); private MyUrlParameter() { } }     routes.IgnoreRoute("{resource}.axd/{*pathInfo}"); routes.MapRoute( "Default", // Route name "{controller}/{action}/{id1}/{id2}", // URL with parameters new { controller = "Home", action = "Index", id1 = MyUrlParameter.Optional, id2 = MyUrlParameter.Optional } // Parameter defaults );             MyUrlParameter class is a copy of UrlParameter class except that MyUrlParameter class not overrides the ToString method. Note that the default route is modified to use MyUrlParameter.Optional instead of UrlParameter.Optional. Also note that BaseController class constructor is removing MyUrlParameter parameters from the current request route data so that the model binder will not bind these parameters with action method parameters. Now just run the ASP.NET MVC 3 RC 2 application again, you will find that it runs just fine.             In case if you are curious to know that why ASP.NET MVC 3 RC 2 application throws an exception if UrlParameter class contains a ToString method which returns an empty string, then you need to know something about a feature of routing for url generation. During url generation, routing will call the ParsedRoute.Bind method internally. This method includes a logic to match the route and build the url. During building the url, ParsedRoute.Bind method will call the ToString method of the route values(in our case this will call the UrlParameter.ToString method) and then append the returned value into url. This method includes a logic after appending the returned value into url that if two continuous returned values are empty then don't match the current route otherwise an incorrect url will be generated. Here is the snippet from ParsedRoute.Bind method which will prove this statement.       if ((builder2.Length > 0) && (builder2[builder2.Length - 1] == '/')) { return null; } builder2.Append("/"); ........................................................... ........................................................... ........................................................... ........................................................... if (RoutePartsEqual(obj3, obj4)) { builder2.Append(UrlEncode(Convert.ToString(obj3, CultureInfo.InvariantCulture))); continue; }             In the above example, both id1 and id2 parameters default values are set to UrlParameter object and UrlParameter class include a ToString method that returns an empty string. That's why this route will not matched.            Summary:             In this article I showed you the issue regarding routing and also showed you how to workaround this problem. I explained this issue with an example by creating a ASP.NET MVC 2 and a ASP.NET MVC 3 RC 2 application. Finally I also explained the reason for this issue. Hopefully you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • SQL Server Split() Function

    - by HighAltitudeCoder
    Title goes here   Ever wanted a dbo.Split() function, but not had the time to debug it completely?  Let me guess - you are probably working on a stored procedure with 50 or more parameters; two or three of them are parameters of differing types, while the other 47 or so all of the same type (id1, id2, id3, id4, id5...).  Worse, you've found several other similar stored procedures with the ONLY DIFFERENCE being the number of like parameters taped to the end of the parameter list. If this is the situation you find yourself in now, you may be wondering, "why am I working with three different copies of what is basically the same stored procedure, and why am I having to maintain changes in three different places?  Can't I have one stored procedure that accomplishes the job of all three? My answer to you: YES!  Here is the Split() function I've created.    /******************************************************************************                                       Split.sql   ******************************************************************************/ /******************************************************************************   Split a delimited string into sub-components and return them as a table.   Parameter 1: Input string which is to be split into parts. Parameter 2: Delimiter which determines the split points in input string. Works with space or spaces as delimiter. Split() is apostrophe-safe.   SYNTAX: SELECT * FROM Split('Dvorak,Debussy,Chopin,Holst', ',') SELECT * FROM Split('Denver|Seattle|San Diego|New York', '|') SELECT * FROM Split('Denver is the super-awesomest city of them all.', ' ')   ******************************************************************************/ USE AdventureWorks GO   IF EXISTS       (SELECT *       FROM sysobjects       WHERE xtype = 'TF'       AND name = 'Split'       ) BEGIN       DROP FUNCTION Split END GO   CREATE FUNCTION Split (       @InputString                  VARCHAR(8000),       @Delimiter                    VARCHAR(50) )   RETURNS @Items TABLE (       Item                          VARCHAR(8000) )   AS BEGIN       IF @Delimiter = ' '       BEGIN             SET @Delimiter = ','             SET @InputString = REPLACE(@InputString, ' ', @Delimiter)       END         IF (@Delimiter IS NULL OR @Delimiter = '')             SET @Delimiter = ','   --INSERT INTO @Items VALUES (@Delimiter) -- Diagnostic --INSERT INTO @Items VALUES (@InputString) -- Diagnostic         DECLARE @Item                 VARCHAR(8000)       DECLARE @ItemList       VARCHAR(8000)       DECLARE @DelimIndex     INT         SET @ItemList = @InputString       SET @DelimIndex = CHARINDEX(@Delimiter, @ItemList, 0)       WHILE (@DelimIndex != 0)       BEGIN             SET @Item = SUBSTRING(@ItemList, 0, @DelimIndex)             INSERT INTO @Items VALUES (@Item)               -- Set @ItemList = @ItemList minus one less item             SET @ItemList = SUBSTRING(@ItemList, @DelimIndex+1, LEN(@ItemList)-@DelimIndex)             SET @DelimIndex = CHARINDEX(@Delimiter, @ItemList, 0)       END -- End WHILE         IF @Item IS NOT NULL -- At least one delimiter was encountered in @InputString       BEGIN             SET @Item = @ItemList             INSERT INTO @Items VALUES (@Item)       END         -- No delimiters were encountered in @InputString, so just return @InputString       ELSE INSERT INTO @Items VALUES (@InputString)         RETURN   END -- End Function GO   ---- Set Permissions --GRANT SELECT ON Split TO UserRole1 --GRANT SELECT ON Split TO UserRole2 --GO   The syntax is basically as follows: SELECT <fields> FROM Table 1 JOIN Table 2 ON ... JOIN Table 3 ON ... WHERE LOGICAL CONDITION A AND LOGICAL CONDITION B AND LOGICAL CONDITION C AND TABLE2.Id IN (SELECT * FROM Split(@IdList, ',')) @IdList is a parameter passed into the stored procedure, and the comma (',') is the delimiter you have chosen to split the parameter list on. You can also use it like this: SELECT <fields> FROM Table 1 JOIN Table 2 ON ... JOIN Table 3 ON ... WHERE LOGICAL CONDITION A AND LOGICAL CONDITION B AND LOGICAL CONDITION C HAVING COUNT(SELECT * FROM Split(@IdList, ',') Similarly, it can be used in other aggregate functions at run-time: SELECT MIN(SELECT * FROM Split(@IdList, ','), <fields> FROM Table 1 JOIN Table 2 ON ... JOIN Table 3 ON ... WHERE LOGICAL CONDITION A AND LOGICAL CONDITION B AND LOGICAL CONDITION C GROUP BY <fields> Now that I've (hopefully effectively) explained the benefits to using this function and implementing it in one or more of your database objects, let me warn you of a caveat that you are likely to encounter.  You may have a team member who waits until the right moment to ask you a pointed question: "Doesn't this function just do the same thing as using the IN function?  Why didn't you just use that instead?  In other words, why bother with this function?" What's happening is, one or more team members has failed to understand the reason for implementing this kind of function in the first place.  (Note: this is THE MOST IMPORTANT ASPECT OF THIS POST). Allow me to outline a few pros to implementing this function, so you may effectively parry this question.  Touche. 1) Code consolidation.  You don't have to maintain what is basically the same code and logic, but with varying numbers of the same parameter in several SQL objects.  I'm not going to go into the cons related to using this function, because the afore mentioned team member is probably more than adept at pointing these out.  Remember, the real positive contribution is ou are decreasing the liklihood that your team fails to update all (x) duplicate copies of what are basically the same stored procedure, and so on...  This is the classic downside to duplicate code.  It is a virus, and you should kill it. You might be better off rejecting your team member's question, and responding with your own: "Would you rather maintain the same logic in multiple different stored procedures, and hope that the team doesn't forget to always update all of them at the same time?".  In his head, he might be thinking "yes, I would like to maintain several different copies of the same stored procedure", although you probably will not get such a direct response.  2) Added flexibility - you can use the Split function elsewhere, and for splitting your data in different ways.  Plus, you can use any kind of delimiter you wish.  How can you know today the ways in which you might want to examine your data tomorrow?  Segue to my next point. 3) Because the function takes a delimiter parameter, you can split the data in any number of ways.  This greatly increases the utility of such a function and enables your team to work with the data in a variety of different ways in the future.  You can split on a single char, symbol, word, or group of words.  You can split on spaces.  (The list goes on... test it out). Finally, you can dynamically define the behavior of a stored procedure (or other SQL object) at run time, through the use of this function.  Rather than have several objects that accomplish almost the same thing, why not have only one instead?

    Read the article

  • C# Extension Methods - To Extend or Not To Extend...

    - by James Michael Hare
    I've been thinking a lot about extension methods lately, and I must admit I both love them and hate them. They are a lot like sugar, they taste so nice and sweet, but they'll rot your teeth if you eat them too much.   I can't deny that they aren't useful and very handy. One of the major components of the Shared Component library where I work is a set of useful extension methods. But, I also can't deny that they tend to be overused and abused to willy-nilly extend every living type.   So what constitutes a good extension method? Obviously, you can write an extension method for nearly anything whether it is a good idea or not. Many times, in fact, an idea seems like a good extension method but in retrospect really doesn't fit.   So what's the litmus test? To me, an extension method should be like in the movies when a person runs into their twin, separated at birth. You just know you're related. Obviously, that's hard to quantify, so let's try to put a few rules-of-thumb around them.   A good extension method should:     Apply to any possible instance of the type it extends.     Simplify logic and improve readability/maintainability.     Apply to the most specific type or interface applicable.     Be isolated in a namespace so that it does not pollute IntelliSense.     So let's look at a few examples in relation to these rules.   The first rule, to me, is the most important of all. Once again, it bears repeating, a good extension method should apply to all possible instances of the type it extends. It should feel like the long lost relative that should have been included in the original class but somehow was missing from the family tree.    Take this nifty little int extension, I saw this once in a blog and at first I really thought it was pretty cool, but then I started noticing a code smell I couldn't quite put my finger on. So let's look:       public static class IntExtensinos     {         public static int Seconds(int num)         {             return num * 1000;         }           public static int Minutes(int num)         {             return num * 60000;         }     }     This is so you could do things like:       ...     Thread.Sleep(5.Seconds());     ...     proxy.Timeout = 1.Minutes();     ...     Awww, you say, that's cute! Well, that's the problem, it's kitschy and it doesn't always apply (and incidentally you could achieve the same thing with TimeStamp.FromSeconds(5)). It's syntactical candy that looks cool, but tends to rot and pollute the code. It would allow things like:       total += numberOfTodaysOrders.Seconds();     which makes no sense and should never be allowed. The problem is you're applying an extension method to a logical domain, not a type domain. That is, the extension method Seconds() doesn't really apply to ALL ints, it applies to ints that are representative of time that you want to convert to milliseconds.    Do you see what I mean? The two problems, in a nutshell, are that a) Seconds() called off a non-time value makes no sense and b) calling Seconds() off something to pass to something that does not take milliseconds will be off by a factor of 1000 or worse.   Thus, in my mind, you should only ever have an extension method that applies to the whole domain of that type.   For example, this is one of my personal favorites:       public static bool IsBetween<T>(this T value, T low, T high)         where T : IComparable<T>     {         return value.CompareTo(low) >= 0 && value.CompareTo(high) <= 0;     }   This allows you to check if any IComparable<T> is within an upper and lower bound. Think of how many times you type something like:       if (response.Employee.Address.YearsAt >= 2         && response.Employee.Address.YearsAt <= 10)     {     ...     }     Now, you can instead type:       if(response.Employee.Address.YearsAt.IsBetween(2, 10))     {     ...     }     Note that this applies to all IComparable<T> -- that's ints, chars, strings, DateTime, etc -- and does not depend on any logical domain. In addition, it satisfies the second point and actually makes the code more readable and maintainable.   Let's look at the third point. In it we said that an extension method should fit the most specific interface or type possible. Now, I'm not saying if you have something that applies to enumerables, you create an extension for List, Array, Dictionary, etc (though you may have reasons for doing so), but that you should beware of making things TOO general.   For example, let's say we had an extension method like this:       public static T ConvertTo<T>(this object value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This lets you do more fluent conversions like:       double d = "5.0".ConvertTo<double>();     However, if you dig into Reflector (LOVE that tool) you will see that if the type you are calling on does not implement IConvertible, what you convert to MUST be the exact type or it will throw an InvalidCastException. Now this may or may not be what you want in this situation, and I leave that up to you. Things like this would fail:       object value = new Employee();     ...     // class cast exception because typeof(IEmployee) != typeof(Employee)     IEmployee emp = value.ConvertTo<IEmployee>();       Yes, that's a downfall of working with Convertible in general, but if you wanted your fluent interface to be more type-safe so that ConvertTo were only callable on IConvertibles (and let casting be a manual task), you could easily make it:         public static T ConvertTo<T>(this IConvertible value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This is what I mean by choosing the best type to extend. Consider that if we used the previous (object) version, every time we typed a dot ('.') on an instance we'd pull up ConvertTo() whether it was applicable or not. By filtering our extension method down to only valid types (those that implement IConvertible) we greatly reduce our IntelliSense pollution and apply a good level of compile-time correctness.   Now my fourth rule is just my general rule-of-thumb. Obviously, you can make extension methods as in-your-face as you want. I included all mine in my work libraries in its own sub-namespace, something akin to:       namespace Shared.Core.Extensions { ... }     This is in a library called Shared.Core, so just referencing the Core library doesn't pollute your IntelliSense, you have to actually do a using on Shared.Core.Extensions to bring the methods in. This is very similar to the way Microsoft puts its extension methods in System.Linq. This way, if you want 'em, you use the appropriate namespace. If you don't want 'em, they won't pollute your namespace.   To really make this work, however, that namespace should only include extension methods and subordinate types those extensions themselves may use. If you plant other useful classes in those namespaces, once a user includes it, they get all the extensions too.   Also, just as a personal preference, extension methods that aren't simply syntactical shortcuts, I like to put in a static utility class and then have extension methods for syntactical candy. For instance, I think it imaginable that any object could be converted to XML:       namespace Shared.Core     {         // A collection of XML Utility classes         public static class XmlUtility         {             ...             // Serialize an object into an xml string             public static string ToXml(object input)             {                 var xs = new XmlSerializer(input.GetType());                   // use new UTF8Encoding here, not Encoding.UTF8. The later includes                 // the BOM which screws up subsequent reads, the former does not.                 using (var memoryStream = new MemoryStream())                 using (var xmlTextWriter = new XmlTextWriter(memoryStream, new UTF8Encoding()))                 {                     xs.Serialize(xmlTextWriter, input);                     return Encoding.UTF8.GetString(memoryStream.ToArray());                 }             }             ...         }     }   I also wanted to be able to call this from an object like:       value.ToXml();     But here's the problem, if i made this an extension method from the start with that one little keyword "this", it would pop into IntelliSense for all objects which could be very polluting. Instead, I put the logic into a utility class so that users have the choice of whether or not they want to use it as just a class and not pollute IntelliSense, then in my extensions namespace, I add the syntactical candy:       namespace Shared.Core.Extensions     {         public static class XmlExtensions         {             public static string ToXml(this object value)             {                 return XmlUtility.ToXml(value);             }         }     }   So now it's the best of both worlds. On one hand, they can use the utility class if they don't want to pollute IntelliSense, and on the other hand they can include the Extensions namespace and use as an extension if they want. The neat thing is it also adheres to the Single Responsibility Principle. The XmlUtility is responsible for converting objects to XML, and the XmlExtensions is responsible for extending object's interface for ToXml().

    Read the article

  • Java Cloud Service Integration using Web Service Data Control

    - by Jani Rautiainen
    Java Cloud Service (JCS) provides a platform to develop and deploy business applications in the cloud. In Fusion Applications Cloud deployments customers do not have the option to deploy custom applications developed with JDeveloper to ensure the integrity and supportability of the hosted application service. Instead the custom applications can be deployed to the JCS and integrated to the Fusion Application Cloud instance.This series of articles will go through the features of JCS, provide end-to-end examples on how to develop and deploy applications on JCS and how to integrate them with the Fusion Applications instance.In this article a custom application integrating with Fusion Application using Web Service Data Control will be implemented. v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";} Pre-requisites Access to Cloud instance In order to deploy the application access to a JCS instance is needed, a free trial JCS instance can be obtained from Oracle Cloud site. To register you will need a credit card even if the credit card will not be charged. To register simply click "Try it" and choose the "Java" option. The confirmation email will contain the connection details. See this video for example of the registration. Once the request is processed you will be assigned 2 service instances; Java and Database. Applications deployed to the JCS must use Oracle Database Cloud Service as their underlying database. So when JCS instance is created a database instance is associated with it using a JDBC data source. The cloud services can be monitored and managed through the web UI. For details refer to Getting Started with Oracle Cloud. JDeveloper JDeveloper contains Cloud specific features related to e.g. connection and deployment. To use these features download the JDeveloper from JDeveloper download site by clicking the “Download JDeveloper 11.1.1.7.1 for ADF deployment on Oracle Cloud” link, this version of JDeveloper will have the JCS integration features that will be used in this article. For versions that do not include the Cloud integration features the Oracle Java Cloud Service SDK or the JCS Java Console can be used for deployment. For details on installing and configuring the JDeveloper refer to the installation guide. For details on SDK refer to Using the Command-Line Interface to Monitor Oracle Java Cloud Service and Using the Command-Line Interface to Manage Oracle Java Cloud Service. Create Application In this example the “JcsWsDemo” application created in the “Java Cloud Service Integration using Web Service Proxy” article is used as the base. Create Web Service Data Control In this example we will use a Web Service Data Control to integrate with Credit Rule Service in Fusion Applications. The data control will be used to query data from Fusion Applications using a web service call and present the data in a table. To generate the data control choose the “Model” project and navigate to "New -> All Technologies -> Business Tier -> Data Controls -> Web Service Data Control" and enter following: Name: CreditRuleServiceDC URL: https://ic-[POD].oracleoutsourcing.com/icCnSetupCreditRulesPublicService/CreditRuleService?WSDL Service: {{http://xmlns.oracle.com/apps/incentiveCompensation/cn/creditSetup/creditRule/creditRuleService/}CreditRuleService On step 2 select the “findRule” operation: Skip step 3 and on step 4 define the credentials to access the service. Do note that in this example these credentials are only used if testing locally, for JCS deployment credentials need to be manually updated on the EAR file: Click “Finish” and the proxy generation is done. Creating UI In order to use the data control we will need to populate complex objects FindCriteria and FindControl. For simplicity in this example we will create logic in a managed bean that populates the objects. Open “JcsWsDemoBean.java” and add the following logic: Map findCriteria; Map findControl; public void setFindCriteria(Map findCriteria) { this.findCriteria = findCriteria; } public Map getFindCriteria() { findCriteria = new HashMap(); findCriteria.put("fetchSize",10); findCriteria.put("fetchStart",0); return findCriteria; } public void setFindControl(Map findControl) { this.findControl = findControl; } public Map getFindControl() { findControl = new HashMap(); return findControl; } Open “JcsWsDemo.jspx”, navigate to “Data Controls -> CreditRuleServiceDC -> findRule(Object, Object) -> result” and drag and drop the “result” node into the “af:form” element in the page: On the “Edit Table Columns” remove all columns except “RuleId” and “Name”: On the “Edit Action Binding” window displayed enter reference to the java class created above by selecting “#{JcsWsDemoBean.findCriteria}”: Also define the value for the “findControl” by selecting “#{JcsWsDemoBean.findControl}”. Deploy to JCS For WS DC the authentication details need to be updated on the connection details before deploying. Open “connections.xml” by navigating “Application Resources -> Descriptors -> ADF META-INF -> connections.xml”: Change the user name and password entry from: <soap username="transportUserName" password="transportPassword" To match the access details for the target environment. Follow the same steps as documented in previous article ”Java Cloud Service ADF Web Application”. Once deployed the application can be accessed with URL: https://java-[identity domain].java.[data center].oraclecloudapps.com/JcsWsDemo-ViewController-context-root/faces/JcsWsDemo.jspx When accessed the first 10 rules in the system are displayed: Summary In this article we learned how to integrate with Fusion Applications using a Web Service Data Control in JCS. In future articles various other integration techniques will be covered. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";}

    Read the article

  • Using Node.js as an accelerator for WCF REST services

    - by Elton Stoneman
    Node.js is a server-side JavaScript platform "for easily building fast, scalable network applications". It's built on Google's V8 JavaScript engine and uses an (almost) entirely async event-driven processing model, running in a single thread. If you're new to Node and your reaction is "why would I want to run JavaScript on the server side?", this is the headline answer: in 150 lines of JavaScript you can build a Node.js app which works as an accelerator for WCF REST services*. It can double your messages-per-second throughput, halve your CPU workload and use one-fifth of the memory footprint, compared to the WCF services direct.   Well, it can if: 1) your WCF services are first-class HTTP citizens, honouring client cache ETag headers in request and response; 2) your services do a reasonable amount of work to build a response; 3) your data is read more often than it's written. In one of my projects I have a set of REST services in WCF which deal with data that only gets updated weekly, but which can be read hundreds of times an hour. The services issue ETags and will return a 304 if the client sends a request with the current ETag, which means in the most common scenario the client uses its local cached copy. But when the weekly update happens, then all the client caches are invalidated and they all need the same new data. Then the service will get hundreds of requests with old ETags, and they go through the full service stack to build the same response for each, taking up threads and processing time. Part of that processing means going off to a database on a separate cloud, which introduces more latency and downtime potential.   We can use ASP.NET output caching with WCF to solve the repeated processing problem, but the server will still be thread-bound on incoming requests, and to get the current ETags reliably needs a database call per request. The accelerator solves that by running as a proxy - all client calls come into the proxy, and the proxy routes calls to the underlying REST service. We could use Node as a straight passthrough proxy and expect some benefit, as the server would be less thread-bound, but we would still have one WCF and one database call per proxy call. But add some smart caching logic to the proxy, and share ETags between Node and WCF (so the proxy doesn't even need to call the servcie to get the current ETag), and the underlying service will only be invoked when data has changed, and then only once - all subsequent client requests will be served from the proxy cache.   I've built this as a sample up on GitHub: NodeWcfAccelerator on sixeyed.codegallery. Here's how the architecture looks:     The code is very simple. The Node proxy runs on port 8010 and all client requests target the proxy. If the client request has an ETag header then the proxy looks up the ETag in the tag cache to see if it is current - the sample uses memcached to share ETags between .NET and Node. If the ETag from the client matches the current server tag, the proxy sends a 304 response with an empty body to the client, telling it to use its own cached version of the data. If the ETag from the client is stale, the proxy looks for a local cached version of the response, checking for a file named after the current ETag. If that file exists, its contents are returned to the client as the body in a 200 response, which includes the current ETag in the header. If the proxy does not have a local cached file for the service response, it calls the service, and writes the WCF response to the local cache file, and to the body of a 200 response for the client. So the WCF service is only troubled if both client and proxy have stale (or no) caches.   The only (vaguely) clever bit in the sample is using the ETag cache, so the proxy can serve cached requests without any communication with the underlying service, which it does completely generically, so the proxy has no notion of what it is serving or what the services it proxies are doing. The relative path from the URL is used as the lookup key, so there's no shared key-generation logic between .NET and Node, and when WCF stores a tag it also stores the "read" URL against the ETag so it can be used for a reverse lookup, e.g:   Key Value /WcfSampleService/PersonService.svc/rest/fetch/3 "28cd4796-76b8-451b-adfd-75cb50a50fa6" "28cd4796-76b8-451b-adfd-75cb50a50fa6" /WcfSampleService/PersonService.svc/rest/fetch/3    In Node we read the cache using the incoming URL path as the key and we know that "28cd4796-76b8-451b-adfd-75cb50a50fa6" is the current ETag; we look for a local cached response in /caches/28cd4796-76b8-451b-adfd-75cb50a50fa6.body (and the corresponding .header file which contains the original service response headers, so the proxy response is exactly the same as the underlying service). When the data is updated, we need to invalidate the ETag cache – which is why we need the reverse lookup in the cache. In the WCF update service, we don't need to know the URL of the related read service - we fetch the entity from the database, do a reverse lookup on the tag cache using the old ETag to get the read URL, update the new ETag against the URL, store the new reverse lookup and delete the old one.   Running Apache Bench against the two endpoints gives the headline performance comparison. Making 1000 requests with concurrency of 100, and not sending any ETag headers in the requests, with the Node proxy I get 102 requests handled per second, average response time of 975 milliseconds with 90% of responses served within 850 milliseconds; going direct to WCF with the same parameters, I get 53 requests handled per second, mean response time of 1853 milliseconds, with 90% of response served within 3260 milliseconds. Informally monitoring server usage during the tests, Node maxed at 20% CPU and 20Mb memory; IIS maxed at 60% CPU and 100Mb memory.   Note that the sample WCF service does a database read and sleeps for 250 milliseconds to simulate a moderate processing load, so this is *not* a baseline Node-vs-WCF comparison, but for similar scenarios where the  service call is expensive but applicable to numerous clients for a long timespan, the performance boost from the accelerator is considerable.     * - actually, the accelerator will work nicely for any HTTP request, where the URL (path + querystring) uniquely identifies a resource. In the sample, there is an assumption that the ETag is a GUID wrapped in double-quotes (e.g. "28cd4796-76b8-451b-adfd-75cb50a50fa6") – which is the default for WCF services. I use that assumption to name the cache files uniquely, but it is a trivial change to adapt to other ETag formats.

    Read the article

  • The Sensemaking Spectrum for Business Analytics: Translating from Data to Business Through Analysis

    - by Joe Lamantia
    One of the most compelling outcomes of our strategic research efforts over the past several years is a growing vocabulary that articulates our cumulative understanding of the deep structure of the domains of discovery and business analytics. Modes are one example of the deep structure we’ve found.  After looking at discovery activities across a very wide range of industries, question types, business needs, and problem solving approaches, we've identified distinct and recurring kinds of sensemaking activity, independent of context.  We label these activities Modes: Explore, compare, and comprehend are three of the nine recognizable modes.  Modes describe *how* people go about realizing insights.  (Read more about the programmatic research and formal academic grounding and discussion of the modes here: https://www.researchgate.net/publication/235971352_A_Taxonomy_of_Enterprise_Search_and_Discovery) By analogy to languages, modes are the 'verbs' of discovery activity.  When applied to the practical questions of product strategy and development, the modes of discovery allow one to identify what kinds of analytical activity a product, platform, or solution needs to support across a spread of usage scenarios, and then make concrete and well-informed decisions about every aspect of the solution, from high-level capabilities, to which specific types of information visualizations better enable these scenarios for the types of data users will analyze. The modes are a powerful generative tool for product making, but if you've spent time with young children, or had a really bad hangover (or both at the same time...), you understand the difficult of communicating using only verbs.  So I'm happy to share that we've found traction on another facet of the deep structure of discovery and business analytics.  Continuing the language analogy, we've identified some of the ‘nouns’ in the language of discovery: specifically, the consistently recurring aspects of a business that people are looking for insight into.  We call these discovery Subjects, since they identify *what* people focus on during discovery efforts, rather than *how* they go about discovery as with the Modes. Defining the collection of Subjects people repeatedly focus on allows us to understand and articulate sense making needs and activity in more specific, consistent, and complete fashion.  In combination with the Modes, we can use Subjects to concretely identify and define scenarios that describe people’s analytical needs and goals.  For example, a scenario such as ‘Explore [a Mode] the attrition rates [a Measure, one type of Subject] of our largest customers [Entities, another type of Subject] clearly captures the nature of the activity — exploration of trends vs. deep analysis of underlying factors — and the central focus — attrition rates for customers above a certain set of size criteria — from which follow many of the specifics needed to address this scenario in terms of data, analytical tools, and methods. We can also use Subjects to translate effectively between the different perspectives that shape discovery efforts, reducing ambiguity and increasing impact on both sides the perspective divide.  For example, from the language of business, which often motivates analytical work by asking questions in business terms, to the perspective of analysis.  The question posed to a Data Scientist or analyst may be something like “Why are sales of our new kinds of potato chips to our largest customers fluctuating unexpectedly this year?” or “Where can innovate, by expanding our product portfolio to meet unmet needs?”.  Analysts translate questions and beliefs like these into one or more empirical discovery efforts that more formally and granularly indicate the plan, methods, tools, and desired outcomes of analysis.  From the perspective of analysis this second question might become, “Which customer needs of type ‘A', identified and measured in terms of ‘B’, that are not directly or indirectly addressed by any of our current products, offer 'X' potential for ‘Y' positive return on the investment ‘Z' required to launch a new offering, in time frame ‘W’?  And how do these compare to each other?”.  Translation also happens from the perspective of analysis to the perspective of data; in terms of availability, quality, completeness, format, volume, etc. By implication, we are proposing that most working organizations — small and large, for profit and non-profit, domestic and international, and in the majority of industries — can be described for analytical purposes using this collection of Subjects.  This is a bold claim, but simplified articulation of complexity is one of the primary goals of sensemaking frameworks such as this one.  (And, yes, this is in fact a framework for making sense of sensemaking as a category of activity - but we’re not considering the recursive aspects of this exercise at the moment.) Compellingly, we can place the collection of subjects on a single continuum — we call it the Sensemaking Spectrum — that simply and coherently illustrates some of the most important relationships between the different types of Subjects, and also illuminates several of the fundamental dynamics shaping business analytics as a domain.  As a corollary, the Sensemaking Spectrum also suggests innovation opportunities for products and services related to business analytics. The first illustration below shows Subjects arrayed along the Sensemaking Spectrum; the second illustration presents examples of each kind of Subject.  Subjects appear in colors ranging from blue to reddish-orange, reflecting their place along the Spectrum, which indicates whether a Subject addresses more the viewpoint of systems and data (Data centric and blue), or people (User centric and orange).  This axis is shown explicitly above the Spectrum.  Annotations suggest how Subjects align with the three significant perspectives of Data, Analysis, and Business that shape business analytics activity.  This rendering makes explicit the translation and bridging function of Analysts as a role, and analysis as an activity. Subjects are best understood as fuzzy categories [http://georgelakoff.files.wordpress.com/2011/01/hedges-a-study-in-meaning-criteria-and-the-logic-of-fuzzy-concepts-journal-of-philosophical-logic-2-lakoff-19731.pdf], rather than tightly defined buckets.  For each Subject, we suggest some of the most common examples: Entities may be physical things such as named products, or locations (a building, or a city); they could be Concepts, such as satisfaction; or they could be Relationships between entities, such as the variety of possible connections that define linkage in social networks.  Likewise, Events may indicate a time and place in the dictionary sense; or they may be Transactions involving named entities; or take the form of Signals, such as ‘some Measure had some value at some time’ - what many enterprises understand as alerts.   The central story of the Spectrum is that though consumers of analytical insights (represented here by the Business perspective) need to work in terms of Subjects that are directly meaningful to their perspective — such as Themes, Plans, and Goals — the working realities of data (condition, structure, availability, completeness, cost) and the changing nature of most discovery efforts make direct engagement with source data in this fashion impossible.  Accordingly, business analytics as a domain is structured around the fundamental assumption that sense making depends on analytical transformation of data.  Analytical activity incrementally synthesizes more complex and larger scope Subjects from data in its starting condition, accumulating insight (and value) by moving through a progression of stages in which increasingly meaningful Subjects are iteratively synthesized from the data, and recombined with other Subjects.  The end goal of  ‘laddering’ successive transformations is to enable sense making from the business perspective, rather than the analytical perspective.Synthesis through laddering is typically accomplished by specialized Analysts using dedicated tools and methods. Beginning with some motivating question such as seeking opportunities to increase the efficiency (a Theme) of fulfillment processes to reach some level of profitability by the end of the year (Plan), Analysts will iteratively wrangle and transform source data Records, Values and Attributes into recognizable Entities, such as Products, that can be combined with Measures or other data into the Events (shipment of orders) that indicate the workings of the business.  More complex Subjects (to the right of the Spectrum) are composed of or make reference to less complex Subjects: a business Process such as Fulfillment will include Activities such as confirming, packing, and then shipping orders.  These Activities occur within or are conducted by organizational units such as teams of staff or partner firms (Networks), composed of Entities which are structured via Relationships, such as supplier and buyer.  The fulfillment process will involve other types of Entities, such as the products or services the business provides.  The success of the fulfillment process overall may be judged according to a sophisticated operating efficiency Model, which includes tiered Measures of business activity and health for the transactions and activities included.  All of this may be interpreted through an understanding of the operational domain of the businesses supply chain (a Domain).   We'll discuss the Spectrum in more depth in succeeding posts.

    Read the article

  • Master-slave vs. peer-to-peer archictecture: benefits and problems

    - by Ashok_Ora
    Normal 0 false false false EN-US X-NONE X-NONE Almost two decades ago, I was a member of a database development team that introduced adaptive locking. Locking, the most popular concurrency control technique in database systems, is pessimistic. Locking ensures that two or more conflicting operations on the same data item don’t “trample” on each other’s toes, resulting in data corruption. In a nutshell, here’s the issue we were trying to address. In everyday life, traffic lights serve the same purpose. They ensure that traffic flows smoothly and when everyone follows the rules, there are no accidents at intersections. As I mentioned earlier, the problem with typical locking protocols is that they are pessimistic. Regardless of whether there is another conflicting operation in the system or not, you have to hold a lock! Acquiring and releasing locks can be quite expensive, depending on how many objects the transaction touches. Every transaction has to pay this penalty. To use the earlier traffic light analogy, if you have ever waited at a red light in the middle of nowhere with no one on the road, wondering why you need to wait when there’s clearly no danger of a collision, you know what I mean. The adaptive locking scheme that we invented was able to minimize the number of locks that a transaction held, by detecting whether there were one or more transactions that needed conflicting eyou could get by without holding any lock at all. In many “well-behaved” workloads, there are few conflicts, so this optimization is a huge win. If, on the other hand, there are many concurrent, conflicting requests, the algorithm gracefully degrades to the “normal” behavior with minimal cost. We were able to reduce the number of lock requests per TPC-B transaction from 178 requests down to 2! Wow! This is a dramatic improvement in concurrency as well as transaction latency. The lesson from this exercise was that if you can identify the common scenario and optimize for that case so that only the uncommon scenarios are more expensive, you can make dramatic improvements in performance without sacrificing correctness. So how does this relate to the architecture and design of some of the modern NoSQL systems? NoSQL systems can be broadly classified as master-slave sharded, or peer-to-peer sharded systems. NoSQL systems with a peer-to-peer architecture have an interesting way of handling changes. Whenever an item is changed, the client (or an intermediary) propagates the changes synchronously or asynchronously to multiple copies (for availability) of the data. Since the change can be propagated asynchronously, during some interval in time, it will be the case that some copies have received the update, and others haven’t. What happens if someone tries to read the item during this interval? The client in a peer-to-peer system will fetch the same item from multiple copies and compare them to each other. If they’re all the same, then every copy that was queried has the same (and up-to-date) value of the data item, so all’s good. If not, then the system provides a mechanism to reconcile the discrepancy and to update stale copies. So what’s the problem with this? There are two major issues: First, IT’S HORRIBLY PESSIMISTIC because, in the common case, it is unlikely that the same data item will be updated and read from different locations at around the same time! For every read operation, you have to read from multiple copies. That’s a pretty expensive, especially if the data are stored in multiple geographically separate locations and network latencies are high. Second, if the copies are not all the same, the application has to reconcile the differences and propagate the correct value to the out-dated copies. This means that the application program has to handle discrepancies in the different versions of the data item and resolve the issue (which can further add to cost and operation latency). Resolving discrepancies is only one part of the problem. What if the same data item was updated independently on two different nodes (copies)? In that case, due to the asynchronous nature of change propagation, you might land up with different versions of the data item in different copies. In this case, the application program also has to resolve conflicts and then propagate the correct value to the copies that are out-dated or have incorrect versions. This can get really complicated. My hunch is that there are many peer-to-peer-based applications that don’t handle this correctly, and worse, don’t even know it. Imagine have 100s of millions of records in your database – how can you tell whether a particular data item is incorrect or out of date? And what price are you willing to pay for ensuring that the data can be trusted? Multiple network messages per read request? Discrepancy and conflict resolution logic in the application, and potentially, additional messages? All this overhead, when all you were trying to do was to read a data item. Wouldn’t it be simpler to avoid this problem in the first place? Master-slave architectures like the Oracle NoSQL Database handles this very elegantly. A change to a data item is always sent to the master copy. Consequently, the master copy always has the most current and authoritative version of the data item. The master is also responsible for propagating the change to the other copies (for availability and read scalability). Client drivers are aware of master copies and replicas, and client drivers are also aware of the “currency” of a replica. In other words, each NoSQL Database client knows how stale a replica is. This vastly simplifies the job of the application developer. If the application needs the most current version of the data item, the client driver will automatically route the request to the master copy. If the application is willing to tolerate some staleness of data (e.g. a version that is no more than 1 second out of date), the client can easily determine which replica (or set of replicas) can satisfy the request, and route the request to the most efficient copy. This results in a dramatic simplification in application logic and also minimizes network requests (the driver will only send the request to exactl the right replica, not many). So, back to my original point. A well designed and well architected system minimizes or eliminates unnecessary overhead and avoids pessimistic algorithms wherever possible in order to deliver a highly efficient and high performance system. If you’ve every programmed an Oracle NoSQL Database application, you’ll know the difference! /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;}

    Read the article

  • b2Body moves without stopping

    - by SentineL
    I got a quite strange bug. It is difficult to explain it in two words, but i'll try to do this in short. My b2Body has restitution, friction, density, mass and collision group. I controlling my b2Body via setting linear velocity to it (called on every iteration): (void)moveToDirection:(CGPoint)direction onlyHorizontal:(BOOL)horizontal { b2Vec2 velocity = [controlledObject getBody]-GetLinearVelocity(); double horizontalSpeed = velocity.x + controlledObject.acceleration * direction.x; velocity.x = (float32) (abs((int) horizontalSpeed) < controlledObject.runSpeed ? horizontalSpeed : controlledObject.maxSpeed * direction.x); if (!horizontal) { velocity.y = velocity.y + controlledObject.runSpeed * direction.y; } [controlledObject getBody]->SetLinearVelocity(velocity); } My floor is static b2Body, it has as restitution, friction, density, mass and same collision group in some reason, I'm setting b2Body's friction of my Hero to zero when it is moving, and returning it to 1 when he stops. When I'm pushing run button, hero runs. when i'm releasing it, he stops. All of this works perfect. On jumping, I'm setting linear velocity to my Hero: (void)jump { b2Vec2 velocity = [controlledObject getBody]->GetLinearVelocity(); velocity.y = velocity.y + [[AppDel cfg] getHeroJumpVlelocity]; [controlledObject getBody]->SetLinearVelocity(velocity); } If I'll run, jump, and release run button, while he is in air, all will work fine. And here is my problem: If I'll run, jump, and continue running on landing (or when he goes from one static body to another: there is small fall, probably), Hero will start move, like he has no friction, but he has! I checked this via beakpoints: he has friction, but I can move left of right, and he will never stop, until i'll jump (or go from one static body to another), with unpressed running button. I allready tried: Set friction to body on every iteration double-check am I setting friction to right fixture. set Linear Damping to Hero: his move slows down on gugged moveing. A little more code: I have a sensor and body fixtures in my hero: (void) addBodyFixture { b2CircleShape dynamicBox; dynamicBox.m_radius = [[AppDel cfg] getHeroRadius]; b2FixtureDef bodyFixtureDef; bodyFixtureDef.shape = &dynamicBox; bodyFixtureDef.density = 1.0f; bodyFixtureDef.friction = [[AppDel cfg] getHeroFriction]; bodyFixtureDef.restitution = [[AppDel cfg] getHeroRestitution]; bodyFixtureDef.filter.categoryBits = 0x0001; bodyFixtureDef.filter.maskBits = 0x0001; bodyFixtureDef.filter.groupIndex = 0; bodyFixtureDef.userData = [NSNumber numberWithInt:FIXTURE_BODY]; [physicalBody addFixture:bodyFixtureDef]; } (void) addSensorFixture { b2CircleShape sensorBox; sensorBox.m_radius = [[AppDel cfg] getHeroRadius] * 0.95; sensorBox.m_p.Set(0, -[[AppDel cfg] getHeroRadius] / 10); b2FixtureDef sensor; sensor.shape = &sensorBox; sensor.filter.categoryBits = 0x0001; sensor.filter.maskBits = 0x0001; sensor.filter.groupIndex = 0; sensor.isSensor = YES; sensor.userData = [NSNumber numberWithInt:FIXTURE_SENSOR]; [physicalBody addFixture:sensor]; } Here I'm tracking is hero in air: void FixtureContactListener::BeginContact(b2Contact* contact) { // We need to copy out the data because the b2Contact passed in // is reused. Squirrel *squirrel = (Squirrel *)contact->GetFixtureB()->GetBody()->GetUserData(); if (squirrel) { [squirrel addContact]; } } void FixtureContactListener::EndContact(b2Contact* contact) { Squirrel *squirrel = (Squirrel *)contact->GetFixtureB()->GetBody()->GetUserData(); if (squirrel) { [squirrel removeContact]; } } here is Hero's logic on contacts: - (void) addContact { if (contactCount == 0) [self landing]; contactCount++; } - (void) removeContact { contactCount--; if (contactCount == 0) [self flying]; if (contactCount <0) contactCount = 0; } - (void)landing { inAir = NO; acceleration = [[AppDel cfg] getHeroRunAcceleration]; [sprite stopAllActions]; (running ? [sprite runAction:[self runAction]] : [sprite runAction:[self standAction]]); } - (void)flying { inAir = YES; acceleration = [[AppDel cfg] getHeroAirAcceleration]; [sprite stopAllActions]; [self flyAction]; } here is Hero's moving logic: - (void)stop { running = NO; if (!inAir) { [sprite stopAllActions]; [sprite runAction:[self standAction]]; } } - (void)left { [physicalBody setFriction:0]; if (!running && !inAir) { [sprite stopAllActions]; [sprite runAction:[self runAction]]; } running = YES; moveingDirection = NO; [bodyControls moveToDirection:CGPointMake(-1, 0) onlyHorizontal:YES]; } - (void)right { [physicalBody setFriction:0]; if (!running && !inAir) { [sprite stopAllActions]; [sprite runAction:[self runAction]]; } running = YES; moveingDirection = YES; [bodyControls moveToDirection:CGPointMake(1, 0) onlyHorizontal:YES]; } - (void)jump { if (!inAir) { [bodyControls jump]; } } and here is my update method (called on every iteration): - (void)update:(NSMutableDictionary *)buttons { if (!isDead) { [self updateWithButtonName:BUTTON_LEFT inButtons:buttons whenPressed:@selector(left) whenUnpressed:@selector(stop)]; [self updateWithButtonName:BUTTON_RIGHT inButtons:buttons whenPressed:@selector(right) whenUnpressed:@selector(stop)]; [self updateWithButtonName:BUTTON_UP inButtons:buttons whenPressed:@selector(jump) whenUnpressed:@selector(nothing)]; [self updateWithButtonName:BUTTON_DOWN inButtons:buttons whenPressed:@selector(nothing) whenUnpressed:@selector(nothing)]; [sprite setFlipX:(moveingDirection)]; } [self checkPosition]; if (!running) [physicalBody setFriction:[[AppDel cfg] getHeroFriction]]; else [physicalBody setFriction:0]; } - (void)updateWithButtonName:(NSString *)buttonName inButtons:(NSDictionary *)buttons whenPressed:(SEL)pressedSelector whenUnpressed:(SEL)unpressedSelector { NSNumber *buttonNumber = [buttons objectForKey:buttonName]; if (buttonNumber == nil) return; if ([buttonNumber boolValue]) [self performSelector:pressedSelector]; else [self performSelector:unpressedSelector]; } - (void)checkPosition { b2Body *body = [self getBody]; b2Vec2 position = body->GetPosition(); CGPoint inWorldPosition = [[AppDel cfg] worldMeterPointFromScreenPixel:CGPointMake(position.x * PTM_RATIO, position.y * PTM_RATIO)]; if (inWorldPosition.x < 0 || inWorldPosition.x > WORLD_WIDGH / PTM_RATIO || inWorldPosition.y <= 0) { [self kill]; } }

    Read the article

< Previous Page | 80 81 82 83 84 85 86 87 88 89 90 91  | Next Page >