Search Results

Search found 20852 results on 835 pages for 'local seo'.

Page 84/835 | < Previous Page | 80 81 82 83 84 85 86 87 88 89 90 91  | Next Page >

  • How to Choose an SEO Company

    Having a website or blog that appears in the first page of the search engine results is necessary if you want people to find your website when searching the internet for information. It's also the hardest part of any web-based project! Many people and small companies looking to increase their online visibility will look to professional search engine optimization (SEO) companies to help optimize their websites and increase site visitors.

    Read the article

  • Why SEO is Important

    Websites are only as good as those customers and clients who find them (and order your products and services). However, search engines need to find your websites as well and that's when search engine optimization - also known as SEO - comes into play.

    Read the article

  • How an SEO Company Optimizes a Business

    Search engine optimization or SEO enhances a business by generating traffic on a web site. Increased traffic is generated when a website is displayed at the very beginning of search results when a keyword/s is entered into a search engine, like Google.

    Read the article

  • Local SEO Today

    There are so many Local SEO companies who are willing to help you on your website problems such as search engine rankings and gaining more clicks and visitors for your website. A lot of search engine optimization companies do offer their services to small business companies in order to lend them a helping hand in increasing their search engine rankings in Google and other search engine websites.

    Read the article

  • SEO Strategies For Your Website

    Strategy is very important for a company in achieving every goal they planned. SEO has its own strategies as well that help a company to get the planned goal. There are trainings available to learn those strategies with simple, easy and low cost budget.

    Read the article

  • What to Look For in an SEO Handbook

    An SEO handbook is a good investment for any website publisher. Organic search engine optimization will help your website get higher rankings and increased traffic. That should help increase your profits.

    Read the article

  • How to Evaluate an SEO Company

    Getting the service of an SEO company will require you to spend an amount. That is why, you have to evaluate first the prospect company if it is the right one you are looking to work with your website.

    Read the article

  • SEO Company Tips

    It is very important to get your website search engine optimized. No matter how hard you work on the website and how well you design it, chances are the website will remain largely unnoticed if you cannot ensure a good SEO for it.

    Read the article

  • Basics of SEO

    SEO stands for "search engine optimization." It is the process of promoting a website to such an extent that it starts appearing on the search engine results page (SERPS).

    Read the article

  • How Do SEO Consultancies Work?

    SEO Consultancies have a very different way of working and functioning. Enterprises that want to have their websites optimized approach the consultancies to either take up the assignment full time or provide part time consulting services.

    Read the article

  • Finding the Best SEO Company

    In order to find the best SEO company, there are just a few things to look for. Basically, you want to know what services the organization provides. More services provided means more value.

    Read the article

  • SEO - A Never Ending Process!

    Any business or institution has to have a website to reach out to its customers. This site should also have a good ranking among the search engine results so that it enjoys visits. For this, the site has to be optimized by a good SEO expert. And it has to go on continually for ever and ever.

    Read the article

  • local wordpress installation, plugin installation and file permissions

    - by user1205935
    I have a local wordpress installation and got everything working, until I tried to install a new plugin. Trying to activate the plugin, wordpress asked me for FTP connection information, which I understood to be a failure of write-access to the plugins directory. Apache runs as www-data, so I ran sudo chown -R www-data: /var/www/wordpress to make the wordpress directory writable for Apache. But now, I cannot edit the files as user anymore. Changing file permissions back to chown -R user: /var/www/wordpress/wp-content/themes, the wordpress dashboard complains again, that it doesn't have sufficient access. I tried various "solutions" online, but none have worked so far. Do I really need to install something like proftp and create an FTP user & password for my local server? Or can I circumvent the problem with some nifty file permission settings, which allow both me and Apache to access/write the files?

    Read the article

  • Setting up a local AI server - easy with Solaris 11

    - by Stefan Hinker
    Many things are new in Solaris 11, Autoinstall is one of them.  If, like me, you've known Jumpstart for the last 2 centuries or so, you'll have to start from scratch.  Well, almost, as the concepts are similar, and it's not all that difficult.  Just new. I wanted to have an AI server that I could use for demo purposes, on the train if need be.  That answers the question of hardware requirements: portable.  But let's start at the beginning. First, you need an OS image, of course.  In the new world of Solaris 11, it is now called a repository.  The original can be downloaded from the Solaris 11 page at Oracle.   What you want is the "Oracle Solaris 11 11/11 Repository Image", which comes in two parts that can be combined using cat.  MD5 checksums for these (and all other downloads from that page) are available closer to the top of the page. With that, building the repository is quick and simple: # zfs create -o mountpoint=/export/repo rpool/ai/repo # zfs create rpool/ai/repo/s11 # mount -o ro -F hsfs /tmp/sol-11-1111-repo-full.iso /mnt # rsync -aP /mnt/repo /export/repo/s11 # umount /mnt # pkgrepo rebuild -s /export/repo/sol11/repo # zfs snapshot rpool/ai/repo/sol11@fcs # pkgrepo info -s /export/repo/sol11/repo PUBLISHER PACKAGES STATUS UPDATED solaris 4292 online 2012-03-12T20:47:15.378639Z That's all there's to it.  Let's make a snapshot, just to be on the safe side.  You never know when one will come in handy.  To use this repository, you could just add it as a file-based publisher: # pkg set-publisher -g file:///export/repo/sol11/repo solaris In case I'd want to access this repository through a (virtual) network, i'll now quickly activate the repository-service: # svccfg -s application/pkg/server \ setprop pkg/inst_root=/export/repo/sol11/repo # svccfg -s application/pkg/server setprop pkg/readonly=true # svcadm refresh application/pkg/server # svcadm enable application/pkg/server That's all you need - now point your browser to http://localhost/ to view your beautiful repository-server. Step 1 is done.  All of this, by the way, is nicely documented in the README file that's contained in the repository image. Of course, we already have updates to the original release.  You can find them in MOS in the Oracle Solaris 11 Support Repository Updates (SRU) Index.  You can simply add these to your existing repository or create separate repositories for each SRU.  The individual SRUs are self-sufficient and incremental - SRU4 includes all updates from SRU2 and SRU3.  With ZFS, you can also get both: A full repository with all updates and at the same time incremental ones up to each of the updates: # mount -o ro -F hsfs /tmp/sol-11-1111-sru4-05-incr-repo.iso /mnt # pkgrecv -s /mnt/repo -d /export/repo/sol11/repo '*' # umount /mnt # pkgrepo rebuild -s /export/repo/sol11/repo # zfs snapshot rpool/ai/repo/sol11@sru4 # zfs set snapdir=visible rpool/ai/repo/sol11 # svcadm restart svc:/application/pkg/server:default The normal repository is now updated to SRU4.  Thanks to the ZFS snapshots, there is also a valid repository of Solaris 11 11/11 without the update located at /export/repo/sol11/.zfs/snapshot/fcs . If you like, you can also create another repository service for each update, running on a separate port. But now lets continue with the AI server.  Just a little bit of reading in the dokumentation makes it clear that we will need to run a DHCP server for this.  Since I already have one active (for my SunRay installation) and since it's a good idea to have these kinds of services separate anyway, I decided to create this in a Zone.  So, let's create one first: # zfs create -o mountpoint=/export/install rpool/ai/install # zfs create -o mountpoint=/zones rpool/zones # zonecfg -z ai-server zonecfg:ai-server> create create: Using system default template 'SYSdefault' zonecfg:ai-server> set zonepath=/zones/ai-server zonecfg:ai-server> add dataset zonecfg:ai-server:dataset> set name=rpool/ai/install zonecfg:ai-server:dataset> set alias=install zonecfg:ai-server:dataset> end zonecfg:ai-server> commit zonecfg:ai-server> exit # zoneadm -z ai-server install # zoneadm -z ai-server boot ; zlogin -C ai-server Give it a hostname and IP address at first boot, and there's the Zone.  For a publisher for Solaris packages, it will be bound to the "System Publisher" from the Global Zone.  The /export/install filesystem, of course, is intended to be used by the AI server.  Let's configure it now: #zlogin ai-server root@ai-server:~# pkg install install/installadm root@ai-server:~# installadm create-service -n x86-fcs -a i386 \ -s pkg://solaris/install-image/[email protected],5.11-0.175.0.0.0.2.1482 \ -d /export/install/fcs -i 192.168.2.20 -c 3 With that, the core AI server is already done.  What happened here?  First, I installed the AI server software.  IPS makes that nice and easy.  If necessary, it'll also pull in the required DHCP-Server and anything else that might be missing.  Watch out for that DHCP server software.  In Solaris 11, there are two different versions.  There's the one you might know from Solaris 10 and earlier, and then there's a new one from ISC.  The latter is the one we need for AI.  The SMF service names of both are very similar.  The "old" one is "svc:/network/dhcp-server:default". The ISC-server comes with several SMF-services. We at least need "svc:/network/dhcp/server:ipv4".  The command "installadm create-service" creates the installation-service. It's called "x86-fcs", serves the "i386" architecture and gets its boot image from the repository of the system publisher, using version 5.11,5.11-0.175.0.0.0.2.1482, which is Solaris 11 11/11.  (The option "-a i386" in this example is optional, since the installserver itself runs on a x86 machine.) The boot-environment for clients is created in /export/install/fcs and the DHCP-server is configured for 3 IP-addresses starting at 192.168.2.20.  This configuration is stored in a very human readable form in /etc/inet/dhcpd4.conf.  An AI-service for SPARC systems could be created in the very same way, using "-a sparc" as the architecture option. Now we would be ready to register and install the first client.  It would be installed with the default "solaris-large-server" using the publisher "http://pkg.oracle.com/solaris/release" and would query it's configuration interactively at first boot.  This makes it very clear that an AI-server is really only a boot-server.  The true source of packets to install can be different.  Since I don't like these defaults for my demo setup, I did some extra config work for my clients. The configuration of a client is controlled by manifests and profiles.  The manifest controls which packets are installed and how the filesystems are layed out.  In that, it's very much like the old "rules.ok" file in Jumpstart.  Profiles contain additional configuration like root passwords, primary user account, IP addresses, keyboard layout etc.  Hence, profiles are very similar to the old sysid.cfg file. The easiest way to get your hands on a manifest is to ask the AI server we just created to give us it's default one.  Then modify that to our liking and give it back to the installserver to use: root@ai-server:~# mkdir -p /export/install/configs/manifests root@ai-server:~# cd /export/install/configs/manifests root@ai-server:~# installadm export -n x86-fcs -m orig_default \ -o orig_default.xml root@ai-server:~# cp orig_default.xml s11-fcs.small.local.xml root@ai-server:~# vi s11-fcs.small.local.xml root@ai-server:~# more s11-fcs.small.local.xml <!DOCTYPE auto_install SYSTEM "file:///usr/share/install/ai.dtd.1"> <auto_install> <ai_instance name="S11 Small fcs local"> <target> <logical> <zpool name="rpool" is_root="true"> <filesystem name="export" mountpoint="/export"/> <filesystem name="export/home"/> <be name="solaris"/> </zpool> </logical> </target> <software type="IPS"> <destination> <image> <!-- Specify locales to install --> <facet set="false">facet.locale.*</facet> <facet set="true">facet.locale.de</facet> <facet set="true">facet.locale.de_DE</facet> <facet set="true">facet.locale.en</facet> <facet set="true">facet.locale.en_US</facet> </image> </destination> <source> <publisher name="solaris"> <origin name="http://192.168.2.12/"/> </publisher> </source> <!-- By default the latest build available, in the specified IPS repository, is installed. If another build is required, the build number has to be appended to the 'entire' package in the following form: <name>pkg:/[email protected]#</name> --> <software_data action="install"> <name>pkg:/[email protected],5.11-0.175.0.0.0.2.0</name> <name>pkg:/group/system/solaris-small-server</name> </software_data> </software> </ai_instance> </auto_install> root@ai-server:~# installadm create-manifest -n x86-fcs -d \ -f ./s11-fcs.small.local.xml root@ai-server:~# installadm list -m -n x86-fcs Manifest Status Criteria -------- ------ -------- S11 Small fcs local Default None orig_default Inactive None The major points in this new manifest are: Install "solaris-small-server" Install a few locales less than the default.  I'm not that fluid in French or Japanese... Use my own package service as publisher, running on IP address 192.168.2.12 Install the initial release of Solaris 11:  pkg:/[email protected],5.11-0.175.0.0.0.2.0 Using a similar approach, I'll create a default profile interactively and use it as a template for a few customized building blocks, each defining a part of the overall system configuration.  The modular approach makes it easy to configure numerous clients later on: root@ai-server:~# mkdir -p /export/install/configs/profiles root@ai-server:~# cd /export/install/configs/profiles root@ai-server:~# sysconfig create-profile -o default.xml root@ai-server:~# cp default.xml general.xml; cp default.xml mars.xml root@ai-server:~# cp default.xml user.xml root@ai-server:~# vi general.xml mars.xml user.xml root@ai-server:~# more general.xml mars.xml user.xml :::::::::::::: general.xml :::::::::::::: <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type="profile" name="sysconfig"> <service version="1" type="service" name="system/timezone"> <instance enabled="true" name="default"> <property_group type="application" name="timezone"> <propval type="astring" name="localtime" value="Europe/Berlin"/> </property_group> </instance> </service> <service version="1" type="service" name="system/environment"> <instance enabled="true" name="init"> <property_group type="application" name="environment"> <propval type="astring" name="LANG" value="C"/> </property_group> </instance> </service> <service version="1" type="service" name="system/keymap"> <instance enabled="true" name="default"> <property_group type="system" name="keymap"> <propval type="astring" name="layout" value="US-English"/> </property_group> </instance> </service> <service version="1" type="service" name="system/console-login"> <instance enabled="true" name="default"> <property_group type="application" name="ttymon"> <propval type="astring" name="terminal_type" value="vt100"/> </property_group> </instance> </service> <service version="1" type="service" name="network/physical"> <instance enabled="true" name="default"> <property_group type="application" name="netcfg"> <propval type="astring" name="active_ncp" value="DefaultFixed"/> </property_group> </instance> </service> <service version="1" type="service" name="system/name-service/switch"> <property_group type="application" name="config"> <propval type="astring" name="default" value="files"/> <propval type="astring" name="host" value="files dns"/> <propval type="astring" name="printer" value="user files"/> </property_group> <instance enabled="true" name="default"/> </service> <service version="1" type="service" name="system/name-service/cache"> <instance enabled="true" name="default"/> </service> <service version="1" type="service" name="network/dns/client"> <property_group type="application" name="config"> <property type="net_address" name="nameserver"> <net_address_list> <value_node value="192.168.2.1"/> </net_address_list> </property> </property_group> <instance enabled="true" name="default"/> </service> </service_bundle> :::::::::::::: mars.xml :::::::::::::: <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type="profile" name="sysconfig"> <service version="1" type="service" name="network/install"> <instance enabled="true" name="default"> <property_group type="application" name="install_ipv4_interface"> <propval type="astring" name="address_type" value="static"/> <propval type="net_address_v4" name="static_address" value="192.168.2.100/24"/> <propval type="astring" name="name" value="net0/v4"/> <propval type="net_address_v4" name="default_route" value="192.168.2.1"/> </property_group> <property_group type="application" name="install_ipv6_interface"> <propval type="astring" name="stateful" value="yes"/> <propval type="astring" name="stateless" value="yes"/> <propval type="astring" name="address_type" value="addrconf"/> <propval type="astring" name="name" value="net0/v6"/> </property_group> </instance> </service> <service version="1" type="service" name="system/identity"> <instance enabled="true" name="node"> <property_group type="application" name="config"> <propval type="astring" name="nodename" value="mars"/> </property_group> </instance> </service> </service_bundle> :::::::::::::: user.xml :::::::::::::: <!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/service_bundle.dtd.1"> <service_bundle type="profile" name="sysconfig"> <service version="1" type="service" name="system/config-user"> <instance enabled="true" name="default"> <property_group type="application" name="root_account"> <propval type="astring" name="login" value="root"/> <propval type="astring" name="password" value="noIWillNotTellYouMyPasswordNotEvenEncrypted"/> <propval type="astring" name="type" value="role"/> </property_group> <property_group type="application" name="user_account"> <propval type="astring" name="login" value="stefan"/> <propval type="astring" name="password" value="noIWillNotTellYouMyPasswordNotEvenEncrypted"/> <propval type="astring" name="type" value="normal"/> <propval type="astring" name="description" value="Stefan Hinker"/> <propval type="count" name="uid" value="12345"/> <propval type="count" name="gid" value="10"/> <propval type="astring" name="shell" value="/usr/bin/bash"/> <propval type="astring" name="roles" value="root"/> <propval type="astring" name="profiles" value="System Administrator"/> <propval type="astring" name="sudoers" value="ALL=(ALL) ALL"/> </property_group> </instance> </service> </service_bundle> root@ai-server:~# installadm create-profile -n x86-fcs -f general.xml root@ai-server:~# installadm create-profile -n x86-fcs -f user.xml root@ai-server:~# installadm create-profile -n x86-fcs -f mars.xml \ -c ipv4=192.168.2.100 root@ai-server:~# installadm list -p Service Name Profile ------------ ------- x86-fcs general.xml mars.xml user.xml root@ai-server:~# installadm list -n x86-fcs -p Profile Criteria ------- -------- general.xml None mars.xml ipv4 = 192.168.2.100 user.xml None Here's the idea behind these files: "general.xml" contains settings valid for all my clients.  Stuff like DNS servers, for example, which in my case will always be the same. "user.xml" only contains user definitions.  That is, a root password and a primary user.Both of these profiles will be valid for all clients (for now). "mars.xml" defines network settings for an individual client.  This profile is associated with an IP-Address.  For this to work, I'll have to tweak the DHCP-settings in the next step: root@ai-server:~# installadm create-client -e 08:00:27:AA:3D:B1 -n x86-fcs root@ai-server:~# vi /etc/inet/dhcpd4.conf root@ai-server:~# tail -5 /etc/inet/dhcpd4.conf host 080027AA3DB1 { hardware ethernet 08:00:27:AA:3D:B1; fixed-address 192.168.2.100; filename "01080027AA3DB1"; } This completes the client preparations.  I manually added the IP-Address for mars to /etc/inet/dhcpd4.conf.  This is needed for the "mars.xml" profile.  Disabling arbitrary DHCP-replies will shut up this DHCP server, making my life in a shared environment a lot more peaceful ;-)Now, I of course want this installation to be completely hands-off.  For this to work, I'll need to modify the grub boot menu for this client slightly.  You can find it in /etc/netboot.  "installadm create-client" will create a new boot menu for every client, identified by the client's MAC address.  The template for this can be found in a subdirectory with the name of the install service, /etc/netboot/x86-fcs in our case.  If you don't want to change this manually for every client, modify that template to your liking instead. root@ai-server:~# cd /etc/netboot root@ai-server:~# cp menu.lst.01080027AA3DB1 menu.lst.01080027AA3DB1.org root@ai-server:~# vi menu.lst.01080027AA3DB1 root@ai-server:~# diff menu.lst.01080027AA3DB1 menu.lst.01080027AA3DB1.org 1,2c1,2 < default=1 < timeout=10 --- > default=0 > timeout=30 root@ai-server:~# more menu.lst.01080027AA3DB1 default=1 timeout=10 min_mem64=0 title Oracle Solaris 11 11/11 Text Installer and command line kernel$ /x86-fcs/platform/i86pc/kernel/$ISADIR/unix -B install_media=htt p://$serverIP:5555//export/install/fcs,install_service=x86-fcs,install_svc_addre ss=$serverIP:5555 module$ /x86-fcs/platform/i86pc/$ISADIR/boot_archive title Oracle Solaris 11 11/11 Automated Install kernel$ /x86-fcs/platform/i86pc/kernel/$ISADIR/unix -B install=true,inst all_media=http://$serverIP:5555//export/install/fcs,install_service=x86-fcs,inst all_svc_address=$serverIP:5555,livemode=text module$ /x86-fcs/platform/i86pc/$ISADIR/boot_archive Now just boot the client off the network using PXE-boot.  For my demo purposes, that's a client from VirtualBox, of course.  That's all there's to it.  And despite the fact that this blog entry is a little longer - that wasn't that hard now, was it?

    Read the article

< Previous Page | 80 81 82 83 84 85 86 87 88 89 90 91  | Next Page >