Search Results

Search found 11639 results on 466 pages for 'numerical methods'.

Page 84/466 | < Previous Page | 80 81 82 83 84 85 86 87 88 89 90 91  | Next Page >

  • Reporting Solution in PHP / CodeIgniter - Server side logic vs client side

    - by dot
    I'm building a report for an end user. They would like to see a list of all widgets... but then also like to see widgets with missing attributes, like missing names, or missing size. So i was thinking of creating one method that returns json data containing all widgets... and then using javascript to let them filter the data for missing data, instead of requerying the database. Ultimately, they need to be able to save all "reports" (filtered versions of data) inside a csv file. These are the two options I'm mulling over: Design 1 Create 3 separate methods in my controller/model like: get_all_data() get_records_with_missing_names() get_records_with_missing_size() And then when these methods are called, I would display the data on screen and give them a button to save to csv file. Design 2 Create one method called get_all_data() and then somehow, give them tools in the view to filter the json data using tables etc... and then letting them save subsets of the data. The reality is, in order to display all data, I still need to massage the data, and therefore, I know which records are missing attributes. So i'd rather not create separate methods by each filter. I'm not sure how I would do that just yet but at this point, i would like to know some pros/cons of each method. Thanks.

    Read the article

  • Semantic coupling vs. large class

    - by user106587
    I have hardware I communicate with via TCP. This hardware accepts ~40 different commands/requests with about 20 different responses. I've created a HardwareProxy class which has a TcpClient to send and receive data. I didn't like the idea of having 40 different methods to send the commands/requests, so I started down the path of having a single SendCommand method which takes an ICommand and returns an IResponse, this results in 40 different SpecificCommand classes. The problem is this requires semantic coupling, i.e. the method that invokes SendCommand receives an IResponse which it has to downcast to SpecificResponse, I use a future map which I believe ensures the appropriate SpecificResponse, but I get the impression this code smells. Besides the semantic coupling, ICommand and IResponse are essentially empty abstract classes (Marker Interfaces) and this seems suspicious to me. If I go with the 40 methods I don't think I have broken the single responisbility principle as the responsibility of the HardwareProxy class is to act as the hardware, which has all of these commands. This route is just ugly, plus I'd like to have Asynchronous versions, so there'd be about 80 methods. Is it better to bite the bullet and have a large class, accept the coupling and MarkerInterfaces for a smaller soultuion, or am I missing a better way? Thanks.

    Read the article

  • Matrices: Arrays or separate member variables?

    - by bjz
    I'm teaching myself 3D maths and in the process building my own rudimentary engine (of sorts). I was wondering what would be the best way to structure my matrix class. There are a few options: Separate member variables: struct Mat4 { float m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44; // methods } A multi-dimensional array: struct Mat4 { float[4][4] m; // methods } An array of vectors struct Mat4 { Vec4[4] m; // methods } I'm guessing there would be positives and negatives to each. From 3D Math Primer for Graphics and Game Development, 2nd Edition p.155: Matrices use 1-based indices, so the first row and column are numbered 1. For example, a12 (read “a one two,” not “a twelve”) is the element in the first row, second column. Notice that this is different from programming languages such as C++ and Java, which use 0-based array indices. A matrix does not have a column 0 or row 0. This difference in indexing can cause some confusion if matrices are stored using an actual array data type. For this reason, it’s common for classes that store small, fixed size matrices of the type used for geometric purposes to give each element its own named member variable, such as float a11, instead of using the language’s native array support with something like float elem[3][3]. So that's one vote for method one. Is this really the accepted way to do things? It seems rather unwieldy if the only benefit would be sticking with the conventional math notation.

    Read the article

  • Take a snapshot with JavaFX!

    - by user12610255
    JavaFX 2.2 has a "snapshot" feature that enables you to take a picture of any node or scene. Take a look at the API Documentation and you will find new snapshot methods in the javafx.scene.Scene class. The most basic version has the following signature: public WritableImage snapshot(WritableImage image) The WritableImage class (also introduced in JavaFX 2.2) lives in the javafx.scene.image package, and represents a custom graphical image that is constructed from pixels supplied by the application. In fact, there are 5 new classes in javafx.scene.image: PixelFormat: Defines the layout of data for a pixel of a given format. WritablePixelFormat: Represents a pixel format that can store full colors and so can be used as a destination format to write pixel data from an arbitrary image. PixelReader: Defines methods for retrieving the pixel data from an Image or other surface containing pixels. PixelWriter: Defines methods for writing the pixel data of a WritableImage or other surface containing writable pixels. WritableImage: Represents a custom graphical image that is constructed from pixels supplied by the application, and possibly from PixelReader objects from any number of sources, including images read from a file or URL. The API documentation contains lots of information, so go investigate and have fun with these useful new classes! -- Scott Hommel

    Read the article

  • Use decorator and factory together to extend objects?

    - by TheClue
    I'm new to OOP and design pattern. I've a simple app that handles the generation of Tables, Columns (that belong to Table), Rows (that belong to Column) and Values (that belong to Rows). Each of these object can have a collection of Property, which is in turn defined as an enum. They are all interfaces: I used factories to get concrete instances of these products, depending on circumnstances. Now I'm facing the problem of extending these classes. Let's say I need another product called "SpecialTable" which in turn has some special properties or new methods like 'getSomethingSpecial' or an extended set of Property. The only way is to extend/specialize all my elements (ie. build a SpecialTableFactory, a SpecialTable interface and a SpecialTableImpl concrete)? What to do if, let's say, I plan to use standard methods like addRow(Column column, String name) that doesn't need to be specialized? I don't like the idea to inherit factories and interfaces, but since SpecialTable has more methods than Table i guess it cannot share the same factory. Am I wrong? Another question: if I need to define product properties at run time (a Table that is upgraded to SpecialTable at runtime), i guess i should use a decorator. Is it possible (and how) to combine both factory and decorator design? Is it better to use a State or Strategy pattern, instead?

    Read the article

  • How do you plan your asynchronous code?

    - by NullOrEmpty
    I created a library that is a invoker for a web service somewhere else. The library exposes asynchronous methods, since web service calls are a good candidate for that matter. At the beginning everything was just fine, I had methods with easy to understand operations in a CRUD fashion, since the library is a kind of repository. But then business logic started to become complex, and some of the procedures involves the chaining of many of these asynchronous operations, sometimes with different paths depending on the result value, etc.. etc.. Suddenly, everything is very messy, to stop the execution in a break point it is not very helpful, to find out what is going on or where in the process timeline have you stopped become a pain... Development becomes less quick, less agile, and to catch those bugs that happens once in a 1000 times becomes a hell. From the technical point, a repository that exposes asynchronous methods looked like a good idea, because some persistence layers could have delays, and you can use the async approach to do the most of your hardware. But from the functional point of view, things became very complex, and considering those procedures where a dozen of different calls were needed... I don't know the real value of the improvement. After read about TPL for a while, it looked like a good idea for managing tasks, but in the moment you have to combine them and start to reuse existing functionality, things become very messy. I have had a good experience using it for very concrete scenarios, but bad experience using them broadly. How do you work asynchronously? Do you use it always? Or just for long running processes? Thanks.

    Read the article

  • Repository query conditions, dependencies and DRY

    - by vFragosop
    To keep it simple, let's suppose an application which has Accounts and Users. Each account may have any number of users. There's also 3 consumers of UserRepository: An admin interface which may list all users Public front-end which may list all users An account authenticated API which should only list it's own users Assuming UserRepository is something like this: class UsersRepository extends DatabaseAbstraction { private function query() { return $this->database()->select('users.*'); } public function getAll() { return $this->query()->exec(); } // IMPORTANT: // Tons of other methods for searching, filtering, // joining of other tables, ordering and such... } Keeping in mind the comment above, and the necessity to abstract user querying conditions, How should I handle querying of users filtering by account_id? I can picture three possible roads: 1. Should I create an AccountUsersRepository? class AccountUsersRepository extends UserRepository { public function __construct(Account $account) { $this->account = $account; } private function query() { return parent::query() ->where('account_id', '=', $this->account->id); } } This has the advantage of reducing the duplication of UsersRepository methods, but doesn't quite fit into anything I've read about DDD so far (I'm rookie by the way) 2. Should I put it as a method on AccountsRepository? class AccountsRepository extends DatabaseAbstraction { public function getAccountUsers(Account $account) { return $this->database() ->select('users.*') ->where('account_id', '=', $account->id) ->exec(); } } This requires the duplication of all UserRepository methods and may need another UserQuery layer, that implements those querying logic on chainable way. 3. Should I query UserRepository from within my account entity? class Account extends Entity { public function getUsers() { return UserRepository::findByAccountId($this->id); } } This feels more like an aggregate root for me, but introduces dependency of UserRepository on Account entity, which may violate a few principles. 4. Or am I missing the point completely? Maybe there's an even better solution? Footnotes: Besides permissions being a Service concern, in my understanding, they shouldn't implement SQL query but leave that to repositories since those may not even be SQL driven.

    Read the article

  • Should if statments be in inner or outer method?

    - by mjcopple
    Which of these designs is better? What are the pros and cons of each? Which one would you use? Any other suggestions of how to deal with methods like is are appreciated. It is reasonable to assume that Draw() is the only place that the other draw methods are called from. This needs to expand to many more Draw* methods and Show* properties, not just the three shown here. public void Draw() { if (ShowAxis) { DrawAxis(); } if (ShowLegend) { DrawLegend(); } if (ShowPoints && Points.Count > 0) { DrawPoints(); } } private void DrawAxis() { // Draw things. } private void DrawLegend() { // Draw things. } private void DrawPoints() { // Draw things. } Or public void Draw() { DrawAxis(); DrawLegend(); DrawPoints(); } private void DrawAxis() { if (!ShowAxis) { return; } // Draw things. } private void DrawLegend() { if (!ShowLegend) { return; } // Draw things. } private void DrawPoints() { if (!ShowPoints || Points.Count <= 0)) { return; } // Draw things. }

    Read the article

  • Using jQuery to POST Form Data to an ASP.NET ASMX AJAX Web Service

    - by Rick Strahl
    The other day I got a question about how to call an ASP.NET ASMX Web Service or PageMethods with the POST data from a Web Form (or any HTML form for that matter). The idea is that you should be able to call an endpoint URL, send it regular urlencoded POST data and then use Request.Form[] to retrieve the posted data as needed. My first reaction was that you can’t do it, because ASP.NET ASMX AJAX services (as well as Page Methods and WCF REST AJAX Services) require that the content POSTed to the server is posted as JSON and sent with an application/json or application/x-javascript content type. IOW, you can’t directly call an ASP.NET AJAX service with regular urlencoded data. Note that there are other ways to accomplish this. You can use ASP.NET MVC and a custom route, an HTTP Handler or separate ASPX page, or even a WCF REST service that’s configured to use non-JSON inputs. However if you want to use an ASP.NET AJAX service (or Page Methods) with a little bit of setup work it’s actually quite easy to capture all the form variables on the client and ship them up to the server. The basic steps needed to make this happen are: Capture form variables into an array on the client with jQuery’s .serializeArray() function Use $.ajax() or my ServiceProxy class to make an AJAX call to the server to send this array On the server create a custom type that matches the .serializeArray() name/value structure Create extension methods on NameValue[] to easily extract form variables Create a [WebMethod] that accepts this name/value type as an array (NameValue[]) This seems like a lot of work but realize that steps 3 and 4 are a one time setup step that can be reused in your entire site or multiple applications. Let’s look at a short example that looks like this as a base form of fields to ship to the server: The HTML for this form looks something like this: <div id="divMessage" class="errordisplay" style="display: none"> </div> <div> <div class="label">Name:</div> <div><asp:TextBox runat="server" ID="txtName" /></div> </div> <div> <div class="label">Company:</div> <div><asp:TextBox runat="server" ID="txtCompany"/></div> </div> <div> <div class="label" ></div> <div> <asp:DropDownList runat="server" ID="lstAttending"> <asp:ListItem Text="Attending" Value="Attending"/> <asp:ListItem Text="Not Attending" Value="NotAttending" /> <asp:ListItem Text="Maybe Attending" Value="MaybeAttending" /> <asp:ListItem Text="Not Sure Yet" Value="NotSureYet" /> </asp:DropDownList> </div> </div> <div> <div class="label">Special Needs:<br /> <small>(check all that apply)</small></div> <div> <asp:ListBox runat="server" ID="lstSpecialNeeds" SelectionMode="Multiple"> <asp:ListItem Text="Vegitarian" Value="Vegitarian" /> <asp:ListItem Text="Vegan" Value="Vegan" /> <asp:ListItem Text="Kosher" Value="Kosher" /> <asp:ListItem Text="Special Access" Value="SpecialAccess" /> <asp:ListItem Text="No Binder" Value="NoBinder" /> </asp:ListBox> </div> </div> <div> <div class="label"></div> <div> <asp:CheckBox ID="chkAdditionalGuests" Text="Additional Guests" runat="server" /> </div> </div> <hr /> <input type="button" id="btnSubmit" value="Send Registration" /> The form includes a few different kinds of form fields including a multi-selection listbox to demonstrate retrieving multiple values. Setting up the Server Side [WebMethod] The [WebMethod] on the server we’re going to call is going to be very simple and just capture the content of these values and echo then back as a formatted HTML string. Obviously this is overly simplistic but it serves to demonstrate the simple point of capturing the POST data on the server in an AJAX callback. public class PageMethodsService : System.Web.Services.WebService { [WebMethod] public string SendRegistration(NameValue[] formVars) { StringBuilder sb = new StringBuilder(); sb.AppendFormat("Thank you {0}, <br/><br/>", HttpUtility.HtmlEncode(formVars.Form("txtName"))); sb.AppendLine("You've entered the following: <hr/>"); foreach (NameValue nv in formVars) { // strip out ASP.NET form vars like _ViewState/_EventValidation if (!nv.name.StartsWith("__")) { if (nv.name.StartsWith("txt") || nv.name.StartsWith("lst") || nv.name.StartsWith("chk")) sb.Append(nv.name.Substring(3)); else sb.Append(nv.name); sb.AppendLine(": " + HttpUtility.HtmlEncode(nv.value) + "<br/>"); } } sb.AppendLine("<hr/>"); string[] needs = formVars.FormMultiple("lstSpecialNeeds"); if (needs == null) sb.AppendLine("No Special Needs"); else { sb.AppendLine("Special Needs: <br/>"); foreach (string need in needs) { sb.AppendLine("&nbsp;&nbsp;" + need + "<br/>"); } } return sb.ToString(); } } The key feature of this method is that it receives a custom type called NameValue[] which is an array of NameValue objects that map the structure that the jQuery .serializeArray() function generates. There are two custom types involved in this: The actual NameValue type and a NameValueExtensions class that defines a couple of extension methods for the NameValue[] array type to allow for single (.Form()) and multiple (.FormMultiple()) value retrieval by name. The NameValue class is as simple as this and simply maps the structure of the array elements of .serializeArray(): public class NameValue { public string name { get; set; } public string value { get; set; } } The extension method class defines the .Form() and .FormMultiple() methods to allow easy retrieval of form variables from the returned array: /// <summary> /// Simple NameValue class that maps name and value /// properties that can be used with jQuery's /// $.serializeArray() function and JSON requests /// </summary> public static class NameValueExtensionMethods { /// <summary> /// Retrieves a single form variable from the list of /// form variables stored /// </summary> /// <param name="formVars"></param> /// <param name="name">formvar to retrieve</param> /// <returns>value or string.Empty if not found</returns> public static string Form(this NameValue[] formVars, string name) { var matches = formVars.Where(nv => nv.name.ToLower() == name.ToLower()).FirstOrDefault(); if (matches != null) return matches.value; return string.Empty; } /// <summary> /// Retrieves multiple selection form variables from the list of /// form variables stored. /// </summary> /// <param name="formVars"></param> /// <param name="name">The name of the form var to retrieve</param> /// <returns>values as string[] or null if no match is found</returns> public static string[] FormMultiple(this NameValue[] formVars, string name) { var matches = formVars.Where(nv => nv.name.ToLower() == name.ToLower()).Select(nv => nv.value).ToArray(); if (matches.Length == 0) return null; return matches; } } Using these extension methods it’s easy to retrieve individual values from the array: string name = formVars.Form("txtName"); or multiple values: string[] needs = formVars.FormMultiple("lstSpecialNeeds"); if (needs != null) { // do something with matches } Using these functions in the SendRegistration method it’s easy to retrieve a few form variables directly (txtName and the multiple selections of lstSpecialNeeds) or to iterate over the whole list of values. Of course this is an overly simple example – in typical app you’d probably want to validate the input data and save it to the database and then return some sort of confirmation or possibly an updated data list back to the client. Since this is a full AJAX service callback realize that you don’t have to return simple string values – you can return any of the supported result types (which are most serializable types) including complex hierarchical objects and arrays that make sense to your client code. POSTing Form Variables from the Client to the AJAX Service To call the AJAX service method on the client is straight forward and requires only use of little native jQuery plus JSON serialization functionality. To start add jQuery and the json2.js library to your page: <script src="Scripts/jquery.min.js" type="text/javascript"></script> <script src="Scripts/json2.js" type="text/javascript"></script> json2.js can be found here (be sure to remove the first line from the file): http://www.json.org/json2.js It’s required to handle JSON serialization for those browsers that don’t support it natively. With those script references in the document let’s hookup the button click handler and call the service: $(document).ready(function () { $("#btnSubmit").click(sendRegistration); }); function sendRegistration() { var arForm = $("#form1").serializeArray(); $.ajax({ url: "PageMethodsService.asmx/SendRegistration", type: "POST", contentType: "application/json", data: JSON.stringify({ formVars: arForm }), dataType: "json", success: function (result) { var jEl = $("#divMessage"); jEl.html(result.d).fadeIn(1000); setTimeout(function () { jEl.fadeOut(1000) }, 5000); }, error: function (xhr, status) { alert("An error occurred: " + status); } }); } The key feature in this code is the $("#form1").serializeArray();  call which serializes all the form fields of form1 into an array. Each form var is represented as an object with a name/value property. This array is then serialized into JSON with: JSON.stringify({ formVars: arForm }) The format for the parameter list in AJAX service calls is an object with one property for each parameter of the method. In this case its a single parameter called formVars and we’re assigning the array of form variables to it. The URL to call on the server is the name of the Service (or ASPX Page for Page Methods) plus the name of the method to call. On return the success callback receives the result from the AJAX callback which in this case is the formatted string which is simply assigned to an element in the form and displayed. Remember the result type is whatever the method returns – it doesn’t have to be a string. Note that ASP.NET AJAX and WCF REST return JSON data as a wrapped object so the result has a ‘d’ property that holds the actual response: jEl.html(result.d).fadeIn(1000); Slightly simpler: Using ServiceProxy.js If you want things slightly cleaner you can use the ServiceProxy.js class I’ve mentioned here before. The ServiceProxy class handles a few things for calling ASP.NET and WCF services more cleanly: Automatic JSON encoding Automatic fix up of ‘d’ wrapper property Automatic Date conversion on the client Simplified error handling Reusable and abstracted To add the service proxy add: <script src="Scripts/ServiceProxy.js" type="text/javascript"></script> and then change the code to this slightly simpler version: <script type="text/javascript"> proxy = new ServiceProxy("PageMethodsService.asmx/"); $(document).ready(function () { $("#btnSubmit").click(sendRegistration); }); function sendRegistration() { var arForm = $("#form1").serializeArray(); proxy.invoke("SendRegistration", { formVars: arForm }, function (result) { var jEl = $("#divMessage"); jEl.html(result).fadeIn(1000); setTimeout(function () { jEl.fadeOut(1000) }, 5000); }, function (error) { alert(error.message); } ); } The code is not very different but it makes the call as simple as specifying the method to call, the parameters to pass and the actions to take on success and error. No more remembering which content type and data types to use and manually serializing to JSON. This code also removes the “d” property processing in the response and provides more consistent error handling in that the call always returns an error object regardless of a server error or a communication error unlike the native $.ajax() call. Either approach works and both are pretty easy. The ServiceProxy really pays off if you use lots of service calls and especially if you need to deal with date values returned from the server  on the client. Summary Making Web Service calls and getting POST data to the server is not always the best option – ASP.NET and WCF AJAX services are meant to work with data in objects. However, in some situations it’s simply easier to POST all the captured form data to the server instead of mapping all properties from the input fields to some sort of message object first. For this approach the above POST mechanism is useful as it puts the parsing of the data on the server and leaves the client code lean and mean. It’s even easy to build a custom model binder on the server that can map the array values to properties on an object generically with some relatively simple Reflection code and without having to manually map form vars to properties and do string conversions. Keep in mind though that other approaches also abound. ASP.NET MVC makes it pretty easy to create custom routes to data and the built in model binder makes it very easy to deal with inbound form POST data in its original urlencoded format. The West Wind West Wind Web Toolkit also includes functionality for AJAX callbacks using plain POST values. All that’s needed is a Method parameter to query/form value to specify the method to be called on the server. After that the content type is completely optional and up to the consumer. It’d be nice if the ASP.NET AJAX Service and WCF AJAX Services weren’t so tightly bound to the content type so that you could more easily create open access service endpoints that can take advantage of urlencoded data that is everywhere in existing pages. It would make it much easier to create basic REST endpoints without complicated service configuration. Ah one can dream! In the meantime I hope this article has given you some ideas on how you can transfer POST data from the client to the server using JSON – it might be useful in other scenarios beyond ASP.NET AJAX services as well. Additional Resources ServiceProxy.js A small JavaScript library that wraps $.ajax() to call ASP.NET AJAX and WCF AJAX Services. Includes date parsing extensions to the JSON object, a global dataFilter for processing dates on all jQuery JSON requests, provides cleanup for the .NET wrapped message format and handles errors in a consistent fashion. Making jQuery Calls to WCF/ASMX with a ServiceProxy Client More information on calling ASMX and WCF AJAX services with jQuery and some more background on ServiceProxy.js. Note the implementation has slightly changed since the article was written. ww.jquery.js The West Wind West Wind Web Toolkit also includes ServiceProxy.js in the West Wind jQuery extension library. This version is slightly different and includes embedded json encoding/decoding based on json2.js.© Rick Strahl, West Wind Technologies, 2005-2010Posted in jQuery  ASP.NET  AJAX  

    Read the article

  • Nice level not working on linux

    - by xioxox
    I have some highly floating point intensive processes doing very little I/O. One is called "xspec", which calculates a numerical model and returns a floating point result back to a master process every second (via stdout). It is niced at the 19 level. I have another simple process "cpufloattest" which just does numerical computations in a tight loop. It is not niced. I have a 4-core i7 system with hyperthreading disabled. I have started 4 of each type of process. Why is the Linux scheduler (Linux 3.4.2) not properly limiting the CPU time taken up by the niced processes? Cpu(s): 56.2%us, 1.0%sy, 41.8%ni, 0.0%id, 0.0%wa, 0.9%hi, 0.1%si, 0.0%st Mem: 12297620k total, 12147472k used, 150148k free, 831564k buffers Swap: 2104508k total, 71172k used, 2033336k free, 4753956k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 32399 jss 20 0 44728 32m 772 R 62.7 0.3 4:17.93 cpufloattest 32400 jss 20 0 44728 32m 744 R 53.1 0.3 4:14.17 cpufloattest 32402 jss 20 0 44728 32m 744 R 51.1 0.3 4:14.09 cpufloattest 32398 jss 20 0 44728 32m 744 R 48.8 0.3 4:15.44 cpufloattest 3989 jss 39 19 1725m 690m 7744 R 44.1 5.8 1459:59 xspec 3981 jss 39 19 1725m 689m 7744 R 42.1 5.7 1459:34 xspec 3985 jss 39 19 1725m 689m 7744 R 42.1 5.7 1460:51 xspec 3993 jss 39 19 1725m 691m 7744 R 38.8 5.8 1458:24 xspec The scheduler does what I expect if I start 8 of the cpufloattest processes, with 4 of them niced (i.e. 4 with most of the CPU, and 4 with very little)

    Read the article

  • Event Log "Wake Source" when system wakes from sleep

    - by Doltknuckle
    So I've been troubleshooting sleep timers for our systems and have run across an interesting issue. I need a way to report how long a system was awake after a number of different inputs. Now, I've discovered that the System Log tracks wake and sleep events and even tells you the times that everything happens at. The thing is doesn't tell you is what triggered the wake event. It does give you a numerical code however. Here are some examples of what I am finding. Index : 2901 EntryType : Information InstanceId : 1 Message : The system has resumed from sleep. Sleep Time: 2010-10-01T23:20:06.097488100Z Wake Time: 2010-10-03T17:41:12.796400500Z Wake Source: 0 Category : (0) CategoryNumber : 0 Source : Microsoft-Windows-Power-Troubleshooter -- Index : 2841 EntryType : Information InstanceId : 1 Message : The system has resumed from sleep. Sleep Time: 2010-10-01T19:19:37.239789600Z Wake Time: 2010-10-01T21:28:48.921200800Z Wake Source: 4HID Keyboard Device Category : (0) CategoryNumber : 0 Source : Microsoft-Windows-Power-Troubleshooter So here's my question: Does anyone know what the different numerical codes for the "Wake Source" mean? I think "0" is a magic packet and "4" is a USB device. Does anyone have any idea if there is any documentation out there on this for Windows 7? Thanks in advance

    Read the article

  • Method interception in PHP 5.*

    - by Rolf
    Hi everybody, I'm implementing a Log system for PHP, and I'm a bit stuck. All the configuration is defined in an XML file, that declares every method to be logged. XML is well parsed and converted into a multidimensionnal array (classname = array of methods). So far, so good. Let's take a simple example: #A.php class A { public function foo($bar) { echo ' // Hello there !'; } public function bar($foo) { echo " $ù$ùmezf$z !"; } } #B.php class B { public function far($boo) { echo $boo; } } Now, let's say I've this configuration file: <interceptor> <methods class="__CLASS_DIR__A.php"> <method name="foo"> <log-level>INFO</log-level> <log-message>Transaction init</log-message> </method> </methods> <methods class="__CLASS_DIR__B.php"> <method name="far"> <log-level>DEBUG</log-level> <log-message>Useless</log-message> </method> </methods> </interceptor> The thing I'd like AT RUNTIME ONLY (once the XML parser has done his job) is: #Logger.php (its definitely NOT a final version) -- generated by the XML parser class Logger { public function __call($name,$args) { $log_level = args[0]; $args = array_slice($args,1); switch($method_name) { case 'foo': case 'far': //case ..... //write in log files break; } //THEN, RELAY THE CALL TO THE INITIAL METHOD } } #"dynamic" A.php class A extends Logger { public function foo($log_level, $bar) { echo ' // Hello there !'; } public function bar($foo) { echo " $ù$ùmezf$z !"; } } #"dynamic" B.php class B extends Logger { public function far($log_level, $boo) { echo $boo; } } The big challenge here is to transform A and B into their "dynamic" versions, once the XML parser has completed its job. The ideal would be to achieve that without modifying the code of A and B at all (I mean, in the files) - or at least find a way to come back to their original versions once the program is finished. To be clear, I wanna find the most proper way to intercept method calls in PHP. What are your ideas about it ??? Thanks in advance, Rolf

    Read the article

  • Hide a base class method from derived class, but still visible outside of assembly

    - by clintp
    This is a question about tidyness. The project is already working, I'm satisfied with the design but I have a couple of loose ends that I'd like to tie up. My project has a plugin architecture. The main body of the program dispatches work to the plugins that each reside in their own AppDomain. The plugins are described with an interface, which is used by the main program (to get the signature for invoking DispatchTaskToPlugin) and by the plugins themselves as an API contract: namespace AppServer.Plugin.Common { public interface IAppServerPlugin { void Register(); void DispatchTaskToPlugin(Task t); // Other methods omitted } } In the main body of the program Register() is called so that the plugin can register its callback methods with the base class, and then later DispatchTaskToPlugin() is called to get the plugin running. The plugins themselves are in two parts. There's a base class that implements the framework for the plugin (setup, housekeeping, teardown, etc..). This is where DispatchTaskToPlugin is actually defined: namespace AppServer.Plugin { abstract public class BasePlugin : MarshalByRefObject, AppServer.Plugin.Common.IAppServerPlugin { public void DispatchTaskToPlugin(Task t) { // ... // Eventual call to actual plugin code // } // Other methods omitted } } The actual plugins themselves only need to implement a Register() method (to give the base class the delegates to call eventually) and then their business logic. namespace AppServer.Plugin { public class Plugin : BasePlugin { override public void Register() { // Calls a method in the base class to register itself. } // Various callback methods, business logic, etc... } } Now in the base class (BasePlugin) I've implemented all kinds of convenience methods, collected data, etc.. for the plugins to use. Everything's kosher except for that lingering method DispatchTaskToPlugin(). It's not supposed to be callable from the Plugin class implementations -- they have no use for it. It's only needed by the dispatcher in the main body of the program. How can I prevent the derived classes (Plugin) from seeing the method in the base class (BasePlugin/DispatchTaskToPlugin) but still have it visible from outside of the assembly? I can split hairs and have DispatchTaskToPlugin() throw an exception if it's called from the derived classes, but that's closing the barn door a little late. I'd like to keep it out of Intellisense or possibly have the compiler take care of this for me. Suggestions?

    Read the article

  • Hide public method used to help test a .NET assembly

    - by ChrisW
    I have a .NET assembly, to be released. Its release build includes: A public, documented API of methods which people are supposed to use A public but undocumented API of other methods, which exist only in order to help test the assembly, and which people are not supposed to use The assembly to be released is a custom control, not an application. To regression-test it, I run it in a testing framework/application, which uses (in addition to the public/documented API) some advanced/undocumented methods which are exported from the control. For the public methods which I don't want people to use, I excluded them from the documentation using the <exclude> tag (supported by the Sandcastle Help File Builder), and the [EditorBrowsable] attribute, for example like this: /// <summary> /// Gets a <see cref="IEditorTransaction"/> instance, which helps /// to combine several DOM edits into a single transaction, which /// can be undone and redone as if they were a single, atomic operation. /// </summary> /// <returns>A <see cref="IEditorTransaction"/> instance.</returns> IEditorTransaction createEditorTransaction(); /// <exclude/> [EditorBrowsable(EditorBrowsableState.Never)] void debugDumpBlocks(TextWriter output); This successfully removes the method from the API documentation, and from Intellisense. However, if in a sample application program I right-click on an instance of the interface to see its definition in the metadata, I can still see the method, and the [EditorBrowsable] attribute as well, for example: // Summary: // Gets a ModelText.ModelDom.Nodes.IEditorTransaction instance, which helps // to combine several DOM edits into a single transaction, which can be undone // and redone as if they were a single, atomic operation. // // Returns: // A ModelText.ModelDom.Nodes.IEditorTransaction instance. IEditorTransaction createEditorTransaction(); // [EditorBrowsable(EditorBrowsableState.Never)] void debugDumpBlocks(TextWriter output); Questions: Is there a way to hide a public method, even from the meta data? If not then instead, for this scenario, would you recommend making the methods internal and using the InternalsVisibleTo attribute? Or would you recommend some other way, and if so what and why? Thank you.

    Read the article

  • Issues querying Access '07 database in C#

    - by Kye
    I'm doing a .NET unit as part of my studies. I've only just started, with a lecturer that as kinda failed to give me the most solid foundation with .NET, so excuse the noobishness. I'm making a pretty simple and generic database-driven application. I'm using C# and I'm accessing a Microsoft Access 2007 database. I've put the database-ish stuff in its own class with the methods just spitting out OleDbDataAdapters that I use for committing. I feed any methods which preform a query a DataSet object from the main program, which is where I'm keeping the data (multiple tables in the db). I've made a very generic private method that I use to perform SQL SELECT queries and have some public methods wrapping that method to get products, orders.etc (it's a generic retail database). The generic method uses a separate Connect method to actually make the connection, and it is as follows: private static OleDbConnection Connect() { OleDbConnection conn = new OleDbConnection( @"Provider=Microsoft.ACE.OLEDB.12.0; Data Source=C:\Temp\db.accdb"); return conn; } The generic method is as follows: private static OleDbDataAdapter GenericSelectQuery( DataSet ds, string namedTable, String selectString) { OleDbCommand oleCommand = new OleDbCommand(); OleDbConnection conn = Connect(); oleCommand.CommandText = selectString; oleCommand.Connection = conn; oleCommand.CommandType = CommandType.Text; OleDbDataAdapter adapter = new OleDbDataAdapter(); adapter.SelectCommand = oleCommand; adapter.MissingSchemaAction = MissingSchemaAction.AddWithKey; adapter.Fill(ds, namedTable); return adapter; } The wrapper methods just pass along the DataSet that they received from the main program, the namedtable string is the name of the table in the dataset, and you pass in the query you wish to make. It doesn't matter which query I give it (even something simple like SELECT * FROM TableName) I still get thrown an OleDbException, stating that there was en error with the FROM clause of the query. I've just resorted to building the queries with Access, but there's still no use. Obviously there's something wrong with my code, which wouldn't actually surprise me. Here are some wrapper methods I'm using. public static OleDbDataAdapter GetOrderLines(DataSet ds) { OleDbDataAdapter adapter = GenericSelectQuery( ds, "orderlines", "SELECT OrderLine.* FROM OrderLine;"); return adapter; } They all look the same, it's just the SQL that changes.

    Read the article

  • Unable to apt-get upgrade in ubuntu 11.10

    - by blackhole
    These are the errors shows by different client Update Manager: Traceback (most recent call last): File "/usr/lib/python2.7/dist-packages/aptdaemon/worker.py", line 968, in simulate trans.unauthenticated = self._simulate_helper(trans) File "/usr/lib/python2.7/dist-packages/aptdaemon/worker.py", line 1092, in _simulate_helper return depends, self._cache.required_download, \ File "/usr/lib/python2.7/dist-packages/apt/cache.py", line 235, in required_download pm.get_archives(fetcher, self._list, self._records) SystemError: E:Method has died unexpectedly!, E:Sub-process returned an error code (100), E:Method /usr/lib/apt/methods/ did not start correctly Synaptic package Manager E: Method has died unexpectedly! E: Sub-process returned an error code (100) E: Method /usr/lib/apt/methods/ did not start correctly E: Unable to lock the download directory Command: sudo apt-get upgrade Reading package lists... Done Building dependency tree Reading state information... Done The following packages will be upgraded: libfreetype6 libfreetype6-dev 2 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. Failed to exec method /usr/lib/apt/methods/ E: Method has died unexpectedly! E: Sub-process returned an error code (100) E: Method /usr/lib/apt/methods/ did not start correctly Can anyone one tell me how to resolve these issues ? I have no volatile packages or anything so i am even posting the preview of my sources.list file. # deb cdrom:[Ubuntu 10.10 _Maverick Meerkat_ - Release i386 (20101007)]/ maverick main restricted # See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to # newer versions of the distribution. deb http://in.archive.ubuntu.com/ubuntu/ oneiric main restricted ## Major bug fix updates produced after the final release of the ## distribution. deb http://in.archive.ubuntu.com/ubuntu/ oneiric-updates main restricted ## N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu ## team. Also, please note that software in universe WILL NOT receive any ## review or updates from the Ubuntu security team. deb http://in.archive.ubuntu.com/ubuntu/ oneiric universe deb http://in.archive.ubuntu.com/ubuntu/ oneiric-updates universe ## N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu ## team, and may not be under a free licence. Please satisfy yourself as to ## your rights to use the software. Also, please note that software in ## multiverse WILL NOT receive any review or updates from the Ubuntu ## security team. deb http://in.archive.ubuntu.com/ubuntu/ oneiric multiverse deb http://in.archive.ubuntu.com/ubuntu/ oneiric-updates multiverse ## Uncomment the following two lines to add software from the 'backports' ## repository. ## N.B. software from this repository may not have been tested as ## extensively as that contained in the main release, although it includes ## newer versions of some applications which may provide useful features. ## Also, please note that software in backports WILL NOT receive any review ## or updates from the Ubuntu security team. # deb http://in.archive.ubuntu.com/ubuntu/ maverick-backports main restricted universe multiverse # deb-src http://in.archive.ubuntu.com/ubuntu/ maverick-backports main restricted universe multiverse ## Uncomment the following two lines to add software from Canonical's ## 'partner' repository. ## This software is not part of Ubuntu, but is offered by Canonical and the ## respective vendors as a service to Ubuntu users. deb http://archive.canonical.com/ubuntu oneiric partner deb-src http://archive.canonical.com/ubuntu oneiric partner ## This software is not part of Ubuntu, but is offered by third-party ## developers who want to ship their latest software. deb http://extras.ubuntu.com/ubuntu oneiric main deb-src http://extras.ubuntu.com/ubuntu oneiric main deb http://in.archive.ubuntu.com/ubuntu/ oneiric-security main restricted deb http://in.archive.ubuntu.com/ubuntu/ oneiric-security universe deb http://in.archive.ubuntu.com/ubuntu/ oneiric-security multiverse # deb http://archive.canonical.com/ lucid partner Here is the preview of my sources.list file

    Read the article

  • [EF + Oracle] Entities

    - by JTorrecilla
    Prologue Following with the Serie I started yesterday about Entity Framework with Oracle, Today I am going to start talking about Entities. What is an Entity? A Entity is an object of the EF model corresponding to a record in a DB table. For example, let’s see, in Image 1 we can see one Entity from our model, and in the second one we can see the mapping done with the DB. (Image 1) (Image 2) More in depth a Entity is a Class inherited from the abstract class “EntityObject”, contained by the “System.Data.Objects.DataClasses” namespace. At the same time, this class inherits from the following Class and interfaces: StructuralObject: It is an Abstract class that inherits from INotifyPropertyChanging and INotifyPropertyChanged interfaces, and it exposes the events that manage the Changes of the class, and the functions related to check the data types of the Properties from our Entity.  IEntityWithKey: Interface which exposes the Key of the entity. IEntityWithChangeTracker: Interface which lets indicate the state of the entity (Detached, Modified, Added…) IEntityWithRelationships: Interface which indicates the relations about the entity. Which is the Content of a Entity? A Entity is composed by: Properties, Navigation Properties and Methods. What is a Property? A Entity Property is an object that represents a column from the mapped table from DB. It has a data type equivalent in .Net Framework to the DB Type. When we create the EF model, VS, internally, create the code for each Entity selected in the Tables step, such all methods that we will see in next steps. For each property, VS creates a structure similar to: · Private variable with the mapped Data type. · Function with a name like On{Property_Name}Changing({dataType} value): It manages the event which happens when we try to change the value. · Function with a name like On{Property_Name}Change: It manages the event raised when the property has changed successfully. · Property with Get and Set methods: The Set Method manages the private variable and do the following steps: Raise Changing event. Report the Entity is Changing. Set the prívate variable. For it, Use the SetValidValue function of the StructuralObject. There is a function for each datatype, and the functions takes 2 params: the value, and if the prop allow nulls. Invoke that the entity has been successfully changed. Invoke the Changed event of the Prop. ReportPropertyChanging and ReportPropertyChanged events, let, respectively, indicate that there is pending changes in the Entity, and the changes have success correctly. While the ReportPropertyChanged is raised, the Track State of the Entity will be changed. What is a Navigation Property? Navigation Properties are a kind of property of the type: EntityCollection<TEntity>, where TEntity is an Entity type from the model related with the current one, it is said, is a set of record from a related table in the DB. The EntityCollection class inherits from: · RelatedEnd: There is an abstract class that give the functions needed to obtein the related objects. · ICollection<TEntity> · IEnumerable<TEntity> · IEnumerable · IListSource For the previous interfaces, I wish recommend the following post from Jose Miguel Torres. Navigation properties allow us, to get and query easily objects related with the Entity. Methods? There is only one method in the Entity object. “Create{Entity}”, that allow us to create an object of the Entity by sending the parameters needed to create it. Finally After this chapter, we know what is an Entity, how is related to the DB and the relation to other Entities. In following chapters, we will se CRUD operations(Create, Read, Update, Delete).

    Read the article

  • Automated SSRS deployment with the RS utility

    - by Stacy Vicknair
    If you’re familiar with SSRS and development you are probably aware of the SSRS web services. The RS utility is a tool that comes with SSRS that allows for scripts to be executed against against the SSRS web service without needing to create an application to consume the service. One of the better benefits of using this format rather than writing an application is that the script can be modified by others who might be involved in the creation and addition of scripts or management of the SSRS environment.   Reporting Services Scripter Jasper Smith from http://www.sqldbatips.com created Reporting Services Scripter to assist with the created of a batch process to deploy an entire SSRS environment. The helper scripts below were created through the modification of his generated scripts. Why not just use this tool? You certainly can. For me, the volume of scripts generated seems less maintainable than just using some common methods extracted from these scripts and creating a deployment in a single script file. I would, however, recommend this as a product if you do not think that your environment will change drastically or if you do not need to deploy with a higher level of control over the deployment. If you just need to replicate, this tool works great. Executing with RS.exe Executing a script against rs.exe is fairly simple. The Script Half the battle is having a starting point. For the scripting I needed to do the below is the starter script. A few notes: This script assumes integrated security. This script assumes your reports have one data source each. Both of the above are just what made sense for my scenario and are definitely modifiable to accommodate your needs. If you are unsure how to change the scripts to your needs, I recommend Reporting Services Scripter to help you understand how the differences. The script has three main methods: CreateFolder, CreateDataSource and CreateReport. Scripting the server deployment is just a process of recreating all of the elements that you need through calls to these methods. If there are additional elements that you need to deploy that aren’t covered by these methods, again I suggest using Reporting Services Scripter to get the code you would need, convert it to a repeatable method and add it to this script! Public Sub Main() CreateFolder("/", "Data Sources") CreateFolder("/", "My Reports") CreateDataSource("/Data Sources", "myDataSource", _ "Data Source=server\instance;Initial Catalog=myDatabase") CreateReport("/My Reports", _ "MyReport", _ "C:\myreport.rdl", _ True, _ "/Data Sources", _ "myDataSource") End Sub   Public Sub CreateFolder(parent As String, name As String) Dim fullpath As String = GetFullPath(parent, name) Try RS.CreateFolder(name, parent, GetCommonProperties()) Console.WriteLine("Folder created: {0}", name) Catch e As SoapException If e.Detail.Item("ErrorCode").InnerText = "rsItemAlreadyExists" Then Console.WriteLine("Folder {0} already exists and cannot be overwritten", fullpath) Else Console.WriteLine("Error : " + e.Detail.Item("ErrorCode").InnerText + " (" + e.Detail.Item("Message").InnerText + ")") End If End Try End Sub   Public Sub CreateDataSource(parent As String, name As String, connectionString As String) Try RS.CreateDataSource(name, parent,False, GetDataSourceDefinition(connectionString), GetCommonProperties()) Console.WriteLine("DataSource {0} created successfully", name) Catch e As SoapException Console.WriteLine("Error : " + e.Detail.Item("ErrorCode").InnerText + " (" + e.Detail.Item("Message").InnerText + ")") End Try End Sub   Public Sub CreateReport(parent As String, name As String, location As String, overwrite As Boolean, dataSourcePath As String, dataSourceName As String) Dim reportContents As Byte() = Nothing Dim warnings As Warning() = Nothing Dim fullpath As String = GetFullPath(parent, name)   'Read RDL definition from disk Try Dim stream As FileStream = File.OpenRead(location) reportContents = New [Byte](stream.Length-1) {} stream.Read(reportContents, 0, CInt(stream.Length)) stream.Close()   warnings = RS.CreateReport(name, parent, overwrite, reportContents, GetCommonProperties())   If Not (warnings Is Nothing) Then Dim warning As Warning For Each warning In warnings Console.WriteLine(Warning.Message) Next warning Else Console.WriteLine("Report: {0} published successfully with no warnings", name) End If   'Set report DataSource references Dim dataSources(0) As DataSource   Dim dsr0 As New DataSourceReference dsr0.Reference = dataSourcePath Dim ds0 As New DataSource ds0.Item = CType(dsr0, DataSourceDefinitionOrReference) ds0.Name=dataSourceName dataSources(0) = ds0     RS.SetItemDataSources(fullpath, dataSources)   Console.Writeline("Report DataSources set successfully")       Catch e As IOException Console.WriteLine(e.Message) Catch e As SoapException Console.WriteLine("Error : " + e.Detail.Item("ErrorCode").InnerText + " (" + e.Detail.Item("Message").InnerText + ")") End Try End Sub     Public Function GetCommonProperties() As [Property]() 'Common CatalogItem properties Dim descprop As New [Property] descprop.Name = "Description" descprop.Value = "" Dim hiddenprop As New [Property] hiddenprop.Name = "Hidden" hiddenprop.Value = "False"   Dim props(1) As [Property] props(0) = descprop props(1) = hiddenprop Return props End Function   Public Function GetDataSourceDefinition(connectionString as String) Dim definition As New DataSourceDefinition definition.CredentialRetrieval = CredentialRetrievalEnum.Integrated definition.ConnectString = connectionString definition.Enabled = True definition.EnabledSpecified = True definition.Extension = "SQL" definition.ImpersonateUser = False definition.ImpersonateUserSpecified = True definition.Prompt = "Enter a user name and password to access the data source:" definition.WindowsCredentials = False definition.OriginalConnectStringExpressionBased = False definition.UseOriginalConnectString = False Return definition End Function   Private Function GetFullPath(parent As String, name As String) As String If parent = "/" Then Return parent + name Else Return parent + "/" + name End If End Function

    Read the article

  • SQL Azure: Notes on Building a Shard Technology

    - by Herve Roggero
    In Chapter 10 of the book on SQL Azure (http://www.apress.com/book/view/9781430229612) I am co-authoring, I am digging deeper in what it takes to write a Shard. It's actually a pretty cool exercise, and I wanted to share some thoughts on how I am designing the technology. A Shard is a technology that spreads the load of database requests over multiple databases, as transparently as possible. The type of shard I am building is called a Vertical Partition Shard  (VPS). A VPS is a mechanism by which the data is stored in one or more databases behind the scenes, but your code has no idea at design time which data is in which database. It's like having a mini cloud for records instead of services. Imagine you have three SQL Azure databases that have the same schema (DB1, DB2 and DB3), you would like to issue a SELECT * FROM Users on all three databases, concatenate the results into a single resultset, and order by last name. Imagine you want to ensure your code doesn't need to change if you add a new database to the shard (DB4). Now imagine that you want to make sure all three databases are queried at the same time, in a multi-threaded manner so your code doesn't have to wait for three database calls sequentially. Then, imagine you would like to obtain a breadcrumb (in the form of a new, virtual column) that gives you a hint as to which database a record came from, so that you could update it if needed. Now imagine all that is done through the standard SqlClient library... and you have the Shard I am currently building. Here are some lessons learned and techniques I am using with this shard: Parellel Processing: Querying databases in parallel is not too hard using the Task Parallel Library; all you need is to lock your resources when needed Deleting/Updating Data: That's not too bad either as long as you have a breadcrumb. However it becomes more difficult if you need to update a single record and you don't know in which database it is. Inserting Data: I am using a round-robin approach in which each new insert request is directed to the next database in the shard. Not sure how to deal with Bulk Loads just yet... Shard Databases:  I use a static collection of SqlConnection objects which needs to be loaded once; from there on all the Shard commands use this collection Extension Methods: In order to make it look like the Shard commands are part of the SqlClient class I use extension methods. For example I added ExecuteShardQuery and ExecuteShardNonQuery methods to SqlClient. Exceptions: Capturing exceptions in a multi-threaded code is interesting... but I kept it simple for now. I am using the ConcurrentQueue to store my exceptions. Database GUID: Every database in the shard is given a GUID, which is calculated based on the connection string's values. DataTable. The Shard methods return a DataTable object which can be bound to objects.  I will be sharing the code soon as an open-source project in CodePlex. Please stay tuned on twitter to know when it will be available (@hroggero). Or check www.bluesyntax.net for updates on the shard. Thanks!

    Read the article

  • Browser Specific Extensions of HttpClient

    - by imran_ku07
            Introduction:                     REpresentational State Transfer (REST) causing/leaving a great impact on service/API development because it offers a way to access a service without requiring any specific library by embracing HTTP and its features. ASP.NET Web API makes it very easy to quickly build RESTful HTTP services. These HTTP services can be consumed by a variety of clients including browsers, devices, machines, etc. With .NET Framework 4.5, we can use HttpClient class to consume/send/receive RESTful HTTP services(for .NET Framework 4.0, HttpClient class is shipped as part of ASP.NET Web API). The HttpClient class provides a bunch of helper methods(for example, DeleteAsync, PostAsync, GetStringAsync, etc.) to consume a HTTP service very easily. ASP.NET Web API added some more extension methods(for example, PutAsJsonAsync, PutAsXmlAsync, etc) into HttpClient class to further simplify the usage. In addition, HttpClient is also an ideal choice for writing integration test for a RESTful HTTP service. Since a browser is a main client of any RESTful API, it is also important to test the HTTP service on a variety of browsers. RESTful service embraces HTTP headers and different browsers send different HTTP headers. So, I have created a package that will add overloads(with an additional Browser parameter) for almost all the helper methods of HttpClient class. In this article, I will show you how to use this package.           Description:                     Create/open your test project and install ImranB.SystemNetHttp.HttpClientExtensions NuGet package. Then, add this using statement on your class, using ImranB.SystemNetHttp;                     Then, you can start using any HttpClient helper method which include the additional Browser parameter. For example,  var client = new HttpClient(myserver); var task = client.GetAsync("http://domain/myapi", Browser.Chrome); task.Wait(); var response = task.Result; .                     Here is the definition  of Browser, public enum Browser { Firefox = 0, Chrome = 1, IE10 = 2, IE9 = 3, IE8 = 4, IE7 = 5, IE6 = 6, Safari = 7, Opera = 8, Maxthon = 9, }                     These extension methods will make it very easy to write browser specific integration test. It will also help HTTP service consumer to mimic the request sending behavior of a browser. This package source is available on github. So, you can grab the source and add some additional behavior on the top of these extensions.         Summary:                     Testing a REST API is an important aspect of service development and today, testing with a browser is crucial. In this article, I showed how to write integration test that will mimic the browser request sending behavior. I also showed an example. Hopefully you will enjoy this article too.

    Read the article

  • Flow-Design Cheat Sheet &ndash; Part II, Translation

    - by Ralf Westphal
    In my previous post I summarized the notation for Flow-Design (FD) diagrams. Now is the time to show you how to translate those diagrams into code. Hopefully you feel how different this is from UML. UML leaves you alone with your sequence diagram or component diagram or activity diagram. They leave it to you how to translate your elaborate design into code. Or maybe UML thinks it´s so easy no further explanations are needed? I don´t know. I just know that, as soon as people stop designing with UML and start coding, things end up to be very different from the design. And that´s bad. That degrades graphical designs to just time waste on paper (or some designer). I even believe that´s the reason why most programmers view textual source code as the only and single source of truth. Design and code usually do not match. FD is trying to change that. It wants to make true design a first class method in every developers toolchest. For that the first prerequisite is to be able to easily translate any design into code. Mechanically, without thinking. Even a compiler could do it :-) (More of that in some other article.) Translating to Methods The first translation I want to show you is for small designs. When you start using FD you should translate your diagrams like this. Functional units become methods. That´s it. An input-pin becomes a method parameter, an output-pin becomes a return value: The above is a part. But a board can be translated likewise and calls the nested FUs in order: In any case be sure to keep the board method clear of any and all business logic. It should not contain any control structures like if, switch, or a loop. Boards do just one thing: calling nested functional units in proper sequence. What about multiple input-pins? Try to avoid them. Replace them with a join returning a tuple: What about multiple output-pins? Try to avoid them. Or return a tuple. Or use out-parameters: But as I said, this simple translation is for simple designs only. Splits and joins are easily done with method translation: All pretty straightforward, isn´t it. But what about wires, named pins, entry points, explicit dependencies? I suggest you don´t use this kind of translation when your designs need these features. Translating to methods is for small scale designs like you might do once you´re working on the implementation of a part of a larger design. Or maybe for a code kata you´re doing in your local coding dojo. Instead of doing TDD try doing FD and translate your design into methods. You´ll see that way it´s much easier to work collaboratively on designs, remember them more easily, keep them clean, and lessen the need for refactoring. Translating to Events [coming soon]

    Read the article

  • Doubts about several best practices for rest api + service layer

    - by TheBeefMightBeTough
    I'm going to be starting a project soon that exposes a restful api for business intelligence. It may not be limited to a restful api, so I plan to delegate requests to a service layer that then coordinates multiple domain objects (each of which have business logic local to the object). The api will likely have many calls as it is a long-term project. While thinking about the design, I recalled a few best practices. 1) Use command objects at the controller layer (I'm using Spring MVC). 2) Use DTOs at the service layer. 3) Validate in both the controller and service layer, though for different reasons. I have my doubts about these recommendations. 1) Using command objects adds a lot of extra single-purpose classes (potentially one per request). What exactly is the benefit? Annotation based validation can be done using this approach, sure. What if I have two requests that take the same parameters, but have different validation requirements? I would have to have two different classes with exactly the same members but different annotations? Bleh. 2) I have heard that using DTOs is preferable to parameters because it makes for more maintainable code down the road (say, e.g., requirements change and the service parameters need to be altered). I don't quite understand this. Shouldn't an api be more-or-less set in stone? I would understand that in the early phases of a project (or, especially, an entire company) the domain itself will not be well understood, and thus core domain objects may change along with the apis that manipulate these objects. At this point however the number of api methods should be small and their dependents few, so changes to the methods could easily be tolerated from a maintainability standpoint. In a large api with many methods and a substantial domain model, I would think having a DTO for potentially each domain object would become unwieldy. Am I misunderstanding something here? 3) I see validation in the controller and service layer as redundant in most cases. Why would I validate that parameters are not null and are in general well formed in the controller if the service is going to do exactly the same (and more). Couldn't I just do all the validation in the service and throw a runtime exception with a list of bad parameters then catch that in the controller to make the error messages more presentable? Better yet, couldn't I just make the error messages user-friendly in the service and let the exception trickle up to a global handler (ControllerAdvice in spring, for example)? Is there something wrong with either of these approaches? (I do see a use case for controller validation if the input does not map one-to-one with the service input, but since the controllers are for a rest api and not forms, the api parameters will probably map directly to service parameters.) I do also have a question about unchecked vs checked exceptions. Namely, I'm not really sure why I'd ever want to use a checked exception. Every time I have seen them used they just get wrapped into general exceptions (DomainException, SystemException, ApplicationException, w/e) to reduce the signature length of methods, or devs catch Exception rather than dealing with the App1Exception, App2Exception, Sys1Exception, Sys2Exception. I don't see how either of these practices is very useful. Why not just use unchecked exceptions always and catch the ones you actually do care about? You could just document what unchecked exceptions the method throws.

    Read the article

  • Profiling Startup Of VS2012 &ndash; dotTrace Profiler

    - by Alois Kraus
    Jetbrains which is famous for the Resharper tool has also a profiler in its portfolio. I downloaded dotTrace 5.2 Professional (569€+VAT) to check how far I can profile the startup of VS2012. The most interesting startup option is “.NET Process”. With that you can profile the next started .NET process which is very useful if you want to profile an application which is not started by you.     I did select Tracing as and Wall time to get similar options across all profilers. For some reason the attach option did not work with .NET 4.5 on my home machine. But I am sure that it did work with .NET 4.0 some time ago. Since we are profiling devenv.exe we can also select “Standalone Application” and start it from the profiler. The startup time of VS does increase about a factor 3 but that is ok. You get mainly three windows to work with. The first one shows the threads where you can drill down thread wise where most time is spent. I The next window is the call tree which does merge all threads together in a similar view. The last and most useful view in my opinion is the Plain List window which is nearly the same as the Method Grid in Ants Profiler. But this time we do get when I enable the Show system functions checkbox not a 150 but 19407 methods to choose from! I really tried with Ants Profiler to find something about out how VS does work but look how much we were missing! When I double click on a method I do get in the lower pane the called methods and their respective timings. This is something really useful and I can nicely drill down to the most important stuff. The measured time seems to be Wall Clock time which is a good thing to see where my time is really spent. You can also use Sampling as profiling method but this does give you much less information. Except for getting a first idea where to look first this profiling mode is not very useful to understand how you system does interact.   The options have a good list of presets to hide by default many method and gray them out to concentrate on your code. It does not filter anything out if you enable Show system functions. By default methods from these assemblies are hidden or if the checkbox is checked grayed out. All in all JetBrains has made a nice profiler which does show great detail and it has nice drill down capabilities. The only thing is that I do not trust its measured timings. I did fall several times into the trap with this one to optimize at places which were already fast but the profiler did show high times in these methods. After measuring with Tracing I was certain that the measured times were greatly exaggerated. Especially when IO is involved it seems to have a hard time to subtract its own overhead. What I did miss most was the possibility to profile not only the next started process but to be able to select a process by name and perhaps a count to profile the next n processes of this name. Next: YourKit

    Read the article

  • Identity in .NET 4.5&ndash;Part 3: (Breaking) changes

    - by Your DisplayName here!
    I recently started porting a private build of Thinktecture.IdentityModel to .NET 4.5 and noticed a number of changes. The good news is that I can delete large parts of my library because many features are now in the box. Along the way I found some other nice additions. ClaimsIdentity now has methods to query the claims collection, e.g. HasClaim(), FindFirst(), FindAll(). ClaimsPrincipal has those methods as well. But they work across all contained identities. Nice! ClaimsPrincipal.Current retrieves the ClaimsPrincipal from Thread.CurrentPrincipal. Combined with the above changes, no casting necessary anymore. SecurityTokenHandler now has read and write methods that work directly with strings. This makes it much easier to deal with non-XML tokens like SWT or JWT. A new session security token handler that uses the ASP.NET machine key to protect the cookie. This makes it easier to get started in web farm scenarios. No need for a custom service host factory or the federation behavior anymore. WCF can be switched into “WIF mode” with the useIdentityConfiguration switch (odd name though). Tooling has become better and the new test STS makes it very easy to get started. On the other hand – and that was kind of expected – to bring claims into the core framework, there are also some breaking changes for WIF code. If you want to migrate (and I would recommend that), most changes to your code are mechanical. The following is a brain dump of the changes I encountered. Assembly Microsoft.IdentityModel is gone. The new functionality is now in mscorlib, System.IdentityModel(.Services) and System.ServiceModel. All the namespaces have changed as well. No IClaimsPrincipal and IClaimsIdentity anymore. Configuration section has been split into <system.identityModel /> and <system.identityModel.services />. WCF configuration story has changed as well. Claim.ClaimType is now Claim.Type. ClaimCollection is now IEnumerable<Claim>. IsSessionMode is now IsReferenceMode. Bootstrap token handling is different now. ClaimsPrincipalHttpModule is gone. This is not really needed anymore, apart from maybe claims transformation (see here). Various factory methods on ClaimsPrincipal are gone (e.g. ClaimsPrincipal.CreateFromIdentity()). SecurityTokenHandler.ValidateToken now returns a ReadOnlyCollection<ClaimsIdentity>. Some lower level helper classes are gone or internal now (e.g. KeyGenerator). The WCF WS-Trust bindings are gone. I think this is a pity. They were *really* useful when doing work with WSTrustChannelFactory. Since WIF is part of the Windows operating system and also supported in future versions of .NET, there is no urgent need to migrate to the 4.5 claims model. But obviously, going forward, at some point you want to make the move.

    Read the article

  • Hidden Features of C#?

    - by Serhat Özgel
    This came to my mind after I learned the following from this question: where T : struct We, C# developers, all know the basics of C#. I mean declarations, conditionals, loops, operators, etc. Some of us even mastered the stuff like Generics, anonymous types, lambdas, linq, ... But what are the most hidden features or tricks of C# that even C# fans, addicts, experts barely know? Here are the revealed features so far: Keywords yield by Michael Stum var by Michael Stum using() statement by kokos readonly by kokos as by Mike Stone as / is by Ed Swangren as / is (improved) by Rocketpants default by deathofrats global:: by pzycoman using() blocks by AlexCuse volatile by Jakub Šturc extern alias by Jakub Šturc Attributes DefaultValueAttribute by Michael Stum ObsoleteAttribute by DannySmurf DebuggerDisplayAttribute by Stu DebuggerBrowsable and DebuggerStepThrough by bdukes ThreadStaticAttribute by marxidad FlagsAttribute by Martin Clarke ConditionalAttribute by AndrewBurns Syntax ?? operator by kokos number flaggings by Nick Berardi where T:new by Lars Mæhlum implicit generics by Keith one-parameter lambdas by Keith auto properties by Keith namespace aliases by Keith verbatim string literals with @ by Patrick enum values by lfoust @variablenames by marxidad event operators by marxidad format string brackets by Portman property accessor accessibility modifiers by xanadont ternary operator (?:) by JasonS checked and unchecked operators by Binoj Antony implicit and explicit operators by Flory Language Features Nullable types by Brad Barker Currying by Brian Leahy anonymous types by Keith __makeref __reftype __refvalue by Judah Himango object initializers by lomaxx format strings by David in Dakota Extension Methods by marxidad partial methods by Jon Erickson preprocessor directives by John Asbeck DEBUG pre-processor directive by Robert Durgin operator overloading by SefBkn type inferrence by chakrit boolean operators taken to next level by Rob Gough pass value-type variable as interface without boxing by Roman Boiko programmatically determine declared variable type by Roman Boiko Static Constructors by Chris Easier-on-the-eyes / condensed ORM-mapping using LINQ by roosteronacid Visual Studio Features select block of text in editor by Himadri snippets by DannySmurf Framework TransactionScope by KiwiBastard DependantTransaction by KiwiBastard Nullable<T> by IainMH Mutex by Diago System.IO.Path by ageektrapped WeakReference by Juan Manuel Methods and Properties String.IsNullOrEmpty() method by KiwiBastard List.ForEach() method by KiwiBastard BeginInvoke(), EndInvoke() methods by Will Dean Nullable<T>.HasValue and Nullable<T>.Value properties by Rismo GetValueOrDefault method by John Sheehan Tips & Tricks nice method for event handlers by Andreas H.R. Nilsson uppercase comparisons by John access anonymous types without reflection by dp a quick way to lazily instantiate collection properties by Will JavaScript-like anonymous inline-functions by roosteronacid Other netmodules by kokos LINQBridge by Duncan Smart Parallel Extensions by Joel Coehoorn

    Read the article

< Previous Page | 80 81 82 83 84 85 86 87 88 89 90 91  | Next Page >