Search Results

Search found 6744 results on 270 pages for 'linq to entities'.

Page 85/270 | < Previous Page | 81 82 83 84 85 86 87 88 89 90 91 92  | Next Page >

  • Servlet Exception + Class Cast Exception + Glassfish + Netbeans + JPA Entities + Vaadin

    - by Random Joe
    Hi all, I get this error: StandardWrapperValve[Vaadin Servlet]: PWC1406: Servlet.service() for servlet Vaadin Servlet threw exception java.lang.ClassCastException: com.delhi.entities.Category cannot be cast to com.delhi.entities.Category when I try to run my webapps on glassfish v2. Category is a JPA entity object the offending code according to the server log is: for (Category c : categories) { mymethod(); } categories is derived from: List<Category> categories = q.getResultList(); Any idea what went wrong?

    Read the article

  • Remove HTML entities

    - by Sreelal
    Hi, I am developing an application for iPhone.I need to remove html entities like ["<p>"] in a parsed xml response.Is there any direct way to remove all such entities.??

    Read the article

  • Split string by HTML entities?

    - by user366124
    My string contain a lot of HTML entities, like this &#x22;Hello&nbsp;&lt;everybody&gt;&nbsp;there&#x22; And I want to split it by HTML entities into this : Hello everybody there Can anybody suggest me a way to do this please? May be using Regex?

    Read the article

  • [Javascript] Split string by HTML entities?

    - by user366124
    Hello, My string contain a lot of HTML entities, like this &#x22;Hello&nbsp;&lt;everybody&gt;&#x22;&nbsp;there And I want to split it by HTML entities into this : Hello everybody there Can anybody suggest me a way to do this please? May be using Regex? Thanks so much.

    Read the article

  • Changes to multiple entities within a single transaction

    - by Nati
    Hy, I am trying to make changes to multiple entities within a single transaction in app engine platform. As I understand in order to succeed doing so, App Engine needs to know in advance which entities will be updated together, so it knows to store them in a way that supports transactions. And therefore, user must declare that an entity belongs to the same entity group as another entity when you create the entity. How do I declare that one entity belongs to another entity group in creation time? Thanks, Nati

    Read the article

  • Returning EF entities using WCF - Read only web service / public API

    - by alex
    I'm currently migrating an application from Linq-to-SQL & ASP.net Web Services (asmx) to Entity Framework and WCF. My question is, I have a bunch of POCO classes which i have xml mapping files for (for the linq to sql) I've replaced my linq to sql with an entity framework data model I've got an interface - something like IService - that has all the methods on it that i need my service to implement - for example: Product[] GetProductsByKeyword(string keyword); In the above case, Product is a POCO. I now have them as entities within my ef data model - i'm using .net 4, and could take advantage of poco support, but don't really see the need - This service is strictly read only. What's the best way of returning entities in my WCF service? I want it to support other client platforms, not just .net (so php guys could use it)

    Read the article

  • Talks Submitted for Ann Arbor Day of .NET 2010

    - by PSteele
    Just submitted my session abstracts for Ann Arbor's Day of .NET 2010.   Getting up to speed with .NET 3.5 -- Just in time for 4.0! Yes, C# 4.0 is just around the corner.  But if you haven't had the chance to use C# 3.5 extensively, this session will start from the ground up with the new features of 3.5.  We'll assume everyone is coming from C# 2.0.  This session will show you the details of extension methods, partial methods and more.  We'll also show you how LINQ -- Language Integrated Query -- can help decrease your development time and increase your code's readability.  If time permits, we'll look at some .NET 4.0 features, but the goal is to get you up to speed on .NET 3.5.   Go Ahead and Mock Me! When testing specific parts of your application, there can be a lot of external dependencies required to make your tests work.  Writing fake or mock objects that act as stand-ins for the real dependencies can waste a lot of time.  This is where mocking frameworks come in.  In this session, Patrick Steele will introduce you to Rhino Mocks, a popular mocking framework for .NET.  You'll see how a mocking framework can make writing unit tests easier and leads to less brittle unit tests.   Inversion of Control: Who's got control and why is it being inverted? No doubt you've heard of "Inversion of Control".  If not, maybe you've heard the term "Dependency Injection"?  The two usually go hand-in-hand.  Inversion of Control (IoC) along with Dependency Injection (DI) helps simplify the connections and lifetime of all of the dependent objects in the software you write.  In this session, Patrick Steele will introduce you to the concepts of IoC and DI and will show you how to use a popular IoC container (Castle Windsor) to help simplify the way you build software and how your objects interact with each other. If you're interested in speaking, hurry up and get your submissions in!  The deadline is Monday, April 5th! Technorati Tags: .NET,Ann Arbor,Day of .NET

    Read the article

  • Flattening System.Web.UI ControlCollection

    - by evovision
    Hi,   Sometimes one may need to get a list of child controls inside specific container and don't care about the underlying hierarchy.   The result is beautifully achieved using this extension method:   using System;using System.Collections.Generic;using System.Linq;using System.Web;using System.Web.UI;    public static class ControlCollectionExtensionMethods    {        public static IEnumerable<Control> FlattenedList(this ControlCollection controls)        {            foreach (Control ctrl in controls)            {                  // return parent control                   yield return ctrl;                              // and dive into child collection                   foreach (Control child in ctrl.Controls.FlattenedList())                         yield return child;            }        }    }   P.S.: don't forget about namespaces when using it in your code, if above class is wrapped into namespace, for example: Sample, the source code file with calling code must explicitly reference it: using Sample;

    Read the article

  • Is it possible to scan Entities in jar files using JPA and hibernate

    - by user1260109
    I have the following situation : Project A - Contains a few entities and is independent Project B - Contains a few entities and is independent Project C - Contains few entities and is dependent on Project A & Project B. I am using Maven to manage dependencies and builds. When I try to test Project A and project B it goes through fine. Each of them has a persistence.xml and a separate persistent context. When I run Project C , It does map any of the entities. I have tried to use the auto-detect, specified the jar file attribute ... but nothing seems to work. It gives me a Mapping Exception saying unknown entity and wont persist or read the Entities from Projects A or B. I have posted the 3 persistence.xml files here. Also, I tried using the class attribute and using the same persistent context but it just wont find the files. Any help is really appreciated. Thanks in advance ! <persistence xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0"> <persistence-unit name="A" transaction-type="RESOURCE_LOCAL"> <provider>org.hibernate.ejb.HibernatePersistence</provider> <properties> <property name="hibernate.dialect" value="org.hibernate.dialect.Oracle9Dialect"/> <property name="hibernate.connection.driver_class" value="oracle.jdbc.OracleDriver"/> <property name="hibernate.show_sql" value="true"/> <property name="hibernate.connection.username" value="username"/> <property name="hibernate.connection.password" value="password"/> <property name="hibernate.connection.url" value="jdbc:oracle:thin:@webdev.epi.web:1521/webdev.world"/> <property name="hibernate.max_fetch_depth" value="3"/> <property name="hibernate.archive.autodetection" value="class"/> </properties> </persistence-unit> </persistence> <persistence xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0"> <persistence-unit name="B" transaction-type="RESOURCE_LOCAL"> <provider>org.hibernate.ejb.HibernatePersistence</provider> <properties> <property name="hibernate.dialect" value="org.hibernate.dialect.Oracle9Dialect"/> <property name="hibernate.connection.driver_class" value="oracle.jdbc.OracleDriver"/> <property name="hibernate.show_sql" value="true"/> <property name="hibernate.connection.username" value="username"/> <property name="hibernate.connection.password" value="password"/> <property name="hibernate.connection.url" value="jdbc:oracle:thin:@webdev.epi.web:1521/webdev.world"/> <property name="hibernate.max_fetch_depth" value="3"/> <property name="hibernate.archive.autodetection" value="class"/> </properties> </persistence-unit> </persistence> <persistence xmlns="http://java.sun.com/xml/ns/persistence" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0"> <persistence-unit name="C" transaction-type="RESOURCE_LOCAL"> <provider>org.hibernate.ejb.HibernatePersistence</provider> <jar-file>A-0.0.1-SNAPSHOT.jar</jar-file> <jar-file>B-0.0.1-SNAPSHOT.jar</jar-file> <properties> <property name="hibernate.dialect" value="org.hibernate.dialect.Oracle9Dialect"/> <property name="hibernate.connection.driver_class" value="oracle.jdbc.OracleDriver"/> <property name="hibernate.show_sql" value="true"/> <property name="hibernate.connection.username" value="username"/> <property name="hibernate.connection.password" value="password"/> <property name="hibernate.connection.url" value="jdbc:oracle:thin:@webdev.epi.web:1521/webdev.world"/> <property name="hibernate.max_fetch_depth" value="3"/> <property name="hibernate.archive.autodetection" value="class"/> </properties> </persistence-unit> </persistence>

    Read the article

  • Using Subjects to Deploy Queries Dynamically

    - by Roman Schindlauer
    In the previous blog posting, we showed how to construct and deploy query fragments to a StreamInsight server, and how to re-use them later. In today’s posting we’ll integrate this pattern into a method of dynamically composing a new query with an existing one. The construct that enables this scenario in StreamInsight V2.1 is a Subject. A Subject lets me create a junction element in an existing query that I can tap into while the query is running. To set this up as an end-to-end example, let’s first define a stream simulator as our data source: var generator = myApp.DefineObservable(     (TimeSpan t) => Observable.Interval(t).Select(_ => new SourcePayload())); This ‘generator’ produces a new instance of SourcePayload with a period of t (system time) as an IObservable. SourcePayload happens to have a property of type double as its payload data. Let’s also define a sink for our example—an IObserver of double values that writes to the console: var console = myApp.DefineObserver(     (string label) => Observer.Create<double>(e => Console.WriteLine("{0}: {1}", label, e)))     .Deploy("ConsoleSink"); The observer takes a string as parameter which is used as a label on the console, so that we can distinguish the output of different sink instances. Note that we also deploy this observer, so that we can retrieve it later from the server from a different process. Remember how we defined the aggregation as an IQStreamable function in the previous article? We will use that as well: var avg = myApp     .DefineStreamable((IQStreamable<SourcePayload> s, TimeSpan w) =>         from win in s.TumblingWindow(w)         select win.Avg(e => e.Value))     .Deploy("AverageQuery"); Then we define the Subject, which acts as an observable sequence as well as an observer. Thus, we can feed a single source into the Subject and have multiple consumers—that can come and go at runtime—on the other side: var subject = myApp.CreateSubject("Subject", () => new Subject<SourcePayload>()); Subject are always deployed automatically. Their name is used to retrieve them from a (potentially) different process (see below). Note that the Subject as we defined it here doesn’t know anything about temporal streams. It is merely a sequence of SourcePayloads, without any notion of StreamInsight point events or CTIs. So in order to compose a temporal query on top of the Subject, we need to 'promote' the sequence of SourcePayloads into an IQStreamable of point events, including CTIs: var stream = subject.ToPointStreamable(     e => PointEvent.CreateInsert<SourcePayload>(e.Timestamp, e),     AdvanceTimeSettings.StrictlyIncreasingStartTime); In a later posting we will show how to use Subjects that have more awareness of time and can be used as a junction between QStreamables instead of IQbservables. Having turned the Subject into a temporal stream, we can now define the aggregate on this stream. We will use the IQStreamable entity avg that we defined above: var longAverages = avg(stream, TimeSpan.FromSeconds(5)); In order to run the query, we need to bind it to a sink, and bind the subject to the source: var standardQuery = longAverages     .Bind(console("5sec average"))     .With(generator(TimeSpan.FromMilliseconds(300)).Bind(subject)); Lastly, we start the process: standardQuery.Run("StandardProcess"); Now we have a simple query running end-to-end, producing results. What follows next is the crucial part of tapping into the Subject and adding another query that runs in parallel, using the same query definition (the “AverageQuery”) but with a different window length. We are assuming that we connected to the same StreamInsight server from a different process or even client, and thus have to retrieve the previously deployed entities through their names: // simulate the addition of a 'fast' query from a separate server connection, // by retrieving the aggregation query fragment // (instead of simply using the 'avg' object) var averageQuery = myApp     .GetStreamable<IQStreamable<SourcePayload>, TimeSpan, double>("AverageQuery"); // retrieve the input sequence as a subject var inputSequence = myApp     .GetSubject<SourcePayload, SourcePayload>("Subject"); // retrieve the registered sink var sink = myApp.GetObserver<string, double>("ConsoleSink"); // turn the sequence into a temporal stream var stream2 = inputSequence.ToPointStreamable(     e => PointEvent.CreateInsert<SourcePayload>(e.Timestamp, e),     AdvanceTimeSettings.StrictlyIncreasingStartTime); // apply the query, now with a different window length var shortAverages = averageQuery(stream2, TimeSpan.FromSeconds(1)); // bind new sink to query and run it var fastQuery = shortAverages     .Bind(sink("1sec average"))     .Run("FastProcess"); The attached solution demonstrates the sample end-to-end. Regards, The StreamInsight Team

    Read the article

  • Dynamic filter expressions in an OpenAccess LINQ query

    We had some support questions recently where our customers had the need to combine multiple smaller predicate expressions with either an OR or an AND  logical operators (these will be the || and && operators if you are using C#). And because the code from the answer that we sent to these customers is very interesting, and can easily be refactorred into something reusable, we decided to write this blog post. The key thing that one must know is that if you want your predicate to be translated by OpenAccess ORM to SQL and executed on the server you must have a LINQ Expression that is not compiled. So, let’s say that you have these smaller predicate expressions: Expression<Func<Customer, bool>> filter1 = c => c.City.StartsWith("S");Expression<Func<Customer, bool>> filter2 = c => c.City.StartsWith("M");Expression<Func<Customer, bool>> filter3 = c => c.ContactTitle == "Owner"; And ...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • VS2010 RC: Add new domain service class wizard entities list is empty

    - by Matthew
    Greetings! I am going through Brad Abrams' SL4 + RIA Services series. Right now I am here: http://blogs.msdn.com/brada/archive/2010/03/15/silverlight-4-ria-services-ready-for-business-exposing-data-from-entity-framework.aspx. When I get to the "add domain service" step and the wizard asks you what entities you want to expose, the list is empty. The dropdown that let's me choose my Entity data context is there and the "DishViewEntities" is selected but it is not showing the "Restaurant" and "Plate" entities in the list below like it does in the picture. I found this thread here: http://forums.silverlight.net/forums/t/168724.aspx. The poster has the same problem as me. I have restarted VS, rebooted, regenerated the EDMX, tried creating it in different folders. Still the list is empty. When it is empty, it will not allow me to select individual entities or generate the class. Any ideas from the community? Thanks!

    Read the article

  • Filter entities that match all pairs

    - by Jon
    I have an entity (let's say Person) with a set of arbitrary attributes with a known subset of values. I need to search for all of these entities that match all my filter conditions. For example, my table structures look like this: Person: id | name 1 | John Doe 2 | Jane Roe 3 | John Smith Attribute: id | attr_name 1 | Sex 2 | Eye Color ValidValue: id | attr_id | value_name 1 | 1 | Male 2 | 1 | Female 3 | 2 | Blue 4 | 2 | Green 5 | 2 | Brown PersonAttributes id | person_id | attr_id | value_id 1 | 1 | 1 | 1 2 | 1 | 2 | 3 3 | 2 | 1 | 2 4 | 2 | 2 | 4 5 | 3 | 1 | 1 6 | 3 | 2 | 4 In JPA, I have entities built for all of these tables. What I'd like to do is perform a search for all entities matching a given set of attribute-value pairs. For instance, I'd like to be able to find all males (John Doe and John Smith), all people with green eyes (Jane Roe or John Smith), or all females with green eyes (Jane Roe). I see that I can already take advantage of the fact that I only really need to match on value_id, since that's already unique and tied to the attr_id. But where can I go from there?

    Read the article

  • Match entities fulfilling filter (strict superset of search)

    - by Jon
    I have an entity (let's say Person) with a set of arbitrary attributes with a known subset of values. I need to search for all of these entities that match all my filter conditions. That is, given a set of Attributes A, I need to find all people that have a set of Attributes that are a superset of A. For example, my table structures look like this: Person: id | name 1 | John Doe 2 | Jane Roe 3 | John Smith Attribute: id | attr_name 1 | Sex 2 | Eye Color ValidValue: id | attr_id | value_name 1 | 1 | Male 2 | 1 | Female 3 | 2 | Blue 4 | 2 | Green 5 | 2 | Brown PersonAttributes id | person_id | attr_id | value_id 1 | 1 | 1 | 1 2 | 1 | 2 | 3 3 | 2 | 1 | 2 4 | 2 | 2 | 4 5 | 3 | 1 | 1 6 | 3 | 2 | 4 In JPA, I have entities built for all of these tables. What I'd like to do is perform a search for all entities matching a given set of attribute-value pairs. For instance, I'd like to be able to find all males (John Doe and John Smith), all people with green eyes (Jane Roe or John Smith), or all females with green eyes (Jane Roe). I see that I can already take advantage of the fact that I only really need to match on value_id, since that's already unique and tied to the attr_id. But where can I go from there? I've been trying to do something like the following, given that the ValidValue is unique in all cases: select distinct p from Person p join p.personAttributes a where a.value IN (:values) Then I've tried putting my set of required values in as "values", but that gives me errors no matter how I try to structure that. I also have to get a little more complicated, as follows, but at this point I'd be happy with solving the first problem cleanly. However, if it's possible, the Attribute table actually has a field for default value: id | attr_name | default_value 1 | Sex | 1 2 | Eye Color | 5 If the value you're searching on happens to be the default value, I want it to return any people that have no explicit value set for that attribute, because in the application logic, that means they inherit the default value. Again, I'm more concerned about the primary question, but if someone who can help with that also has some idea of how to do this one, I'd be extremely grateful.

    Read the article

  • Preventing HTML character entities in locale files from getting munged by Rails3 xss protection

    - by Chris S
    We're building an app, our first using Rails 3, and we're having to build I18n in from the outset. Being perfectionists, we want real typography to be used in our views: dashes, curled quotes, ellipses et al. This means in our locales/xx.yml files we have two choices: Use real UTF-8 characters inline. Should work, but hard to type, and scares me due to the amount of software which still does naughty things to unicode. Use HTML character entities (&#8217; &#8212; etc). Easier to type, and probably more compatible with misbehaving software. I'd rather take the second option, however the auto-escaping in Rails 3 makes this problematic, as the ampersands in the YAML get auto-converted into character entities themselves, resulting in 'visible' &8217;s in the browser. Obviously this can be worked around by using raw on strings, i.e.: raw t('views.signup.organisation_details') But we're not happy going down the route of globally raw-ing every time we t something as it leaves us open to making an error and producing an XSS hole. We could selectively raw strings which we know contain character entities, but this would be hard to scale, and just feels wrong - besides, a string which contains an entity in one language may not in another. Any suggestions on a clever rails-y way to fix this? Or are we doomed to crap typography, xss holes, hours of wasted effort or all thre?

    Read the article

  • Fluent NHibernate Mappings ClassMap<Entities>....

    - by Pandiya Chendur
    I was going through fluent hibernate getting started tutorial.... In my asp.net mvc web application i have created Entities and Mapping folder as they stated... I created an entity class and i tried to map it my mapping class using this, using System; using System.Collections.Generic; using System.Linq; using System.Web; using FluentNhibernateMVC.Entities; namespace FluentNhibernateMVC.Mappings { public class ClientMap : ClassMap<Client> { } } I cant able to find a ClassMap keyword in my autosuggest list why? This is my entity class using System; using System.Collections.Generic; using System.Linq; using System.Web; namespace FluentNhibernateMVC.Entities { public class Client { public int ClientId { get; set; } public string ClientName { get; set; } public string ClientMobNo { get; set; } public string ClientAddress { get; set; } public DateTime CreatedDate { get; set; } public byte IsDeleted { get; set; } public int CreatedBy { get; set; } } } I have added all references to my project...Am i missing some thing...

    Read the article

  • How to perform Cross Join with Linq

    - by berthin
    Cross join consists to perform a Cartesian product of two sets or sequences. The following example shows a simple Cartesian product of the sets A and B: A (a1, a2) B (b1, b2) => C (a1 b1,            a1 b2,            a2 b1,            a2, b2 ) is the Cartesian product's result. Linq to Sql allows using Cross join operations. Cross join is not equijoin, means that no predicate expression of equality in the Join clause of the query. To define a cross join query, you can use multiple from clauses. Note that there's no explicit operator for the cross join. In the following example, the query must join a sequence of Product with a sequence of Pricing Rules: 1: //Fill the data source 2: var products = new List<Product> 3: { 4: new Product{ProductID="P01",ProductName="Amaryl"}, 5: new Product {ProductID="P02", ProductName="acetaminophen"} 6: }; 7:  8: var pricingRules = new List<PricingRule> 9: { 10: new PricingRule {RuleID="R_1", RuleType="Free goods"}, 11: new PricingRule {RuleID="R_2", RuleType="Discount"}, 12: new PricingRule {RuleID="R_3", RuleType="Discount"} 13: }; 14: 15: //cross join query 16: var crossJoin = from p in products 17: from r in pricingRules 18: select new { ProductID = p.ProductID, RuleID = r.RuleID };   Below the definition of the two entities using in the above example.   1: public class Product 2: { 3: public string ProductID { get; set; } 4: public string ProductName { get; set; } 5: } 1: public class PricingRule 2: { 3: public string RuleID { get; set; } 4: public string RuleType { get; set; } 5: }   Doing this: 1: foreach (var result in crossJoin) 2: { 3: Console.WriteLine("({0} , {1})", result.ProductID, result.RuleID); 4: }   The output should be similar on this:   ( P01   -    R_1 )   ( P01   -    R_2 )   ( P01   -    R_3 )   ( P02   -    R_1 )   ( P02   -    R_2 )   ( P02   -    R_3) Conclusion Cross join operation is useful when performing a Cartesian product of two sequences object. However, it can produce very large result sets that may caused a problem of performance. So use with precautions :)

    Read the article

  • ASP.NET MVC Paging/Sorting/Filtering using the MVCContrib Grid and Pager

    - by rajbk
    This post walks you through creating a UI for paging, sorting and filtering a list of data items. It makes use of the excellent MVCContrib Grid and Pager Html UI helpers. A sample project is attached at the bottom. Our UI will eventually look like this. The application will make use of the Northwind database. The top portion of the page has a filter area region. The filter region is enclosed in a form tag. The select lists are wired up with jQuery to auto post back the form. The page has a pager region at the top and bottom of the product list. The product list has a link to display more details about a given product. The column headings are clickable for sorting and an icon shows the sort direction. Strongly Typed View Models The views are written to expect strongly typed objects. We suffix these strongly typed objects with ViewModel since they are designed specifically for passing data down to the view.  The following listing shows the ProductViewModel. This class will be used to hold information about a Product. We use attributes to specify if the property should be hidden and what its heading in the table should be. This metadata will be used by the MvcContrib Grid to render the table. Some of the properties are hidden from the UI ([ScaffoldColumn(false)) but are needed because we will be using those for filtering when writing our LINQ query. public ActionResult Index( string productName, int? supplierID, int? categoryID, GridSortOptions gridSortOptions, int? page) {   var productList = productRepository.GetProductsProjected();   // Set default sort column if (string.IsNullOrWhiteSpace(gridSortOptions.Column)) { gridSortOptions.Column = "ProductID"; }   // Filter on SupplierID if (supplierID.HasValue) { productList = productList.Where(a => a.SupplierID == supplierID); }   // Filter on CategoryID if (categoryID.HasValue) { productList = productList.Where(a => a.CategoryID == categoryID); }   // Filter on ProductName if (!string.IsNullOrWhiteSpace(productName)) { productList = productList.Where(a => a.ProductName.Contains(productName)); }   // Create all filter data and set current values if any // These values will be used to set the state of the select list and textbox // by sending it back to the view. var productFilterViewModel = new ProductFilterViewModel(); productFilterViewModel.SelectedCategoryID = categoryID ?? -1; productFilterViewModel.SelectedSupplierID = supplierID ?? -1; productFilterViewModel.Fill();   // Order and page the product list var productPagedList = productList .OrderBy(gridSortOptions.Column, gridSortOptions.Direction) .AsPagination(page ?? 1, 10);     var productListContainer = new ProductListContainerViewModel { ProductPagedList = productPagedList, ProductFilterViewModel = productFilterViewModel, GridSortOptions = gridSortOptions };   return View(productListContainer); } The following diagram shows the rest of the key ViewModels in our design. We have a container class called ProductListContainerViewModel which has nested classes. The ProductPagedList is of type IPagination<ProductViewModel>. The MvcContrib expects the IPagination<T> interface to determine the page number and page size of the collection we are working with. You convert any IEnumerable<T> into an IPagination<T> by calling the AsPagination extension method in the MvcContrib library. It also creates a paged set of type ProductViewModel. The ProductFilterViewModel class will hold information about the different select lists and the ProductName being searched on. It will also hold state of any previously selected item in the lists and the previous search criteria (you will recall that this type of state information was stored in Viewstate when working with WebForms). With MVC there is no state storage and so all state has to be fetched and passed back to the view. The GridSortOptions is a type defined in the MvcContrib library and is used by the Grid to determine the current column being sorted on and the current sort direction. The following shows the view and partial views used to render our UI. The Index view expects a type ProductListContainerViewModel which we described earlier. <%Html.RenderPartial("SearchFilters", Model.ProductFilterViewModel); %> <% Html.RenderPartial("Pager", Model.ProductPagedList); %> <% Html.RenderPartial("SearchResults", Model); %> <% Html.RenderPartial("Pager", Model.ProductPagedList); %> The View contains a partial view “SearchFilters” and passes it the ProductViewFilterContainer. The SearchFilter uses this Model to render all the search lists and textbox. The partial view “Pager” uses the ProductPageList which implements the interface IPagination. The “Pager” view contains the MvcContrib Pager helper used to render the paging information. This view is repeated twice since we want the pager UI to be available at the top and bottom of the product list. The Pager partial view is located in the Shared directory so that it can be reused across Views. The partial view “SearchResults” uses the ProductListContainer model. This partial view contains the MvcContrib Grid which needs both the ProdctPagedList and GridSortOptions to render itself. The Controller Action An example of a request like this: /Products?productName=test&supplierId=29&categoryId=4. The application receives this GET request and maps it to the Index method of the ProductController. Within the action we create an IQueryable<ProductViewModel> by calling the GetProductsProjected() method. /// <summary> /// This method takes in a filter list, paging/sort options and applies /// them to an IQueryable of type ProductViewModel /// </summary> /// <returns> /// The return object is a container that holds the sorted/paged list, /// state for the fiters and state about the current sorted column /// </returns> public ActionResult Index( string productName, int? supplierID, int? categoryID, GridSortOptions gridSortOptions, int? page) {   var productList = productRepository.GetProductsProjected();   // Set default sort column if (string.IsNullOrWhiteSpace(gridSortOptions.Column)) { gridSortOptions.Column = "ProductID"; }   // Filter on SupplierID if (supplierID.HasValue) { productList.Where(a => a.SupplierID == supplierID); }   // Filter on CategoryID if (categoryID.HasValue) { productList = productList.Where(a => a.CategoryID == categoryID); }   // Filter on ProductName if (!string.IsNullOrWhiteSpace(productName)) { productList = productList.Where(a => a.ProductName.Contains(productName)); }   // Create all filter data and set current values if any // These values will be used to set the state of the select list and textbox // by sending it back to the view. var productFilterViewModel = new ProductFilterViewModel(); productFilterViewModel.SelectedCategoryID = categoryID ?? -1; productFilterViewModel.SelectedSupplierID = supplierID ?? -1; productFilterViewModel.Fill();   // Order and page the product list var productPagedList = productList .OrderBy(gridSortOptions.Column, gridSortOptions.Direction) .AsPagination(page ?? 1, 10);     var productListContainer = new ProductListContainerViewModel { ProductPagedList = productPagedList, ProductFilterViewModel = productFilterViewModel, GridSortOptions = gridSortOptions };   return View(productListContainer); } The supplier, category and productname filters are applied to this IQueryable if any are present in the request. The ProductPagedList class is created by applying a sort order and calling the AsPagination method. Finally the ProductListContainerViewModel class is created and returned to the view. You have seen how to use strongly typed views with the MvcContrib Grid and Pager to render a clean lightweight UI with strongly typed views. You also saw how to use partial views to get data from the strongly typed model passed to it from the parent view. The code also shows you how to use jQuery to auto post back. The sample is attached below. Don’t forget to change your connection string to point to the server containing the Northwind database. NorthwindSales_MvcContrib.zip My name is Kobayashi. I work for Keyser Soze.

    Read the article

  • ASP.NET MVC Paging/Sorting/Filtering a list using ModelMetadata

    - by rajbk
    This post looks at how to control paging, sorting and filtering when displaying a list of data by specifying attributes in your Model using the ASP.NET MVC framework and the excellent MVCContrib library. It also shows how to hide/show columns and control the formatting of data using attributes.  This uses the Northwind database. A sample project is attached at the end of this post. Let’s start by looking at a class called ProductViewModel. The properties in the class are decorated with attributes. The OrderBy attribute tells the system that the Model can be sorted using that property. The SearchFilter attribute tells the system that filtering is allowed on that property. Filtering type is set by the  FilterType enum which currently supports Equals and Contains. The ScaffoldColumn property specifies if a column is hidden or not The DisplayFormat specifies how the data is formatted. public class ProductViewModel { [OrderBy(IsDefault = true)] [ScaffoldColumn(false)] public int? ProductID { get; set; }   [SearchFilter(FilterType.Contains)] [OrderBy] [DisplayName("Product Name")] public string ProductName { get; set; }   [OrderBy] [DisplayName("Unit Price")] [DisplayFormat(DataFormatString = "{0:c}")] public System.Nullable<decimal> UnitPrice { get; set; }   [DisplayName("Category Name")] public string CategoryName { get; set; }   [SearchFilter] [ScaffoldColumn(false)] public int? CategoryID { get; set; }   [SearchFilter] [ScaffoldColumn(false)] public int? SupplierID { get; set; }   [OrderBy] public bool Discontinued { get; set; } } Before we explore the code further, lets look at the UI.  The UI has a section for filtering the data. The column headers with links are sortable. Paging is also supported with the help of a pager row. The pager is rendered using the MVCContrib Pager component. The data is displayed using a customized version of the MVCContrib Grid component. The customization was done in order for the Grid to be aware of the attributes mentioned above. Now, let’s look at what happens when we perform actions on this page. The diagram below shows the process: The form on the page has its method set to “GET” therefore we see all the parameters in the query string. The query string is shown in blue above. This query gets routed to an action called Index with parameters of type ProductViewModel and PageSortOptions. The parameters in the query string get mapped to the input parameters using model binding. The ProductView object created has the information needed to filter data while the PageAndSorting object is used for paging and sorting the data. The last block in the figure above shows how the filtered and paged list is created. We receive a product list from our product repository (which is of type IQueryable) and first filter it by calliing the AsFiltered extension method passing in the productFilters object and then call the AsPagination extension method passing in the pageSort object. The AsFiltered extension method looks at the type of the filter instance passed in. It skips properties in the instance that do not have the SearchFilter attribute. For properties that have the SearchFilter attribute, it adds filter expression trees to filter against the IQueryable data. The AsPagination extension method looks at the type of the IQueryable and ensures that the column being sorted on has the OrderBy attribute. If it does not find one, it looks for the default sort field [OrderBy(IsDefault = true)]. It is required that at least one attribute in your model has the [OrderBy(IsDefault = true)]. This because a person could be performing paging without specifying an order by column. As you may recall the LINQ Skip method now requires that you call an OrderBy method before it. Therefore we need a default order by column to perform paging. The extension method adds a order expressoin tree to the IQueryable and calls the MVCContrib AsPagination extension method to page the data. Implementation Notes Auto Postback The search filter region auto performs a get request anytime the dropdown selection is changed. This is implemented using the following jQuery snippet $(document).ready(function () { $("#productSearch").change(function () { this.submit(); }); }); Strongly Typed View The code used in the Action method is shown below: public ActionResult Index(ProductViewModel productFilters, PageSortOptions pageSortOptions) { var productPagedList = productRepository.GetProductsProjected().AsFiltered(productFilters).AsPagination(pageSortOptions);   var productViewFilterContainer = new ProductViewFilterContainer(); productViewFilterContainer.Fill(productFilters.CategoryID, productFilters.SupplierID, productFilters.ProductName);   var gridSortOptions = new GridSortOptions { Column = pageSortOptions.Column, Direction = pageSortOptions.Direction };   var productListContainer = new ProductListContainerModel { ProductPagedList = productPagedList, ProductViewFilterContainer = productViewFilterContainer, GridSortOptions = gridSortOptions };   return View(productListContainer); } As you see above, the object that is returned to the view is of type ProductListContainerModel. This contains all the information need for the view to render the Search filter section (including dropdowns),  the Html.Pager (MVCContrib) and the Html.Grid (from MVCContrib). It also stores the state of the search filters so that they can recreate themselves when the page reloads (Viewstate, I miss you! :0)  The class diagram for the container class is shown below.   Custom MVCContrib Grid The MVCContrib grid default behavior was overridden so that it would auto generate the columns and format the columns based on the metadata and also make it aware of our custom attributes (see MetaDataGridModel in the sample code). The Grid ensures that the ShowForDisplay on the column is set to true This can also be set by the ScaffoldColumn attribute ref: http://bradwilson.typepad.com/blog/2009/10/aspnet-mvc-2-templates-part-2-modelmetadata.html) Column headers are set using the DisplayName attribute Column sorting is set using the OrderBy attribute. The data is formatted using the DisplayFormat attribute. Generic Extension methods for Sorting and Filtering The extension method AsFiltered takes in an IQueryable<T> and uses expression trees to query against the IQueryable data. The query is constructed using the Model metadata and the properties of the T filter (productFilters in our case). Properties in the Model that do not have the SearchFilter attribute are skipped when creating the filter expression tree.  It returns an IQueryable<T>. The extension method AsPagination takes in an IQuerable<T> and first ensures that the column being sorted on has the OrderBy attribute. If not, we look for the default OrderBy column ([OrderBy(IsDefault = true)]). We then build an expression tree to sort on this column. We finally hand off the call to the MVCContrib AsPagination which returns an IPagination<T>. This type as you can see in the class diagram above is passed to the view and used by the MVCContrib Grid and Pager components. Custom Provider To get the system to recognize our custom attributes, we create our MetadataProvider as mentioned in this article (http://bradwilson.typepad.com/blog/2010/01/why-you-dont-need-modelmetadataattributes.html) protected override ModelMetadata CreateMetadata(IEnumerable<Attribute> attributes, Type containerType, Func<object> modelAccessor, Type modelType, string propertyName) { ModelMetadata metadata = base.CreateMetadata(attributes, containerType, modelAccessor, modelType, propertyName);   SearchFilterAttribute searchFilterAttribute = attributes.OfType<SearchFilterAttribute>().FirstOrDefault(); if (searchFilterAttribute != null) { metadata.AdditionalValues.Add(Globals.SearchFilterAttributeKey, searchFilterAttribute); }   OrderByAttribute orderByAttribute = attributes.OfType<OrderByAttribute>().FirstOrDefault(); if (orderByAttribute != null) { metadata.AdditionalValues.Add(Globals.OrderByAttributeKey, orderByAttribute); }   return metadata; } We register our MetadataProvider in Global.asax.cs. protected void Application_Start() { AreaRegistration.RegisterAllAreas();   RegisterRoutes(RouteTable.Routes);   ModelMetadataProviders.Current = new MvcFlan.QueryModelMetaDataProvider(); } Bugs, Comments and Suggestions are welcome! You can download the sample code below. This code is purely experimental. Use at your own risk. Download Sample Code (VS 2010 RTM) MVCNorthwindSales.zip

    Read the article

  • Announcing Entity Framework Code-First (CTP5 release)

    - by ScottGu
    This week the data team released the CTP5 build of the new Entity Framework Code-First library.  EF Code-First enables a pretty sweet code-centric development workflow for working with data.  It enables you to: Develop without ever having to open a designer or define an XML mapping file Define model objects by simply writing “plain old classes” with no base classes required Use a “convention over configuration” approach that enables database persistence without explicitly configuring anything Optionally override the convention-based persistence and use a fluent code API to fully customize the persistence mapping I’m a big fan of the EF Code-First approach, and wrote several blog posts about it this summer: Code-First Development with Entity Framework 4 (July 16th) EF Code-First: Custom Database Schema Mapping (July 23rd) Using EF Code-First with an Existing Database (August 3rd) Today’s new CTP5 release delivers several nice improvements over the CTP4 build, and will be the last preview build of Code First before the final release of it.  We will ship the final EF Code First release in the first quarter of next year (Q1 of 2011).  It works with all .NET application types (including both ASP.NET Web Forms and ASP.NET MVC projects). Installing EF Code First You can install and use EF Code First CTP5 using one of two ways: Approach 1) By downloading and running a setup program.  Once installed you can reference the EntityFramework.dll assembly it provides within your projects.      or: Approach 2) By using the NuGet Package Manager within Visual Studio to download and install EF Code First within a project.  To do this, simply bring up the NuGet Package Manager Console within Visual Studio (View->Other Windows->Package Manager Console) and type “Install-Package EFCodeFirst”: Typing “Install-Package EFCodeFirst” within the Package Manager Console will cause NuGet to download the EF Code First package, and add it to your current project: Doing this will automatically add a reference to the EntityFramework.dll assembly to your project:   NuGet enables you to have EF Code First setup and ready to use within seconds.  When the final release of EF Code First ships you’ll also be able to just type “Update-Package EFCodeFirst” to update your existing projects to use the final release. EF Code First Assembly and Namespace The CTP5 release of EF Code First has an updated assembly name, and new .NET namespace: Assembly Name: EntityFramework.dll Namespace: System.Data.Entity These names match what we plan to use for the final release of the library. Nice New CTP5 Improvements The new CTP5 release of EF Code First contains a bunch of nice improvements and refinements. Some of the highlights include: Better support for Existing Databases Built-in Model-Level Validation and DataAnnotation Support Fluent API Improvements Pluggable Conventions Support New Change Tracking API Improved Concurrency Conflict Resolution Raw SQL Query/Command Support The rest of this blog post contains some more details about a few of the above changes. Better Support for Existing Databases EF Code First makes it really easy to create model layers that work against existing databases.  CTP5 includes some refinements that further streamline the developer workflow for this scenario. Below are the steps to use EF Code First to create a model layer for the Northwind sample database: Step 1: Create Model Classes and a DbContext class Below is all of the code necessary to implement a simple model layer using EF Code First that goes against the Northwind database: EF Code First enables you to use “POCO” – Plain Old CLR Objects – to represent entities within a database.  This means that you do not need to derive model classes from a base class, nor implement any interfaces or data persistence attributes on them.  This enables the model classes to be kept clean, easily testable, and “persistence ignorant”.  The Product and Category classes above are examples of POCO model classes. EF Code First enables you to easily connect your POCO model classes to a database by creating a “DbContext” class that exposes public properties that map to the tables within a database.  The Northwind class above illustrates how this can be done.  It is mapping our Product and Category classes to the “Products” and “Categories” tables within the database.  The properties within the Product and Category classes in turn map to the columns within the Products and Categories tables – and each instance of a Product/Category object maps to a row within the tables. The above code is all of the code required to create our model and data access layer!  Previous CTPs of EF Code First required an additional step to work against existing databases (a call to Database.Initializer<Northwind>(null) to tell EF Code First to not create the database) – this step is no longer required with the CTP5 release.  Step 2: Configure the Database Connection String We’ve written all of the code we need to write to define our model layer.  Our last step before we use it will be to setup a connection-string that connects it with our database.  To do this we’ll add a “Northwind” connection-string to our web.config file (or App.Config for client apps) like so:   <connectionStrings>          <add name="Northwind"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;AttachDBFilename=|DataDirectory|\northwind.mdf;User Instance=true"          providerName="System.Data.SqlClient" />   </connectionStrings> EF “code first” uses a convention where DbContext classes by default look for a connection-string that has the same name as the context class.  Because our DbContext class is called “Northwind” it by default looks for a “Northwind” connection-string to use.  Above our Northwind connection-string is configured to use a local SQL Express database (stored within the \App_Data directory of our project).  You can alternatively point it at a remote SQL Server. Step 3: Using our Northwind Model Layer We can now easily query and update our database using the strongly-typed model layer we just built with EF Code First. The code example below demonstrates how to use LINQ to query for products within a specific product category.  This query returns back a sequence of strongly-typed Product objects that match the search criteria: The code example below demonstrates how we can retrieve a specific Product object, update two of its properties, and then save the changes back to the database: EF Code First handles all of the change-tracking and data persistence work for us, and allows us to focus on our application and business logic as opposed to having to worry about data access plumbing. Built-in Model Validation EF Code First allows you to use any validation approach you want when implementing business rules with your model layer.  This enables a great deal of flexibility and power. Starting with this week’s CTP5 release, EF Code First also now includes built-in support for both the DataAnnotation and IValidatorObject validation support built-into .NET 4.  This enables you to easily implement validation rules on your models, and have these rules automatically be enforced by EF Code First whenever you save your model layer.  It provides a very convenient “out of the box” way to enable validation within your applications. Applying DataAnnotations to our Northwind Model The code example below demonstrates how we could add some declarative validation rules to two of the properties of our “Product” model: We are using the [Required] and [Range] attributes above.  These validation attributes live within the System.ComponentModel.DataAnnotations namespace that is built-into .NET 4, and can be used independently of EF.  The error messages specified on them can either be explicitly defined (like above) – or retrieved from resource files (which makes localizing applications easy). Validation Enforcement on SaveChanges() EF Code-First (starting with CTP5) now automatically applies and enforces DataAnnotation rules when a model object is updated or saved.  You do not need to write any code to enforce this – this support is now enabled by default.  This new support means that the below code – which violates our above rules – will automatically throw an exception when we call the “SaveChanges()” method on our Northwind DbContext: The DbEntityValidationException that is raised when the SaveChanges() method is invoked contains a “EntityValidationErrors” property that you can use to retrieve the list of all validation errors that occurred when the model was trying to save.  This enables you to easily guide the user on how to fix them.  Note that EF Code-First will abort the entire transaction of changes if a validation rule is violated – ensuring that our database is always kept in a valid, consistent state. EF Code First’s validation enforcement works both for the built-in .NET DataAnnotation attributes (like Required, Range, RegularExpression, StringLength, etc), as well as for any custom validation rule you create by sub-classing the System.ComponentModel.DataAnnotations.ValidationAttribute base class. UI Validation Support A lot of our UI frameworks in .NET also provide support for DataAnnotation-based validation rules. For example, ASP.NET MVC, ASP.NET Dynamic Data, and Silverlight (via WCF RIA Services) all provide support for displaying client-side validation UI that honor the DataAnnotation rules applied to model objects. The screen-shot below demonstrates how using the default “Add-View” scaffold template within an ASP.NET MVC 3 application will cause appropriate validation error messages to be displayed if appropriate values are not provided: ASP.NET MVC 3 supports both client-side and server-side enforcement of these validation rules.  The error messages displayed are automatically picked up from the declarative validation attributes – eliminating the need for you to write any custom code to display them. Keeping things DRY The “DRY Principle” stands for “Do Not Repeat Yourself”, and is a best practice that recommends that you avoid duplicating logic/configuration/code in multiple places across your application, and instead specify it only once and have it apply everywhere. EF Code First CTP5 now enables you to apply declarative DataAnnotation validations on your model classes (and specify them only once) and then have the validation logic be enforced (and corresponding error messages displayed) across all applications scenarios – including within controllers, views, client-side scripts, and for any custom code that updates and manipulates model classes. This makes it much easier to build good applications with clean code, and to build applications that can rapidly iterate and evolve. Other EF Code First Improvements New to CTP5 EF Code First CTP5 includes a bunch of other improvements as well.  Below are a few short descriptions of some of them: Fluent API Improvements EF Code First allows you to override an “OnModelCreating()” method on the DbContext class to further refine/override the schema mapping rules used to map model classes to underlying database schema.  CTP5 includes some refinements to the ModelBuilder class that is passed to this method which can make defining mapping rules cleaner and more concise.  The ADO.NET Team blogged some samples of how to do this here. Pluggable Conventions Support EF Code First CTP5 provides new support that allows you to override the “default conventions” that EF Code First honors, and optionally replace them with your own set of conventions. New Change Tracking API EF Code First CTP5 exposes a new set of change tracking information that enables you to access Original, Current & Stored values, and State (e.g. Added, Unchanged, Modified, Deleted).  This support is useful in a variety of scenarios. Improved Concurrency Conflict Resolution EF Code First CTP5 provides better exception messages that allow access to the affected object instance and the ability to resolve conflicts using current, original and database values.  Raw SQL Query/Command Support EF Code First CTP5 now allows raw SQL queries and commands (including SPROCs) to be executed via the SqlQuery and SqlCommand methods exposed off of the DbContext.Database property.  The results of these method calls can be materialized into object instances that can be optionally change-tracked by the DbContext.  This is useful for a variety of advanced scenarios. Full Data Annotations Support EF Code First CTP5 now supports all standard DataAnnotations within .NET, and can use them both to perform validation as well as to automatically create the appropriate database schema when EF Code First is used in a database creation scenario.  Summary EF Code First provides an elegant and powerful way to work with data.  I really like it because it is extremely clean and supports best practices, while also enabling solutions to be implemented very, very rapidly.  The code-only approach of the library means that model layers end up being flexible and easy to customize. This week’s CTP5 release further refines EF Code First and helps ensure that it will be really sweet when it ships early next year.  I recommend using NuGet to install and give it a try today.  I think you’ll be pleasantly surprised by how awesome it is. Hope this helps, Scott

    Read the article

  • Cannot implicitly convert type 'System.Linq.IQueryable<int>' to 'int?'

    - by Aneef
    Hi this is my code var cityList = from country in doc.Element("result").Element("cities").Descendants("city") select new { Name = country.Element("name").Value, Code = country.Element("code").Value, CountryCode = int.Parse(country.Element("countrycode").Value) }; foreach(var citee in cityList) { City city = new City(); city.CountryID = from cnt in db.Countries where cnt.DOTWInternalID == citee.CountryCode select cnt.ID; } Im getting an error on the second query as the title of this post, i tried converting to int, to nullable int nothing worked? help me guys Thanks,

    Read the article

< Previous Page | 81 82 83 84 85 86 87 88 89 90 91 92  | Next Page >