Search Results

Search found 10131 results on 406 pages for 'natural sort'.

Page 85/406 | < Previous Page | 81 82 83 84 85 86 87 88 89 90 91 92  | Next Page >

  • How do C++ header files work?

    - by PulpFiction
    Hi all. When I include some function from a header file in a C++ program, does the entire header file code get copied to the final executable or only the machine code for the specific function is generated. For example, if I call std::sort from the <algorithm> header in C++, is the machine code generated only for the sort() function or for the entire <algorithm> header file. I think that a similar question exists somewhere on Stack Overflow, but I have tried my best to find it (I glanced over it once, but lost the link). If you can point me to that, it would be wonderful.

    Read the article

  • Where is the best place to start learning Java Socket Programming?

    - by MarcoBoomTing
    I wish to create a Java Socket server which can be connected to using Javascript and/or Flash. I have experience in Connecting to sockets in flash, and using a comet like system in Ajax. I wish to make a live communication system, which will intale multiple connections to the server from various clients, needing almost instant communication between peers. I coded a system like this in PHP but I want to convert it to Java, simply because I don't want the PHP engine to be tied up on this Sever, as it serves all the web stuff normally on the site, and i've heard is more powerful for this sort of thing. Just looking for advice on where I can start learning how to write this sort of system using Java? I have previous coding experience in PHP, Javascript, Adobe Air and AS3 if That helps?

    Read the article

  • Drupal Views: Render Null Result for Relationship as 0

    - by Kyle S
    I have a View configured in Drupal to return nodes, sorting them by their average vote in descending order. For the purpose of the View, the value of the average votes is a Relationship. I noticed that nodes with no votes are displayed after nodes with a negative average. Nodes with no votes should have an average of 0, but I believe the MySQL JOIN is causing NULL values to be returned (as there are no matching rows in the joined table, since a row is created after the first vote is cast for that item). I discovered that with MySQL it is possible to output all values that are NULL in a column as another value with IFNULL(column_name,'other value'). I feel like I would need to modify the Views module in order to obtain this functionality, but I'm hoping that there is some sort of option that returns NULL values in a relation (a relation doesn't exist for the item) as 0 instead of NULL, so that I can properly sort the nodes. The modules I am using include Views, Voting API, Vote Up/Down, and CTools. Thanks.

    Read the article

  • Prevent initial array from sorting

    - by George
    I have an array where the order of the objects is important for when I finally output the array in a document. However, I'm also sorting the array in a function to find the highest value. The problem is that I after I run the function to find the highest value, I can't get the original sort order of the array back. // html document var data = [75,300,150,500,200]; createGraph(data); // js document function createGraph(data) { var maxRange = getDataRange(data); // simpleEncode() = google encoding function for graph var dataSet = simpleEncode(data,maxRange); } function getDataRange(dataArray) { var num = dataArray.sort(sortNumber); return num[0]; } I've also tried setting data to dataA and dataB and using dataB in the getDataRange function and dataA in the simpleEncode function. Either way, data always end up being sorted from highest to lowest.

    Read the article

  • Duel Masters game in Java

    - by Arun Ramasubramanian
    I was trying to make a Duel Masters card game in Java using BlueJ, and came up with a lot of ideas. However, I could not exactly figure out how to sort a deck on basis of the card names in the game. I have an array of Card objects(each has, as its instance variables: String name, int cost, int civ), and I want to sort them based on name. ie: if I have the cards "Pyrofighter Magnus", "Bazagazeal Dragon" and another "Pyrofighter Magnus" in the array, the cards should be sorted on basis of their names. I know that I could use compareTo(), but is there an easier method? Anyone? Remember, the method that sorts the cards should be a modifier.

    Read the article

  • Why can't I SELECT a parent field that doesn't have a child?

    - by myaccount
    (rest_branches) is the table of restaurants. (phone_numbers) is another table which contains the restaurants phone_numbers, and it has a field called (branch_id) which references the restaurant id. When I try: SELECT * FROM rest_branches NATURAL JOIN phone_numbers I only get the restaurants which have a phone_number. What should I do to get all restaurants even if they don't have a phone number?

    Read the article

  • Is there a way to embed an mp3 player in a website that isn't flash based (so that the website is iP

    - by hartleybrody
    I did a lot of searching for what I thought would be a pretty common question, but I came up with nothing. If there is another thread with a similar topic, please let me know. Basically, I'm looking for a way to have an .mp3 file play in a website without relying on a flash-based player. I've searched w3 schools and every forum I can think of, but every media player I've found so far has been some sort of proprietary flash player. Doesn't HTML support some sort of native player? I've found some that rely on Windows Media Player which is close, but I want the player to work on an iPhone and something tells me WMP won't get that done... PS, as I'm thinking more about this this idea just popped into my head: a javascipt player and inside the <noscript> tag, put a flash player? I'm running a music blog (@ http://www.freshoncampus.com) so the less code per post, the better...

    Read the article

  • Calling a function in a JavaScript file with Selenium IDE

    - by user1059903
    So, I'm running these Selenium IDE tests against a site I'm working on. Everything about the tests themselves is running fine, except I would like to do a bit of clean-up once I'm done. In my MVC3 Razor based site, I have a JavaScript file with a function that gets a JsonResult from a Controller of mine. That Controller handles the database clean-up that Selenium IDE otherwise couldn't handle. However, I'm having a hard time finding any sort of documentation on how to do this. I know I can do JavaScript{ myJavascriptGoesHere } as one of the Values for a line in the test, but I can't seem to find a way to tell it to go find my clean-up function. Is it even possible for Selenium IDE to do this sort of thing? If it comes down to it, I can just make a separate View to handle the clean-up, but I'd really like to avoid that if possible. Thanks!

    Read the article

  • What is the precedence of characters when sorting in MySQL, PHP, or just in general?

    - by FireCoding
    Question: Where can I find the precedence of characters when sorting in MySQL, PHP, or just in general on Linux and Windows OS? For example, everybody knows that a comes before b when performing an ascending sort on a string in MySQL. But what about other characters? Does the dollar-sign $ come before asterisk * ? Does a space come before an exclamation-mark? etc... What dictates the sort order? Does it use underlying ascii / UTF-8 values? Is it different for different technologies? Technologies to consider: Databases - MySQL / SQL / SQLite / Oracle / etc Programming languages (for string-sorting functions) - PHP / Javascript / ASP.NET / Visual C# / Python / Ruby / Objective C OS (i.e., sorting files by filename) - Windows / Linux / MacOS / iOS / Android

    Read the article

  • Using a database/index sequential file independently of the Unix distribution

    - by Helper Method
    What I'm planning to do is a) parse a file for some lines matching a regular expression b) store the match in some sort of database / file so I don't have to do the parsing again and again c) call another program passing the matches as arguments While I can imagine how to do a) and c), I'm a little bit unsure about b). The matches are of the form key:attribute1:attribute2:attribute3 where attribute 2 may be optional. I'm thinking of storing the results in a simple database but the problem is the database needs to available on a number of Unix platform for the program to work. Are there any (simple) databases which can be found on any Unix platforms? Or should I use some sort of index-sequential file?

    Read the article

  • Need help with jquery sorting

    - by Klerk
    I have a column within which are multiple 'records' (each a div). Each record has a bunch of fields (each a span whose id is the fieldname). I want to allow the user to sort all the records based on a field. I also want, the field that has been sorted to be moved to the beginning of the record. So I came up with this. But its really slow for a large sets. Not sure whats the best way to do this. Any ideas? $(".col1 div").sort( function (a,b) { if($(a).children("."+field).text() > $(b).children("."+field).text()) return -1; else return 1; }).appendTo(".col1");

    Read the article

  • Removing “duplicate objects” with same attributes using Array.map

    - by keruilin
    As you can see in the current code below, I am finding the duplicate based on the attribute recordable_id. What I need to do is find the duplicate based on four matching attributes: user_id, recordable_type, hero_type, recordable_id. How must I modify the code? heroes = User.heroes for hero in heroes hero_statuses = hero.hero_statuses seen = [] hero_statuses.sort! {|a,b| a.created_at <=> b.created_at } # sort by created_at hero_statuses.each do |hero_status| if seen.map(&:recordable_id).include? hero_status.recordable_id # check if the id has been seen already hero_status.revoke else seen << hero_status # if not, add it to the seen array end end end

    Read the article

  • FLIR: avoiding ugly page loads

    - by justinbach
    I'm building a site that makes extensive use of FLIR to allow the use of non-websafe fonts. However, pageloads are an ugly process, as first the HTML text version of each field loads and then (a few hundred milliseconds later) it's replaced by its FLIR image counterpart. Is there any way to avoid this sort of thing? I've got a client presentation in a few hours and I know it'll raise eyebrows. My situation is sort of related to this question which is in regards to sIFR, not FLIR. Any ideas? Thanks, Justin

    Read the article

  • Project manager programming background

    - by Henryk Konsek
    Do you think that project manager should have programming background? Do you consider this role as a natural way of evolution for the skilled/leader programmers (as an alternative for architect role)? Or maybe you believe that PM should be just a good manager with a basic understanding of the programming concepts and a fundamental knowledge about the technology you use. What is your experience with working with both kinds of managers (ex-programmers or just managers).

    Read the article

  • CSS single property classes

    - by user1490379
    As more presentational html properties get deprecated the natural response for me was to make single property CSS classes such as .text-align-left{text-align:left}. My question is, is this preferred versus inline styles? Stackoverflow actually uses quite a bit of inline styles. PS: I know this isn't really a coding question and it is likely to incite debate but stackoverflow is the largest stack exchange for code and this question does have some use for future individuals.

    Read the article

  • escaping into php

    - by pradeep
    $valid-url = "p1=".rawurlencode($_GET['p1'])."&type=".rawurlencode($_GET['type'])."&os=".rawurlencode($_GET['os'])."&price=".rawurlencode($_GET['price'])."&sort=".rawurlencode($_GET['sort'])."&sort_order=".rawurlencode($_GET['sort_order'])."&perpage=".rawurlencode($perpage).""; i am trying to build the url and pass it to <a href=''..but its throwing escaping problem...can i get some help on this.

    Read the article

  • Can't compile std::map sorting, why?

    - by Vincenzo
    This is my code: map<string, int> errs; struct Compare { bool operator() (map<string, int>::const_iterator l, map<string, int>::const_iterator r) { return ((*l).second < (*r).second); } } comp; sort(errs.begin(), errs.end(), comp); Can't compile. This is what I'm getting: no matching function for call to ‘sort(..’ Why so? Can anyone help? Thanks!

    Read the article

  • Lambda expression will not compile

    - by John Soer
    I am very confused. I have this lamba expression: tvPatientPrecriptionsEntities.Sort((p1, p2) => p1.MedicationStartDate .Value .CompareTo(p2.MedicationStartDate.Value)); Visual Studio will not compile it and complains about syntax. I converted the lamba expression to an anonymous delegate as so: tvPatientPrecriptionsEntities.Sort( delegate(PatientPrecriptionsEntity p1, PatientPrecriptionsEntity p2) { return p1.MedicationStartDate .Value .CompareTo(p2.MedicationStartDate.Value); }); and it works fine. The project uses .NET 3.5 and I have a reference to System.Linq.

    Read the article

  • Can you have 2 completely independent instances of Eclipse running at the same time?

    - by froadie
    I'm sure there isn't really a way to do this, but figured it doesn't hurt to ask... I use Eclipse a lot. I'm currently using it for both Java and Python (with PyDev). I often find that I have one project open, with lots of files, say in Java... And then for some reason I have to switch to a Python project for a bit. I want to leave my Java project the way it is, and I don't just want to open tons of Python files in the same place because then I have too much open at once and get a headache and confused. Is there any way I can just leave the Java project exactly the way it is, and sort of open a completely new session of Eclipse? (sort of the way you can do with a browser) Or is this just wishful thinking?

    Read the article

  • My company is a Rackspace Cloud client (provided to us for free) and I'm trying to find some way to set up version control

    - by Nick S.
    As the title says, my (small) business is provided a free Rackspace Cloud client account. We receive a decent amount of traffic but I haven't been able to put together a business case to move to our own server yet. However, we are developing some complex apps and I'm frustrated with not having the ability to even ssh into the remote server. Ultimately, I'd like to set up some sort of version control (at this point, I'll take anything, git or otherwise). I have control over databases, can FTP, set up cron jobs, and perform a few other basic functions. I can't think of any way to set up git or something similar without ssh access. A thought went through my mind that maybe some sort of PHP version control exists that I might be able to set up, but I haven't had any luck finding it yet. Do you guys have any ideas, thoughts, or advice?

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • Oracle performance problem

    - by jreid42
    We are using an Oracle 11G machine that is very powerful; has redundant storage etc. It's a beast from what I have been told. We just got this DB for a tool that when I first came on as a coop had like 20 people using, now its upwards of 150 people. I am the only one working on it :( We currently have a system in place that distributes PERL scripts across our entire data center essentially giving us a sort of "grid" computing power. The Perl scripts run a sort of simulation and report back the results to the database. They do selects / inserts. The load is not very high for each script but it could be happening across 20-50 systems at the same time. We then have multiple data centers and users all hitting the same database with this same approach. Our main problem with this is that our database is getting overloaded with connections and having to drop some. We sometimes have upwards of 500 connections. These are old perl scripts and they do not handle this well. Essentially they fail and the results are lost. I would rather avoid having to rewrite a lot of these as they are poorly written, and are a headache to even look at. The database itself is not overloaded, just the connection overhead is too high. We open a connection, make a quick query and then drop the connection. Very short connections but many of them. The database team has basically said we need to lower the number of connections or they are going to ignore us. Because this is distributed across our farm we cant implement persistent connections. I do this with our webserver; but its on a fixed system. The other ones are perl scripts that get opened and closed by the distribution tool and thus arent always running. What would be my best approach to resolving this issue? The scripts themselves can wait for a connection to be open. They do not need to act immediately. Some sort of queing system? I've been suggested to set up a few instances of a tool called "SQL Relay". Maybe one in each data center. How reliable is this tool? How good is this approach? Would it work for what we need? We could have one for each data center and relay requests through it to our main database, keeping a pipeline of open persistent connections? Does this make sense? Is there any other suggestions you can make? Any ideas? Any help would be greatly appreciated. Sadly I am just a coop student working for a very big company and somehow all of this has landed all on my shoulders (there is literally nobody to ask for help; its a hardware company, everybody is hardware engineers, and the database team is useless and in India) and I am quite lost as what the best approach would be? I am extremely overworked and this problem is interfering with on going progress and basically needs to be resolved as quickly as possible; preferably without rewriting the whole system, purchasing hardware (not gonna happen), or shooting myself in the foot. HELP LOL!

    Read the article

< Previous Page | 81 82 83 84 85 86 87 88 89 90 91 92  | Next Page >