Search Results

Search found 10547 results on 422 pages for 'extending classes'.

Page 86/422 | < Previous Page | 82 83 84 85 86 87 88 89 90 91 92 93  | Next Page >

  • What are the drawbacks of this Classing format?

    - by Keysle
    This is a 3 layer example of my classing format function __(_){return _.constructor} //class var _ = ( CLASS = function(){ this.variable = 0; this.sub = new CLASS.SUBCLASS(); }).prototype; _.func = function(){ alert('lvl'+this.variable); this.sub.func(); } _.divePeak = function(){ alert('lvl'+this.variable); this.sub.variable += 5; } //sub class _ = ( __(_).SUBCLASS = function(){ this.variable = 1; this.sub = new CLASS.SUBCLASS.DEEPCLASS(); }).prototype; _.func = function(){ alert('lvl'+this.variable); this.sub.func(); } //deep class _ = ( __(_).DEEPCLASS = function(){ this.variable = 2; }).prototype; _.func = function(){ alert('lvl'+this.variable); } Before you blow a gasket, let me explain myself. The purpose behind the underscores is to accelerate the time needed to specify functions for a class and also specify sub classes of a class. To me it's easier to read. I KNOW, this does interfere with underscore.js if you intend to use it in your classes. I'm sure _.js can be easily switched over to another $ymbol though ... oh wait, But I digress. Why have classes within a class? because solar.system() and social.system() mean two totally different things but it's convenient to use the same name. Why user underscores to manage the definition of the class? because "Solar.System.prototype" took me about 2 seconds to type out and 2 typos to correct. It also keeps all function names for all classes in the same column of texts, which is nice for legibility. All I'm doing is presenting my reasoning behind this method and why I came up with it. I'm 3 days into learning OO JS and I am very willing to accept that I might have messed up.

    Read the article

  • C# property exactly the same, defined in two places

    - by Sarah Vessels
    I have the following classes: Defect - represents a type of data that can be found in a database FilterQuery - provides a way of querying the database by setting simple Boolean filters Both Defect and FilterQuery implement the same interface: IDefectProperties. This interface specifies particular fields that are in the database. Different classes have methods that return lists of Defect instances. With FilterQuery, you specify some filters for the particular properties implemented as part of IDefectProperties, and then you run the query and get back a list of Defect instances. My problem is that I end up implementing some properties exactly the same in FilterQuery and Defect. The two are inherently different classes, they just share some of the same properties. For example: public DateTime SubmitDateAsDate { get { return DateTime.Parse(SubmitDate); } set { SubmitDate = value.ToString(); } } This is a property required by IDefectProperties that depends on a different property, SubmitDate, which returns a string instead of a DateTime. Now SubmitDate is implemented differently in Defect and FilterQuery, but SubmitDateAsDate is exactly the same. Is there a way that I can define SubmitDateAsDate in only place, but both Defect and FilterQuery provide it as a property? FilterQuery and Defect already inherit from two different classes, and it wouldn't make sense for them to share an ancestor anyway, I think. I am open to suggestions as to my design here as well.

    Read the article

  • Force calling the derived class implementation within a generic function in C#?

    - by Adam Hardy
    Ok so I'm currently working with a set of classes that I don't have control over in some pretty generic functions using these objects. Instead of writing literally tens of functions that essentially do the same thing for each class I decided to use a generic function instead. Now the classes I'm dealing with are a little weird in that the derived classes share many of the same properties but the base class that they are derived from doesn't. One such property example is .Parent which exists on a huge number of derived classes but not on the base class and it is this property that I need to use. For ease of understanding I've created a small example as follows: class StandardBaseClass {} // These are simulating the SMO objects class StandardDerivedClass : StandardBaseClass { public object Parent { get; set; } } static class Extensions { public static object GetParent(this StandardDerivedClass sdc) { return sdc.Parent; } public static object GetParent(this StandardBaseClass sbc) { throw new NotImplementedException("StandardBaseClass does not contain a property Parent"); } // This is the Generic function I'm trying to write and need the Parent property. public static void DoSomething<T>(T foo) where T : StandardBaseClass { object Parent = ((T)foo).GetParent(); } } In the above example calling DoSomething() will throw the NotImplemented Exception in the base class's implementation of GetParent(), even though I'm forcing the cast to T which is a StandardDerivedClass. This is contrary to other casting behaviour where by downcasting will force the use of the base class's implementation. I see this behaviour as a bug. Has anyone else out there encountered this?

    Read the article

  • Question about architecting asp.net mvc application ?

    - by Misnomer
    I have read little bit about architecture and also patterns in order to follow the best practices. So this is the architecture we have and I wanted to know what you think of it and any proposed changes or improvements to it - Presentation Layer - Contains all the views,controllers and any helper classes that the view requires also it containes the reference to Model Layer and Business Layer. Business Project - Contains all the business logic and validation and security helper classes that are being used by it. It contains a reference to DataAccess Layer and Model Layer. Data Access Layer - Contains the actual queries being made on the entity classes(CRUD) operations on the entity classes. It contains reference to Model Layer. Model Layer - Contains the entity framework model,DTOs,Enums.Does not really have a reference to any of the above layers. What are your thoughts on the above architecture ? The problem is that I am getting confused by reading about like say the repository pattern, domain driven design and other design patterns. The architecture we have although not that strict still is relatively alright I think and does not really muddle things but I maybe wrong. I would appreciate any help or suggestions here. Thanks !

    Read the article

  • Why Is Java Missing Access Specifiers?

    - by Tom Tresansky
    Does anyone understand why Java is missing: An access specifier which allows access by the class and all subclasses, but NOT by other classes in the same package? (Protected-minus) An access specifier which allows access by the class, all classes in the same package, AND all classes in any sub-package? (Default-plus) An access specifier which adds classes in sub-packages to the entities currently allowed access by protected? (Protected-plus) I wish I had more choices than protected and default. In particular, I'm interested in the Protected-plus option. Say I want to use a Builder/Factory patterned class to produce an object with many links to other objects. The constructors on the objects are all default, because I want to force you to use the factory class to produce instances, in order to make sure the linking is done correctly. I want to group the factories in a sub-package to keep them all together and distinct from the objects they are instantiating---this just seems like a cleaner package structure to me. No can do, currently. I have to put the builders in the same package as the objects they are constructing, in order to gain the access to defaults. But separating project.area.objects from project.area.objects.builders would be so nice. So why is Java lacking these options? And, is there anyway to fake it?

    Read the article

  • Singletons and constants

    - by devoured elysium
    I am making a program which makes use of a couple of constants. At first, each time I needed to use a constant, I'd define it as //C# private static readonly int MyConstant = xxx; //Java private static final int MyConstant = xxx; in the class where I'd need it. After some time, I started to realise that some constants would be needed in more than one class. At this time, I had 3 choises: To define them in the different classes that needed it. This leads to repetition. If by some reason later I need to change one of them, I'd have to check in all classes to replace them everywhere. To define a static class/singleton with all the constants as public. If I needed a constant X in ClassA, ClassB and ClassC, I could just define it in ClassA as public, and then have ClassB and ClassC refer to them. This solution doesn't seem that good to me as it introduces even more dependencies as the classes already have between them. I ended up implementing my code with the second option. Is that the best alternative? I feel I am probably missing some other better alternative. What worries me about using the singleton here is that it is nowhere clear to a user of the class that this class is using the singleton. Maybe I could create a ConstantsClass that held all the constants needed and then I'd pass it in the constructor to the classes that'd need it? Thanks

    Read the article

  • Abstract Design Pattern implementation

    - by Pathachiever11
    I started learning design patterns a while ago (only covered facade and abstract so far, but am enjoying it). I'm looking to apply the Abstract pattern to a problem I have. The problem is: Supporting various Database systems using one abstract class and a set of methods and properties, which then the underlying concrete classes (inheriting from abstract class) would be implementing. I have created a DatabaseWrapper abstract class and have create SqlClientData and MSAccessData concrete class that inherit from the DatabaseWrapper. However, I'm still a bit confused about how the pattern goes as far as implementing these classes on the Client. Would I do the following?: DatabaseWrapper sqlClient = new SqlClientData(connectionString); This is what I saw in an example, but that is not what I'm looking for because I want to encapsulate the concrete classes; I only want the Client to use the abstract class. This is so I can support for more database systems in the future with minimal changes to the Client, and creating a new concrete class for the implementations. I'm still learning, so there might be a lot of things wrong here. Please tell me how I can encapsulate all the concrete classes, and if there is anything wrong with my approach. Many Thanks! PS: I'm very excited to get into software architecture, but still am a beginner, so take it easy on me. :)

    Read the article

  • Eclipc java,writting a program [closed]

    - by ghassar
    I have an important exercise for that i found in the internet please i need help in using eclipc java thanks i have to design, implement, test and document a Java program (a set of classes) for one of the following problem specifications: Problem 1 – Jubilee Estate Agency Property Management System A local Estate Agent would like a prototype system to keep track of properties that are offered for sale. The Estate Agent sells domestic and commercial properties. You will need to define classes that represent the Estate Agency System. You should design your system and the classes that you will need before starting coding. Your system must have a graphical user interface and be designed and developed using the object-oriented principles of the MVC architecture design pattern i.e. the user interface class must be separate from the other classes. The initial basic requirements for the system are as follows: • Include a list of domestic properties for sale that include details of: address, description, selling price, and number of rooms • Include a list of commercial properties for sale that include details of: address, description, selling price, and area in square metres • Enable the properties that are for sale to be viewed on the screen • Allow the customer to select one or more properties to be placed on a ‘viewing list’ so that the properties can be visited in person • Display on the screen the viewing list that shows the details of the properties chosen • Provide a basic search facility to find properties that are for sale in a particular price band and display the results • Enable a property to be marked as sold

    Read the article

  • Mocking the Unmockable: Using Microsoft Moles with Gallio

    - by Thomas Weller
    Usual opensource mocking frameworks (like e.g. Moq or Rhino.Mocks) can mock only interfaces and virtual methods. In contrary to that, Microsoft’s Moles framework can ‘mock’ virtually anything, in that it uses runtime instrumentation to inject callbacks in the method MSIL bodies of the moled methods. Therefore, it is possible to detour any .NET method, including non-virtual/static methods in sealed types. This can be extremely helpful when dealing e.g. with code that calls into the .NET framework, some third-party or legacy stuff etc… Some useful collected resources (links to website, documentation material and some videos) can be found in my toolbox on Delicious under this link: http://delicious.com/thomasweller/toolbox+moles A Gallio extension for Moles Originally, Moles is a part of Microsoft’s Pex framework and thus integrates best with Visual Studio Unit Tests (MSTest). However, the Moles sample download contains some additional assemblies to also support other unit test frameworks. They provide a Moled attribute to ease the usage of mole types with the respective framework (there are extensions for NUnit, xUnit.net and MbUnit v2 included with the samples). As there is no such extension for the Gallio platform, I did the few required lines myself – the resulting Gallio.Moles.dll is included with the sample download. With this little assembly in place, it is possible to use Moles with Gallio like that: [Test, Moled] public void SomeTest() {     ... What you can do with it Moles can be very helpful, if you need to ‘mock’ something other than a virtual or interface-implementing method. This might be the case when dealing with some third-party component, legacy code, or if you want to ‘mock’ the .NET framework itself. Generally, you need to announce each moled type that you want to use in a test with the MoledType attribute on assembly level. For example: [assembly: MoledType(typeof(System.IO.File))] Below are some typical use cases for Moles. For a more detailed overview (incl. naming conventions and an instruction on how to create the required moles assemblies), please refer to the reference material above.  Detouring the .NET framework Imagine that you want to test a method similar to the one below, which internally calls some framework method:   public void ReadFileContent(string fileName) {     this.FileContent = System.IO.File.ReadAllText(fileName); } Using a mole, you would replace the call to the File.ReadAllText(string) method with a runtime delegate like so: [Test, Moled] [Description("This 'mocks' the System.IO.File class with a custom delegate.")] public void ReadFileContentWithMoles() {     // arrange ('mock' the FileSystem with a delegate)     System.IO.Moles.MFile.ReadAllTextString = (fname => fname == FileName ? FileContent : "WrongFileName");       // act     var testTarget = new TestTarget.TestTarget();     testTarget.ReadFileContent(FileName);       // assert     Assert.AreEqual(FileContent, testTarget.FileContent); } Detouring static methods and/or classes A static method like the below… public static string StaticMethod(int x, int y) {     return string.Format("{0}{1}", x, y); } … can be ‘mocked’ with the following: [Test, Moled] public void StaticMethodWithMoles() {     MStaticClass.StaticMethodInt32Int32 = ((x, y) => "uups");       var result = StaticClass.StaticMethod(1, 2);       Assert.AreEqual("uups", result); } Detouring constructors You can do this delegate thing even with a class’ constructor. The syntax for this is not all  too intuitive, because you have to setup the internal state of the mole, but generally it works like a charm. For example, to replace this c’tor… public class ClassWithCtor {     public int Value { get; private set; }       public ClassWithCtor(int someValue)     {         this.Value = someValue;     } } … you would do the following: [Test, Moled] public void ConstructorTestWithMoles() {     MClassWithCtor.ConstructorInt32 =            ((@class, @value) => new MClassWithCtor(@class) {ValueGet = () => 99});       var classWithCtor = new ClassWithCtor(3);       Assert.AreEqual(99, classWithCtor.Value); } Detouring abstract base classes You can also use this approach to ‘mock’ abstract base classes of a class that you call in your test. Assumed that you have something like that: public abstract class AbstractBaseClass {     public virtual string SaySomething()     {         return "Hello from base.";     } }      public class ChildClass : AbstractBaseClass {     public override string SaySomething()     {         return string.Format(             "Hello from child. Base says: '{0}'",             base.SaySomething());     } } Then you would set up the child’s underlying base class like this: [Test, Moled] public void AbstractBaseClassTestWithMoles() {     ChildClass child = new ChildClass();     new MAbstractBaseClass(child)         {                 SaySomething = () => "Leave me alone!"         }         .InstanceBehavior = MoleBehaviors.Fallthrough;       var hello = child.SaySomething();       Assert.AreEqual("Hello from child. Base says: 'Leave me alone!'", hello); } Setting the moles behavior to a value of  MoleBehaviors.Fallthrough causes the ‘original’ method to be called if a respective delegate is not provided explicitly – here it causes the ChildClass’ override of the SaySomething() method to be called. There are some more possible scenarios, where the Moles framework could be of much help (e.g. it’s also possible to detour interface implementations like IEnumerable<T> and such…). One other possibility that comes to my mind (because I’m currently dealing with that), is to replace calls from repository classes to the ADO.NET Entity Framework O/R mapper with delegates to isolate the repository classes from the underlying database, which otherwise would not be possible… Usage Since Moles relies on runtime instrumentation, mole types must be run under the Pex profiler. This only works from inside Visual Studio if you write your tests with MSTest (Visual Studio Unit Test). While other unit test frameworks generally can be used with Moles, they require the respective tests to be run via command line, executed through the moles.runner.exe tool. A typical test execution would be similar to this: moles.runner.exe <mytests.dll> /runner:<myframework.console.exe> /args:/<myargs> So, the moled test can be run through tools like NCover or a scripting tool like MSBuild (which makes them easy to run in a Continuous Integration environment), but they are somewhat unhandy to run in the usual TDD workflow (which I described in some detail here). To make this a bit more fluent, I wrote a ReSharper live template to generate the respective command line for the test (it is also included in the sample download – moled_cmd.xml). - This is just a quick-and-dirty ‘solution’. Maybe it makes sense to write an extra Gallio adapter plugin (similar to the many others that are already provided) and include it with the Gallio download package, if  there’s sufficient demand for it. As of now, the only way to run tests with the Moles framework from within Visual Studio is by using them with MSTest. From the command line, anything with a managed console runner can be used (provided that the appropriate extension is in place)… A typical Gallio/Moles command line (as generated by the mentioned R#-template) looks like that: "%ProgramFiles%\Microsoft Moles\bin\moles.runner.exe" /runner:"%ProgramFiles%\Gallio\bin\Gallio.Echo.exe" "Gallio.Moles.Demo.dll" /args:/r:IsolatedAppDomain /args:/filter:"ExactType:TestFixture and Member:ReadFileContentWithMoles" -- Note: When using the command line with Echo (Gallio’s console runner), be sure to always include the IsolatedAppDomain option, otherwise the tests won’t use the instrumentation callbacks! -- License issues As I already said, the free mocking frameworks can mock only interfaces and virtual methods. if you want to mock other things, you need the Typemock Isolator tool for that, which comes with license costs (Although these ‘costs’ are ridiculously low compared to the value that such a tool can bring to a software project, spending money often is a considerable gateway hurdle in real life...).  The Moles framework also is not totally free, but comes with the same license conditions as the (closely related) Pex framework: It is free for academic/non-commercial use only, to use it in a ‘real’ software project requires an MSDN Subscription (from VS2010pro on). The demo solution The sample solution (VS 2008) can be downloaded from here. It contains the Gallio.Moles.dll which provides the here described Moled attribute, the above mentioned R#-template (moled_cmd.xml) and a test fixture containing the above described use case scenarios. To run it, you need the Gallio framework (download) and Microsoft Moles (download) being installed in the default locations. Happy testing…

    Read the article

  • Video on Architecture and Code Quality using Visual Studio 2012&ndash;interview with Marcel de Vries and Terje Sandstrom by Adam Cogan

    - by terje
    Find the video HERE. Adam Cogan did a great Web TV interview with Marcel de Vries and myself on the topics of architecture and code quality.  It was real fun participating in this session.  Although we know each other from the MVP ALM community,  Marcel, Adam and I haven’t worked together before. It was very interesting to see how we agreed on so many terms, and how alike we where thinking.  The basics of ensuring you have a good architecture and how you could document it is one thing.  Also, the same agreement on the importance of having a high quality code base, and how we used the Visual Studio 2012 tools, and some others (NDepend for example)  to measure and ensure that the code quality was where it should be.  As the tools, methods and thinking popped up during the interview it was a lot of “Hey !  I do that too!”.  The tools are not only for “after the fact” work, but we use them during the coding.  That way the tools becomes an integrated part of our coding work, and helps us to find issues we may have overlooked.  The video has a bunch of call outs, pinpointing important things to remember. These are also listed on the corresponding web page. I haven’t seen that touch before, but really liked this way of doing it – it makes it much easier to spot the highlights.  Titus Maclaren and Raj Dhatt from SSW have done a terrific job producing this video.  And thanks to Lei Xu for doing the camera and recording job.  Thanks guys ! Also, if you are at TechEd Amsterdam 2012, go and listen to Adam Cogan in his session on “A modern architecture review: Using the new code review tools” Friday 29th, 10.15-11.30 and Marcel de Vries session on “Intellitrace, what is it and how can I use it to my benefit” Wednesday 27th, 5-6.15 The highlights points out some important practices.  I’ll elaborate on a few of them here: Add instructions on how to compile the solution.  You do this by adding a text file with instructions to the solution, and keep it under source control.  These instructions should contain what is needed on top of a standard install of Visual Studio.  I do a lot of code reviews, and more often that not, I am not even able to compile the program, because they have used some tool or library that needs to be installed.  The same applies to any new developer who enters into the team, so do this to increase your productivity when the team changes, or a team member switches computer. Don’t forget to document what you have to configure on the computer, the IIS being a common one. The more automatic you can do this, the better.  Use NuGet to get down libraries. When the text document gets more than say, half a page, with a bunch of different things to do, convert it into a powershell script instead.  The metrics warning levels.  These are very conservatively set by Microsoft.  You rarely see anything but green, and besides, you should have color scales for each of the metrics.  I have a blog post describing a more appropriate set of levels, based on both research work and industry “best practices”.  The essential limits are: Cyclomatic complexity and coupling:  Higher numbers are worse On method levels: Green :  From 0 to 10 Yellow:  From 10 to 20  (some say 15).   Acceptable, but have a look to see if there is something unneeded here. Red: From 20 to 40:   Action required, get these down. Bleeding Red: Above 40   This is the real red alert.  Immediate action!  (My invention, as people have asked what do I do when I have cyclomatic complexity of 150.  The only answer I could think of was: RUN! ) Maintainability index:  Lower numbers are worse, scale from 0 to 100. On method levels: Green:  60 to 100 Yellow:  40 – 60.    You will always have methods here too, accept the higher ones, take a look at those who are down to the lower limit.  Check up against the other metrics.) Red:  20 – 40:  Action required, fix these. Bleeding red:  Below 20.  Immediate action required. When doing metrics analysis, you should leave the generated code out.  You do this by adding attributes, unfortunately Microsoft has “forgotten” to add these to all their stuff, so you might have to add them to some of the code.  It most cases it can be done so that it is not overwritten by a new round of code generation.  Take a look a my blog post here for details on how to do that. Class level metrics might also be useful, at least for coupling and maintenance.  But it is much more difficult to set any fixed limits on those.  Any metric aggregations on higher level tend to be pretty useless, as the number of methods vary pretty much, and there are little science on what number of methods can be regarded as good or bad.  NDepend have a recommendation, but they say it may vary too.  And in these days of data binding, the number might be pretty high, as properties counts as methods.  However, if you take the worst case situations, classes with more than 20 methods are suspicious, and coupling and cyclomatic complexity go red above 20, so any classes with more than 20x20 = 400 for these measures should be checked over. In the video we mention the SOLID principles, coined by “Uncle Bob” (Richard Martin). One of them, the Dependency Inversion principle we discuss in the video.  It is important to note that this principle is NOT on whether you should use a Dependency Inversion Container or not, it is about how you design the interfaces and interactions between your classes.  The Dependency Inversion Container is just one technique which is based on this principle, but which main purpose is to isolate things you would like to change at runtime, for example if you implement a plug in architecture.  Overuse of a Dependency Inversion Container is however, NOT a good thing.  It should be used for a purpose and not as a general DI solution.  The general DI solution and thinking however is useful far beyond the DIC.   You should always “program to an abstraction”, and not to the concreteness.  We also talk a bit about the GRASP patterns, a term coined by Craig Larman in his book Applying UML and design patterns. GRASP patterns stand for General Responsibility Assignment Software Patterns and describe fundamental principles of object design and responsibility assignment.  What I find great with these patterns is that they is another way to focus on the responsibility of a class.  One of the things I most often found that is broken in software designs, is that the class lack responsibility, and as a result there are a lot of classes mucking around in the internals of the other classes.  We also discuss the term “Code Smells”.  This term was invented by Kent Beck and Martin Fowler when they worked with Fowler’s “Refactoring” book. A code smell is a set of “bad” coding practices, which are the drivers behind a corresponding set of refactorings.  Here is a good list of the smells, and their corresponding refactor patterns. See also this.

    Read the article

  • Windows Phone 7 development: reading RSS feeds

    - by DigiMortal
    One limitation on Windows Phone 7 is related to System.Net namespace classes. There is no convenient way to read data from web. There is no WebClient class. There is no GetResponse() method – we have to do it all asynchronously because compact framework has limited set of classes we can use in our applications to communicate with internet. In this posting I will show you how to read RSS-feeds on Windows Phone 7. NB! This is my draft code and it may contain some design flaws and some questionable solutions. This code is intended to use as test-drive for Windows Phone 7 CTP developer tools and I don’t suppose you are going to use this code in production environment. Current state of my RSS-reader Currently my RSS-reader for Windows Phone 7 is very simple, primitive and uses almost all defaults that come out-of-box with Windows Phone 7 CTP developer tools. My first goal before going on with nicer user interface design was making RSS-reading work because instead of convenient classes from .NET Framework we have to use very limited classes from .NET Framework CE. This is why I took the reading of RSS-feeds as my first task. There are currently more things to solve regarding user-interface. As I am pretty new to all this Silverlight stuff I am not very sure if I can modify default controls easily or should I write my own controls that have better look and that work faster. The image on right shows you how my RSS-reader looks like right now. Upper side of screen is filled with list that shows headlines from this blog. The bottom part of screen is used to show description of selected posting. You can click on the image to see it in original size. In my next posting I will show you some improvements of my RSS-reader user interface that make it look nicer. But currently it is nice enough to make sure that RSS-feeds are read correctly. FeedItem class As this is most straight-forward part of the following code I will show you RSS-feed items class first. I think we have to stop on it because it is simple one. public class FeedItem {     public string Title { get; set; }     public string Description { get; set; }     public DateTime PublishDate { get; set; }     public List<string> Categories { get; set; }     public string Link { get; set; }       public FeedItem()     {         Categories = new List<string>();     } } RssClient RssClient takes feed URL and when asked it loads all items from feed and gives them back to caller through ItemsReceived event. Why it works this way? Because we can make responses only using asynchronous methods. I will show you in next section how to use this class. Although the code here is not very good but it works like expected. I will refactor this code later because it needs some more efforts and investigating. But let’s hope I find excellent solution. :) public class RssClient {     private readonly string _rssUrl;       public delegate void ItemsReceivedDelegate(RssClient client, IList<FeedItem> items);     public event ItemsReceivedDelegate ItemsReceived;       public RssClient(string rssUrl)     {         _rssUrl = rssUrl;     }       public void LoadItems()     {         var request = (HttpWebRequest)WebRequest.Create(_rssUrl);         var result = (IAsyncResult)request.BeginGetResponse(ResponseCallback, request);     }       void ResponseCallback(IAsyncResult result)     {         var request = (HttpWebRequest)result.AsyncState;         var response = request.EndGetResponse(result);           var stream = response.GetResponseStream();         var reader = XmlReader.Create(stream);         var items = new List<FeedItem>(50);           FeedItem item = null;         var pointerMoved = false;           while (!reader.EOF)         {             if (pointerMoved)             {                 pointerMoved = false;             }             else             {                 if (!reader.Read())                     break;             }               var nodeName = reader.Name;             var nodeType = reader.NodeType;               if (nodeName == "item")             {                 if (nodeType == XmlNodeType.Element)                     item = new FeedItem();                 else if (nodeType == XmlNodeType.EndElement)                     if (item != null)                     {                         items.Add(item);                         item = null;                     }                   continue;             }               if (nodeType != XmlNodeType.Element)                 continue;               if (item == null)                 continue;               reader.MoveToContent();             var nodeValue = reader.ReadElementContentAsString();             // we just moved internal pointer             pointerMoved = true;               if (nodeName == "title")                 item.Title = nodeValue;             else if (nodeName == "description")                 item.Description =  Regex.Replace(nodeValue,@"<(.|\n)*?>",string.Empty);             else if (nodeName == "feedburner:origLink")                 item.Link = nodeValue;             else if (nodeName == "pubDate")             {                 if (!string.IsNullOrEmpty(nodeValue))                     item.PublishDate = DateTime.Parse(nodeValue);             }             else if (nodeName == "category")                 item.Categories.Add(nodeValue);         }           if (ItemsReceived != null)             ItemsReceived(this, items);     } } This method is pretty long but it works. Now let’s try to use it in Windows Phone 7 application. Using RssClient And this is the fragment of code behing the main page of my application start screen. You can see how RssClient is initialized and how items are bound to list that shows them. public MainPage() {     InitializeComponent();       SupportedOrientations = SupportedPageOrientation.Portrait | SupportedPageOrientation.Landscape;     listBox1.Width = Width;       var rssClient = new RssClient("http://feedproxy.google.com/gunnarpeipman");     rssClient.ItemsReceived += new RssClient.ItemsReceivedDelegate(rssClient_ItemsReceived);     rssClient.LoadItems(); }   void rssClient_ItemsReceived(RssClient client, IList<FeedItem> items) {     Dispatcher.BeginInvoke(delegate()     {         listBox1.ItemsSource = items;     });            } Conclusion As you can see it was not very hard task to read RSS-feed and populate list with feed entries. Although we are not able to use more powerful classes that are part of full version on .NET Framework we can still live with limited set of classes that .NET Framework CE provides.

    Read the article

  • Detecting HTML5/CSS3 Features using Modernizr

    - by dwahlin
    HTML5, CSS3, and related technologies such as canvas and web sockets bring a lot of useful new features to the table that can take Web applications to the next level. These new technologies allow applications to be built using only HTML, CSS, and JavaScript allowing them to be viewed on a variety of form factors including tablets and phones. Although HTML5 features offer a lot of promise, it’s not realistic to develop applications using the latest technologies without worrying about supporting older browsers in the process. If history has taught us anything it’s that old browsers stick around for years and years which means developers have to deal with backward compatibility issues. This is especially true when deploying applications to the Internet that target the general public. This begs the question, “How do you move forward with HTML5 and CSS3 technologies while gracefully handling unsupported features in older browsers?” Although you can write code by hand to detect different HTML5 and CSS3 features, it’s not always straightforward. For example, to check for canvas support you need to write code similar to the following:   <script> window.onload = function () { if (canvasSupported()) { alert('canvas supported'); } }; function canvasSupported() { var canvas = document.createElement('canvas'); return (canvas.getContext && canvas.getContext('2d')); } </script> If you want to check for local storage support the following check can be made. It’s more involved than it should be due to a bug in older versions of Firefox. <script> window.onload = function () { if (localStorageSupported()) { alert('local storage supported'); } }; function localStorageSupported() { try { return ('localStorage' in window && window['localStorage'] != null); } catch(e) {} return false; } </script> Looking through the previous examples you can see that there’s more than meets the eye when it comes to checking browsers for HTML5 and CSS3 features. It takes a lot of work to test every possible scenario and every version of a given browser. Fortunately, you don’t have to resort to writing custom code to test what HTML5/CSS3 features a given browser supports. By using a script library called Modernizr you can add checks for different HTML5/CSS3 features into your pages with a minimal amount of code on your part. Let’s take a look at some of the key features Modernizr offers.   Getting Started with Modernizr The first time I heard the name “Modernizr” I thought it “modernized” older browsers by added missing functionality. In reality, Modernizr doesn’t actually handle adding missing features or “modernizing” older browsers. The Modernizr website states, “The name Modernizr actually stems from the goal of modernizing our development practices (and ourselves)”. Because it relies on feature detection rather than browser sniffing (a common technique used in the past – that never worked that great), Modernizr definitely provides a more modern way to test features that a browser supports and can even handle loading additional scripts called shims or polyfills that fill in holes that older browsers may have. It’s a great tool to have in your arsenal if you’re a web developer. Modernizr is available at http://modernizr.com. Two different types of scripts are available including a development script and custom production script. To generate a production script, the site provides a custom script generation tool rather than providing a single script that has everything under the sun for HTML5/CSS3 feature detection. Using the script generation tool you can pick the specific test functionality that you need and ignore everything that you don’t need. That way the script is kept as small as possible. An example of the custom script download screen is shown next. Notice that specific CSS3, HTML5, and related feature tests can be selected. Once you’ve downloaded your custom script you can add it into your web page using the standard <script> element and you’re ready to start using Modernizr. <script src="Scripts/Modernizr.js" type="text/javascript"></script>   Modernizr and the HTML Element Once you’ve add a script reference to Modernizr in a page it’ll go to work for you immediately. In fact, by adding the script several different CSS classes will be added to the page’s <html> element at runtime. These classes define what features the browser supports and what features it doesn’t support. Features that aren’t supported get a class name of “no-FeatureName”, for example “no-flexbox”. Features that are supported get a CSS class name based on the feature such as “canvas” or “websockets”. An example of classes added when running a page in Chrome is shown next:   <html class=" js flexbox canvas canvastext webgl no-touch geolocation postmessage websqldatabase indexeddb hashchange history draganddrop websockets rgba hsla multiplebgs backgroundsize borderimage borderradius boxshadow textshadow opacity cssanimations csscolumns cssgradients cssreflections csstransforms csstransforms3d csstransitions fontface generatedcontent video audio localstorage sessionstorage webworkers applicationcache svg inlinesvg smil svgclippaths"> Here’s an example of what the <html> element looks like at runtime with Internet Explorer 9:   <html class=" js no-flexbox canvas canvastext no-webgl no-touch geolocation postmessage no-websqldatabase no-indexeddb hashchange no-history draganddrop no-websockets rgba hsla multiplebgs backgroundsize no-borderimage borderradius boxshadow no-textshadow opacity no-cssanimations no-csscolumns no-cssgradients no-cssreflections csstransforms no-csstransforms3d no-csstransitions fontface generatedcontent video audio localstorage sessionstorage no-webworkers no-applicationcache svg inlinesvg smil svgclippaths">   When using Modernizr it’s a common practice to define an <html> element in your page with a no-js class added as shown next:   <html class="no-js">   You’ll see starter projects such as HTML5 Boilerplate (http://html5boilerplate.com) or Initializr (http://initializr.com) follow this approach (see my previous post for more information on HTML5 Boilerplate). By adding the no-js class it’s easy to tell if a browser has JavaScript enabled or not. If JavaScript is disabled then no-js will stay on the <html> element. If JavaScript is enabled, no-js will be removed by Modernizr and a js class will be added along with other classes that define supported/unsupported features. Working with HTML5 and CSS3 Features You can use the CSS classes added to the <html> element directly in your CSS files to determine what style properties to use based upon the features supported by a given browser. For example, the following CSS can be used to render a box shadow for browsers that support that feature and a simple border for browsers that don’t support the feature: .boxshadow #MyContainer { border: none; -webkit-box-shadow: #666 1px 1px 1px; -moz-box-shadow: #666 1px 1px 1px; } .no-boxshadow #MyContainer { border: 2px solid black; }   If a browser supports box-shadows the boxshadow CSS class will be added to the <html> element by Modernizr. It can then be associated with a given element. This example associates the boxshadow class with a div with an id of MyContainer. If the browser doesn’t support box shadows then the no-boxshadow class will be added to the <html> element and it can be used to render a standard border around the div. This provides a great way to leverage new CSS3 features in supported browsers while providing a graceful fallback for older browsers. In addition to using the CSS classes that Modernizr provides on the <html> element, you also use a global Modernizr object that’s created. This object exposes different properties that can be used to detect the availability of specific HTML5 or CSS3 features. For example, the following code can be used to detect canvas and local storage support. You can see that the code is much simpler than the code shown at the beginning of this post. It also has the added benefit of being tested by a large community of web developers around the world running a variety of browsers.   $(document).ready(function () { if (Modernizr.canvas) { //Add canvas code } if (Modernizr.localstorage) { //Add local storage code } }); The global Modernizr object can also be used to test for the presence of CSS3 features. The following code shows how to test support for border-radius and CSS transforms:   $(document).ready(function () { if (Modernizr.borderradius) { $('#MyDiv').addClass('borderRadiusStyle'); } if (Modernizr.csstransforms) { $('#MyDiv').addClass('transformsStyle'); } });   Several other CSS3 feature tests can be performed such as support for opacity, rgba, text-shadow, CSS animations, CSS transitions, multiple backgrounds, and more. A complete list of supported HTML5 and CSS3 tests that Modernizr supports can be found at http://www.modernizr.com/docs.   Loading Scripts using Modernizr In cases where a browser doesn’t support a specific feature you can either provide a graceful fallback or load a shim/polyfill script to fill in missing functionality where appropriate (more information about shims/polyfills can be found at https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills). Modernizr has a built-in script loader that can be used to test for a feature and then load a script if the feature isn’t available. The script loader is built-into Modernizr and is also available as a standalone yepnope script (http://yepnopejs.com). It’s extremely easy to get started using the script loader and it can really simplify the process of loading scripts based on the availability of a particular browser feature. To load scripts dynamically you can use Modernizr’s load() function which accepts properties defining the feature to test (test property), the script to load if the test succeeds (yep property), the script to load if the test fails (nope property), and a script to load regardless of if the test succeeds or fails (both property). An example of using load() with these properties is show next: Modernizr.load({ test: Modernizr.canvas, yep: 'html5CanvasAvailable.js’, nope: 'excanvas.js’, both: 'myCustomScript.js' }); In this example Modernizr is used to not only load scripts but also to test for the presence of the canvas feature. If the target browser supports the HTML5 canvas then the html5CanvasAvailable.js script will be loaded along with the myCustomScript.js script (use of the yep property in this example is a bit contrived – it was added simply to demonstrate how the property can be used in the load() function). Otherwise, a polyfill script named excanvas.js will be loaded to add missing canvas functionality for Internet Explorer versions prior to 9. Once excanvas.js is loaded the myCustomScript.js script will be loaded. Because Modernizr handles loading scripts, you can also use it in creative ways. For example, you can use it to load local scripts when a 3rd party Content Delivery Network (CDN) such as one provided by Google or Microsoft is unavailable for whatever reason. The Modernizr documentation provides the following example that demonstrates the process for providing a local fallback for jQuery when a CDN is down:   Modernizr.load([ { load: '//ajax.googleapis.com/ajax/libs/jquery/1.6.4/jquery.js', complete: function () { if (!window.jQuery) { Modernizr.load('js/libs/jquery-1.6.4.min.js'); } } }, { // This will wait for the fallback to load and // execute if it needs to. load: 'needs-jQuery.js' } ]); This code attempts to load jQuery from the Google CDN first. Once the script is downloaded (or if it fails) the function associated with complete will be called. The function checks to make sure that the jQuery object is available and if it’s not Modernizr is used to load a local jQuery script. After all of that occurs a script named needs-jQuery.js will be loaded. Conclusion If you’re building applications that use some of the latest and greatest features available in HTML5 and CSS3 then Modernizr is an essential tool. By using it you can reduce the amount of custom code required to test for browser features and provide graceful fallbacks or even load shim/polyfill scripts for older browsers to help fill in missing functionality. 

    Read the article

  • Detecting HTML5/CSS3 Features using Modernizr

    - by dwahlin
    HTML5, CSS3, and related technologies such as canvas and web sockets bring a lot of useful new features to the table that can take Web applications to the next level. These new technologies allow applications to be built using only HTML, CSS, and JavaScript allowing them to be viewed on a variety of form factors including tablets and phones. Although HTML5 features offer a lot of promise, it’s not realistic to develop applications using the latest technologies without worrying about supporting older browsers in the process. If history has taught us anything it’s that old browsers stick around for years and years which means developers have to deal with backward compatibility issues. This is especially true when deploying applications to the Internet that target the general public. This begs the question, “How do you move forward with HTML5 and CSS3 technologies while gracefully handling unsupported features in older browsers?” Although you can write code by hand to detect different HTML5 and CSS3 features, it’s not always straightforward. For example, to check for canvas support you need to write code similar to the following:   <script> window.onload = function () { if (canvasSupported()) { alert('canvas supported'); } }; function canvasSupported() { var canvas = document.createElement('canvas'); return (canvas.getContext && canvas.getContext('2d')); } </script> If you want to check for local storage support the following check can be made. It’s more involved than it should be due to a bug in older versions of Firefox. <script> window.onload = function () { if (localStorageSupported()) { alert('local storage supported'); } }; function localStorageSupported() { try { return ('localStorage' in window && window['localStorage'] != null); } catch(e) {} return false; } </script> Looking through the previous examples you can see that there’s more than meets the eye when it comes to checking browsers for HTML5 and CSS3 features. It takes a lot of work to test every possible scenario and every version of a given browser. Fortunately, you don’t have to resort to writing custom code to test what HTML5/CSS3 features a given browser supports. By using a script library called Modernizr you can add checks for different HTML5/CSS3 features into your pages with a minimal amount of code on your part. Let’s take a look at some of the key features Modernizr offers.   Getting Started with Modernizr The first time I heard the name “Modernizr” I thought it “modernized” older browsers by added missing functionality. In reality, Modernizr doesn’t actually handle adding missing features or “modernizing” older browsers. The Modernizr website states, “The name Modernizr actually stems from the goal of modernizing our development practices (and ourselves)”. Because it relies on feature detection rather than browser sniffing (a common technique used in the past – that never worked that great), Modernizr definitely provides a more modern way to test features that a browser supports and can even handle loading additional scripts called shims or polyfills that fill in holes that older browsers may have. It’s a great tool to have in your arsenal if you’re a web developer. Modernizr is available at http://modernizr.com. Two different types of scripts are available including a development script and custom production script. To generate a production script, the site provides a custom script generation tool rather than providing a single script that has everything under the sun for HTML5/CSS3 feature detection. Using the script generation tool you can pick the specific test functionality that you need and ignore everything that you don’t need. That way the script is kept as small as possible. An example of the custom script download screen is shown next. Notice that specific CSS3, HTML5, and related feature tests can be selected. Once you’ve downloaded your custom script you can add it into your web page using the standard <script> element and you’re ready to start using Modernizr. <script src="Scripts/Modernizr.js" type="text/javascript"></script>   Modernizr and the HTML Element Once you’ve add a script reference to Modernizr in a page it’ll go to work for you immediately. In fact, by adding the script several different CSS classes will be added to the page’s <html> element at runtime. These classes define what features the browser supports and what features it doesn’t support. Features that aren’t supported get a class name of “no-FeatureName”, for example “no-flexbox”. Features that are supported get a CSS class name based on the feature such as “canvas” or “websockets”. An example of classes added when running a page in Chrome is shown next:   <html class=" js flexbox canvas canvastext webgl no-touch geolocation postmessage websqldatabase indexeddb hashchange history draganddrop websockets rgba hsla multiplebgs backgroundsize borderimage borderradius boxshadow textshadow opacity cssanimations csscolumns cssgradients cssreflections csstransforms csstransforms3d csstransitions fontface generatedcontent video audio localstorage sessionstorage webworkers applicationcache svg inlinesvg smil svgclippaths"> Here’s an example of what the <html> element looks like at runtime with Internet Explorer 9:   <html class=" js no-flexbox canvas canvastext no-webgl no-touch geolocation postmessage no-websqldatabase no-indexeddb hashchange no-history draganddrop no-websockets rgba hsla multiplebgs backgroundsize no-borderimage borderradius boxshadow no-textshadow opacity no-cssanimations no-csscolumns no-cssgradients no-cssreflections csstransforms no-csstransforms3d no-csstransitions fontface generatedcontent video audio localstorage sessionstorage no-webworkers no-applicationcache svg inlinesvg smil svgclippaths">   When using Modernizr it’s a common practice to define an <html> element in your page with a no-js class added as shown next:   <html class="no-js">   You’ll see starter projects such as HTML5 Boilerplate (http://html5boilerplate.com) or Initializr (http://initializr.com) follow this approach (see my previous post for more information on HTML5 Boilerplate). By adding the no-js class it’s easy to tell if a browser has JavaScript enabled or not. If JavaScript is disabled then no-js will stay on the <html> element. If JavaScript is enabled, no-js will be removed by Modernizr and a js class will be added along with other classes that define supported/unsupported features. Working with HTML5 and CSS3 Features You can use the CSS classes added to the <html> element directly in your CSS files to determine what style properties to use based upon the features supported by a given browser. For example, the following CSS can be used to render a box shadow for browsers that support that feature and a simple border for browsers that don’t support the feature: .boxshadow #MyContainer { border: none; -webkit-box-shadow: #666 1px 1px 1px; -moz-box-shadow: #666 1px 1px 1px; } .no-boxshadow #MyContainer { border: 2px solid black; }   If a browser supports box-shadows the boxshadow CSS class will be added to the <html> element by Modernizr. It can then be associated with a given element. This example associates the boxshadow class with a div with an id of MyContainer. If the browser doesn’t support box shadows then the no-boxshadow class will be added to the <html> element and it can be used to render a standard border around the div. This provides a great way to leverage new CSS3 features in supported browsers while providing a graceful fallback for older browsers. In addition to using the CSS classes that Modernizr provides on the <html> element, you also use a global Modernizr object that’s created. This object exposes different properties that can be used to detect the availability of specific HTML5 or CSS3 features. For example, the following code can be used to detect canvas and local storage support. You can see that the code is much simpler than the code shown at the beginning of this post. It also has the added benefit of being tested by a large community of web developers around the world running a variety of browsers.   $(document).ready(function () { if (Modernizr.canvas) { //Add canvas code } if (Modernizr.localstorage) { //Add local storage code } }); The global Modernizr object can also be used to test for the presence of CSS3 features. The following code shows how to test support for border-radius and CSS transforms:   $(document).ready(function () { if (Modernizr.borderradius) { $('#MyDiv').addClass('borderRadiusStyle'); } if (Modernizr.csstransforms) { $('#MyDiv').addClass('transformsStyle'); } });   Several other CSS3 feature tests can be performed such as support for opacity, rgba, text-shadow, CSS animations, CSS transitions, multiple backgrounds, and more. A complete list of supported HTML5 and CSS3 tests that Modernizr supports can be found at http://www.modernizr.com/docs.   Loading Scripts using Modernizr In cases where a browser doesn’t support a specific feature you can either provide a graceful fallback or load a shim/polyfill script to fill in missing functionality where appropriate (more information about shims/polyfills can be found at https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills). Modernizr has a built-in script loader that can be used to test for a feature and then load a script if the feature isn’t available. The script loader is built-into Modernizr and is also available as a standalone yepnope script (http://yepnopejs.com). It’s extremely easy to get started using the script loader and it can really simplify the process of loading scripts based on the availability of a particular browser feature. To load scripts dynamically you can use Modernizr’s load() function which accepts properties defining the feature to test (test property), the script to load if the test succeeds (yep property), the script to load if the test fails (nope property), and a script to load regardless of if the test succeeds or fails (both property). An example of using load() with these properties is show next: Modernizr.load({ test: Modernizr.canvas, yep: 'html5CanvasAvailable.js’, nope: 'excanvas.js’, both: 'myCustomScript.js' }); In this example Modernizr is used to not only load scripts but also to test for the presence of the canvas feature. If the target browser supports the HTML5 canvas then the html5CanvasAvailable.js script will be loaded along with the myCustomScript.js script (use of the yep property in this example is a bit contrived – it was added simply to demonstrate how the property can be used in the load() function). Otherwise, a polyfill script named excanvas.js will be loaded to add missing canvas functionality for Internet Explorer versions prior to 9. Once excanvas.js is loaded the myCustomScript.js script will be loaded. Because Modernizr handles loading scripts, you can also use it in creative ways. For example, you can use it to load local scripts when a 3rd party Content Delivery Network (CDN) such as one provided by Google or Microsoft is unavailable for whatever reason. The Modernizr documentation provides the following example that demonstrates the process for providing a local fallback for jQuery when a CDN is down:   Modernizr.load([ { load: '//ajax.googleapis.com/ajax/libs/jquery/1.6.4/jquery.js', complete: function () { if (!window.jQuery) { Modernizr.load('js/libs/jquery-1.6.4.min.js'); } } }, { // This will wait for the fallback to load and // execute if it needs to. load: 'needs-jQuery.js' } ]); This code attempts to load jQuery from the Google CDN first. Once the script is downloaded (or if it fails) the function associated with complete will be called. The function checks to make sure that the jQuery object is available and if it’s not Modernizr is used to load a local jQuery script. After all of that occurs a script named needs-jQuery.js will be loaded. Conclusion If you’re building applications that use some of the latest and greatest features available in HTML5 and CSS3 then Modernizr is an essential tool. By using it you can reduce the amount of custom code required to test for browser features and provide graceful fallbacks or even load shim/polyfill scripts for older browsers to help fill in missing functionality. 

    Read the article

  • Can this Query be corrected or different table structure needed? (database dumps provided)

    - by sandeepan
    This is a bit lengthy but I have provided sufficient details and kept things very clear. Please see if you can help. (I will surely accept answer if it solves my problem) I am sure a person experienced with this can surely help or suggest me to decide the tables structure. About the system:- There are tutors who create classes A tags based search approach is being followed Tag relations are created/edited when new tutors registers/edits profile data and when tutors create classes (this makes tutors and classes searcheable).For simplicity, let us consider only tutor name and class name are the fields which are matched against search keywords. In this example, I am considering - tutor "Sandeepan Nath" has created a class called "first class" tutor "Bob Cratchit" has created a class called "new class" Desired search results- AND logic to be appied on the search keywords and match against class and tutor data(class name + tutor name), in other words, All those classes be shown such that all the search terms are present in the class name or its tutor name. Example to be clear - Searching "first class" returns class with id_wc = 1. Working Searching "Sandeepan class" should also return class with id_wc = 1. Not working in System 2. Problem with profile editing and searching To tell in one sentence, I am facing a conflict between the ease of profile edition (edition of tag relations when tutor profiles are edited) and the ease of search logic. In the beginning, we had one table structure and search was easy but tag edition logic was very clumsy and unmaintainable(Check System 1 in the section below) . So we created separate tag relations tables to make profile edition simpler but search has become difficult. Please dump the tables so that you can run the search query I have given below and see the results. System 1 (previous system - search easy - profile edition difficult):- Only one table called All_Tag_Relations table had the all the tag relations. The tags table below is common to both systems 1 and 2. CREATE TABLE IF NOT EXISTS `all_tag_relations` ( `id_tag_rel` int(10) NOT NULL AUTO_INCREMENT, `id_tag` int(10) unsigned NOT NULL DEFAULT '0', `id_tutor` int(10) DEFAULT NULL, `id_wc` int(10) unsigned DEFAULT NULL, PRIMARY KEY (`id_tag_rel`), KEY `All_Tag_Relations_FKIndex1` (`id_tag`), KEY `id_wc` (`id_wc`), KEY `id_tag` (`id_tag`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; INSERT INTO `all_tag_relations` (`id_tag_rel`, `id_tag`, `id_tutor`, `id_wc`) VALUES (1, 1, 1, NULL), (2, 2, 1, NULL), (3, 1, 1, 1), (4, 2, 1, 1), (5, 3, 1, 1), (6, 4, 1, 1), (7, 6, 2, NULL), (8, 7, 2, NULL), (9, 6, 2, 2), (10, 7, 2, 2), (11, 5, 2, 2), (12, 4, 2, 2); CREATE TABLE IF NOT EXISTS `tags` ( `id_tag` int(10) unsigned NOT NULL AUTO_INCREMENT, `tag` varchar(255) DEFAULT NULL, PRIMARY KEY (`id_tag`), UNIQUE KEY `tag` (`tag`), KEY `id_tag` (`id_tag`), KEY `tag_2` (`tag`), KEY `tag_3` (`tag`), KEY `tag_4` (`tag`), FULLTEXT KEY `tag_5` (`tag`) ) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=8 ; INSERT INTO `tags` (`id_tag`, `tag`) VALUES (1, 'Sandeepan'), (2, 'Nath'), (3, 'first'), (4, 'class'), (5, 'new'), (6, 'Bob'), (7, 'Cratchit'); Please note that for every class, the tag rels of its tutor have to be duplicated. Example, for class with id_wc=1, the tag rel records with id_tag_rel = 3 and 4 are actually extras if you compare with the tag rel records with id_tag_rel = 1 and 2. System 2 (present system - profile edition easy, search difficult) Two separate tables Tutors_Tag_Relations and Webclasses_Tag_Relations have the corresponding tag relations data (Please dump into a separate database)- CREATE TABLE IF NOT EXISTS `tutors_tag_relations` ( `id_tag_rel` int(10) NOT NULL AUTO_INCREMENT, `id_tag` int(10) unsigned NOT NULL DEFAULT '0', `id_tutor` int(10) DEFAULT NULL, PRIMARY KEY (`id_tag_rel`), KEY `All_Tag_Relations_FKIndex1` (`id_tag`), KEY `id_tag` (`id_tag`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; INSERT INTO `tutors_tag_relations` (`id_tag_rel`, `id_tag`, `id_tutor`) VALUES (1, 1, 1), (2, 2, 1), (3, 6, 2), (4, 7, 2); CREATE TABLE IF NOT EXISTS `webclasses_tag_relations` ( `id_tag_rel` int(10) NOT NULL AUTO_INCREMENT, `id_tag` int(10) unsigned NOT NULL DEFAULT '0', `id_tutor` int(10) DEFAULT NULL, `id_wc` int(10) DEFAULT NULL, PRIMARY KEY (`id_tag_rel`), KEY `webclasses_Tag_Relations_FKIndex1` (`id_tag`), KEY `id_wc` (`id_wc`), KEY `id_tag` (`id_tag`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; INSERT INTO `webclasses_tag_relations` (`id_tag_rel`, `id_tag`, `id_tutor`, `id_wc`) VALUES (1, 3, 1, 1), (2, 4, 1, 1), (3, 5, 2, 2), (4, 4, 2, 2); CREATE TABLE IF NOT EXISTS `tags` ( `id_tag` int(10) unsigned NOT NULL AUTO_INCREMENT, `tag` varchar(255) DEFAULT NULL, PRIMARY KEY (`id_tag`), UNIQUE KEY `tag` (`tag`), KEY `id_tag` (`id_tag`), KEY `tag_2` (`tag`), KEY `tag_3` (`tag`), KEY `tag_4` (`tag`), FULLTEXT KEY `tag_5` (`tag`) ) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=8 ; INSERT INTO `tags` (`id_tag`, `tag`) VALUES (1, 'Sandeepan'), (2, 'Nath'), (3, 'first'), (4, 'class'), (5, 'new'), (6, 'Bob'), (7, 'Cratchit'); CREATE TABLE IF NOT EXISTS `all_tag_relations` ( `id_tag_rel` int(10) NOT NULL AUTO_INCREMENT, `id_tag` int(10) unsigned NOT NULL DEFAULT '0', `id_tutor` int(10) DEFAULT NULL, `id_wc` int(10) unsigned DEFAULT NULL, PRIMARY KEY (`id_tag_rel`), KEY `All_Tag_Relations_FKIndex1` (`id_tag`), KEY `id_wc` (`id_wc`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; insert into All_Tag_Relations select NULL,id_tag,id_tutor,NULL from Tutors_Tag_Relations; insert into All_Tag_Relations select NULL,id_tag,id_tutor,id_wc from Webclasses_Tag_Relations; Here you can see how easily tutor first name can be edited only in one place. But search has become really difficult, so on being advised to use a Temporary table, I am creating one at every search request, then dumping all the necessary data and then searching from it, I am creating this All_Tag_Relations table at search run time. Here I am just dumping all the data from the two tables Tutors_Tag_Relations and Webclasses_Tag_Relations. But, I am still not able to get classes if I search with tutor name This is the query which searches "first class". Running them on both the systems shows correct results (returns the class with id_wc = 1). SELECT wtagrels.id_wc,SUM(DISTINCT( wtagrels.id_tag =3)) AS key_1_total_matches, SUM(DISTINCT( wtagrels.id_tag =4)) AS key_2_total_matches FROM all_tag_relations AS wtagrels WHERE ( wtagrels.id_tag =3 OR wtagrels.id_tag =4 ) GROUP BY wtagrels.id_wc HAVING key_1_total_matches = 1 AND key_2_total_matches = 1 LIMIT 0, 20 But, searching for "Sandeepan class" works only with the 1st system Here is the query which searches "Sandeepan class" SELECT wtagrels.id_wc,SUM(DISTINCT( wtagrels.id_tag =1)) AS key_1_total_matches, SUM(DISTINCT( wtagrels.id_tag =4)) AS key_2_total_matches FROM all_tag_relations AS wtagrels WHERE ( wtagrels.id_tag =1 OR wtagrels.id_tag =4 ) GROUP BY wtagrels.id_wc HAVING key_1_total_matches = 1 AND key_2_total_matches = 1 LIMIT 0, 20 Can anybody alter this query and somehow do a proper join or something to get correct results. That solves my problem in a nice way. As you can figure out, the reason why it does not work in system 2 is that in system 1, for every class, one additional tag relation linking class and tutor name is present. e.g. for class first class, (records with id_tag_rel 3 and 4) which returns the class on searching with tutor name. So, you see the trade-off between the search and profile edition difficulty with the two systems. How do I overcome both. I have to reach a conclusion soon. So far my reasoning is it is definitely not good from a code maintainability point of view to follow the single tag rel table structure of system one, because in a real system while editing a field like "tutor qualifications", there can be as many records in tag rels table as there are words in qualification of a tutor (one word in a field = one tag relation). Now suppose a tutor has 100 classes. When he edits his qualification, all the tag rel rows corresponding to him are deleted and then as many copies are to be created (as per the new qualification data) as there are classes. This becomes particularly difficult if later more searcheable fields are added. The code cannot be robust. Is the best solution to follow system 2 (edition has to be in one table - no extra work for each and every class) and somehow re-create the all_tag_relations table like system 1 (from the tables tutor_tag_relations and webclasses_tag_relations), creating the extra tutor tag rels for each and every class by a tutor (which is currently missing in system 2's temporary all_tag_relations table). That would be a time consuming logic script. I doubt that table can be recreated without resorting to PHP sript (mysql alone cannot do that). But the problem is that running all this at search time will make search definitely slow. So, how do such systems work? How are such situations handled? I thought about we can run a cron which initiates that PHP script, say every 1 minute and replaces the existing all_tag_relations table as per new tag rels from tutor_tag_relations and webclasses_tag_relations (replaces means creates a new table, deletes the original and renames the new one as all_tag_relations, otherwise search won't work during that period- or is there any better way to that?). Anyway, the result would be that any changes by tutors will reflect in search in the next 1 minute and not immediately. An alternateve would be to initate that PHP script every time a tutor edits his profile. But here again, since many users may edit their profiles concurrently, will the creation of so many tables be a burden and can mysql make the server slow? Any help would be appreciated and working solution will be accepted as answer. Thanks, Sandeepan

    Read the article

  • Can this Query can be corrected or different table structure needed? (question is clear, detailed, d

    - by sandeepan
    This is a bit lengthy but I have provided sufficient details and kept things very clear. Please see if you can help. (I will surely accept answer if it solves my problem) I am sure a person experienced with this can surely help or suggest me to decide the tables structure. About the system:- There are tutors who create classes A tags based search approach is being followed Tag relations are created/edited when new tutors registers/edits profile data and when tutors create classes (this makes tutors and classes searcheable).For simplicity, let us consider only tutor name and class name are the fields which are matched against search keywords. In this example, I am considering - tutor "Sandeepan Nath" has created a class called "first class" tutor "Bob Cratchit" has created a class called "new class" Desired search results- AND logic to be appied on the search keywords and match against class and tutor data(class name + tutor name), in other words, All those classes be shown such that all the search terms are present in the class name or its tutor name. Example to be clear - Searching "first class" returns class with id_wc = 1. Working Searching "Sandeepan class" should also return class with id_wc = 1. Not working in System 2. Problem with profile editing and searching To tell in one sentence, I am facing a conflict between the ease of profile edition (edition of tag relations when tutor profiles are edited) and the ease of search logic. In the beginning, we had one table structure and search was easy but tag edition logic was very clumsy and unmaintainable(Check System 1 in the section below) . So we created separate tag relations tables to make profile edition simpler but search has become difficult. Please dump the tables so that you can run the search query I have given below and see the results. System 1 (previous system - search easy - profile edition difficult):- Only one table called All_Tag_Relations table had the all the tag relations. The tags table below is common to both systems 1 and 2. CREATE TABLE IF NOT EXISTS `all_tag_relations` ( `id_tag_rel` int(10) NOT NULL AUTO_INCREMENT, `id_tag` int(10) unsigned NOT NULL DEFAULT '0', `id_tutor` int(10) DEFAULT NULL, `id_wc` int(10) unsigned DEFAULT NULL, PRIMARY KEY (`id_tag_rel`), KEY `All_Tag_Relations_FKIndex1` (`id_tag`), KEY `id_wc` (`id_wc`), KEY `id_tag` (`id_tag`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; INSERT INTO `all_tag_relations` (`id_tag_rel`, `id_tag`, `id_tutor`, `id_wc`) VALUES (1, 1, 1, NULL), (2, 2, 1, NULL), (3, 1, 1, 1), (4, 2, 1, 1), (5, 3, 1, 1), (6, 4, 1, 1), (7, 6, 2, NULL), (8, 7, 2, NULL), (9, 6, 2, 2), (10, 7, 2, 2), (11, 5, 2, 2), (12, 4, 2, 2); CREATE TABLE IF NOT EXISTS `tags` ( `id_tag` int(10) unsigned NOT NULL AUTO_INCREMENT, `tag` varchar(255) DEFAULT NULL, PRIMARY KEY (`id_tag`), UNIQUE KEY `tag` (`tag`), KEY `id_tag` (`id_tag`), KEY `tag_2` (`tag`), KEY `tag_3` (`tag`), KEY `tag_4` (`tag`), FULLTEXT KEY `tag_5` (`tag`) ) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=8 ; INSERT INTO `tags` (`id_tag`, `tag`) VALUES (1, 'Sandeepan'), (2, 'Nath'), (3, 'first'), (4, 'class'), (5, 'new'), (6, 'Bob'), (7, 'Cratchit'); Please note that for every class, the tag rels of its tutor have to be duplicated. Example, for class with id_wc=1, the tag rel records with id_tag_rel = 3 and 4 are actually extras if you compare with the tag rel records with id_tag_rel = 1 and 2. System 2 (present system - profile edition easy, search difficult) Two separate tables Tutors_Tag_Relations and Webclasses_Tag_Relations have the corresponding tag relations data (Please dump into a separate database)- CREATE TABLE IF NOT EXISTS `tutors_tag_relations` ( `id_tag_rel` int(10) NOT NULL AUTO_INCREMENT, `id_tag` int(10) unsigned NOT NULL DEFAULT '0', `id_tutor` int(10) DEFAULT NULL, PRIMARY KEY (`id_tag_rel`), KEY `All_Tag_Relations_FKIndex1` (`id_tag`), KEY `id_tag` (`id_tag`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; INSERT INTO `tutors_tag_relations` (`id_tag_rel`, `id_tag`, `id_tutor`) VALUES (1, 1, 1), (2, 2, 1), (3, 6, 2), (4, 7, 2); CREATE TABLE IF NOT EXISTS `webclasses_tag_relations` ( `id_tag_rel` int(10) NOT NULL AUTO_INCREMENT, `id_tag` int(10) unsigned NOT NULL DEFAULT '0', `id_tutor` int(10) DEFAULT NULL, `id_wc` int(10) DEFAULT NULL, PRIMARY KEY (`id_tag_rel`), KEY `webclasses_Tag_Relations_FKIndex1` (`id_tag`), KEY `id_wc` (`id_wc`), KEY `id_tag` (`id_tag`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; INSERT INTO `webclasses_tag_relations` (`id_tag_rel`, `id_tag`, `id_tutor`, `id_wc`) VALUES (1, 3, 1, 1), (2, 4, 1, 1), (3, 5, 2, 2), (4, 4, 2, 2); CREATE TABLE IF NOT EXISTS `tags` ( `id_tag` int(10) unsigned NOT NULL AUTO_INCREMENT, `tag` varchar(255) DEFAULT NULL, PRIMARY KEY (`id_tag`), UNIQUE KEY `tag` (`tag`), KEY `id_tag` (`id_tag`), KEY `tag_2` (`tag`), KEY `tag_3` (`tag`), KEY `tag_4` (`tag`), FULLTEXT KEY `tag_5` (`tag`) ) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=8 ; INSERT INTO `tags` (`id_tag`, `tag`) VALUES (1, 'Sandeepan'), (2, 'Nath'), (3, 'first'), (4, 'class'), (5, 'new'), (6, 'Bob'), (7, 'Cratchit'); CREATE TABLE IF NOT EXISTS `all_tag_relations` ( `id_tag_rel` int(10) NOT NULL AUTO_INCREMENT, `id_tag` int(10) unsigned NOT NULL DEFAULT '0', `id_tutor` int(10) DEFAULT NULL, `id_wc` int(10) unsigned DEFAULT NULL, PRIMARY KEY (`id_tag_rel`), KEY `All_Tag_Relations_FKIndex1` (`id_tag`), KEY `id_wc` (`id_wc`) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; insert into All_Tag_Relations select NULL,id_tag,id_tutor,NULL from Tutors_Tag_Relations; insert into All_Tag_Relations select NULL,id_tag,id_tutor,id_wc from Webclasses_Tag_Relations; Here you can see how easily tutor first name can be edited only in one place. But search has become really difficult, so on being advised to use a Temporary table, I am creating one at every search request, then dumping all the necessary data and then searching from it, I am creating this All_Tag_Relations table at search run time. Here I am just dumping all the data from the two tables Tutors_Tag_Relations and Webclasses_Tag_Relations. But, I am still not able to get classes if I search with tutor name This is the query which searches "first class". Running them on both the systems shows correct results (returns the class with id_wc = 1). SELECT wtagrels.id_wc,SUM(DISTINCT( wtagrels.id_tag =3)) AS key_1_total_matches, SUM(DISTINCT( wtagrels.id_tag =4)) AS key_2_total_matches FROM all_tag_relations AS wtagrels WHERE ( wtagrels.id_tag =3 OR wtagrels.id_tag =4 ) GROUP BY wtagrels.id_wc HAVING key_1_total_matches = 1 AND key_2_total_matches = 1 LIMIT 0, 20 But, searching for "Sandeepan class" works only with the 1st system Here is the query which searches "Sandeepan class" SELECT wtagrels.id_wc,SUM(DISTINCT( wtagrels.id_tag =1)) AS key_1_total_matches, SUM(DISTINCT( wtagrels.id_tag =4)) AS key_2_total_matches FROM all_tag_relations AS wtagrels WHERE ( wtagrels.id_tag =1 OR wtagrels.id_tag =4 ) GROUP BY wtagrels.id_wc HAVING key_1_total_matches = 1 AND key_2_total_matches = 1 LIMIT 0, 20 Can anybody alter this query and somehow do a proper join or something to get correct results. That solves my problem in a nice way. As you can figure out, the reason why it does not work in system 2 is that in system 1, for every class, one additional tag relation linking class and tutor name is present. e.g. for class first class, (records with id_tag_rel 3 and 4) which returns the class on searching with tutor name. So, you see the trade-off between the search and profile edition difficulty with the two systems. How do I overcome both. I have to reach a conclusion soon. So far my reasoning is it is definitely not good from a code maintainability point of view to follow the single tag rel table structure of system one, because in a real system while editing a field like "tutor qualifications", there can be as many records in tag rels table as there are words in qualification of a tutor (one word in a field = one tag relation). Now suppose a tutor has 100 classes. When he edits his qualification, all the tag rel rows corresponding to him are deleted and then as many copies are to be created (as per the new qualification data) as there are classes. This becomes particularly difficult if later more searcheable fields are added. The code cannot be robust. Is the best solution to follow system 2 (edition has to be in one table - no extra work for each and every class) and somehow re-create the all_tag_relations table like system 1 (from the tables tutor_tag_relations and webclasses_tag_relations), creating the extra tutor tag rels for each and every class by a tutor (which is currently missing in system 2's temporary all_tag_relations table). That would be a time consuming logic script. I doubt that table can be recreated without resorting to PHP sript (mysql alone cannot do that). But the problem is that running all this at search time will make search definitely slow. So, how do such systems work? How are such situations handled? I thought about we can run a cron which initiates that PHP script, say every 1 minute and replaces the existing all_tag_relations table as per new tag rels from tutor_tag_relations and webclasses_tag_relations (replaces means creates a new table, deletes the original and renames the new one as all_tag_relations, otherwise search won't work during that period- or is there any better way to that?). Anyway, the result would be that any changes by tutors will reflect in search in the next 1 minute and not immediately. An alternateve would be to initate that PHP script every time a tutor edits his profile. But here again, since many users may edit their profiles concurrently, will the creation of so many tables be a burden and can mysql make the server slow? Any help would be appreciated and working solution will be accepted as answer. Thanks, Sandeepan

    Read the article

  • PHP Error / Mk-livestatus in Nagvis

    - by tod
    I have Nagios and Nagvis installed via Debian packages, but when I run Nagvis and try to get into the "General Configuration" menu I get this error Error: (0) Array to string conversion (/usr/share/nagvis/share/server/core/classes/WuiViewEditMainCfg.php:126) #0 /usr/share/nagvis/share/server/core/classes/WuiViewEditMainCfg.php(126): nagvisExceptionErrorHandler(8, 'Array to string...', '/usr/share/nagv...', 126, Array) #1 /usr/share/nagvis/share/server/core/classes/WuiViewEditMainCfg.php(44): WuiViewEditMainCfg->getFields() #2 /usr/share/nagvis/share/server/core/classes/CoreModMainCfg.php(56): WuiViewEditMainCfg->parse() #3 /usr/share/nagvis/share/server/core/functions/index.php(120): CoreModMainCfg->handleAction() #4 /usr/share/nagvis/share/server/core/ajax_handler.php(63): require('/usr/share/nagv...') #5 {main} I'm also having an issue with backends in Nagvis. check-mk-livestatus is installed, but I get this error when hovering over items: Problem (backend: live_1): Unable to connect to the /var/lib/nagios3/rw/live in backend live_1: Connection refused Or when trying to add things: Unable to fetch data from backend - falling back to input field. /var/lib/nagios3/rw/ exists, but there is no "live" file. I'm really not sure what is going on, especially since these were all Debian packages... Here is the most relevant part of the nagvis.ini.php: ; ---------------------------- ; Backend definitions ; ---------------------------- ; Example definition of a livestatus backend. ; In this case the backend_id is live_1 ; The path /usr/local/nagios/var/rw has to exist [backend_live_1] backendtype="mklivestatus" ; The status host can be used to prevent annoying timeouts when a backend is not ; reachable. This is only useful in multi backend setups. ; ; It works as follows: The assumption is that there is a "local" backend which ; monitors the host of the "remote" backend. When the remote backend host is ; reported as UP the backend is queried as normal. ; When the remote backend host is reported as "DOWN" or "UNREACHABLE" NagVis won't ; try to connect to the backend anymore until the backend host gets available again. ; ; The statushost needs to be given in the following format: ; "<backend_id>:<hostname>" -> e.g. "live_2:nagios" ;statushost="" socket="unix:/var/lib/nagios3/rw/live" There is nothing relating to 'backends' or 'mklivestatus' in /var/log/nagios3/nagios.log Any help would be much appreciated

    Read the article

  • How to arrange a weekly schedule in org-mode?

    - by mbork
    I'd like to put my schedule into org-mode, so that I can see my classes in the agenda. I have different classes, repeated every week, all of them taking 90 minutes. I was thinking about something like this: * My schedule ** Differential equations <2012-10-04 Thu 11:45 +1w>--<2012-10-04 Thu 13:15 +1w> However, there are two problems: I can see only the next instance in the agenda, and I can't see the ending time. Any ideas?

    Read the article

  • Why should I use a puppet parameterized class?

    - by robbyt
    Generally when working with complex puppet modules, I will set variables at the node level or inside a class. e.g., node 'foo.com' { $file_owner = "larry" include bar } class bar { $file_name = "larry.txt" include do_stuff } class do_stuff { file { $file_name: ensure => file, owner => $file_owner, } } How/when/why does parametrized classes help when this situation? How are you using parametrized classes to structure your puppet modules?

    Read the article

  • Why should I use a puppet parametrized class?

    - by robbyt
    Generally when working with complex puppet modules, I will set variables at the node level or inside a class. e.g., node 'foo.com' { $file_owner = "larry" include bar } class bar { $file_name = "larry.txt" include do_stuff } class do_stuff { file { $file_name: ensure => file, owner => $file_owner, } } How/when/why does parametrized classes help when this situation? How are you using parametrized classes to structure your puppet modules?

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • FSharp.Compiler.CodeDom for VS2008 and VS2010 side-by-side

    - by SztupY
    I'm using FSharp.Compiler.CodeDom to dynamically create F# classes. The problem is, that I have both VS2008 and VS2010 on my computer side-by-side (they works fine), and using F# in this configuration is buggy at best: If I don't install InstallFSharp.msi, then under VS2008 the built classes complain about not finding FSharp.Core (even if they're referenced) If I install InstallFSharp.msi, then under VS2008 the built classes will use the F# built for VS2010, and will throw a binary-incompatibility exception, because it will load the .net4 variant: FSC: error FS0219: The referenced or default base CLI library 'mscorlib' is binary- incompatible with the referenced F# core library 'C:\Program Files (x86)\Microsoft F#\v4.0\FSharp.Core.dll'. Consider recompiling the library or making an explicit reference to a version of this library that matches the CLI version you are using. If I replace the F# found at the previous location to the separately installed dll-s, then of course VS2010 will complain about binary-incompatibility Am I overlooking something, or they won't simply work for a shared environment like this? This might mean real problems when I deploy the applications. Thanks

    Read the article

  • Language Agnostic Basic Programming Question

    - by Rachel
    This is very basic question from programming point of view but as I am in learning phase, I thought I would better ask this question rather than having a misunderstanding or narrow knowledge about the topic. So do excuse me if somehow I mess it up. Question: Let's say I have class A,B,C and D now class A has some piece of code which I need to have in class B,C and D so I am extending class A in class B, class C, and class D Now how can I access the function of class A in other classes, do I need to create an object of class A and than access the function of class A or as am extending A in other classes than I can internally call the function using this parameter. If possible I would really appreciate if someone can explain this concept with code sample explaining how the logic flows. Note Example in Java, PHP and .Net would be appreciated.

    Read the article

  • Getting JRuby to work in RubyMine

    - by John Baker
    I setup the proper SDK because all my ruby code will compile but RubyMine complains that it can't find the any of my java classes? Is this a flaw or is there a way to get it to recognizewhere the classes are? Here is my code, I have underlined all the things its complaining about require 'java' include_class 'java.awt.event.ActionListener' include_class 'javax.swing.JButton' include_class 'javax.swing.JFrame' class ClickAction include ActionListener def action_performed(event) puts "Button got clicked." end end Is there a way around this because I'd love to buy RubyMine if it's able to inform me of what Java classes and methods I can pick from. Thanks

    Read the article

  • Sending persisted JDO instances over GWT-RPC

    - by Ben Daniel
    I've just started learning Google Web Toolkit and finished writing the Stock Watcher tutorial app. Is my thinking correct that if one wants to persist a business object (like a Stock) using JDO and send it back and forth to/from the client over RPC then one has to create two separate classes for that object: One with the JDO annotations for persisting it on the server and another which is serialisable and used over RPC? I notice the Stock Watcher has separate classes and I can theorise why: Otherwise the gwt compiler would try to generate javascript for everything the persisted class referenced like JDO and com.google.blah.users.User, etc Also there may be logic on the server-side class which doesn't apply to the client and vice-versa. I just want to make sure I'm understanding this correctly. I don't want to have to create two versions of all my business object classes which I want to use over RPC if I don't have to.

    Read the article

< Previous Page | 82 83 84 85 86 87 88 89 90 91 92 93  | Next Page >